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ORIGINAL ARTICLE

On the splay deformation mode of a polar linearly elastic bar stretched by its 
own weight

K. P. Soldatos 

School of Mathematical Sciences, University of Nottingham, Nottingham, UK 

ABSTRACT 
This communication considers the fundamental linear elasticity problem of a prismatic bar, or 
plate, stretched by its own weight and examines the impact of its classical solution in the regime 
of isotropic and anisotropic polar material elasticity. Accordingly, the existing non-polar elasticity 
solution of such a self-stretched isotropic bar is initially extended to embrace appropriate classes 
of non-polar material anisotropy. This extension verifies that, in non-polar transverse isotropy and 
special orthotropy, the attained solution is exclusively dominated by splay-type features of 
deformation. Attention then focuses on the influence that the observed fiber-splay deformation 
mode, as well as its fiber-bending deformation counterpart, exert on the formulation and potential 
solution of corresponding boundary value problems met in polar linear elasticity. It is seen that, 
regardless of the isotropic or anisotropic material symmetries considered, the outlined process 
may lead to solution of relevant boundary value problems that are slightly different to their non- 
polar elasticity counterparts. This conclusion reinforces the role that a polar material version of the 
theorem of minimum potential energy, and relevant energy minimization approaches, can play in 
the search for full solution of boundary value problems met polar material elasticity.
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1. Introduction

While several aspects of the theory of solids reinforced with 
fibers possessing bending stiffness [1, 2] are still developing (see 
also [3]), it is already understood (e.g. [4–8]) that, in general, 
there exist three principal deformation modes observable during 
the deformation of a relevant fibrous composite. These have 
become known as the fiber-bending, the fiber-splay, and the 
fiber-twist deformation modes, they are generally (though not 
necessarily) coupled, and they all contribute to couple-stress gen
eration (or accumulation). The fiber-bending mode has generally 
been considered more influential than either of its other two 
counterparts, and the theory [1, 2] thus has become more gener
ally known as the theory of materials reinforced with fibers 
resistant in bending (or possessing bending stiffness).

Moreover, there have also become available two simpler, 
restricted versions of the full theory. One of these is special
ized to predominantly capture effects that are due to fiber- 
bending, while the other to capture effects due to fiber-splay 
deformations. Either of those simpler versions of the unre
stricted (full) theory makes use of a reduced number of 
fiber-stiffness elastic moduli. This attractive feature facilitates 
their use in more practical and computational applications 
(e.g. [9–14]) and, also, encourages efforts that improve 
understanding of their relationship/relevance with the full 
theory [1, 2]. Such efforts are naturally benefited from use 

of engineering intuition and are greatly assisted from com
parisons of relevant analytical or computational results stem
ming from the solution of simple or more advanced 
structural analysis boundary value problems.

In this context, the classical linear elasticity problem of the 
pure bending of a rectangular plate (or prismatic bar) has 
already been employed to this effect. Its classical, elementary 
solution, available in conventional (non-polar) isotropic linear 
elasticity (e.g. [15], Ch. 9), is long ago extended in Koiter’s pio
neering effort [16] to exemplify and demonstrate principal fea
tures that are dominant in linearly isotropic couple-stress 
elasticity.

Due to its simplicity, that bending problem [15, 16] 
admits an exact, closed form solution underpinned by dis
placements that are quadratic in the co-ordinate parameters. 
Displacement gradients and, therefore, strains, rotations, and 
non-zero stresses thus are all linear in the same. 
Consequently, all non-zero curvature-strains and deviatoric 
couple-stresses observed in polar linear elasticity are con
stant throughout the body of the polar elastic plate of inter
est. Most importantly, and conveniently, further extension 
of the implied closed form solution, into the regime of lin
early anisotropic couple-stress theory [2, 5, 8], leaves 
unaffected those relatively simple mathematical features of 
the observed displacement, stress, and couple-stress fields.
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It has accordingly been seen [8] that, in dealing with the 
pure bending problem of a polar fiber-reinforced plate, the 
fiber-splay mode/version of the theory fails to provide any 
kind of reliable information, because this specific boundary 
value problem is not adequately influenced by fiber-splay 
deformation features. For the same reason, and by essen
tially recognizing that neither fiber-twist features are present 
in that case, the restricted fiber-bending version of the the
ory provides information that is almost identical to that 
obtained through use of the full theory.

Motivated by these observations, the present communica
tion emerges through an interest to look at the other end of 
implied spectrum of boundary value problem applications 
and, more specifically, to examine the extent to which the 
outlined conclusions are reversed when all three versions of 
the theory are employed in modeling problems that are 
principally influenced by fiber-splay deformation effects. 
This interest arises from the feeling that, if those conclusions 
are indeed reversed in that case, then, the version of the the
ory that might most conveniently fit modeling and study of 
any relevant boundary value problem could be chosen 
through intuitive judgment of the place that the considered 
problem attains within that spectrum.

The problem of a polar, linearly elastic plate stretched by 
its own weight thus becomes the principal subject of this 
communication, as its deformation features resemble closely 
the splay-type characteristics of present interest. The non- 
polar isotropic material version of this problem is also clas
sical in conventional linear elasticity and falls into the same 
category with the afore mentioned pure bending problem 
(see [15], Ch. 9). Its solution is also underpinned by dis
placements that are quadratic in the co-ordinate parameters 
and, thus, possesses mathematical properties and features 
analogous to those involved in its pure bending counterpart.

However, a special feature that makes the study of this prob
lem physically, rather than mathematically different stems from 
the fact that the deformation pattern of the purely bent polar 
plate is considered identical to that of its non-polar counterpart 
and, therefore, known. In contrast, as will be seen and discussed 
in what follows, the deformation pattern of a self-stretched polar 
material bar, necessarily though not unexpectedly, differs from 
that of its non-polar material counterpart.

Under these considerations, Section 2 initially extends the 
formulation as well as the closed form solution of the non- 
polar self-stretched isotropic bar problem [15] into the 
anisotropic non-polar material regime. In doing so, Section 
2 considers that the implied non-polar material anisotropy 
is as advanced as the kind of special orthotropy attained 
when one of the orthotropy axes is aligned with the gravity 
direction. The obtained solution thus verifies that the 
observed deformation pattern is exclusively dominated by 
fiber-splay deformation effects.

Sections 3 and 4 next consider the special case of transverse 
isotropy that is due to presence of straight fibers aligned along 
the gravity direction and possessing bending stiffness, and 
respectively examine the influence that the obtained non-polar 
elasticity solution exerts in the afore mentioned unrestricted and 
restricted versions of polar linear elasticity. The expectation thus 

is confirmed that the information provided by the restricted 
fiber-splay version is almost identical to that obtained through 
use of the full theory, while the other, fiber-bending restricted 
version fails to offer any kind of reliable relevant information. 
This stage of the study makes it also clear that the deformation 
pattern of an anisotropic polar material bar stretched by its own 
weight differs from its non-polar material counterpart and, thus, 
essentially remains unknown. Section 5 then shows that, natur
ally, the same is also true in the case of a self-stretched linearly 
elastic isotropic bar where, however, the absence of fibers 
implies that polar material response is an intrinsic material fea
ture of unspecified origin and source.

While the afore mentioned principal question that motivates 
this study receives a positive answer, the specific boundary value 
problem of a linearly elastic polar material bar or plate stretched 
by its own weight remains still open to further investigation. In 
this context, Section 6 concludes the present part of this investi
gation by outlining a manner that complete solution of this, as 
well as other relevant boundary value problems met in couple- 
stress linear elasticity can be pursued. Namely, by appropriately 
using the polar material version of the theorem of minimum 
potential energy [6].

