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Optimal sensor configuration has been proven to be essential in the design of structural health monitoring systems.
Its impact in maintenance-related actions in an economic and safety-related way has motivated many authors to
investigate this complex problem. In particular, the structural health monitoring systems should be able to provide
enough informativeness with a relatively small cost, being affordable for industries. In this paper, such optimality
is addressed from the viewpoint of the value of information, combining both the cost and information gain of a
structural health monitoring system. In addition, a multiobjective optimization is proposed to address the optimality
of the cost-related functions, and its influence in the final decision-making process. The results of the case study
show the importance of the definition of a balanced cost-related function. In general, the cubic interpolation spline
function defined by two intermediate interpolating points results to be the most appropriate inverse cost functions.
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1. Introduction
Optimal sensor configurations of structural health
monitoring (SHM) systems are key for reliable
condition-based maintenance. Such optimality
should satisfy the required balance between effi-
ciency and informativeness of the sensor configu-
ration. An extremely simple configuration, which
only takes into account cost-related factors in the
design, would lead to systems that provide a low
level of information. However, configurations that
pursue the maximization of information with no
cost-related restrictions would lead to impractical
designs with large sets of sensors. To address
the trade-off between cost and information, many
authors have proposed the use of the value of in-
formation for the design and optimization of SHM
systems and operational decisions Konakli et al.
(2015); Malings and Pozzi (2016); Straub et al.
(2017); Thöns (2018); Malings and Pozzi (2019).
Note that the use of the value of information is
particularly interesting in the context of ultrasonic
guided-waves, where the accuracy of the damage
information is highly sensitive to the number of
sensors employed.

The issue of optimal sensor configuration for
ultrasonic guided-wave based SHM has been par-

tially addressed in the literature. Some authors
have proposed methodologies to obtain the opti-
mal sensor placement based on geometrical and
observational characteristics of both the sensors
and the structure, also known as area of cover-
age Tarhini et al. (2018); Thiene et al. (2016);
Khodaei and Aliabadi (2016); Salmanpour et al.
(2017). Others have proposed optimization pro-
cedures relying on a particular objective func-
tion (e.g. probability of detection), which have
been addressed by using different techniques such
as genetic algorithms (GA), simulated annealing,
particle swarm optimization, or artificial neural
networks Worden and Burrows (2001); Mallardo
et al. (2013); De Stefano et al. (2015); Blanloeuil
et al. (2016). However, most of these approaches
rely on deterministic approaches, thus limiting
its rigorousness and applicability in presence of
uncertainties coming from different sources, such
as noise, material properties, and epistemic uncer-
tainty, like that coming from the model itself.

The use of Bayesian-related approaches for op-
timal sensor configuration can be mainly found
in structural applications other than ultrasonic
guided-waves. In general, probabilistic met-
rics such as Kullback-Leibler divergence, the
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Shannon-entropy, or the mutual information have
been successfully used for optimizing sensor lo-
cations Papadimitriou et al. (2000); Papadimitriou
(2004); Argyris et al. (2018); Capellari et al.
(2017); Huan and Marzouk (2013). The main con-
clusion drawn from these works is that the more
sensors are added to the system, the more infor-
mative the sensor configuration is, hence showing
that an additional criterion is needed to obtain a
unique optimal sensor configuration, i.e., includ-
ing position and number of sensors.

In this paper, a hierarchical approach based on
value of information is proposed for optimal sen-
sor configuration, which allows optimizing both
the number and position of sensors. First, the
optimal sensor placement is addressed using the
conditional value of information and a greedy
algorithm. As a result, the expected information
gain is obtained for each optimal sensor layout
up to an absolute maximum number of sensors.
Then, the optimal sensor configuration can be
obtained by using an inverse cost function. The
optimality of such cost-related function is further
investigated by solving a multiobjective optimiza-
tion problem. The function that provides the most
informative, economic, and identifiable optimal
sensor configuration is selected by a nondomi-
nated sorting genetic algorithm II (NSGA-II) Deb
et al. (2002). A stiffened aluminum plate-like
structure with a bounded damage area is used to
illustrate the methodology. It is found that cost-
related functions based on cubic splines built with
two interpolating points are more likely to provide
the most balanced optimal sensor configurations.

The rest of the paper is outlined as follows:
Section 2 shows the details of the methodology.
Section 3 illustrates the methodology with a case
study. The results are then discussed in Section 4.
Finally, Section 5 provides concluding remarks.

2. Methodology
The approach based on value of information for
optimal sensor configuration and further search
for optimal inverse cost functions is presented
throughout this section.

