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Abstract 

This study investigates the flexural response of a linearly elastic rectangular strip reinforced in 

a functionally graded manner by a single family of straight fibres resistant in bending. Fibre 

bending resistance is associated with the thickness of fibres which, in turn, is considered 

measurable through use of some intrinsic material length parameter involved in the definition 

of a corresponding elastic modulus. Solution of the relevant set of governing differential 

equations is achieved computationally, with the use of a well-established semi-analytical 

mathematical method. A connection of this solution with its homogeneous fibre-reinforced 

material counterpart enables the corresponding homogeneous fibrous composite to be 

regarded as a source of a set of equivalent functionally graded structures, each one of which is 

formed through inhomogeneous redistribution of the same volume of fibres within the same 

matrix material. A subsequent stress and couple-stress analysis provides details of the manner 

in which the flexural response of the polar structural component of interest is affected by 

certain types of inhomogeneous fibre distribution.  

 

Keywords: Cylindrical bending, Elastic beams, Elastic plates, Fibre bending stiffness, Fibre-

reinforced structures, Functionally graded structures, Plane strain elasticity, Polar elasticity. 

 

 

1. Introduction 

 

Fibrous composites with either homogeneously or inhomogeneously distributed stiff fibres are 

increasingly attracting attention and interest, particularly after carbon nanotube fibres were 

found suitable for inclusion in their constituent phases (e.g., [1]). Despite their low density 

and nano-meter thickness, carbon nanotubes are known to exhibit remarkably high strength 

and stiffness, as well as similarly high bending resistance.  

Fibre bending stiffness of such a kind of stiff fibres is thus naturally required to be 

accounted for in modelling and studying the behaviour of relevant composites, regardless of 

whether fibre reinforcement is distributed in a homogeneous or is some inhomogeneous 

manner. This requirement becomes particularly important in cases of high fibre concentration 

(either global or local), where fibre bending resistance gives rise to a couple-stress field. The 

latter makes the stress field non-symmetric, and endows the composite characteristics of a 

polar material. It is recalled in this context that the conventional theory of fibre-reinforced 

materials is built on the simplifying assumption of perfectly flexible fibres [2-4], namely 

fibres that exhibit no bending resistance, and is therefore inherently a non-polar elasticity 

theory.        

The study of polar material behaviour is naturally associated with modelling features 

falling into the Cosserat theoretical framework [5]. Linearly elastic behaviour of polar fibrous 
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composites may accordingly be attempted through use of either the polar linear elasticity 

theory proposed by Mindlin and Tiersten [6] for generally anisotropic materials or the 

linearised version of the theory proposed by Spencer and Soldatos [7] for specific types of 

polar fibrous composites (see also [8]). It is recalled in this connection that the type of 

appropriate material anisotropy that fits a relevant boundary value problem is dictated by the 

specific direction(s) that fibres are aligned to in a fibrous composite.    

However, as is also pointed out in [9], there exists no evidence suggesting that the 

anisotropic version of the Mindlin and Tiersten theory [6] was motivated by potential 

applications referring to linearly elastic composites having embedded fibres resistant in 

bending. As a matter of fact, most of the polar linear elasticity analysis detailed in [6] is 

devoted to the isotropic version of that theory.  

Motivated by these observations, the analysis presented in [9]: (i) underlined the 

principal equations of the Cosserat polar material framework (see also [10]) that provide 

common ground for the theorie333s proposed in [6] and [7]; (ii) noted the manner in which 

the linear constitutive equation employed in [6] was obtained through a suitable truncation of 

the energy expansion proposed by Toupin [11]; (iii) enlarged and enriched the theoretical  

background through which both theories [6, 7] are valid and operate; and, within that enlarged 

background, (iv) identified their similarities and potential differences without having the 

intention to either bridge or eliminate the latter. 

The principal relevant similarity recorded in [9] refers to the fact that the governing 

equations of either theory are generally non-elliptic. As a result, the solution to any well-

posed boundary value problem, attempted through use of either theory, may be not unique. 

There are basic historical reasons (see [9]) that prevented Mindlin and Tiersten from noticing 

this fact in [6], where it is stated that such a potential solution, described by continuous 

displacements possessing continuous derivatives of all orders, is the unique solution of the 

implied boundary value problem. . 

However, Reference [9] has shown that such a solution, which will be termed “the 

continuous solution” in what follows, is in fact the only possible solution described by 

continuous displacements possessing continuous displacements of all orders. Due to the 

observed “lack of ellipticity” of polar elasticity equations, the implied continuous solution 

may be accompanied by a number of “weak discontinuity” solutions of the same boundary 

value problem and may thus be not unique. These are solutions described by continuous 

displacements that possess discontinuous derivatives, and may thus represent micro-scale 

(fibre-thickness) material failure modes (e.g., [8, 12, 13]). Such kind of possible solutions are 

not observable in corresponding problems underpinned by non-polar linear elasticity 

principles, which always lead to elliptic governing differential equations. 

The outlined observations raise immediately a question of whether the prevailing 

solution of a polar elasticity boundary value problem is the continuous one or some of its 

possible weak discontinuity counterparts. The task of seeking for an answer to this question is 

of paramount practical importance in structural analysis applications.  

Such a challenging task may well depend on the particular polar elasticity problem of 

interest. Moreover, it seemingly requires some analytical and/or numerical/computational 

comparison of all relevant weak discontinuity solutions among themselves, as well as against 

their common continuous counterpart. In fact an appropriate comparison may also be required 

of the stored energy levels reached by all possible solutions involved. The need becomes thus 

evident for the derivation of relevant continuous and/or weak discontinuity solutions to a 

number of relatively simple or more difficult boundary value problems, with the aim to reach 

afterwards a stage that makes the implied comparisons possible.  