2. Orthotropic, non-polar, prismatic bar stretched 
by its own weight

Figure 1 resembles closely its counterpart labeled as Figure 
143 on page 279 of Ref [15]. Accordingly, in the Cartesian 
co-ordinate system, Oxax3, where Greek indices take the val
ues 1 and 2, the figure illustrates the undeformed configur
ation (solid lines) and the small deformation pattern 
(dashed lines) of either of the xax3-cross-sections of a 

Figure 1. Schematic representation of the undeformed (heavy solid line) and 
deformed (dashed line) configurations of either of the xax3-cross-sections of a 
prismatic, non-polar, linearly elastic isotropic bar stretched by its own weight 
[15] (jxaj � La, 0� x3 � L).
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prismatic, non-polar, linearly elastic isotropic bar (or plate) 
that is stretched by its own weight. That, essentially self- 
stretched bar has dimensions jxaj � La and 0� x3 � L. 
Either cross-section thus passes through the Ox3-axis of the 
co-ordinate system and is considered fixed at the middle- 
point, A, of its top boundary.

If q and g denote the material density of the bar and the 
acceleration of gravity, respectively, the body force, F, that rep
resents the weight per unit volume of the bar has components,

F1 ¼ F2 ¼ 0, F3 ¼ −qg: (1) 

Since the bar is deformed solely by the action of its own 
weight, it is anticipated that no tractions are applied exter
nally on its lateral and bottom boundaries and that it is in 
equilibrium under the influence of the following stress field:

r11 ¼ r 12ð Þ ¼ r 13ð Þ ¼ r22 ¼ r 23ð Þ ¼ 0, r33 ¼ qgx3, (2) 

where enclosure of indices within parentheses implies that 
the stress tensor is symmetric.

This stress field implies that

r33 x3¼0 ¼ 0, r33 x3¼L ¼ qgL,jj (3) 

and, hence, regardless of the type of the linearly elastic 
material constitution of the bar, the tensile stress field (2)
satisfies exactly (i) all implied zero-stress boundary condi
tions, and (ii) all three equilibrium equations,

r jað Þ, j ¼ 0, r j3ð Þ, j þ F3 ¼ 0, (4) 

where, Latin indices take the values 1, 2 and 3, repeated indices 
indicate summation over their range and, in the usual manner, 
a comma among indices indicates partial differentiation.

For the purposes of the present study, it is considered that 
the linearly elastic material of the bar is specially orthotropic, in 
the sense that its symmetries are characterized by three mutually 
orthogonal directions of material preference aligned with the 
co-ordinate axes Oxi. In that case, the relevant form attained by 
the generalized Hooke’s law (e.g. [17]) may be expressed either 
in terms of the elastic stiffness moduli, the “C’s”,
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or, after inversion,
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in terms of the corresponding elastic compliances, the “S’s”.
Here, as well as in what follows, use is made of the 

standard definitions:

eij ¼
1
2

ui, j þ uj, ið Þ, xij ¼
1
2

ui, j − uj, ið Þ, (7) 

of the small strain and rotation tensors, which essentially 
emerge as the symmetric and the antisymmetric part, respect
ively, of the displacement gradient tensor ui, j:

Introduction of the stress field (2) into (6) makes imme
diately understood the splay-type nature of the shelf- 
stretched bar deformation. This is characterized by the fact 
that only the three normal components of the strain field 
are nonzero. Further use of the definition (7a) of the strain 
tensor leads to the following set of six simultaneous partial 
differential equations (PDEs) for the three unknown dis
placement components:

u1, 1
u2, 2
u3, 3

0

@

1

A ¼

S13
S23
S33

0

@

1

Aqgx3, u1, 2 þ u2, 1 ¼ u1, 3 þ u3, 1 ¼ u2, 3

þ u3, 2 ¼ 0:
(8) 

The integration procedure of this set of PDEs resembles 
its counterpart detailed in [15] for the corresponding lin
early elastic isotropic bar. It, thus, requires elimination of 
interfering rigid body rotations and a relevant rigid body 
translation. This elimination is enabled with implementation 
of the afore mentioned displacement condition, 

ui
xa ¼ 0
x3 ¼ L ¼ 0,
�
�
�
� (9) 

and leads to the displacement field: 

u1 ¼ qgS13x1x3, u2 ¼ qgS23x2x3, 

u3 ¼
1
2
qg S33 x2

3 − L2� �
− S13x2

1 þ S23x2
2

� �h i

: (10) 

Equations (2), (6) and (10) thus represent the exact 
closed form solution of the self-stretched orthotropic bar 
problem. It can readily be verified that in the special case of 
a corresponding linearly elastic isotropic bar, where the 
appearing compliance moduli relate to the Young’s modulus 
and the Poisson’s ratio a follows:

S33 ¼ 1=E, S13 ¼ S23 ¼ −�=E, (11) 

the obtained solution reduces to its counterpart [15] that is 
schematically represented in Figure 1.

In the present study, Figure 1 still provides adequate 
qualitative information regarding the deformation pattern 
attained by the implied orthotropic bar. However, precise 
geometrical features of the appearing dashed lines are natur
ally regulated by the variety of the actual numerical values 
that the elastic compliance moduli, S13, S23 and S33, can be 
associated with a material that characterized by the implied 
symmetries of special orthotropy.

The remaining of this investigation is adequately 
bounded by symmetries of material orthotropy that is due 
to presence of two orthogonal families of straight fibers. 
One of those families is parallel to the gravity direction, 
Ox3, while the other may be selected parallel to either of the 
horizontal co-ordinate axes, Oxa.

A couple of simpler special cases further arise by consider
ing that only one of the implied pair of fiber families is pre
sent. The resulting fibrous composite then acquires the 
simpler anisotropy features of a transversely isotropic material. 
While the mathematical description and outlined solution of 
the problem thus simplifies, the implied simplification leaves 
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largely unaffected the qualitative solution features as well as the 
principal physical observations.

In this regard, it is adequate for the purposes of present 
study to later consider, for more detailed investigation, only 
one of the implied cases of transverse isotropy. Namely, the 
pilot study (see Section 3.2 onwards) in which the antici
pated single family of straight fibers is parallel to the gravity 
direction, Ox3. In that case, the following additional rela
tionships accompany the elastic moduli appearing in (5):

C11 ¼ C22, C13 ¼ C23, C44 ¼ C55, C66 ¼
1
2

C22 − C12ð Þ,

(12) 

and subsequently influence the compliance moduli appear
ing in (6) through similar connections,

S11 ¼ S22, S13 ¼ S23, S44 ¼ S55 ¼ 1=C44, S66 ¼ 1=C66

¼ 2= C22 − C12ð Þ: (13) 

Provided that (i) the fibers are perfectly flexible, in the 
sense that they do not resist but just follow the bulk deform
ation of the transverse isotropic composite, and (ii) the 
implied fibrous composite does not exhibit inherent proper
ties of polar material behavior, the outlined solution is com
plete and, thus, needs no further mathematical consideration 
or treatment.

3. Effect of polar material behavior due to fiber 
bending stiffness – unrestricted theory

As is already mentioned, deformation patterns of polar 
fibrous composites when fibers possess bending stiffness are 
generally composed by three principal deformation modes. 
These became known as fiber-bending, fiber-splay, the fiber- 
twist deformation modes (see Section 9 of [1]). They all 
contribute to couple-stress generation and are generally 
coupled. In the case of the unrestricted linearized version of 
the theory [1, 2], which is the subject of this investigation, 
that coupling is manifested in the form of the polar part of 
the strain energy function, though, as will be verified in 
what follows, its strength also depends on the kind of the 
deformation that the elastic solid is subjected to.