2.1. Optimal sensor configuration: value
of information

The concept of value of information Howard
(1966); Schlaifer and Raiffa (1961) is used here
to assess the optimal sensor configuration with
regards to the number of sensors. Thus, the
required trade-off between information and cost,
stemming from manufacturing, installation, and
maintenance processes of the SHM system, is rig-
orously addressed. In general terms, the value of
information can be understood as a measure of the
benefit produced by the adoption of the optimal
sensor configuration compared to the prior state

of information, i.e., without the optimal configu-
ration.

In order for the benefit of measuring data to be
quantified, a benefit function b(n,θ) that depends
on the actual sensor configuration n and the model
parameters θ needs to be defined. Note that the
sensor configuration n entails the definition of the
optimal sensor layout of the n sensors. Thus, such
benefit function is proposed to be proportional to
the inverse of cost f(n) of each sensor configura-
tion n and another function g(θ), which accounts
for the information gained by the system, such that
b(n,θ) ∝ f(n)g(θ).

Next, the concept of maximum prior expected
benefitB′, which is based on the prior information
of the model parameters p(θ) Rus et al. (2016), is
defined. This is used to obtain the optimal sen-
sor configuration n′opt, as follows Konakli et al.
(2015):

B′ = Ep(θ)

[
b(n′opt,θ)

]
n′opt = argmax

n

∫
b(n,θ)p(θ)dθ

(1)

Similarly, the maximum posterior expected benefit
(PEB)B′′(D) Rus et al. (2016), which is based on
the posterior distribution of the parameters given
the data p(θ|D), is obtained as follows Konakli
et al. (2015):

B′′(D) = Ep(θ|D)

[
b(n′′opt,θ)

]
n′′opt = argmax

n

∫
b(n,θ)p(θ|D)dθ

(2)

where the conditioning on D is to denote that B′′

depends on the data obtained through the sensors.
Note that these data can be obtained either from
preliminary tests or based on simulations at the
design stage, since real data cannot generally be
used at this stage. Then, by subtracting both math-
ematical expectations evaluated at their optimal
sensor configurations n′′opt and n′opt, the condi-
tional value of information (CVI) on D is given
by:

CVI(D) = B′′(D)−B′ (3)

Note that Equation (3) is defined for only one
damage scenario, whereby the sensors acquire the
data D. In order to obtain a more robust measure
that, in turn, provides the optimal sensor configu-
ration given a set of data D, an expectation of the
CVI over the data is required, as follows:

VoI = Ep(D)[CVI(D)] (4)

where VoI refers to value of information. The
computation of the last expectation requires the
solution of the optimal sensor configuration for
each of the data D ∈ D and the expensive cal-
culations of the evidence p(D) Rus et al. (2016)
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Fig. 1. Optimization approach starting from the construction of the information curve up to the optimization of the inverse
cost function f(n). The process goes through two separate optimization algorithms: (1) optimization of the sensor positions by
using GA and a discrete problem, and (2) multiobjective optimization of f(n), which should provide the most valuable sensor
configuration, while minimizing the costs in terms of number of sensors.

at each sampled data. A pre-posterior analysis,
by using data generated by the model and samples
coming from the prior distribution of the model
parameters would be more appropriate at the de-
sign level. However, for the purpose of illustrating
the methodology for obtaining the global optimal
inverse cost function, the data are restricted here to
one simulated damage scenario, leading to the use
of CVI for optimal sensor configuration. Finally,
note that the sensor placement approach is based
on a greedy algorithm that adds sensors one by
one as described in Papadimitriou (2004). The
sensor location of the newly added sensor is op-
timized using a genetic algorithm (GA).

2.2. Optimization of inverse cost function
The interest behind the optimization of f(n) lies
in the potential benefits of obtaining the more con-
venient inverse cost function that provides a suffi-
ciently informative, yet efficient, optimal sensor
configuration. It is worth mentioning that the def-
inition of the inverse cost function f(n) dictates
if the optimal number of sensors is on the side of
the information, or on the side of the cost of the
sensors. For instance, if a f(n) is defined so that
it penalizes the addition of sensors in excess, the
optimal configuration would be cheap but likely
to be insufficiently informative. In contrast, if
f(n) does not penalize the use of a relatively large
number of sensors, the optimal solution would be
highly informative, but possibly impractical in the
real world. To autonomously and rigorously select
the optimal cost-related function fopt(n) that pro-
vides the best trade-off between information and

cost, an approach based on multiobjective genetic
algorithms Rothlauf, Franz (2006); Konak et al.
(2006) is proposed here.