The present study is considered as an immediate continuation of an initial, relatively 

simple step made already in that direction [14], in the sense that it complements the latter in 

11 Sep 2019 06:12:07 PDT
Version 2 - Submitted to J. Mech. Mater. Struct.



3 
 

the search for continuous solutions to the plane strain bending problem of a simply supported, 

linearly elastic rectangular strip reinforced by a single family of straight fibres resistant in 

bending. While [14] dealt with the case of either homogeneous or layer-wise inhomogeneous 

(laminated) strips, this communication considers the more general case of material 

inhomogeneity due to continuous through-thickness variation of the fibre-reinforcement.  

The elastic strip of interest may be regarded as a rectangular beam made of functionally 

graded material (FGM) having unit width, or as the cross-section of a corresponding 

rectangular plate having infinite extent in the out of plane direction. The latter representation 

provides direct connection with the relevant, non-polar elasticity problem considered and 

solved by Pagano [15] but, here, the implied bending stiffness of functionally graded fibres 

furnishes the strip with polar material properties. Moreover, material inhomogeneity features 

in the analysis through the variable form attained by the coefficients of the corresponding set 

of Navier-type partial differential equations. 

With the help of Appendix A, Section 2 thus provides a proper mathematical description 

of the plane strain state of polar, linearly elastic structures reinforced in a functionally graded 

manner by a single family of straight fibres resistant in bending. For simplicity, this 

description is based on the restricted version of the polar elasticity theory presented by 

Spencer and Soldatos [7]. This version of the theory (see also [8]) involves only a single 

elasticity modulus of fibre bending resistance and, as soon as certain additional conditions are 

met [9], can establish connection with the theory of Mindlin and Tiersten [6].    

Section 3 formulates the aforementioned bending problem of a simply supported 

prismatic beam (or rectangular plate cross-section). Moreover, with use of a second 

Appendix, it employs a suitable semi-analytical mathematical method (e.g., [16-21]), provides 

information that underpins its computational efficiency, and finalises the solution of the 

corresponding Navier-type equations. With the help of Appendices C and D, Section 4 

connects afterwards the present problem of interest with its homogeneous polar elasticity 

counterpart [14]. This connection enables a homogeneous fibre-reinforced component [14] to 

be regarded as the source of a set of equivalent functionally graded structures, each one of 

which is made through inhomogeneous redistribution of the same volume of fibres within the 

same matrix material.  

Three different types of such inhomogeneous fibre redistribution are thus selected in 

Section 4, and are employed afterwards in Section 5, in the discussion of the numerical results 

presented there. That Section thus examines in detail the manner in which each of the 

employed types of inhomogeneous fibre distribution affects the flexural response of the 

composite structure. Finally, Section 6 summarises the main conclusions drawn and outlines 

directions on the manner in which the search for identification of corresponding weak 

discontinuity solutions should be contacted. 

 

 

2. Theoretical formulation 
 

A linearly elastic fibre-reinforced plate has finite length, L, in the x direction, infinite extent in 

the y direction, and finite thickness, h, in the z direction of a Cartesian co-ordinate system 

Oxyz (0 ≤ x ≤ L, −∞ ≤ y ≤ +∞, −h/2 ≤ z ≤ h/2). The plate material has embedded a single 

family of fibres which are parallel to the x-axis, can resist bending, and are distributed in the 

z-axis direction in a continuous, functionally graded manner. The plate is subjected to external 

loading that justifies plane strain response, in the sense that the displacement component in 

the y direction is zero while the other two displacement components, as well as all remaining 

physical quantities, are independent of the co-ordinate parameter y. In the usual manner, the 

plate cross-section can thus be considered as a two-dimensional elastic strip or as a prismatic 

11 Sep 2019 06:12:07 PDT
Version 2 - Submitted to J. Mech. Mater. Struct.



4 
 

beam having length L, thickness h and unit width (Figure 1). In this context, relevant 

terminology of prismatic beams is also employed in what follows.       

The through thickness inhomogeneous distribution of the fibres is regulated by 

controlling their volume fraction, 𝑉𝑓(𝑧), which requires from the material properties of the 

structural component to be known functions of the z co-ordinate parameter. Every material 

property, P(z) say, of such a functionally graded fibrous composite is usually expected to 

obey the mixture law  

 

𝑃(𝑧) = 𝑉𝑓(𝑧)𝑃𝑓 + 𝑉𝑚(𝑧)𝑃𝑚,   𝑉𝑓(𝑧) + 𝑉𝑚(𝑧) = 1,   (0 ≤ 𝑉𝑓(𝑧), 𝑉𝑚(𝑧) ≤ 1),                (1) 

 

where Vm(z) is the volume fraction of the matrix phase, while Pf and Pm represent the 

corresponding constant material property of the fibre and the matrix phase, respectively.  

It is pointed out that the inequality conditions noted in (1) are imposed on the ground 

of evident theoretical arguments that hold true regardless of the particular form of 𝑉𝑓(𝑧) or, 

equivalently, 𝑉𝑚(𝑧). In this context, the denoted upper limit of the fibre volume fraction, 

namely 𝑉𝑓(𝑧) = 1, is in principle possible only in cases that fibres are assumed perfectly 

flexible and, having no thickness, can therefore fill in completely the entire volume of the 

composite. However, fibres do have thickness in practice and, due to the structural 

architecture of the fibrous composite, leave among them gaps which are filled in with matrix 

material even in parts of the composite that fibres are distributed very densely.  