3.1. Preliminary concepts and equilibrium equations

Under these considerations, it is recalled (e.g. [1–3]) that the 
strain energy function of any linearly elastic fibrous compos
ite with fiber bending stiffness is of the form:

W ¼WeðeÞ þWkðjÞ � 0, (14) 

where We is the quadratic, positive definite strain energy 
function that describes the response of the corresponding 
non-polar solid, and Wk is its polar material counterpart 
that is positive semi-definite and quadratic in the compo
nents of a tensor, j, that captures curvature-type features of 
fiber deformation.

In dealing with the classes of fibrous composites consid
ered in the preceding section, the well-known quadratic 

form of We anticipates validity of the following relation
ships:

WeðeÞ ¼
1
2
r ijð Þeji, r ijð Þ ¼

@We

@eij
, (15) 

the second of which leads to linear constitutive equations of 
the form (5).

On the other hand, the components of the deviatoric 
couple-stress tensor, �m, and the curvature tensor, j, relate 
with the polar part, Wk, of the strain energy function (14)
through expressions analogous to (15). However, as will be 
seen in what follows, the precise form of those expressions 
depends on the form that j attains in each of the afore 
mentioned versions of the polar elasticity theory of interest 
(e.g. [1, 4, 7]).

It is meanwhile recalled that the assumed polar material 
behavior requires replacement of the equilibrium equations 
(4) with their polar material counterparts,

r ijð Þ, i þ
1
2
ekji �mlk, li þ dj3F3 ¼ 0,

r ij½ � ¼
1
2
ekjimlk, l,

(16) 

where m represents the couple-stress tensor and 

�mlk ¼ mlk −
1
3

mrrdlk, (17) 

are the components of its deviatoric part. In this context, 
(16b) is regarded as a constitutive equation that provides the 
antisymmetric part of the stress in terms of the couple-stress 
gradients, thus leaving (16a) as the only, appropriately aug
mented version of an equilibrium equation.

A final set of equations that also need to be employed, 
for evaluation of the appearing spherical part of the couple- 
stress mrr, is described as follows [2, 3, 18]:

Xlmrr , l¼ 6Wm − 3 �mliXið Þ, l, Xi ¼
1
2
eijkxkj ¼

1
2
eijkuk, j, Xi, i ¼ 0,

(18) 

where the scalar term Wm appearing in (18a) will be deter
mined as an appropriate part of the form attained by the 
polar part, Wk, of the strain energy function (14). It is also 
recalled that the identity (18c) is a consequence of the defi
nitions (18b) and (7b).

It is fitting at this point to mention that, as far as the 
boundary value problem of present interest is concerned, a 
combination of (18b) with the displacement field (10) pro
vides the appearing components of the spin vector, X, as 
follows:

X1 ¼ −qgS13x2, X2 ¼ qgS23x1 ¼ qgS13x1, X3 ¼ 0, (19) 

where (13b) has also been taken into consideration.

3.2. Polar part of the constitutive equations for the 
unrestricted version of the theory

In the case that a linearly elastic polar fibrous composite has 
embedded a single family of straight fibers with bending 
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stiffness, the polar part of the constitutive equations is as 
follows [4]:

�mlr ¼
2
3
ersi

@Wk

@jil
as þ

@Wk

@jis
al

 !

, �mkk ¼ 0, (20) 

where the appearing fiber direction vector, a, is constant, 
while, in components, the appearing fiber curvature tensor 
and its symmetric and antisymmetric counterparts, are

jij ¼ ui, kjak, j ijð Þ ¼
1
2

ui, jk þ uj, ikð Þak ¼ eij, kak,

j ij½ � ¼
1
2

ui, jk − uj, ikð Þak ¼ xij, kak:

(21) 

Moreover, the appearing polar part of the strain energy 
function attains the form

Wj ¼ b1 jnnð Þ
2 þ b2jnnakj kmð Þam þ b3j kmð Þj mkð Þ þ b4akj kmð Þj mnð Þanþ

b5j km½ �j mk½ � þ b6akj km½ �j mn½ �an þ b7akj kmð Þj mn½ �an þ b̂3 akj kmð Þamð Þ
2,

(22) 

where the coefficients b1 to b7, and b̂3 represent a set of 
eight elastic moduli associated with the polar part of the 
material response. As is shown in [4], positive semi-definite
ness of Wj requires from the values of those elastic moduli 
to satisfy the following inequalities:

b1 � 0, b3 � 0, b4 � 0, b5 � 0, b2
7 � −4 2b5 þ b6ð Þ 2b3 þ b4ð Þ,

b2 þ b̂3 � 0, b1 þ b2 þ b3 þ b4 þ b̂3 �
b1 þ b2=2ð Þ

2

b1 þ b3=2
:

(23) 

Combination of (20) and (22) then yields the constitutive 
equation

�mlr ¼
2
3
erlsas 2b1jnn þ b2jkmakamð Þ þ

2
3
erisas 2b3j ilð Þ

�

þb4j inð ÞanalÞ−
1
3
eris 4b5 asj il½ � þ alj is½ �ð Þ − 2b6anal aij sn½ �ð
�

−2asj in½ �Þþb7anal aijns − 2asjinð Þg, (24) 

which evidently receives no contribution from the part 

Wm ¼ b̂3 akj kmð Þamð Þ
2, (25) 

of the strain energy function (22).
Hence, seven of the eight elastic moduli involved in (22)

contribute to the couple-stress constitutive equation (24)
and one is associated with the apparently unused part (25)
of the stored elastic energy. That part of energy, Wm, is 
necessarily related with the action of the spherical part of 
the couple-stress that remains to be determined by solving 
the PDE that is finally formed by inserting (25) into (18a).

3.3. Effect of polar material behavior on the non-polar 
elasticity solution of the self-stretched bar

In the present case of principal interest, where the bar 
depicted in Figure 1 is reinforced with fibers oriented 

parallel to gravity, it is

a ¼ 0, 0, 1ð Þ
T
: (26) 

The constitutive equation (24) thus attains the special 
form

�mlr ¼
2
3
erl3 2b1jnn þ b2j33ð Þ þ

2
3
eri3 2b3j ilð Þ þ b4j i3ð Þal

� �
−

2
3
eri3 2b5j il½ � − 2b6alj i3½ � − b7alji3
� �

−
1
3

al er3s −2b6j s3½ � þ b7j3s
� �

−
4
3
b5erisj is½ �

� �

, (27) 

while (25) also simplifies and becomes

Wm ¼ b̂3j
2
33: (28) 

On the other hand, a combination of (21) with the dis
placement field (10) reveals that the non-polar elasticity 
solution of this boundary value problem associates to (27)
only three non-zero curvature components, namely

j11, j22, j33ð Þ ¼ qg S13, S23, S33ð Þ ¼ qg S13, S13, S33ð Þ, (29) 

where (13b) is also accounted for. The constitutive equation 
(27) then simplifies into the following:

�mlr ¼
2
3
erl3 2b1 j11 þ j22ð Þ þ 2b1 þ b2ð Þj33
� �

þ
4
3
era3b3j alð Þ:

(30) 

and, through use of (29), produces only two non-zero devia
toric couple-stress components,

�m12 ¼ − �m21 ¼ −qgk, k ¼
2
3

2 2b1 þ b3ð ÞS13 þ 2b1 þ b2ð ÞS33
� �

,

(31) 

which are both constant.
Accordingly, all three normal components of the devia

toric couple-stress are equal to zero ( �m11 ¼ �m22 ¼ �m33 ¼ 0) 
and (17) thus yields:

m11 ¼ m22 ¼ m33 ¼
1
3

mrr: (32) 

Determination of all three normal couple-stresses then 
requires solution of the PDE

x1mrr , 2 − x2mrr , 1¼ 6qg b̂3
S2

33
S13
þ k

� �

� ~k, (33) 

which is obtained by inserting (19), (28) and (31) into (18a).
Use of the method of characteristic lines (see Appendix 

A) provides the following solution of the PDE (33):

x2
1 þ x2

2 ¼ c2
1,

mrr x1, x2 x1ð Þ, x3ð Þ ¼ 7~k sin −1 x1= c1j jð Þ

þc2 ¼ ~k sin −1 7x1= c1j jð Þ þ c2,
mrr x1 x2ð Þ, x2, x3ð Þ ¼ 6~k sin −1 x2= c1j jð Þ

þc3 ¼ ~k sin −1 6x2= c1j jð Þ þ c3,

(34) 

where c1, c2 and c3 are regarded as arbitrary constants 
of integration in the x1x2-plane, and, if necessary, may 
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accordingly be considered as arbitrary functions of the third 
co-ordinate parameter, x3.

