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Significance

Persian and European fallow deer 
formed part of the Levantine 
Neolithic Package were worshiped 
as Greco- Roman deities and, over 
millennia, were the subject of 
repeated human- mediated 
translocations and extirpations.  
By integrating biomolecular 
datasets with archaeological and 
textual evidence, we reveal these 
species’ biocultural histories—
spanning their Glacial refugia to 
their global spread as symbols of 
colonial power. The deep histories 
of fallow deer highlight the 
problems inherent in  
dichotomous categorizations of all 
species as either wild or domestic. 
In addition, they complicate 
existing wildlife conservation 
strategies and offer alternative 
perspectives on the management 
of translocated animals.
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Over the last 10,000 y, humans have manipulated fallow deer populations with varying 
outcomes. Persian fallow deer (Dama mesopotamica) are now endangered. European 
fallow deer (Dama dama) are globally widespread and are simultaneously considered 
wild, domestic, endangered, invasive and are even the national animal of Barbuda and 
Antigua. Despite their close association with people, there is no consensus regarding 
their natural ranges or the timing and circumstances of their human- mediated trans-
locations and extirpations. Our mitochondrial analyses of modern and archaeological 
specimens revealed two distinct clades of European fallow deer present in Anatolia and 
the Balkans. Zooarchaeological evidence suggests these regions were their sole glacial 
refugia. By combining biomolecular analyses with archaeological and textual evidence, 
we chart the declining distribution of Persian fallow deer and demonstrate that humans 
repeatedly translocated European fallow deer, sourced from the most geographically 
distant populations. Deer taken to Neolithic Chios and Rhodes derived not from nearby 
Anatolia, but from the Balkans. Though fallow deer were translocated throughout the 
Mediterranean as part of their association with the Greco- Roman goddesses Artemis 
and Diana, deer taken to Roman Mallorca were not locally available Dama dama, but 
Dama mesopotamica. Romans also initially introduced fallow deer to Northern Europe 
but the species became extinct and was reintroduced in the medieval period, this time 
from Anatolia. European colonial powers then transported deer populations across the 
globe. The biocultural histories of fallow deer challenge preconceptions about the divi-
sions between wild and domestic species and provide information that should underpin 
modern management strategies.

fallow deer | translocations | extinctions | zooarchaeology | biomolecules

There are two recognized species of fallow deer: the Persian (Dama mesopotamica) and the 
European (Dama dama). The Persian fallow deer was once widespread across Southwest 
Asia and the eastern Mediterranean, but following a severe population decline, the species 
is currently considered Endangered by the International Union for the Conservation of 
Nature (IUCN) (1). Conversely, the European fallow deer, native to the eastern 
Mediterranean, is classified as Least Concern due to their human- mediated translocation 
and establishment across Eurasia, Africa, America and Oceania (2, 3). Despite their large 
population size and broad distribution, their genetic diversity is very low, suggesting 
conservation vulnerability (4). The herd of European fallow deer at Güllük Daği- Termessos 
National Park (Turkey) is considered the last native wild population and, as such, has a 
protected status (5). Conservation measures extend to the Dama population on the nearby 
island of Rhodes, which is protected by Greek law (6).

The Rhodes Dama are thought to descend from a population of European fallow deer 
introduced ~7,000 y ago (6–8). Early farmers of the 6th–5th millennium BCE also estab-
lished populations of European fallow deer on the islands of Lemnos, Lesvos, Chios, and 
Crete (9–11), whereas Persian fallow deer were transported to Cyprus ~10,000 y ago (12).

Both species were as heavily influenced by people as other taxa classically associated 
with the Neolithic Package including cattle, sheep, goats, and pigs. In addition, modern 
European fallow deer are farmed in their millions (13) and exhibit coat color variations 
indicative of selective breeding (14). Despite these characteristics, fallow deer are rarely 
included in large- scale reviews of domestic animals (12, 15). European fallow deer have 
been equally overlooked by conservation scientists, for whom the species’ domestic legacy 
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has meant they are often considered an introduced alien or invasive 
threat and thus undeserving of protection (16–18).