A more realistic approach thus requires introduction of a maximum fibre volume 

parameter, 𝑉𝑚𝑎𝑥
𝑓

 say, such that 

 

0 ≤ 𝑉𝑓(𝑧) ≤ 𝑉𝑚𝑎𝑥
𝑓

< 1.                                                                                                              (2) 

 

This additional condition does not need to be discussed further at these early stages of the 

problem formulation. However, it is reconsidered and discussed later, in Sections 4 and 5, 

where determination of a value for  𝑉𝑚𝑎𝑥
𝑓

 becomes part of some specific applications. 

In the implied plane strain state, the average fibre and matrix concentrations of the 

composite are defined as follows: 

 

< 𝑉𝑓 >=
1

ℎ
∫ 𝑉𝑓(𝑧)𝑑𝑧

ℎ/2

−ℎ/2
,  < 𝑉𝑚 >=

1

ℎ
∫ 𝑉𝑚(𝑧)𝑑𝑧

ℎ/2

−ℎ/2
,     < 𝑉𝑓 > +< 𝑉𝑚 >= 1.           (3) 

 

The particular case of a homogeneous fibrous composite, where the fibre volume fraction is 

constant, is thus characterised by the relationship 𝑉𝑓(𝑧) = < 𝑉𝑓 > for all z. If the fibres resist 

bending and < 𝑉𝑓 > is adequately high, say 40% to 60%, then the fibre response to 

mechanical loading generates considerable couple-stress and non-symmetric stress (e.g., [7-9, 

14]). In the case of FG fibrous composites with relatively low < 𝑉𝑓 >, creation of a couple-

stress field is still possible locally, namely in specific parts of the composite where  𝑉𝑓(𝑧) 

anticipates high fibre concentration.  

The stress and couple-stress components that contribute actively in plane strain 

equilibrium are shown schematically in Figure 2 (see also [7, 14, 22]). The symmetric part of 

the stress tensor is given by the standard form of the generalized Hooke’s law, which in the 

present, plane strain case acquires the form  

  

[

𝜎𝑥

𝜎𝑧

𝜏(𝑥𝑧)

] = [

𝐶11 𝐶13 0
𝐶13 𝐶33 0
0 0 𝐶55

] [

𝑒𝑥

𝑒𝑧

2𝑒𝑥𝑧

],                                                                                 (4) 
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where the appearing linear strain components are  

 

𝑒𝑥 = 𝑈,𝑥 , 2𝑒𝑥𝑧 = 𝑈,𝑧 + 𝑊,𝑥,   𝑒𝑧 = 𝑊,𝑧 .                                                                       (5) 

 

Here, U(x,z) and W(x,z)  are the displacement components along the axial and transverse co-

ordinate direction, respectively, and a comma denotes partial differentiation with respect to 

the indicated co-ordinate parameter(s).  

The elastic moduli appearing in (4) vary in the transverse direction in accordance with 

the mixture law (1), namely  

 

𝐶𝑖𝑗(𝑧) = 𝑉𝑓(𝑧)𝐶𝑖𝑗
𝑓

+ 𝑉𝑚(𝑧)𝐶𝑖𝑗
𝑚.                                                                                             (6)  

 

As the matrix phase is naturally considered isotropic, the following relationships are assumed 

valid:   

 

𝐶11
𝑚 = 𝐶33

𝑚 = 𝜆 + 2𝜇,   𝐶13
𝑚 = 𝜆,   𝐶55

𝑚 = (𝐶11
𝑚 − 𝐶13

𝑚)/2 = 𝜇,                                                  (7) 

 

where λ and μ are the constant Lamé moduli of the matrix material. In this context, Appendix 

A describes an alternative manner in which the elastic moduli of the matrix and the fibre 

phases can be related, and thus lead to the determination of their Cij counterparts appearing in 

(4).    

The antisymmetric part of the stress tensor is defined as follows:  

 

𝜏[𝑥𝑧] =
1

2
𝑚𝑥𝑦,𝑥,                                                                                                                        (8)                                

 

where the only non-zero couple-stress component met in this plane strain problem (e.g., [7, 

14, 22]), namely 

 

𝑚𝑥𝑦 = 𝑑𝑓𝐾𝑧
𝑓

= −𝑑𝑓𝑊,𝑥𝑥,                                                                           (9) 

 

acts in the manner shown in Figure 2, and 𝐾𝑧
𝑓
 represents the fibre curvature. Unlike Cij which 

have dimensions of stress, the fibre bending modulus df has dimensions of force. Like Cij 

though, this is also expected to obey the mixture law (1).  

However, unlike the fibre phase, the isotropic matrix phase does not contribute to the 

bending stiffness of the fibrous composite, and, as a result, the second term in the right-hand 

side of the corresponding expression (1.a) is zero. Hence, in line with previous relevant 

studies [14, 22], where material homogeneity enabled the relevant constant value of df to be 

considered as a product of the form 𝐶11𝑙𝐿, the fibre bending modulus attains here the through 

thickness variable form   

          

𝑑𝑓(𝑧) = 𝑉𝑓(𝑧)𝐶11
𝑓
𝑙𝐿,                                                                                                             (10) 

 

where the intrinsic material length parameter l is connected with the fibre thickness. In this 

manner, l = 0 represents cases of non-polar material behaviour, where fibres are perfectly 

flexible and the subsequent absence of couple-stress (𝑚𝑥𝑦,𝑥 = 𝜏[𝑥𝑧] = 0) enables the stress 

tensor to attain its conventional symmetric form (4).   