The normal couple-stresses are then obtained by inserting 
either of (34b) and (34c) into (32). It is noted in this con
text, that specific values can be assigned to the appearing 
arbitrary constants only if appropriate boundary conditions 
are assigned on relevant boundaries of the polar mater
ial bar.

If, for instance, the following normal couple-traction 
boundary conditions are employed: 

m11 x1¼6L1 ¼ m̂1, m22 x2¼6L2 ¼ m̂2,jj (35) 

for given values of m̂1 and m̂2, then their combination with 
(32) and (34) reveals that

c2 ¼ ~k sin −1 L1= c1j jð Þ þ m̂1=3, 

c3 ¼ −~k sin −1 L2= c1j jð Þ þ m̂2=3, (36) 

and, hence, that two of the three arbitrary constants may be 
determined uniquely. It is thus noted that the choice m̂1 ¼

m̂2 ¼ 0 enables the lateral boundaries of the bar to be kept 
free from externally applied normal couple-stresses.

The outlined results imply that the considered polar 
transversely isotropic bar can maintain the deformed shape 
of its non-polar counterpart, depicted in Figure 1, only if 
the non-zero couple-stresses (31) are applied externally on 
their respective boundaries xa ¼ 6La, along with (i) poten
tially nonzero normal couple-stresses, m11 and m22, that 
may emerge on those boundaries, and (ii) the nonzero nor
mal couple-stress distribution

m33 x1, x2 x1ð Þ, 0ð Þ ¼ −~k sin −1 x1=c1j j − sin −1 L1= c1j jð Þ
� �

þ m̂1=3,
m33 x1 x2ð Þ, x2, 0ð Þ ¼ ~k sin −1 x2=c1j j − sin −1 L2= c1j jð Þ

� �
þ m̂2=3,

(37) 

that will emerge on the boundary x3 ¼ 0:
However, m33ð0, 0, 0Þ must attain a unique value at the 

bottom boundary of the bar, and a comparison of the pair 
of relevant values stemming from (37) reveals that the value 
of the last remaining constant, c1, is defined as a root of the 
transcendental algebraic equation

sin −1 L2= c1j jð Þ − sin −1 L1= c1j jð Þ ¼ m̂1 þ m̂2ð Þ=3~k: (38) 

The thus obtained value of c1 then naturally feeds back 
into (36) and influences the value of the constants c2 and c3:

Nevertheless, it also becomes understood that the lateral 
boundaries of the self-stretched polar material bar may be 
kept free from externally applied normal couple-stresses 
(m̂1 ¼ m̂2 ¼ 0) only if its cross-section on the x1x2-plane 
has the shape of a perfect square (L1 ¼ L2).

After the couple-stress determination process thus is 
completed, (16b) is employed for the determination of the 
antisymmetric part of the stress tensor. It is accordingly 
observed that, since the right-hand side of (16b) depends on 
gradients of the couple-stress components, the emergent 
constant deviatoric couple-stresses (31) do not affect any of 
the stress components.

However, the fact that both (34b, c) depend on the in- 
plane coordinate parameters implies that, when combined 

with (32) and (16b), they give rise to four non-zero shear 
stress components, namely

r32 ¼ −r23 ¼ r 32ð Þ þ r 32½ � ¼
1
6

mrr, 1 ¼
~k

6x2
,

r13 ¼ −r31 ¼ r 13ð Þ þ r 13½ � ¼
1
6

mrr, 2 ¼ −
x2

6x1
mrr, 1 ¼ −

~k

6x1
,

(39) 

where (2), (A.2) and (A.1) are also accounted for.
The appearance of these non-zero stress components 

implies that, for the polar material bar to maintain the 
deformed shape of its self-stretched non-polar counterpart, 
the tractions

r13

�
�
�
�x1¼6L1 ¼ 7

~k

6L1
, r23 x2¼6L2 ¼ 7

~k

6L2
, r31 x3¼0, L ¼

~k

6x1
,

�
�
�
�
�

�
�
�
�
�

r32 x3¼0, L ¼
~k

6x2
,

�
�
�
�
�

(40) 

must also be applied externally on its noted boundaries, in 
addition to the couple-traction boundary conditions stem
ming from (31) and (37).

The outlined results reveal that the displacement field 
(10) does not anymore represent the shape of a polar trans
versely isotropic bar deformed by its own weight. This is 
evidently because, like its non-polar material counterpart, a 
polar material bar stretched by its own weight is supposed 
to deform in the absence of any kind of externally applied 
tractions and couple-tractions.

As a matter of fact, a more critical look at the traction 
boundary conditions (40c) and (40d) further suggests that 
their exact implementation on the noted boundary is practic
ally impossible. This is because either of those externally 
applied shear traction distributions is expected to attain a sin
gular value at the co-ordinate origin (x1 ¼ x2 ¼ 0). Some 
potentially different solution of the PDE (33) may of course 
prevail and, thus, dismiss the observed singularity argument. 
However, even if such a solution does exist, and is found, it 
will not alter that principal relevant conclusion, according to 
which the deformation pattern of a polar fiber-reinforced bar 
differs from that of its non-polar polar material counterpart.

This conclusion is naturally anticipated also valid in the 
more general case of a specially orthotropic polar bar, where 
the relations (13) are dismissed and the general form of the 
constitutive equations (6) applies without simplifications. As will 
be seen later, in Section 5, the same is true even in the special 
case of polar material isotropy where, due to lack of fiber pres
ence, polar material behavior is attributed to inherent, essentially 
unspecified, or even unknown properties of the material.

It necessarily follows that it is practically impossible for a 
polar material bar stretched by its own weight to attain, not 
only naturally but also artificially, the precise deformation 
pattern attained by its non-polar counterpart. While the 
problem of a self-stretched polar material bar thus remains 
still unsolved, and therefore open, Section 6 below discusses 
the manner that the results and new information reported 
in this communication will substantially assist ongoing 
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developments regarding completion of its solution, as well 
as the solution of relevant boundary value problems in this 
subject.

4. Implication of the restricted versions of the 
theory

The preliminary concepts and equations detailed in Section 
3.1 hold, essentially unaltered in the case of either of the 
two restricted versions of the full (unrestricted) theory con
sidered in the preceding section. Each of those simpler ver
sions of the theory applies some different type of restrictions 
into the part of the unrestricted theory that refers to polar 
material response only.