As neither an accepted domesticated nor a “pristine” wild species, 
both Persian and European fallow deer have been under- researched 
relative to other cervids such as reindeer (Rangifer tarandus) and 
red deer (Cervus elaphus) which have been the subject of numerous 
studies concerning their ancient range and management (19–23). 
By contrast, there is no consensus regarding the European fallow 
deer’s glacial refugia or natural post- glacial distribution. While some 
have suggested a single refugium in Anatolia (2), others have 
claimed multiple refugia across Anatolia, the southern Balkans, 
Italy, Sicily, and Iberia (4, 24, 25). The timing and circumstances 
of the fallow deer’s anthropogenic translocations are equally obscure, 
although numerous human cultures have been held responsible 
including early Neolithic farmers, Phoenicians, Romans, Normans, 
and early modern imperialists (26).

Attempts to answer questions about the fallow deer’s history 
have relied largely on genetic studies of modern animals (4, 7, 8, 27). 
However, modern DNA has limited retrodictive power, especially 
when applied to species whose distributions have been heavily 
modified by humans (15, 28). Recent aDNA studies of fallow deer  
have demonstrated the necessity of a joined- up ancient- modern 
genetics approach (29–33), exemplified by Baker et al.’s (34) 
time- calibrated genetic analyses of fallow deer evolution in Europe 
from the last glacial period. There is also a need to integrate genetic 
analyses with other sources of biomolecular data, such as isotope 
studies, and rich empirical records from across the Humanities 
and Social Sciences, which together can be used to evidence the 
long- term management and cultural value of fallow deer.

Here, in order to characterize the glacial range of Persian and 
European fallow deer, we combined zooarchaeological and biomo-
lecular analysis of ancient and modern Dama remains. To increase 
the power of our results, we integrated them with evidence from 
archaeology, historical sources, and iconography and show how 
ancient humans have shaped the modern- day distributions and 
management strategies of these two species. As such, they represent 
cultural heritage and arguably deserve protection by the United 
Nations Educational Scientific and Cultural Organization 
(UNESCO) as much as from wildlife conservation bodies such as 
the IUCN.

Results and Discussion

We analyzed 635 osteological samples purported to derive from 
fallow deer using at least one method (Dataset S1) and generated 
genetic sequences from 228 ancient samples.

For the European fallow deer, 181 sequences from archaeological 
samples (35) were combined with those for 222 modern individuals 
(4, 36). A Bayesian phylogeny constructed from the complete align-
ment (Fig. 1A) revealed a well- supported (0.89 posterior probabil-
ity) monophyletic clade consisting of modern and ancient European 
fallow deer from Northern Europe and Anatolia (depicted in yellow 
on Fig. 1 A and B).

A second clade is made up of ancient and modern fallow deer 
derived from southern and western European sites and Roman 
England (depicted in red–Fig. 1 A and B). Both clades are distinct 
from the mitochondrial lineage derived from a single modern 
Persian fallow deer at the base of the phylogeny.

A shorter sequence was available (128 bp) that showed 18 fixed 
differences between European and Persian fallow deer, allowing 
D. mesopotamica to be identified from archaeological remains 
(depicted in purple in Fig. 1B and SI Appendix, Fig. S1)

The zooarchaeological representation data (Dataset S2) and 
genetic results are summarized in Fig. 2 A–D, which also 

incorporates the radiocarbon dating evidence (Fig. 3). Multi- element 
isotope data were generated from 418 specimens (Dataset S1), with 
results presented in Fig. 4 and SI Appendix, Figs. S6 and S7.