When l is non-zero, the non-zero shear stresses are unequal, so that  
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𝜏𝑥𝑧 = 𝜏(𝑥𝑧) + 𝜏[𝑥𝑧],           

𝜏𝑧𝑥 = 𝜏(𝑥𝑧) − 𝜏[𝑥𝑧].                    (11) 

 

In the absence of body forces, the equilibrium equations thus acquire the form 

 

𝜎𝑥,𝑥 + 𝜏(𝑥𝑧),𝑧 − 𝜏[𝑥𝑧],𝑧 = 0,          

𝜏(𝑥𝑧),𝑥 + 𝜏[𝑥𝑧],𝑥 + 𝜎𝑧,𝑧 = 0,                   (12) 

 

which, after appropriate use of equations (4)-(9), lead to the Navier-type equations 

  

𝐶11𝑈,𝑥𝑥 + (𝐶13 + 𝐶55)𝑊,𝑥𝑧 + 𝐶55𝑈,𝑧𝑧 + 𝐶55,𝑧(𝑈,𝑧 + 𝑊,𝑥) +
1

2
𝑙𝐿𝐶11

𝑓
𝑉𝑓𝑊,𝑥𝑥𝑥𝑧 + 

                                                                                       
1

2
𝑙𝐿𝐶11

𝑓
𝑉,𝑧

𝑓
𝑙𝑊,𝑥𝑥𝑥 = 0,         (13) 

𝐶55𝑊,𝑥𝑥 + (𝐶13 + 𝐶55)𝑈,𝑥𝑧 + 𝐶13,𝑧𝑈,𝑥 + 𝐶33,𝑧𝑊,𝑧 + 𝐶33𝑊,𝑧𝑧 −
1

2
𝑙𝐿𝐶11

𝑓
𝑉𝑓𝑊,𝑥𝑥𝑥𝑥 = 0. 

         

 The outlined polar elasticity formulation is general, in the sense that it applies to all 

cases that a relevant FGM fibrous composite exhibits plane strain behaviour. For analytical 

purposes, it is found convenient to rearrange equations (13) into the following matrix form:  

 

𝑨𝑿 = 𝟎 ,                      (14a) 

 

where 

  

𝑨 = 

[
 
 
 𝐶11

𝜕2

𝜕𝑥2
+ 𝐶55

𝜕2

𝜕𝑧2
+ 𝐶55,𝑧

𝜕

𝜕𝑧
(𝐶13 + 𝐶55)

𝜕2

𝜕𝑥𝜕𝑧
+ 𝐶55,𝑧

𝜕

𝜕𝑥
+

1

2
𝐿𝐶11

𝑓
𝑉,𝑧

𝑓
𝑙

𝜕3

𝜕𝑥3
+

1

2
𝐿𝐶11

𝑓
𝑉𝑓𝑙

𝜕4

𝜕𝑥3𝜕𝑧

(𝐶13 + 𝐶55)
𝜕2

𝜕𝑥𝜕𝑧
+ 𝐶13,𝑧

𝜕

𝜕𝑥
𝐶55

𝜕2

𝜕𝑥2
+ 𝐶33

𝜕2

𝜕𝑧2
+ 𝐶33,𝑧

𝜕

𝜕𝑧
−

1

2
𝐿𝐶11

𝑓
𝑉𝑓𝑙

𝜕4

𝜕𝑥4 ]
 
 
 

, 

𝑿 = [𝑈 𝑊  ]𝑇 ,                                                                                                      (14b) 

 

 

3. Cylindrical bending of a simply supported plate 

 

Attention is now confined into the particular case that deformation is due to external 

application of the lateral boundary tractions 

 

𝜎𝑧(𝑥, ℎ/2) = 𝑞(𝑥),   𝜎𝑧(𝑥, −ℎ/2) = 0  ,      

𝜏𝑧𝑥(𝑥, ℎ/2) = 0,   𝜏𝑧𝑥(𝑥, −ℎ/2) = 0 .                (15) 

 

The externally applied transverse load, q(x), is considered known and can, therefore, be 

represented in the following Fourier-type sine-series form: 

 

𝑞(𝑥) = ∑ 𝑞𝑚 sin(𝑀𝑥) ,     𝑀 = 𝑚𝜋/𝐿,     (𝑚 = 1,2, … ).∞
𝑚=1               (16) 

 

It is further assumed that the longitudinal ends of the plate cross-section or prismatic 

beam (x = 0, L) are subjected to the following set of homogeneous boundary conditions:   

 

𝜎𝑥(0, 𝑧) =  𝜎𝑥(𝐿, 𝑧) = 0,              
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𝑊(0, 𝑧) = 𝑊(𝐿, 𝑧) = 0,                             (17) 

𝑚𝑥𝑦(0, 𝑧) =  𝑚𝑥𝑦(𝐿, 𝑧) = 0,  

                 

which is consistent with the symmetries of simply supported boundaries. In the particular case 

of a homogeneous fibrous composite, where Vf and Vm are both known constants, the problem 

of present interest thus reduces naturally to its polar elasticity counterpart studied in [14]. 

The simple support boundary conditions (17) are satisfied exactly by the following 

choice of a displacement field:  

 

𝑈 = ℎ𝑓(𝑧)cos (𝑚𝜋𝑥/𝐿),       

𝑊 = ℎ𝑔(𝑧)sin (𝑚𝜋𝑥/𝐿),    (𝑚 = 1,2, … )                           (18) 

 

where the functions 𝑓(𝑧) and 𝑔(𝑧) are to be determined. Expressions (18) represent a 

potential solution to the described boundary value problem when the external loading is 

identical with a single term of the series expansion (16), namely 

 

𝑞(𝑥) = 𝑞𝑚 sin(𝑀𝑥) , 𝑀 =
𝑚𝜋

𝐿
.                                            (19) 

 

The linearity of the described boundary value problem, combined with the superposition 

principle of relevant solutions, makes it then sufficient for someone to look only for a solution 

of the particular case in which the external load is given according to (19), with m being an 

arbitrary positive integer.  