4.1. The fiber-splay deformation mode

The restricted, splay deformation version of the full theory 
arose in [7] during the search for an answer to an essentially 
curiosity driven question that emerges through strict adher
ence to and implementation in the strain energy function of 
the relationship

jij ¼ j ijð Þ þ j ij½ �: (41) 

This restriction leads to search for a special form of Wk 

that, unlike its unrestricted counterpart (22), obeys the sym
metry condition

Wj j ijð Þ, j ij½ �, aið Þ ¼Wj j ij½ �, j ijð Þ, aið Þ ¼Wj jij, aið Þ: (42) 

Application of this restriction necessarily leads to the 
simplified form

Wk ¼ b1 j nnð Þð Þ
2 þ b2j nnð Þakj kmð Þam þ b̂3 akj kmð Þamð Þ

2

¼ b1 jnnð Þ
2 þ b2jnnakjkmam þ b̂3 akjkmamð Þ

2,
(43) 

of the polar part of the strain energy function (22), and thus 
employs only three elastic moduli. Namely,

b1 � 0, b2 þ b̂3 � 0, b̂3 � b2
2=4b1: (44) 

The constitutive equation (22) of the deviatoric couple- 
stress then also simplifies and becomes

�mlr ¼
2
3
erlsas 2b1jnn þ b2jkmakamð Þ

¼
2
3
erlsas 2b1j nnð Þ þ b2j kmð Þakam

� �
: (45) 

It is seen that only two elastic moduli, b1 and b2, are 
thus left to actively participate into the this simplified con
stitutive equation. A third elastic modulus, b̂3, still regulates 
the extra energy term (25) that, although contributes into 
the strain energy part (43), leaves unaffected both the state 
of equilibrium and the constitutive equation (45)

In the present case of principal interest, where transverse 
isotropy is imposed through implementation of (26), this 
simplification leads to

�mlr ¼
2
3
erl3 2b1jnn þ b2j33ð Þ: (46) 

which, in turn, enables replacement of the pair of non-zero 
deviatoric couple-stresses (31) with their marginally different 
counterparts 

�m12 ¼ − �m21 ¼ −qgk̂, k̂ ¼
2
3

4b1S13 þ 2b1 þ b2ð ÞS33½ �:

(47) 

Apart from a replacement of the parameter k defined in 
(31) (and appearing once more in (33)) with its slightly sim
plified counterpart k̂ defined in (47), the remaining of the 
analysis detailed in Section 3 remains completely unchanged. 
The remarkable similarity thus observed between the results 
stemming from the full version of the theory (Section 3) 
and its present restricted version is evidently due to the 
nature of the present polar elasticity problem, which is solely 
influenced by features of fiber-splay type deformations.

4.2. The fiber-bending deformation mode

The restricted, fiber-bending version of the theory employed 
in Section 3 makes use of the following curvature-strain part 
of the strain energy function [1, 4]:

WK ¼
3
8

df KjKj þ �c ajKjð Þ
2, Ki ¼ ui, kjakaj, (48) 

where Ki represents the fiber-curvature vector. This version 
makes use of only two additional elastic moduli, namely df 

and �c, which are required to be non-negative. The observed 
simplification of (22) is then accompanied by a relevant sim
plification of the constitutive equation (30), which is 
replaced by the following:

�mlr ¼
4
3
ersi
@WK

@Ki
alas: (49) 

In the present case of interest where (26) holds, (48) and 
(49) reduce to:

WK ¼
3
8

df KjKj þ �cK2
3 ¼

3
8

df K2
1 þ K2

2 þ K2
3

� �
þ �cK2

3 ,
Ki ¼ ui, 33,

�m3r ¼
4
3
er3i

@WK

@Ki
:

(50) 

Nevertheless, by virtue of (10), (50b) yields

K1 ¼ K2 ¼ 0, K3 ¼ qgS33, (51) 

and (50a) thus simplifies further, and becomes:

WK ¼
3
8

df þ �c

� �

K2
3 ¼

3
8

df þ �c

� �

qgS33ð Þ
2: (52) 

It can then readily be verified, through combination of 
(50c) and (52), that the fiber-bending version of the theory 
predicts, inadequately, that (i) no deviatoric couple-stresses 
act on the bar and, hence, (ii) the polar part (52) is solely 
due to action of the spherical part of the couple stress; 
namely, 

Wm ¼WK ¼
3
8

df þ �c

� �

qgS33ð Þ
2: (53) 
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The latter result still enables formation of the PDE (33), 
with

~k ¼ 6qg
3
8

df þ �c

� �
S2

33
S13

, (54) 

and, henceforth, still endorses the spherical couple-stress 
analysis that leads to (37), (38) and (39). It, however, 
becomes understood that, due to absence or minimal fiber- 
bending deformation, the restricted fiber-bending version of 
the theory fails in this case to observe an important part of 
the polar material features captured earlier by the unre
stricted theory.

It thus is fitting at this point to recall a very similar, 
essentially complementary observation made in Ref [8], in 
relation with the pure bending problem of a polar trans
versely isotropic plate. Since that polar elasticity problem is 
principally, if not exclusively influenced by features of fiber- 
bending type deformations, the restricted fiber-bending ver
sion produced marginally different results to those captured 
by the unrestricted theory. In contrast, due to lack of corre
sponding fiber-splay deformation features, it was the fiber- 
splay version of the theory that failed to reach any kind of 
reliable results and conclusions in that case.

5. Polar material isotropy

The special case of material isotropy is evidently characterized 
by complete absence of fibers or any other type of material 
preferential directions. The theory employed in section 3 thus 
becomes invalid in this case. However, by considering that 
the isotropic material of interest exhibits inherent polar 
material behavior, in the sense considered by Mindlin and 
Tiersten [19] and Koiter [16], the refined couple-stress theory 
presented in Ref [18] becomes valid instead.

5.1. Preliminary concepts

It is accordingly necessary in this case to initially employ 
the isotropic version of the non-polar constitutive equations 
(5) or (6), by noting that

S11 ¼ S22 ¼ S33 ¼ 1=E, S12 ¼ S13 ¼ S23 ¼ S23 ¼ −�=E, 

S44 ¼ S55 ¼ S44 ¼ 1þ �ð Þ=E, (55) 

where, as is already partially noted in (11), E and � are the 
Young’s modulus and the Poisson’s ratio, respectively. It fol
lows that the solution outlined earlier in Section 2, for the 
self-stretched fiber-reinforced bar, reduces now naturally to 
its isotropic counterpart presented in [15] and schematically 
represented in Figure 1.

In this case, the analysis detailed in Section 3.1 still holds, 
with the exception that (14) must be replaced with the fol
lowing [3, 18]: 

W ¼We eijð Þ þWU Ui , j
� �

� 0, (56) 

where We is now the quadratic strain energy function of the 
non-polar isotropic solid and, in accordance with the refined 
version of the couple-stress theory [18],

WU Ui , j
� �

¼
1
2

mliUi, l ¼
1
2

1
3

mrrUl, l þ �mliUi, l

� �

, (57) 

is quadratic in the gradients of an auxiliary, virtual spin-vec
tor U (or, in components, Ui).

As is detailed in [3, 18], this virtual spin-vector is gener
ally considered different from its actual, displacement gener
ated counterpart X, defined and used in (18), but is still 
considered of the same order of magnitude with the dis
placement gradients. In this context, U represents an infinite 
number of vectors that fulfill the single condition

WU Ui , j
� �

¼WX Xi, j
� �

¼
1
2

�mliXi, l � 0, (58) 

and, for this reason, it does not need to ultimately be 
determined.

Nevertheless, satisfaction of the condition (58) suffices to 
guarantee validity of the PDE (18a) that enables determin
ation of mrr and, henceforth, of the spherical part of the 
couple-stress (e.g. [3, 18]). It is emphasized in this context 
that the definition (57) implies that WU does account for 
the contribution of the spherical part of the couple-stress. In 
contrast, (58) reveals that WX does not do so, due to the 
implication of the mathematical identity (18c).