Refugia and Native Range. Our genetic analysis demonstrated 
that 38 specimens originally identified morphologically as  
D. dama were actually D. mesopotamica (SI Appendix, Fig. S1). 
Their presence at the Bronze Age/early Iron Age sites of Kinet 
Höyük and Kilise Tepe, Anatolia (Fig.  2 A and B) pushes the 
ancient distribution of Persian fallow deer further west than 
previously proposed (12).

For the European fallow deer, our data suggest their glacial 
refugium was restricted entirely to the eastern Mediterranean and 
there is no zooarchaeological evidence to suggest the existence of 
autochthonous Holocene fallow deer populations in Iberia or Italy. 
Within Anatolia, the D. dama population demonstrates continuity 
through time: Neolithic, Roman, and medieval deer share haplo-
types (H31) and are closely related to the modern population at 
Güllük Daği- Termessos National Park (H47, H48). The modern 
deer population on Rhodes is genetically distinct from Anatolian 
deer [a result that corroborates previous studies (7, 8)] and appears 
more closely related to populations from the Balkans, Italy, and 
Iberia.

The phylogenetic split between the two populations of European 
fallow deer (Fig. 1) is consistent with the frequently observed phy-
logeographic divide found in numerous species with populations 
that span the Bosporus (38–40). When combined with the zooar-
chaeological data (Fig. 2A), this result supports the suggestion of a 
second glacial refugium in the southern and central Balkans (25, 41). 
Large quantities of fallow deer remains have been recovered from 
Neolithic and Bronze Age sites in Bulgaria which demonstrate 
their early presence in this region. Intriguingly, their remains 
exhibit morphologies distinct from the Anatolian fallow deer 
(SI Appendix, Figs. S3 and S4) which may be the result of under-
lying genetic, not environmental differences (25, 41, 42). Despite 
the phenotypic distinction, stable and radiogenic isotope data 
show no difference in fallow deer diets between these regions 
(SI Appendix, Fig. S6 and S7) (43).

Translocations as Proxies for the Movement of People and 
Ideologies. Both species of fallow deer were translocated during 
the Neolithic/Bronze Age (Fig.  2A). We partially sequenced 
one Persian fallow deer specimen (PT608) from the Bronze 
Age site of Politiko- Troullia, Cyprus, and two Late Neolithic/
Early Bronze Age European fallow deer samples from Ayio Galas 
Cave, Chios (CH680 and CH681). The Chios samples possessed 
unique haplotypes (H45 and H46) that are most closely related 
to individuals from modern Rhodes (H64 and H65). This result 
supports Masseti et al.’s (7, 8) proposal that the modern Rhodes 
deer population descends from a Neolithic introduction.

The Neolithic Chios and modern Rhodes deer are more closely 
related to (and likely descend from) the Balkan rather than 
Anatolia population. This may seem counter- intuitive, especially 
given that Rhodes is only 11 miles from mainland Turkey and 
Chios is <3 miles. However, animal translocations frequently result 
from factors other than geographic proximity, including attitudes 
to the natural world, religious ideologies and culture- contacts, 
issues to which we now turn.
Early domestication. The transfer of animals beyond their natural 
range has been equated with a closening of human–animal 
relationships and associated with the process of domestication (44).

According to Masseti (45) and Vigne et al. (12), island Dama 
populations were established specifically for hunting but textual and 
iconographic evidence from the Bronze Age indicate a more D
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complex relationship between people and fallow deer. For instance, 
Linear B texts (the earliest form of Greek) list different kinds of 
fallow deer: those that are wild, those that are tame, and those used 
in games or for sacrifices, while fresco fragments from Aghia Triadha, 
Crete, depict a woman leading two fallow deer to a sacrificial altar 
(11). Similar evidence exists across Anatolia and Egypt (46) and 
given that the Latin name Dama derives from the Persian word for 
tame or pet (47), there is a compelling case that fallow deer were 
initially no different in their relationships with humans than other 
animals that make up the canonical suite of domesticates.
Religion. Many cultures equate geographical distance with 
supernatural distance perceiving that the further something has 
traveled, the greater its prestige and power (48). In this way, 
introduced animals have frequently been viewed as gods (49, 50).