Figure 1 depicts the proposed methodology to
obtain the optimal inverse cost function. First, a
curve containing the information gain produced
by the optimal sensor layouts using different num-
ber of sensors is obtained. Note that these op-
timal layouts are obtained by using GA, which
optimize the sensor locations by maximizing the
information gain of the posterior distribution of
the damage location. The prior and posterior
distributions, which are needed for computing
the conditional value of information, are obtained
by using model-based Bayesian inverse problems
(BIPs) configured in a robust manner, as described
in Cantero-Chinchilla et al. (2019). It is worth
mentioning that this approach relies on the recon-
struction the damage localization. Alternatively,
a more detailed information could be obtained by
making use of more complex models at a consid-
erably higher computational cost Chiachı́o et al.
(2017). Once the information curve is produced,
f(n) can be introduced to obtain a unique optimal
sensor configuration. Here, the optimality of f(n)
is investigated using three contradictory objective
functions, as follows:

a) Maximization of B′′(D), recall Equa-
tion (2). The sought solution should
satisfies that f(n) provides the most in-
formative optimal sensor configuration;

b) Minimization of number of sensors n.
This objective function restricts the po-
tential solution given by a), given that the
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more sensors are used, the more informa-
tive the sensor configuration is;

c) Minimization of the dispersion of the
PEB curve. This objective function seeks
for the uniqueness and identifiability of
the optimal solution. To this end, the
PEB curve is treated as a probability den-
sity function, and the interquartile range,
i.e., the range of sensors used between
the 25% and 75% of the virtual probabil-
ity, is used to evaluate such dispersion.

Note that the objective function c) is impor-
tant for supporting rigorous and effective decision
making with regards to the SHM sensor configu-
ration. In cases where the PEB curve has several
sensor configurations with close PEB values, the
selection of one configuration over another may
be biased, with important economical and safety-
related implications. In order for the optimal
configuration to be more easily identifiable, the
dispersion of the PEB curve is hence minimized
by using a specific inverse cost function.

The inverse cost functions investigated in
this work are monotonic interpolating functions
f (`)(n) : [0, Nmax] → [0, 1], which are made of
interpolating monotonic cubic splines Fritsch and
Carlson (1980) due to its ease of implementation
and ability to mimic almost any monotonic func-
tion. Note that Nmax is the maximum number
of sensors. Assuming that the starting and final
points f (`)(0) = 1 and f (`)(Nmax) = 0 are
fixed, the inverse cost functions are completely
defined by introducing an arbitrary number (`) of
intermediate interpolating points.

3. Case study
The methodology is illustrated using a stiffened
plate-like structure with a number of predifined
sensor locations next to the stiffeners. First,
the sensors are optimally placed until Nmax is
reached, according to a CVI based objective func-
tion. Then, a multiobjective optimization is per-
formed to investigate the optimal shape of f `(n).

3.1. Structure description
The structure used in this case study is a
300mm× 300mm aluminum plate with 50mm
height stiffeners and 2mm thickness for all the
elements, as can be observed in Figure 2. The ma-
terial properties correspond to an aluminum alloy
2024-T351 with Young’s modulus E = 73.1GPa,
density ρ = 2780kg/m3, and Poisson ratio of
0.33. The guided waves acquired at all the po-
tential sensor locations are simulated using an
Abaqus model. To this end, S4R (4-node doubly
curved thin or thick shell, reduced integration,
hourglass control, finite membrane strains) shell
elements ABAQUS (2016) are used along with

Fig. 2. Abaqus model of the stiffened panel modeled for the
purpose of optimal sensor configuration given the simulated
data.

a mesh size of 0.5mm. The guided waves are
generated using a 5 cycle sine tone burst cen-
tered at a frequency of 300kHz at the center of
the plate in perpendicular direction. Here, the
damage is simulated as a 2mm × 2mm hole at
(−19,−49) mm, considering the center of coor-
dinate system at the center of the plate. The prior
information of the model parameters is assumed
to be distributed as follows: Xd ∼ U(−0.1, 0) m,
Yd ∼ U(−0.1, 0) m and V ∼ U(1500, 4500) m/s,
where U refers to a uniform probability density
function, (Xd, Yd) are the Cartesian coordinates
of the damage, and V is the wave propagation
velocity.

3.2. Multiobjective optimization
Figure 3 depicts the information curve obtained
using the structure described in the previous sec-
tion and a greedy sensor placement algorithm. As
can be observed, the first 3 sensors absorb the
majority of information gain. After those sensors,
the increase in information rate is drastically re-
duced. This curve is obtained as the average of
computing 100 BIPs with the same sensor config-
uration and prior, but using different samples. In
addition, the 25% and 75% percentiles are shown
to provide more information about the dispersion.
Note also that the higher the number of sensors,
the higher the dispersion in the information gain.
The mean curve is subsequently used to run the
multiobjective optimization algorithm in order to
find the optimal inverse cost function.