In other words, the last part of (58) implies that the spe
cial case of the conventional couple-stress (U ¼ X) emerges 
as a singular case in which the spherical part of the couple- 
stress is not accounted for. It is also noted that, along with 
(58), the outlined observations hold true for isotropic as 
well as for anisotropic polar materials, including fiber-rein
forced materials with fiber-bending stiffness [2, 3, 18, 20].

5.2. Constitutive equations

While the constitutive equation (15b) that provides the sym
metric part of the stress still holds, its polar part (20) is now 
replaced by the following [3, 18]:

mji ¼
@WU

@Ui, j
: (59) 

In accordance with the symmetries of material isotropy, 
the polar part of the strain energy function (56) attains the 
form [18]

WU Um , nð Þ ¼
1
2

g0 Um, mð Þ
2
þ g1U m, nð ÞU n, mð Þ þ g2U m, n½ �U n, m½ �

h i
,

(60) 

where

U i, jð Þ ¼
1
2

Ui, j þ Uj, i
� �

, U i, j½ � ¼
1
2

Ui, j − Uj, i
� �

, (61) 

represent the symmetric and antisymmetric parts of Ui, j, 
respectively. Moreover, the appearing material moduli g0, g1 
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and g2 are all considered non-negative, so that the positive 
semi-definiteness conditions (58) are satisfied.

A combination of (59) and (60) then provides the cou
ple-stress constitutive equation in the following form:

mji ¼
@WU

@Ui, j
¼ g0Um, mdij þ 2g1U i, jð Þ þ 2g2U j, i½ �

¼ g0Um, mdij þ g1 þ g2ð ÞUj, i þ g1 − g2ð ÞUi, j, (62) 

which, through contraction of the appearing free indices, 
yields

mrr ¼
@WU

@Ur, r
¼ 3g0 þ 2g1ð ÞUr, r: (63) 

In the singular case of the conventional couple-stress the
ory [16, 19], where U is chosen to coincide with X, the 
identity (18c) invalidates (62) while, at the same time, forces 
(60) to attain the form

WX Xm , nð Þ ¼
1
2

g1X m, nð ÞX n, mð Þ þ g2X m, n½ �X n, m½ �

� �
: (64) 

As is detailed in [18], it thus becomes necessary for the 
constitutive equation (62) to be replaced by its conventional 
theory counterpart [16, 19],

�mji ¼
@WX

@Xi, j
¼ 2g1X i, jð Þ þ 2g2X j, i½ �

¼ g1 þ g2ð ÞXj, i þ g1 − g2ð ÞXi, j: (65) 

When combined with the condition (58), these considera
tions make it evident that full development of the PDE 
(18a) is achieved by associating to it the extra energy term

Wm ¼ g0 Um, mð Þ
2
=2, (66) 

thus leading to

Xlmrr , l¼3g0 Um, mð Þ
2 − 3 �mliXið Þ, l: (67) 

Hence, a combination of this equation with (63) yields

Xlmrr, l ¼ gm2
rr − 3 �mliXið Þ, l, g ¼

3g0

3g0 þ 2g1ð Þ
2 > 0, (68) 

which is a non-linear PDE for the unknown spherical part 
of the couple-stress, mrr:

5.3. Effect of polar material behavior on the solution of 
the non-polar elasticity problem

In the present case of interest, where (55) holds, the compo
nents (19) of the actual spin vector become

X1 ¼
qg�

E
x2, X2 ¼ −

qg�
E

x1, X3 ¼ 0: (69) 

The only nonzero components of the deviatoric couple- 
stress tensor (65), namely

�m12 ¼ − �m21 ¼ qg
2g2�

E
, (70) 

thus remain constant and opposite.
The deviatoric normal couple-stresses are then still all 

zero ( �m11 ¼ �m22 ¼ �m33 ¼ 0) and, as a result, (17) still 

returns

m11 ¼ m22 ¼ m33 ¼
1
3

mrr: (71) 

It follows that determination of the normal couple-stress 
components requires solution of the PDE 

x1mrr, 2 − x2mrr, 1 þ �gm2
rr ¼ −�k;

�g ¼
3g0E

3g0 þ 2g1ð Þ
2qg�

, �k ¼ 12g2
qg�

E
;

(72) 

which is obtained by inserting (69) and (70) into (68).
Exhaustive search for potential solutions of this non-lin

ear PDE is beyond the purpose of this investigation. 
However, it is initially observed that, regardless of the sign 
of the Poisson ratio (−1 � � � 1=2), the constants �g and �k 

are of the same sign. It follows that, unlike its counterpart 
met and solved in Section 5.2 of [18], the PDE (72) does 
not admit real constant solutions for mrr:

Nevertheless, at least one variable solution of the PDE 
(72) can be found with use of the method of characteristics. 
As is briefly outlined in Appendix A, this may be described 
as follows:

x2
1 þ x2

2 ¼ c2
1,

mrr ¼
ffiffiffiffiffiffiffiffi
�k=�g

p
tan

ffiffiffiffiffiffi
�k�g

p
sin −1 6x1= c1j jð Þ þ c2

n o

,

mrr ¼
ffiffiffiffiffiffiffiffi
�k=�g

p
tan

ffiffiffiffiffiffi
�k�g

p
sin −1 7x2= c1j jð Þ þ c3

n o

,

(73) 

where c1, c2 and c3 are again regarded as arbitrary constants 
of integration in the x1x2-plane. The normal couple-stresses 
are then still obtained by inserting either of (73b, c) 
into (71).

Unique determination of the appearing arbitrary con
stants may be achieved with introduction and use of some 
appropriate relevant set of normal couple-stress boundary 
conditions, in a manner analogous to that described earlier 
in Section 3.3, regarding the solution (34) of the PDE (33). 
The corresponding analysis will thus not be repeated or pur
sued any further. However, the expectation has already been 
confirmed that, naturally, the deformation pattern of an iso
tropic polar material bar stretched by its own weight differs 
to that of its non-polar material counterpart.

6. Further discussion and conclusions

The fact that activation of “internal moment-tractions” pre
vents a heterogeneous composite from maintaining the 
deformation pattern of its corresponding homogeneous coun
terpart is not surprising. This is, for instance, a well-known 
response feature of functionally graded composites (e.g. [13– 
14] and references therein). In this regard, even manufacturing 
imperfections can claimed as sources of couple-stress action 
that affects the deformation pattern of macroscopically homo
geneous anisotropic structural components.

In the special case of piece-wise functional gradation (thin- 
walled layered composites) that response feature of composites 
was arguably first modeled and captured, as early as 1961 [21], 
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with use of non-polar symmetric elasticity tools. Namely, with 
a combination of non-polar (symmetric-) elasticity principles 
and the widely known and employed method of two-dimen
sional, smeared plate modeling. That remarkable publication 
[21] appeared during a period that emergence of the conven
tional couple-stress theory [16, 19, 22] revitalized interest in 
the Cosserat theory [23] and, thus, initiated the ongoing exten
sion of three-dimensional elasticity that captures effects of 
polar material behavior.

It thus is not surprising either, that, unless specific, extra 
traction and/or couple-traction distributions are appropriately 
imposed on the external boundaries of a polar material struc
ture, its deformed configuration will differ from that observed 
when its non-polar material counterpart is subjected to identi
cal loading conditions. The specific problem of a polar material 
prismatic bar/plate stretched by its own weight considered in 
this study, along with the pure bending problem of a polar 
material plate (e.g. [6, 8, 16]), are among the simplest relevant 
examples that comply with this observation.