 Upon inserting (18) into (14), the latter equation is transformed into a fourth-order set 

of simultaneous ordinary differential equations (ODEs) with variable coefficients. This can be 

expressed as follows: 

      

𝑮(𝑧, 𝐷)𝑩 = 𝟎,                                  (20) 

 

where, 

 

𝑮(𝑧, 𝐷) = [
𝑑1 + 𝑑2𝐷

2 + 𝑑3𝐷 (𝑑4 + 𝑑11)𝐷 + 𝑑5

−𝑑4𝐷
2 + 𝑑7 𝑑6𝐷 + 𝑑8 + 𝑑9𝐷

2 + 𝑑12

],                                                (21) 

𝐷 = 𝑑/𝑑𝑧,    𝑩 = [𝑓(𝑧) 𝑔(𝑧) ]𝑇.  

        

Due to the variable form of 𝑉𝑓(𝑧), the appearing coefficients, namely  

 

𝑑1 = −ℎ2𝑀2,      𝑑2 = 𝐶55/𝐶11,  𝑑3 = 𝐶55,𝑧/𝐶11, 

𝑑4 = ℎ𝑀(𝐶13 + 𝐶55)/𝐶11,     𝑑5 = (𝑀ℎ/𝐿)(𝐶11
𝑓

𝐷𝑉𝑓/𝐶11),    𝑑6 = 𝐷𝐶33/𝐶11,

𝑑7 = (
𝑀ℎ

𝐿
)𝐷𝐶13/𝐶11, 𝑑8 = −(𝐶55ℎ

2𝑀2)/𝐶11,
                   (22) 

𝑑9 = 𝐶33/𝐶11,         𝑑11 = −
1

2
ℎ𝑀3𝑙𝐿(𝐶11

𝑓
𝑉𝑓/𝐶11),     𝑑12 = −

1

2
ℎ𝑀4𝑙𝐿(𝐶11

𝑓
𝑉𝑓/𝐶11),        

 

are, in general, functions of z. 

Solution of (20) is here achieved with the use of a semi-analytical method, which 

considers that the inhomogeneous polar material strip of interest is essentially made of an 

infinite number of fictitious layers having infinitesimally small thickness and constant 

material properties. As computational practice requires use of a finite number of such 

fictitious layers (see Figure 1), the larger the number of those fictitious layers considered the 

nearer the obtained numerical results approach their exact elasticity counterparts.  
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The implied “fictitious layers method” was initially introduced for the solution of non-

polar linear elasticity problems dealing with the dynamic response of isotropic cylindrical 

components [16]. In such problems, it is the geometry rather than the material inhomogeneity 

of the structure that spreads variable coefficients into the governing differential equations. 

The method has since been applied successfully to both static and dynamic studies of 

homogeneous and laminated composite components of cylindrical geometry (e.g., [16-20] and 

relevant references therein), and is proven capable to provide asymptotically identical results 

to those based on potential or existing exact elasticity solutions.  

Moreover, the numerical stability and the rate of convergence of the method are found 

in practice superior to those of corresponding analytical solutions based on power-series 

methods (e.g., [20]), where computational practice still requires some suitable finite term 

truncation of ultimately infinite series solutions, and, hence, does not avoid the concept of an 

approximation. More recently, the applicability of this fictitious layer method has successfully 

been extended towards solution of relevant structural mechanics problems that involve even 

doubly curved functionally graded structural components [21].     

Description of the solution thus obtained is facilitated by initially converting (20) into 

the following, equivalent set of four first-order linear ODEs with variable coefficients: 

 

𝐷𝑭 = 𝑻(𝑧)𝑭,                                                                                                                          (23) 

 

where 

 

𝑭 = [𝐷𝑓, 𝑓, 𝐷𝑔, 𝑔]𝑇,       

𝑻(𝑧) = [

    −𝑑3/𝑑2 −𝑑1/𝑑2

     1 0
  
−(𝑑4 + 𝑑11)/𝑑2     −𝑑5/𝑑2            

0       0           

 
𝑑4/𝑑9     −𝑑7/𝑑9

0     0
   

  −𝑑6/𝑑9     (−𝑑8 + 𝑑12)/𝑑9

1 0

].            (24) 

The implied solution then continues by resembling its counterparts described in [16-20]. For 

self-sufficiency of this communication, further details are briefly presented in Appendix B. 

 

 

4.  Application for selected forms of the fibre volume fraction 

 

As is pointed out in Section 2, even in parts of the composite where fibres are distributed very 

densely, the fibre structural architecture leaves gaps which are naturally filled in with matrix 

material. The inequality conditions noted in (1) should accordingly be refined through use of 

the more realistic inequality (2), provide that proper consideration of the fibre-scale structure 

can enable determination of the refined upper bound parameter 𝑉𝑚𝑎𝑥
𝑓

. This may be achieved 

with use of some appropriate representative volume, or area elements (RVE) of the fibre 

distribution pattern [23]. Nevertheless, any 𝑉𝑚𝑎𝑥
𝑓

-value thus obtained depends on the chosen 

RVE discretisation, and may therefore be not unique.  