Fallow deer were certainly associated with both the goddess 
Artemis and her Roman incarnation, Diana (11, 46, 47, 51). There 
is debate about the geographical genesis of the Artemis myth but 
the possibility she originated in the Balkans is given credence by 
the density of both fallow deer remains (Fig. 2A) and Artemis- related 
paraphernalia, such as fallow deer- shaped religious drinking vessels 
that have been recovered from the region (52). In Late Minoan 

Crete (c.1550–1100 BCE), Linear B texts mention not only fallow 
deer but also provide the earliest reference to Artemis (10, 53).

Historical studies suggest that the Artemis cult was taken to 
Sicily by early Greek settlers (54) and statuettes of the goddess have 
been recovered from the Bronze Age site of Morgantina, together 
with a shed fallow deer antler (55). This skeletal element could 
have been transported as an object in its own right [as was the case 
for other Dama body parts recovered from a Phoenician ship- wreck 
off the coast of Sicily (43, 56)] rather than deriving from an animal 
that lived on the island. At Morgantina, a small number of 
post- cranial bones have been tentatively identified as Dama (55). 
Our metrical analysis shows that their size is more consistent with 
red deer from the island (SI Appendix, Fig. S5) though we were 
unable to confirm their identification genetically.
Roman Empire. The Roman period witnessed a major expansion 
in fallow deer distribution (Fig. 2B). This was in part due to their 
connection with the goddess Diana and also linked to the parks 
and menageries that became increasingly fashionable throughout 
the Roman Empire.

The earliest evidence for the presence of fallow deer beyond the 
Mediterranean comes from the highly “Romanised” palatial site 
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Fig. 1. Phylogenetic trees depicting the relationships between mitochondrial haplotypes derived from ancient and modern European and Persian fallow deer. 
The tree in Panel (A), rooted with Persian fallow deer and based upon 532 basepairs, shows a distinctive well- supported (0.89 posterior probability) monophyletic 
clade of European fallow deer (depicted in yellow) and separate lineages of fallow deer associated with a population originally present in the Balkans (depicted 
in red). Individuals from both these populations (as well as Persian fallow deer) have been transported beyond their native ranges by people at different times 
(Fig. 2). The collapsed tree in Panel (B) is rooted to Cervus elaphus and based upon 128 basepairs (see SI Appendix, Fig. S1 for detailed tree). It shows how European 
fallow deer (yellow and red) can be differentiated from the well supported (1.0 posterior probability) clade of Persian fallow deer (purple).
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of Fishbourne (southern England) that was constructed shortly 
after the Roman invasion of Britain in 43 CE. Here, Dama 
remains have been directly dated to the 1st century CE (Fig. 3). 
Multi- element isotope analysis revealed a first- generation import 
that likely traveled from the Mediterranean in the first few months 
of its life (Fig. 4). Our evidence also shows that other fallow deer 
were born and raised at Fishbourne (57) and managed in diverse 
ways (58).

By the fourth- century CE, fallow deer were established in 
Britain more broadly, and specimens from Belgium (59) and 
Portugal (60) have been direct- dated to this period (Figs. 2B and 3). 
The earliest secure evidence for fallow deer on Sicily dates to the 
5th century CE (Fig. 3 and SI Appendix, Fig. S3) and isotope 
analysis indicates these animals were born and raised on the island 
(Fig. 4). Genetically, Sicilian deer are consistent with the western 
Mediterranean (Balkan) clade. They share a haplotype (H36) with 
animals from Sardinia, where populations were established in the 
medieval period (61, 62). The Sardinian deer also share haplotypes 
(H23) with deer from Roman France.

The European fallow deer established in Iberia and Italy both 
appear to be the progenitors of the modern populations in those 
regions. For instance, one haplotype (H29) is observed in both 
medieval and modern Portugal, and is closely related to Roman 
haplotypes (H43 and H44). Similarly, haplotypes found in ancient 
Italy (H36) are closely related to those of modern deer (H69). 
These modern populations are therefore legacies of the Roman 
Empire and should be treated as living cultural heritage (Fig. 2 B 
and D).