Using one intermediate interpolating point de-
fined within n ∈ [1, 30] and f (1)(n) ∈ [0.01, 0.99]
the optimal inverse cost function obtained is de-
picted in the upper panel of Figure 4. Note that the
interpolating point is situated at the coordinates
(28.83, 0.32) and the interpolating cubic spline
allows the use of a relatively high number of
sensors, i.e. 8 sensors. Such sensor configura-
tion provides the most informative solution at this
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Fig. 3. Mean, 25%, and 75% percentile of the information
curve obtained for all the potential sensor configurations from
0 to Nmax = 30.

Fig. 4. Optimal inverse cost function using one interpolating
point in the upper panel and its corresponding PEB curve in
the lower panel.

stage, however, the dispersion of the PEB curve
is still relatively high, showing several configura-
tions with a similar PEB value, e.g., between 5
and 10 sensors, as can be observed in the lower
panel of Figure 4. This result suggests that the
inverse cost function defined by one interpolating
point is not enough to comply with the dispersion-
related criterion, thus needing the addition of an-
other interpolating point to modify the inverse cost
function f (1)(n)→ f (2)(n).

The optimal inverse cost function using two
intermediate points leads to a more identifiable,
yet informative, sensor configuration. The first in-

Fig. 5. Optimal inverse cost function using two interpolating
point in the upper panel and its corresponding PEB curve in
the lower panel.

terpolating point is constrained within n ∈ [1, 15]
and f (2)(n) ∈ [0.6, 0.99], while the second point
is within n ∈ [16, 30] and f (2)(n) ∈ [0.01, 0.3].
The optimal curve is defined by the intermediate
points (4.30, 0.98) and (16, 0.29), as can be ob-
served in the upper panel of Figure 5. The optimal
configuration in this case would be provided by
5 sensors. The use of this type of inverse cost
function leads to an optimal sensor configuration
with a relatively similar level of PEB, compared
to the case with one interpolating point. However,
the dispersion is narrower now in the PEB curve
shown in the lower panel of Figure 5. This allows
the designer to select more clearly the optimal
sensor configuration, while minimizing the effects
of numerical noise.

4. Discussion
The methodology for optimal sensor configuration
through the exploration of several inverse cost
functions f(n) has been illustrated using mono-
tonic interpolating cubic splines with one and two
intermediate anchor points. It has been demon-
strated the influence of the definition of f(n) in
the selection of the optimal sensor configuration,
thus its importance in being optimized. The opti-
mal sensor configuration provided by the optimal
f
(2)
opt(n) with two interpolating points (upper panel

in Figure 5) is generally more useful in the design
stage. The selection of the optimal point is less
uncertain due to the lower dispersion in the PEB



February 26, 2019 15:6 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book esrel2019-paper˙v01

6 Sergio Cantero-Chinchilla et al.

Fig. 6. Optimal inverse cost function using three interpolat-
ing point in the upper panel and its corresponding PEB curve
in the lower panel.

curve. Furthermore, the B′′(D) obtained is very
similar in absolute value to the one obtained using
the f (1)(n) with one interpolating point (upper
panel in Figure 4). Therefore, one can assume that
the use of the optimal f (1)opt(n) composed by two
interpolating points may be more appropriate for
providing balanced optimal sensor configurations
between information and cost.

It is also worth mentioning that the definition of
the inverse cost function f (3)(n) using three inter-
polating points does not significantly improve the
optimal solution with respect to f (2)(n) composed
by two interpolating points. Figure 6 depicts the
optimal inverse cost function using three interpo-
lating points and its corresponding PEB curve. As
can be observed, both f (3)opt(n) and the PEB curve
are very similar to the ones obtained with two
interpolating points. Thus, the usage of the latter
would be preferred due to its higher simplicity.

The importance of choosing an optimal inverse
cost function before carrying out the design of
the SHM system lies in the possibility to devise
manufacturing or maintenance processes, so that
the informativeness of the SHM system is taken
into account before implementing it. Thus, the
required equilibrium between the costs and the
information that the system is providing can be
achieved in an effective and efficient manner.

5. Conclusions
A general framework to obtain optimal sensor
configurations and inverse cost functions, given
the information curve of different sensor config-
urations, is proposed in this paper. A case study
using a stiffened plate-like structure has been
used to illustrate the methodology. The adoption
of inverse cost functions with three main areas,
i.e., composed by two interpolating points, have
proven to be effective in providing optimal sensor
configurations that comply remarkably well with
the three objectives functions: (1) informative-
ness, (2) cost and (3) identifiability.

The future works include the exploration of
the influence of the inverse cost function in the
optimal sensor configuration provided over a set
of data D instead of using one damage scenario D,
either by using a pre-posterior analysis or using
simulated data from a fast and efficient ultrasonic
guided-waves propagation model. In addition,
rigorous and efficient optimization procedures for
optimal sensor location that rely on theoretic in-
formation based approaches will be explored.
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