As far as the subject of the present communication is 
concerned, these considerations imply that the actual 
deformation pattern attained by a self-stretched polar mater
ial bar is still not known. Nevertheless, the same is essen
tially true for the deformation pattern attained by a polar 
material plate subjected to standard, simple bending loading 
conditions only; namely, boundary conditions that are 
deprived assistance from extra boundary couple-tractions, 
such as those imposed in [4–6, 8]. In this regard, the polar 
material version of either of these fundamental elasticity 
problems remains, at least partially, unsolved and, therefore, 
open to further investigation and study.

These observations are consistent with the feeling that 
couple-stresses are usually generated during the deformation 
of a polar material structure by internal and/or inherent 
material properties and features, rather than through exter
nally applied couple-traction boundary conditions. This is 
normally the rule rather than an exception. Hence, given the 
difficulties that one may meet in attempting to solve the 
governing differential equations of polar material elasticity, 
energy minimization techniques naturally emerge as a 
potential source of relevant, additional mathematical tools.

In this context, attention is next directed into relevant 
benefits that may become available through suitable use of 
the following:

“Theorem of minimum potential energy in generally aniso
tropic polar linear elasticity

Of all continuous displacement fields u� which (i) satisfy 
the displacement related boundary conditions on the rele
vant part, Su, of the bounding surface S, and (ii) possess up 
to third-order continuous and differentiable derivatives, the 
field u that represents the single continuous solution of a 
well-posed boundary value problem in polar linear elasticity 
yields a minimum value of the potential energy functional

P uið Þ ¼

ð

V

We eijð Þ þ 2Wx xijð Þ

h i
dV −

ð

ST

TB
i uidS −

ð

V

FiuidV,

(74a) 

or, equivalently,

P uið Þ ¼

ð

V

We eijð Þ þ 2WX Xi, j
� �h i

dV −
ð

ST

TB
i ui þ LB

i Xi
� �

dS 

−
ð

V

FiuidV , (74b) 

where V is the volume surrounded by S (¼ Su [ ST), ST rep
resents the part of S that boundary tractions, TB

i , and 
boundary couple-tractions, LB

i , are prescribed on and Fi is 
the vector of the body forces.”

In close relevance with the standard definition of non- 
polar material part of the strain energy function, namely 
(15a), the rotation and spin energies appearing in (74a, b) 
are respectively defined according to

Wx xijð Þ ¼
1
2
r ji½ �xij, WX Xi , j

� �
¼

1
2

mliXi, l ¼
1
2

�mliXi, l,

(75) 

where (17) and (18c) are also accounted for (see also [16, 
19]). These energy quantities have been shown related as 
follows [6]:

Wx xijð Þ ¼WX Xi, j
� �

−
1
2

mijXj
� �

, i: (76) 

Hence, (75b) implies that WX is directly relevant to the 
action of the deviatoric couple-stress only, while a combin
ation of (76) and (17) reveals that the spherical part of the 
couple-stress is involved in the Wx definition and formation 
as well.

Moreover, Cauchy’s formula gives the components of the 
traction and the couple-traction vectors acting on any 
internal or bounding surface of the material, as follows:

TðnÞi ¼ rjinj, LðnÞi ¼ mjinj, (77) 

where n denotes the outward unit normal of that surface. It 
thus is recalled that these formulas are also naturally consist
ent with the boundary traction vectors, TB

i and LB
i , appear

ing in (74).
In the absence of body forces, a proof of the afore men

tioned polar material version of the theorem of minimum 
potential energy can be found in [6]. Nevertheless, a slightly 
enhanced version of that proof is also presented in 
Appendix B, for self-sufficiency of this study.

A modified version of the theorem that becomes available 
by virtue of (58) enables replacement of WX with WU in 
(74b). The theorem then is seen also valid after replacement 
of the actual spin vector, X, by its virtual counterpart, U, 
provided that the latter is also required to satisfy the add
itional condition:

ð

ST

LB
i Xi − Uið ÞdS ¼ 0: (78) 

It is noted that, in that case, the pair of conditions (58)
and (78) is still insufficient for unique determination of all 
three components of Ui, which thus remains a virtual spin 
vector.
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Such a modified version of the theorem may be found 
useful in cases that U can somehow be specified in advance 
and, thus, replace X in its role as actual spin vector (e.g. 
[8]). However, as is also shown in recent relevant studies [2, 
3, 18, 20] precise determination of the vector U is unneces
sary. Hence, the present version of the theorem is adequate 
for the purposes of this study, at least as far as solution to 
problems related with isotropic polar elasticity is concerned 
(e.g. Section 5).

Nevertheless, and regardless of potential implementation 
of (78), the following extension of the condition (58):

WkðjÞ ¼WU Ui , j
� �

¼WX Xi , j
� �

¼
1
2

�mliXi , l � 0, (79) 

enables connection to be established between the fiber-stiff
ness generated polar material behavior implied in (14) and 
the action of some auxiliary spin vector, U. Although (79) is 
still insufficient for unique determination of that vector, it 
suffices to guarantee validity of the PDE (18a) that leads to 
determination of the spherical part of the couple-stress.

In this context, the afore mentioned theorem of min
imum potential energy is also seen adequate in looking for 
solution to problems related with polar material behavior of 
linearly elastic fiber-reinforced materials with fiber-bending 
stiffness. It is worth mentioning that this extension of the 
theorem’s applicability refers not only to the relevant unre
stricted theory that makes use of eight fiber-bending elastic 
moduli (Section 3), but also to its restricted fiber-splay 
(Section 4.1) and fiber-bending (Section 4.2) deformation 
versions, which make use of only three and two such mod
uli, respectively.

It is further worth noting that integration of (76) over an 
arbitrary volume V, surrounded by a closed surface S of the 
solid, leads to

ð

V

WX Xi, j
� �

− Wx xijð Þ

h i
dV ¼

1
2

ð

S

LðnÞi XidS, (80) 

where use is made of the divergence theorem as well as 
(77b). Hence, in the special case that, as happens in (74), V 
represents the total volume of the solid, (80) yields:

ð

V

WX Xi, j
� �

− Wx xijð Þ

h i
dV ¼

1
2

ð

ST

LB
i XidS: (81) 

This result thus clarifies the source of the equivalence 
noted between (74a) and (74b).

Moreover, (81) reveals that the difference of the total 
amount of energies produced by the local energy quantities 
WX and Wx equals one half of the work done by the 
boundary couple-tractions. As a matter of fact, although WX 

and Wx represent different amounts of energy locally, their 
total amounts are evidently equal in the absence of bound
ary couple-tractions (LB

i ¼ 0). Indeed, the total amounts of 
WX and Wx are different only when boundary couple-trac
tions are present (LB

i 6¼ 0).
The outlined discussion makes it clear that, regardless of 

the presence or absence of boundary couple-tractions, mini
mization of either form of the potential energy functional 
(74) can lead to full determination of the solution of any 

relevant boundary value problem; including, of course, the 
problem of a self-stretched polar material bar. However, 
polar material response requires from (74a) and (74b) to be 
treated in a different manner.

In more detail, since the functional (74b) makes no use 
of the spherical part of the couple-stress, its minimization 
will naturally lead to determination of the displacement, the 
symmetric stress and the deviatoric couple-stress fields only. 
Determination of the spherical part of the couple-stress and, 
henceforth, of the antisymmetric part of, and the full stress 
field can then be pursued by solving the corresponding PDE 
stemming from (18a), through use of some suitable analyt
ical or numerical/computational method.