Large numbers of Dama remains have been recovered on 
Mallorca in contexts dating from the third to the fifth century AD 
(31). Surprisingly, they were genetically determined to be Persian 
and not European fallow deer (SI Appendix, Fig. S1), which has 
implications for understanding Roman and early medieval trade 
routes. For instance, it is possible they arrived via north Africa 
where there are iconographic representations of fallow deer. 
Recently, zooarchaeological evidence for fallow deer has been dis-
covered in Roman North Africa, but their remains are scarce and 
have not yet been subject to dating or biomolecular analysis which 
means their species assignment is unconfirmed (63, 64).
Extinctions and population replacements. The native D. mesopotamica 
distribution contracted substantially through time and by the 
medieval period was replaced in eastern Turkey by D. dama (Fig. 2). 
The Balkan population of D. dama was likely extinct by the end 
of the medieval period (Fig. 2C). Of the translocated populations, 
the Persian fallow deer of Mallorca went extinct around the seventh 
century CE (31) and the population on Cyprus disappeared by the 
late medieval/early modern period (65). The D. dama population 
established in northern Europe during the Roman period vanished 
rapidly following the Empire’s withdrawal, and new populations were 
re- established centuries later (Fig. 2 B and C).

For Britain, our study overturns the received wisdom that fallow 
deer were brought from the Norman kingdom of Sicily following 
the Norman Conquest of 1066 (66, 67). Our skyline plot (S1 
Fig. 2) suggests an introduction ~1000 CE and this model is sup-
ported by the evidence from the site of Goltho, Lincolnshire. 
Isotope analyses of the Goltho deer indicate they were born and 
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Fig. 2. Maps showing the location and density of European and Persian fallow deer remains in zooarchaeological assemblages (A–C, data from Dataset S2) and 
modern samples (D, data from Datasets S3 and S4) colored according to genetic results (Fig. 1 and Dataset S1).
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raised locally (ref. 33 and Fig. 4) and direct dating suggests that a 
population was established before the Norman Conquest, by at 
least 1000 CE (Fig. 3). The possibility that these deer were derived 
from Sicily can be discounted from the genetic evidence which 
demonstrates that the North European medieval deer are unrelated 
to either the Roman or Western Mediterranean populations (Figs. 1 
and 2C). Instead, they are more closely related to Anatolian deer, 

both of which lack a 21 bp mtDNA insertion present in 88% of 
modern Italian and Spanish individuals (4).
Elite exchange and colonial expansion. Following the second 
introduction to Britain, the maintenance of fallow deer within 
parks became a statement of elite identity (33) and by the early 
13th century, parks and fallow deer had been established in Ireland 
by Anglo- Norman colonial powers (32, 68, 69). About this time 
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Fig. 3. Calibrated radiocarbon dates of fallow deer, color- coded by genetic results (Fig. 1).
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Fig. 4. Range and mean of oxygen isotope data for modern fallow deer (37) compared with ancient specimens. The graph is colored by average temperatures 
for the regions from which the modern specimens derive. Those from ancient Turkey, Greece, Sicily, Mallorca, and medieval England are consistent with animals 
that lived and died in those regions. By contrast, the AD60 mandible from Fishbourne Roman Palace has a value for its first molar (M1, which develops <4 mo) 
that is more in line with those from Turkey, Israel, the Balkans, and Italy. The values for the same deer’s second molar (M2, develops 8 to 9 mo) and third molar 
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fallow deer were exported to France, sent by King Henry II to 
stock King Philip II’s park at Vincennes (70).