Appendix C thus demonstrates the manner in which rectangular or triangular RVEs of 

the kind implied in Figure 3c can be used as reasonably simple examples in the present 

problem of interest, where the direction of the considered uniaxial family of fibres in normal 

to the depicted yz-plane (see also Figure 1). The two different values of maximum fibre 

volume fraction thus determined in (C.5) and (C.6) are here conjoined as follows:   
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max

    0.785  for rectangular RVEs,
4

 0.907 for triangular RVEs.
2 3

fV








 
 


                                                                      (25)                                                                                                                                      

 

4.1 Particular case: Homogeneous composites [14]       

 

In order to deal with applications of the outlined analysis, connection is initially established 

with the corresponding study detailed in [14] for corresponding homogeneous fibrous 

composites. It is recalled in this context that the effective material properties of the 

homogeneous fibrous composite employed in [14] are as follows: 

 
𝐸𝐿

𝐸𝑇
= 40,

𝐺𝐿𝑇

𝐸𝑇
= 0.5,  𝜈𝐿𝑇 =  𝜈𝑇𝑇 = 0.25.                                                                             (26) 

 

The analysis is evidently capable to consider homogeneous fibre distributions by using 

appropriate constant values of the fibre volume fraction 𝑉𝑓 and, upon taking (2) and (3) into 

consideration, it thus requires 

 

< 𝑉𝑓 >= 𝑉𝑓 ≤ 𝑉𝑚𝑎𝑥
𝑓

,  < 𝑉𝑚 >= 𝑉𝑚 = 𝑉𝑚𝑎𝑥
𝑓

− 𝑉𝑓.                                                         (27) 

 

Let us, for instance, consider the choice  

   

 𝑉𝑓(𝑧) =< 𝑉𝑓 >=1/2,                                                                                                          (28)  

 

which refers to a homogeneous fibrous composite whose volume consists 50% 

homogeneously distributed fibres and 50% matrix material. Upon inserting  

 

1 3 2 4 579,   1.5,   1,   0.25                                                                      (29) 

 

into (A.3), and making also use of (3), the mixture law (1) reveals that the effective material 

properties of the corresponding homogeneous composite are those detailed in (26). With use 

of (A.2), the holding relationships between the elastic moduli of the corresponding fibre and 

matrix phases are then found to be as follows: 

 

/ 1,   / 79,   / 3 / 5,

0.25,   / 2 / 5.

f f f f f

T L T LT T

f f f f

LT TT TT T

E E E E G E

G E  

  

   
                                                                   (30) 

 

It can then readily be verified that, in this particular case that the fibrous composite of 

interest is homogeneous and possesses effective material properties of the kind described in 

(26), the present analysis produces identical displacement and stress distributions to those 

detailed in [14] with its first iteration (N = 1). Further iterations are unnecessary in that case, 

as they naturally return the same numerical results.  

It is emphasised that the outlined verification of the present analysis is still possible 

for constant choices of 𝑉𝑓 that differ from (28), as soon as the values of the constants (29) 

and, subsequently, of the ratios (30) are modified in a manner that enables the mixture law (1) 

to yield again to the effective elastic moduli (26). A couple of specific, additional relevant 
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cases are in fact identified in Section 4.3 below, in connection with the form (35) of possible 

inhomogeneous fibre distribution.    

 

4.2 Functionally graded, linear redistribution of the fibres    

 

The connection established with the homogeneous fibrous composite considered in [14] is 

now exploited by considering the following pair of linearly inhomogeneous fibre 

distributions: 

 

𝑉𝑓(𝑧) = 0.5 + 𝜀(𝑧/ℎ), (0 < 𝜀 ≤ 𝜀𝑚𝑎𝑥 ≤ 1),                                      (31)   

𝑉𝑓(𝑧) = 0.5 − 𝜀(𝑧/ℎ), (0 < 𝜀 ≤ 𝜀𝑚𝑎𝑥 ≤ 1).                                         (32)  

  

As either of these return 

 

< 𝑉𝑓 >=1/2,                                                                                                                        (33) 

 

they both represent corresponding inhomogeneous composites consisting 50% fibre and 50% 

matrix material.  

A schematic representation of the volume fraction of these inhomogeneous fibre 

distributions is depicted in Figure 4, along with their counterparts that represent the 

homogenous composite described already in Section 4.1 (Fig. 4a). Both (31) and (32) are 

evidently fibre distributions which vary linearly through the thickness, and are non-symmetric 

with respect to the middle plane of the composite beam. It is evident that (31) represents a 

top-stiff fibrous composite while (32) corresponds to a bottom-stiff such.  

When inserted into (31), the value 𝜀 = 𝜀𝑚𝑎𝑥 refers to an inhomogeneous fibrous 

composite with maximum fibre volume fraction at the top (𝑉𝑓(ℎ/2) = (1 + 𝜀𝑚𝑎𝑥)/2) and 

minimum at the bottom (𝑉𝑓(−ℎ/2) =(1-𝜀𝑚𝑎𝑥)/2) lateral plane of the composite. The 

situation is evidently reversed (𝑉𝑓(ℎ/2) = (1 − 𝜀𝑚𝑎𝑥)/2, 𝑉𝑓(−ℎ/2) = (1 + 𝜀𝑚𝑎𝑥)/2) when 

𝜀 = 𝜀𝑚𝑎𝑥 is inserted into (32). In principle, 𝜀𝑚𝑎𝑥 may be as high as 1 but the fibre-scale 

structure of a composite relates this parameter with 𝑉𝑚𝑎𝑥
𝑓

. Hence, by virtue of of (25), the 

second part of Appendix C shows that 

 

max max

0.5708 for rectangular RVEs,
2 2

 0.812  for triangular RVEs.

fV


   


                                                             (34) 

 

The relevant numerical results presented in Section 5 below refer to inhomogeneous 

composites whose effective material properties are evaluated with use of the mixture law (1), 

after each of (31) and (32) is inserted into (A.3). This process requires also use of (29) and 

(30), so that the resulting inhomogeneous composite is thought of as formed by a relevant re-

distribution into the same matrix of a same volume of fibres (50%) possessing the material 

properties (30). It can indeed be readily verified that, in both cases, the obtained through 

thickness average elastic moduli are still in exact agreement with the effective material 

properties (26) of the homogeneous fibrous composite employed in [14]. 