In contrast, the fact that the (74a) does make use of mrr 
implies that, in this alternative form, the potential energy 
functional cannot be minimized independently of the PDE 
(18a). With that PDE thus acquiring the role of a constraint 
during such a minimization process, the form (74a) of the 
potential energy functional must be modified and obtain the 
form:

P uið Þ ¼

ð

V

We eijð Þ þ 2Wx xijð Þ þ K Xlmrr , l − 6Wm½
n

þ3 �mliXið Þ, l�gdV −
ð

ST

TB
i uidS −

ð

V

FiuidV , (82) 

where the appearing additional unknown, K, represents a 
standard Lagrange multiplier.

Either in this pair of equivalent processes of potential 
energy minimization may practically be found superior (or 
more economical) to its alternative. However, no clear rele
vant evidence is available at present.
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Appendix A: Solution of the PDEs (33) and (72) with 
the method of characteristic lines

Application of the method of characteristics on the PDE (33) requires 
a search for plane curves (on the x1x2-plane) whose tangent satisfies 
the ordinary differential equation (ODE) 

dx2

dx1
¼ −

x1

x2
: (A.1) 

Integration of this equation reveals that the characteristic lines 
sought are the circles (34a), where the otherwise arbitrary constant of 
integration, c2

1, is necessarily selected positive.
By virtue of (A.1), the PDE (33) can next be transformed into 

either of the ODEs

dmrr

dx1
¼ −

~k

x2
¼ 7

~k

c1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

1=c2
1

p ,
dmrr

dx2
¼

~k

x1
¼ 6

~k

c1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

2=c2
1

p

(A.2) 

where use is also made of (34a). The solution sought of the PDE (33)
is completed by integrating the ODEs (A.2a) and (A.2b), thus, respect
ively leading to (34b) and (34c) that involve two additional arbitrary 
constants of integration, c2 and c3:

In a similar manner, solution of the PDE (72) departs again with 
integration the ODE (A.1) and, thus, that leads again to the circular 
characteristic lines (34a); also quoted in (73a). Validity of (A.1) then 
enables transformation of (72) into either of the following ODEs 

dmrr

m2
rr þ

�k=�g
¼ �g

dx1

x2
¼ 6�g

dx1

c1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

1=c2
1

p ,
dmrr

m2
rr þ

�k=�g
¼ −�g

dx2

x1

¼ 7�g
dx1

c1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

2=c2
1

p : (A.3) 

Direct integration of these equations yields

tan −1 mrr=
ffiffiffiffiffiffiffiffi
�k=�g

p� �

¼ �g
ffiffiffiffiffiffiffiffi
�k=�g

p
sin −1 6x1= c1j jð Þ þ c2,

tan −1 mrr=
ffiffiffiffiffiffiffiffi
�k=�g

p� �

¼ �g
ffiffiffiffiffiffiffiffi
�k=�g

p
sin −1 7x2= c1j jð Þ þ c3,

(A.4) 

and thus leads to a solution of (72) that is described in (73).

Appendix B: Proof of the theorem of minimum 
potential energy in couple-stress elasticity

The standard form that of the equilibrium equation is

rji, j þ Fi ¼ 0, (B.1) 

where, F represents the body force vector. It is recalled, for complete
ness, that its alternative form (16a) attained earlier in Section 3 is 
obtained after the appearing stress tensor splits into its symmetric and 
antisymmetric parts, and further use is also made of (16b).

Multiplying both sides of (B.1) by the vector u – u� and then inte
grating over the volume V of the elastic body, one obtains

ð

V

rji, j þ Fið Þ ui − u�i
� �

dV ¼ 0, (B.2) 

or, equivalently,
ð

V

rji ui − u�i
� �� �

, j − rji ui, j − u�i, j

� �
þ Fi ui − u�i

� �n o
dV ¼ 0: (B.3) 

Applying the divergence theorem on the first term of the integrant 
and, also, splitting all tensorial quantities appearing in the second term 
into their symmetric and anti-symmetric parts, one obtains

ð

S

njrji ui − u�i
� �

dSþ
ð

V

Fi ui − u�i
� �

dV

¼

ð

V

r jið Þ eij − e�ij
� �

þ r ji½ � xij − x�ij

� �h i
dV, (B.4) 

where the definitions (7) are accounted for, and quantities marked 
with an asterisk relate to u� in the same manner that their unmarked 
counterparts relate to u.

By virtue of (77a), (15) and (16b), one next obtains
ð

S

TðnÞi ui − u�i
� �

dSþ
ð

V

Fi ui − u�i
� �

dV 

¼

ð

V

cijklekl eij − e�ij
� �

−
1
2
ekjimlk, l xij − x�ij

� �� �

dV, (B.5) 
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where c is the fourth-order tensor of elastic moduli met in non-polar, 
symmetric-stress linear elasticity. In this regard, it is fitting at this 
point to also note the following identity:

cijklekl eij − e�ij
� �

¼
1
2

cijkl ekleij þ ekl − e�kl
� �

eij − e�ij
� �

− e�kle
�
ij

h i

¼We eijð Þ þWe eij − e�ij
� �

− We e�ij
� �

, (B.6) 

whose validity stems from the standard symmetries,

cijkl ¼ cjikl ¼ cklij, (B.7) 

obeyed by the components of the elastic moduli tensor, c.
By appropriately using the product rule of differentiation and the 

divergence theorem on the last term of its right-hand side, (B.5) then 
leads to
Ð

S TðnÞi ui − u�ið ÞdSþ
Ð

V Fi ui − u�ið ÞdV ¼
Ð

V cijklekl eij − e�ij
� �

dV−
Ð

S mlk Xk − X�k
� �

nldS −
Ð

V �mlk Xk, l − X�k, l

� �
dV

n o
,

(B.8) 

where validity of (18b, c) and (17) enabled implementation of the fol
lowing intermediate results:

1
2
ekjimlk xij − x�ij

� �
¼ mlk Xk − X�k

� �
,

1
2
ekjimlk xij − x�ij

� �

, l
¼ mlk Xk − X�k

� �

, l
¼ �mlk þ

1
3

mrrdlk

� �

Xk, l − X�k, l

� �
¼ �mlk Xk, l − X�k, l

� �
: (B.9) 

Use of (77b) and (75b), as well as of the fact u – u� ¼ X – X� ¼ 0 
on Su, enables (B.8) to transform into: 

Ð

ST TB
i ui − u�ið ÞdSþ

Ð

V Fi ui − u�ið ÞdV ¼
Ð

V cijklekl eij − e�ij
� �

dV−
Ð

S LðnÞk Xk − X�k
� �

dSþ 2
Ð

V WX Xi, j
� �

− WX X�i, j

� �h i
dV,

(B.10) 

or, through use of (78), into the equivalent form:

ð

ST

TB
i ui − u�i
� �

dSþ
ð

V

Fi ui − u�i
� �

dV ¼
ð

V

cijklekl eij − e�ij
� �

dV

þ 2
ð

V

Wx xijð Þ − Wx x�ij

� �h i
dV:

(B.11) 
Hence, upon applying the identity (B.6) in the first integral appearing 

on the right-hand side, and then appropriately rearranging the terms of 
the resulting equation with the help of the definition (74a), one obtains:

P u�i
� �

− P uið Þ ¼We eij − e�ij
� �

� 0, (B.12) 

which proves the theorem. It may be noted that, due to the positive 
definiteness of We, equality holds only when u and u� produce identi
cal continuous strain fields (e¼ e�).

Finally, the equivalence of the potential energy definitions (74a) and 
(74b) is essentially implicit in (B.10). This becomes evident by noting that, 
like its left-hand side counterpart, the surface integral appearing in the right- 
hand side of (B.10) is essentially confined over the ST part of the bounding 
surface, where the traction vectors LðnÞk and LB

k are necessarily equal. Hence, 
use of the identity (B.9) on the right-hand side of (B.10), followed by term 
rearrangement that is guided by (74b), yields again (B.12).
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