In fact, England was likely the source of the deer reintroduced 
to other countries of northern Europe. A 16th/17th- century spec-
imen from the Boussu castle, Belgium (71) was found to have a 
unique haplotype (H25) closely related to the most common 
English haplotype (Fig. 2C). The 16th/17th- century specimen 
from Bierstraat- The Hague (Netherlands) yielded insufficient 
aDNA to understand its relationship to the broader dataset. 
Nevertheless, the oxygen isotope results suggest that it may have 
been a first- generation import from England (Fig. 4) and historical 
evidence supports this possibility. For example, the 17th century 
Dutch hunting manuscript, Jacht- Bedryff, notes that Maurice of 
Nassau (later Prince of Orange) acquired 100 fallow deer from 
England to stock The Hague forest (72).

The combination of historical research and genetic results indi-
cates that England was the source of the fallow deer exported 
across the British Empire. The Dama of the Caribbean island of 
Barbuda (H63) is closely related to English deer, which is consist-
ent with documentary evidence that fallow deer were transported 
to the island, along with many African slaves, by the Codrington 
family of Gloucestershire (73). The meaning attached to these 
Barbudan deer changed through time. Initially, they were a symbol 
of colonial authority and dominance, but after the slave emanci-
pation of 1834, fallow deer became a symbol of freedom, adopted 
as Barbuda’s national animal. Today, fallow deer are an important 
part of Barbuda’s economy and cultural heritage but, as an intro-
duced “alien” species, they fall outside legal protection. This is 
despite clear threats from over- hunting and natural disasters, such 
as hurricane Irma that devastated the island in 2017, which have 
put the culturally important population at risk (73, 74).

Implications for Fallow Deer Management and Conservation. 
The Barbudan fallow deer are just one of many global populations 
that possess cultural importance. Yet, it is precisely the close 
association with humans, and particularly their human- assisted 
translocation, that excludes them from IUCN protection. We 
argue that the cultural heritage represented by a species should be 
taken into consideration when conservation decisions are being 
made.

The results presented here serve as a warning about the vulner-
ability of island fallow deer. Ancient introductions to Crete, Chios, 
Cyprus, Sicily, Sardinia, Mallorca, and Roman Britain all went 
extinct (Fig. 2D). The modern Barbudan population could follow 
a similar trajectory without a conservation plan akin to that which 
allowed the Rhodes fallow deer to endure from their Neolithic 
introduction. It is the deer from Rhodes, along with those from 
Italy and Portugal, that preserve traces of the now extinct refugial 
population that once inhabited the Balkans.

There are several active campaigns to re- establish fallow deer in 
the Balkans and preserve the last remaining wild herd at Daği-  
Termessos National Park, Turkey. Without knowledge of the spe-
cies’ deep- time biomolecular and phylogeographic history, deer 
are being sourced from the least appropriate populations. For 
instance, those being reintroduced to the Balkans possess Anatolian 
ancestry (Fig. 2D). Furthermore, these Anatolian deer are being 
introduced to regions that have, for thousands of years, preserved 
deer with Balkan ancestry (Fig. 2D). Whilst Anatolia- derived deer 
are increasing in number around the world, the Daği- Termessos 
herd is still under threat. Our contention is that North European 
deer of Anatolian ancestry could be introduced to the Daği-  
Termessos park, whilst Iberian/Italian/Rhodes deer populations 
would be a better source for Balkan rewilding projects.

Conclusion

This study combined zooarchaeology and ancient and modern 
biomolecular datasets with evidence from Humanities disciplines 
to reveal new insights into the history of both fallow deer and the 
people who transported them. We argue that after the Last Glacial 
Maximum, Persian fallow deer were more widespread than has 
previously been proposed, whilst European fallow deer were likely 
restricted to Anatolia and the Balkans, and two distinct popula-
tions existed on either side of the Bosporus. Our integrated study 
suggests early translocations of deer as a viable alternative to fallow 
deer surviving anywhere else outside these regions.