 

4.3 Symmetric, piece-wise linear redistribution of the fibres    

 

The last fibre distribution of present interest is associated with a class of inhomogeneous 

fibrous composites whose volume fraction varies symmetrically with respect to the middle 

plane of the composite (see Appendix D).  This class is described as follows: 
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𝑉𝑓(𝑧) = 𝛼|𝑧/ℎ|,                              (35) 

 

where 𝛼 is some real positive constant.  

In this case, the fibre volume fraction increases in a piece-wise linear manner with 

increasing the distance from the middle plane (see Figure 4d). As 𝑉𝑓(0) = 0 and 𝑉𝑓(ℎ/2) =
𝑉𝑓(−ℎ/2) = 𝛼/2, (35) refers to a fibrous composite graded in a manner that maximum fibre 

volume fraction is attained at both lateral planes. As is also noted in Appendix D, (35) yields 

the average fibre volume fraction (33) if 𝛼 = 2.  

However, as is shown next with the help of Appendix C, the types of fibre-scale 

structure considered there make (33) incompatible with the fibre distribution (35). This is 

because connection of (35) with the maximum volume fractions noted in (25) gives, 

respectively, the following maximum value of the positive constant 𝛼: 

 

max max

1.571  for rectangular RVEs,
2

1.814  for triangular RVEs,

fV


  


                                                                     (36) 

 

which, in either case is smaller than 2.   

Indeed, the corresponding average volume fractions, namely  

 

0.39  for rectangular RVEs,

0.45    for triangular RVEs,

fV


  


                                                                                (37) 

 

verify that neither of the values of 𝛼 noted in (36) enables consideration of an average fibre 

volume fraction which is as high as its 0.5 counterpart assumed by the top- and bottom-stiff 

fibre distributions (31) and (32). 

Nevertheless, as is also pointed out in Appendix C, a relevant inhomogeneous fibrous 

composite having average volume fraction <Vf> = 0.45 and effective properties (26), is 

obtained by replacing all material constants and moduli appearing in (A.3) and (30) with the 

following: 

                                   

1 3 2 4 587.667,   1.55575,   1,   0.25,

/ 1,   / 87.667,   / 0.6223,

0.25,   / 2 / 5.

f f f f f

T L T LT T

f f f f

LT TT TT T

E E E E G E

G E

     

  

     

  

   

                                                    (38) 

 

A considerable part of the numerical results presented in the next Section thus refers to the 

polar mechanical response of this inhomogeneous fibre-reinforced composite which, along 

with employing the material properties (38), implies further that 𝛼 = 1.814 in (35).   

 

    

5.  Numerical results and discussion 

 

All numerical results presented and discussed in this Section are obtained by setting m = 1 in 

(19). These results are presented in a non-dimensional form, through use of the following 

dimensionless displacement and stress parameters 

 

𝑊̅ =
<𝐸𝑇>𝑊

𝐿𝑞1
, 𝑈̅ =

<𝐸𝑇>𝑈

𝐿𝑞1
,  𝜎𝑥 =

𝜎𝑥

𝑞1
, 𝜎𝑧 =

𝜎𝑧𝑥

𝑞1
, 𝜏𝑧̅𝑥 =

𝜏𝑧𝑥

𝑞1
, 𝜏𝑥̅𝑧 =

𝜏𝑥𝑧

𝑞1
,  𝑚̅𝑥𝑦 =

𝑚𝑥𝑦

𝐿𝑞1
.          (39) 
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By virtue of (33), these are seen equivalent to their counterparts employed for the 

corresponding case of a homogenous fibrous composite in [14], where, however, an evident 

typographical error is noticed in the couple-stress non-dimensionalisation. The evident 

symmetries that (19) imposes along the x-direction imply that the magnitude of 

displacements, stresses, and couple-stress have identical through-thickness distribution at x/L 

and 1 – x/L. Numerical results are accordingly presented for the left half of the beam only. 

All rectangular beams considered for the results shown next possess the same span 

ratio with their homogeneous counterpart studied in [14], namely 

 

/ 0.25h L  .                                                                                                                          (40)   

 

For a natural connection with [14], the same notation, namely 

 

𝜆 = 𝑙/ℎ ≤ 1,                                                                                                                          (41) 

  

is used for the non-dimensional intrinsic material parameter that refers to fibre thickness. In 

this regard, a note is made of the fact that this parameter should not be misinterpreted as 

denoting the Lamé modulus employed in (7) and (A.1). 

 As 𝑙 is connected with the fibre thickness and, hence, cannot exceed the beam 

thickness, λ acquires naturally the upper bound value noted in (41) only if 𝑙 = ℎ. However, 

connection of 𝑙 with the fibre thickness is here refereed to only as an example of the manner 

in which one can handle the aforementioned dimensions difference between the fibre bending 

modulus, df, and the conventional elastic moduli met in non-polar elasticity.  

If, for instance, one accepts that fibres are approximately arranged through the beam 

thickness in the form of representative volume elements described in Appendix C, the 

estimated upper bound of λ may further be reduced considerably, and/or even be related to the 

max

fV -values noted there. All numerical results shown in what follows take this observation 

into careful consideration by using reasonably low values of λ.   