Tracing their spread from these refugia reveals that fallow deer 
were repeatedly sourced from the furthest available populations: 
The deer on Neolithic Chios (and likely Rhodes) derived from the 
Balkans, rather than nearby Anatolia; those on Roman Mallorca 
were Dama mesopotamica rather than the Dama dama which could 
have been acquired from the Iberian peninsula; and the deer rein-
troduced to medieval Britain were brought from Anatolia instead 
of Iberia or Italy. This reflects the human desire to possess the exotic 
which, across cultures, is linked to concepts of power and other-
worldliness. Not surprisingly then, the earliest translocations of 
fallow deer are linked to the religious cults of Artemis and Diana.

Ancient dispersals of people, ideas, and animals are widely 
 celebrated as cultural heritage. However, the more recent the 
migrations, the more negative the attitudes toward them. Such 
perceptions can translate into animal management and policy 
making. For instance, the fallow deer of Rhodes were introduced 
during the Neolithic and are viewed as a cultural asset, protected 
by Greek law and featured on the IUCN Red List. The fallow deer 
of Barbuda are equally culturally significant as the island’s national 
animal, yet they have no legal protection and are labeled as “invasive” 
within the conservation literature. In truth, they are dismissed 
only because their introduction occurred too recently to have 
acquired a patina of age- based authenticity.

Given the planet’s biodiversity crisis, it is time to rethink our 
attitudes to animals. Whilst many species may legitimately be 
labeled as invasive, this is not true of all translocated populations 
and some do deserve protection. Preoccupation with native and 
wild species can come at the expense of (often equally endangered) 
translocated animals that are not only critically entangled with 
human history but also offer a conservation resource for replen-
ishing diminished autochthonous populations.

Materials and Methods

Spatiotemporal shifts in European and Persian fallow deer distribution were 
initially reconstructed through synthesis of the zooarchaeological literature. 
Reports referencing the presence of fallow deer were collated (n = 336) and the 
frequency of fallow deer (relative to main mammals) within each assemblage was 
calculated (Dataset S2). The location and frequency data were mapped for three 
key chronological periods—Neolithic and Bronze Age (8000 to 1200 BCE), Iron 
Age and Roman (1200 BCE to 500 CE), and medieval and early modern (500 to 
1800 century CE)—to create Fig. 2 A–C.

To add resolution to the zooarchaeological survey, 635 osteological samples 
(archaeological, historical, and modern) were acquired from sites across the fallow 
deer’s ancient and modern range (Dataset S1). Samples were subject to full- suite 
analysis using the following techniques (SI Appendix for full details):

Zooarchaeological Analysis. Contextual information (site type, date, and asso­
ciated archival data) was recorded for each specimen, which was identified to skel­
etal element and examined for evidence of taphonomic process and pathology. 
Metrical analysis (75) and age determinations (76) were undertaken to assist with 
species assignment and demographic profiling. Osteometric data were compared 
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against those published on the Deer Bone Database https://www.nottingham.
ac.uk/zooarchaeology/deer_bone/search.php.

Isotope Analysis. A total of 418 specimens were submitted for multi- element 
isotope analyses, including carbon and nitrogen (n = 418), oxygen (n = 31), 
strontium (n = 18), and sulfur (n = 22). Collagen extractions were undertaken 
at the University of Nottingham. Other preparation methods and analyses were 
undertaken at the National Environmental Isotope Facility (formerly NERC Isotope 
Geosciences Laboratory) at the British Geological Survey, Keyworth, UK. Oxygen 
data were compared against Miller et al.’s modern baseline (37).

Chronologies and Radiocarbon Dating. Dating of the archaeological speci­
mens was based largely on contextual association. To check issues of stratigraphic 
migration [which have been noted in smaller animals (50)] and refine the chro­
nology of fallow deer translocations, published radiocarbon dates were collated 
(n = 9) and key specimens (n = 23) were directly dated: 21 at the University of 
Oxford’s Radiocarbon Accelerator Unit (ORAU) UK and two at Beta Analytic (USA).

Genetic Analysis. The genetic data generation and analysis was carried out at the 
Molecular Ecology Group at the Department of Biosciences, Durham University, 
UK. In order to maximize both the number of variable positions and to be able 
to compare to data generated from modern specimens, we targeted a 532 bp 
fragment of the 5′ end of the control region of the mitochondrial genome using 
a combination of overlapping primer pairs. PCR products were sequenced using 
the Sanger method on an ABI 3100 automated sequencer at DBS Genomics, 
Durham University.

Out of 561 ancient specimens, we generated the entire fragment from 190 
European fallow deer and generated a sequence alignment alongside 219 mod­
ern samples (Datasets S3 and S4), published in Baker et al. (4). For discrimination 
between D. dama and D. mesopotamica, we used a 128 bp sub- fragment from the 
same control region sequence. This allowed us to identify 38 ancient specimens 
as Persian fallow deer (SI Appendix, Fig. S1).

All sequences were aligned using the MUSCLE algorithm (77) as implemented in 
Geneious v. R6 (www.geneious.com, ref. 78). The relationship amongst haplotypes 
was examined by constructing both median- joining networks (79) in NETWORK v. 
3.1.1.1 (www.fluxus- engineering.com) and a Bayesian phylogeny within MrBayes 
v. 3.2.6 (80). The demonstrated phylogenetic distinctiveness of the two subspecies 
D. dama and D. mesopotamica (31) allowed us to confirm species identifications 
when zooarch assessments were equivocal. This was based on 18 fixed differences 
out of the 128bp sequence. Additional details pertaining to the data generation, 
analyses, and GenBank accession details (Dataset S5) are found in SI Appendix.

Data, Materials, and Software Availability. Genetics data have been deposi­
ted in GenBank (https://www.ncbi.nlm.nih.gov/nuccore (35, 36): H1 OR220344 
H2 OR220345 H3 OR220346 H4 OR220347 H5 OR220348 H6 OR220349 H7 
OR220350 H8 OR220351 H9 OR220352 H10 OR220353 H11 OR220354 H12 
OR220355 H13 OR220356 H14 OR220357 H15 OR220358 H16 OR220359 
H17 OR220360 H18 OR220361 H19 OR220362 H20 OR220363 H21 OR220364 
H22 OR220365 H23 OR220366 H24 OR220367 H25 OR220368 H26 OR220369 
H27 OR220370 H28 OR220371 H29 OR220372 H30 OR220373 H31 OR220374 
H32 OR220375 H33 OR220376 H34 OR220377 H35 OR220378 H36 OR220379 
H37 OR220380 H38 OR220381 H39 OR220382 H40 OR220383 H41 OR220384 
H42 OR220385 H43 OR220386 H44 OR220387 H45 OR220388 H46 OR220389 
H47 KY564399.1 1 H48 KY564400.1 2 H49 KY564402.1 4 H50 KY564415.1 17 
H51 KY564405.1 7 H52 KY564406.1 8 H53 KY564408.1 10 H54 KY564409.1 
11 H55 KY564410.1 12 H56 KY564411.1 13 H57 KY564416.1 18 H58 
KY564418.1 20 H59 KY564417.1 19 H60 KY564413.1 15 H61 KY564414.1 16 
H62 KY564420.1 22 H63 OR531442 n/a H64 OR531443 n/a H65 KY564422.1 
24 H66 KY564421.1 23,25,26 H67 KY564426.1 28 H68 KY564427.1 29 H69 
KY564425.1 27 H70 KY564428.1 30,32 H71 KY564432.1 34 H72 KY564431.1 
33 Dama mesopotamica XIV AF291896 n/a XV JN632630 n/a XVI OR531435 n/a 
XVII OR531436 n/a XVIII OR531437 n/a XIX OR531438 n/a XX OR531439 n/a XXI 
OR531440 n/a XXII OR531441 n/a). All other data are included in the manuscript 
and/or supporting information.
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