It is pointed out though that, in view of (10), (41) leads essentially to the following re-

parametrisation the fibre bending stiffness modulus:  

          

𝑑𝑓(𝑧) = 𝜆ℎ𝐿𝑉𝑓(𝑧)𝐶11
𝑓

.                                                                                                       (42) 

 

This relationship shows that, although useful on physical grounds, λ is not necessarily the 

most influential parameter for a proper determination of 𝑑𝑓. In fact, determination of 𝑑𝑓 in a 

structural component should still be based on potential experimental work and observation, 

precisely as happens with the determination of conventional elastic moduli.   

By setting 𝜀 =  0 in (31) or (32), it is thus made initially sure that the present analysis 

gives identical numerical results, and is thus in complete agreement with its counterpart 

presented in [14]. This confirmation enables next consideration and study of corresponding 

numerical results that refer to inhomogeneous relevant composites having fibre volume 

fraction of the type (31) and (32) with 𝜀 ≠ 0, or (35) with 𝛼 = 1.814.  

     

5.1 Through thickness displacements distributions   

 

For several different values of the fibre inhomogeneity and the fibre bending stiffness 

parameters, Tables 1 and 2 present the non-dimensional value of the in-plane and the 

transverse (flexural) displacement, respectively, obtained at selected points through the 
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thickness of a top-stiff beam. To a considerable extent, these results are susceptible to 

comparison with their counterparts presented for in Tables 1 and 2 of [14], respectively, for 

corresponding homogeneous fibrous composites.  

In line with the relevant trend noted in [14], Table 2 thus confirms that the magnitude 

of the flexural displacement decreases with increasing the fibre bending stiffness parameter, 

λ, due to the additional flexural stiffness provided by the fibre bending resistance. However, it 

is seen here further that the magnitude of the flexural displacement decreases further with 

increasing the inhomogeneity parameter, ε. This is because, by increasing ε, the bending 

stiffness of the beam is increasing near the top lateral boundary where the external load is 

applied.  

It is recalled on the other hand that the results presented in Tables 1 and 2 of [14] 

show that, in the case of a homogeneous beam (ε = 0), the in-plane displacement is always at 

least an order of magnitude smaller than its flexural counterpart. However, upon increasing 

the non-zero value of ε, the increasing material inhomogeneity affects the existing local 

coupling between bending and extension to such an extent that the magnitude of U  becomes 

comparable to that of W .  

It is then not surprising that the values of U  shown in Table 1 differ from those of 

their counterparts presented in [14] even for ε = 0.01. In fact, for ε = 0.05 the values of U  are 

already comparable with their W  counterparts (Table 2). Moreover, for ε = εmax = 0.812, 

which is the maximum value assigned to ε when fibre scale structure is designed with use 

triangular RVEs, the magnitude of the in-plane displacement parameter exceeds that of W , at 

least within the adopted region of the λ-variation. It is pointed out that, as all numerical results 

shown in this study refer to the left half of the beam, the minus sign associated with almost all 

numerical values shown in Table 1 implies that the beam deformation creates a predominantly 

tensile in-plane displacement.     

Analogous conclusions may be drawn by observing and comparing the numerical 

results tabulated in Tables 3 and 4 for corresponding U - and W -values of a bottom-stiff 

inhomogeneous beam. The magnitude of displacements is again decreasing with increasing 

the value of the fibre bending stiffness parameter, λ. However, the sign of almost all 

numerical values shown in Table 3 reveals that the beam deformation creates now a 

predominantly compressive in-plane displacement.  

Strong local inhomogeneity effects, of the type observed previously in Tables 1 and 2, 

have now emerged mainly at the bottom part of the beam. It is instructive for someone to 

observe that for ε = 0.05 the magnitude of the in-plane displacement (Table 3) is again 

comparable with its flexural displacement counterpart (Table 4). Moreover, for ε = εmax = 

0.812, the former parameter exceeds the latter to such a substantial degree, that the 

deformation seems in this case to take mainly place through in-plane extension rather than 

flexure. Nevertheless, Tables 1-4 suggest that, in general, top-stiff beams suffer smaller 

flexure and, therefore, may generally be considered stronger than their bottom-stiff 

counterparts at the same value of the inhomogeneity parameter, ε.  

The observed in-plane deformation dominance seems to increase with increasing ε to 

an extent that affects substantially the detailed features of relevant stress distributions. This 

observation is briefly discussed later in Section 5.3, which illustrates the influence that the 

increasing value of ε exerts on the bending stress distribution observed within both top- and 

bottom-stiff beams.  

Under these considerations, the corresponding non-dimensional displacement results 

shown in Tables 5 and 6 suggest that beams with through thickness symmetric fibre 

distribution are similarly strong. Indeed, the magnitude of the flexural displacements shown in 

Table 6 are comparable with their counterparts shown in Table 2 for the largest value of the 

fibre inhomogeneity parameter, ε = εmax = 0.812, at least within the top half of the beam. 
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Moreover, while the top-stiff beam has higher average fibre volume fraction, the difference 

observed between corresponding numerical results shown in Table 2 and 6 is decreasing at the 

top part of the beam with increasing the fibre bending stiffness parameter  

 

5.2 Through thickness couple-stress and shear stress distributions   

 

As transition from non-polar to polar material behaviour is caused by the emerging couple-

stress field, immediate attention is next directed towards the influence that couple-stress 

creation exerts on the shear stress components, giving thus rise to non-symmetric stress. 

Corresponding numerical results that show the manner in which normal stresses are affected 

are also presented and discussed afterwards, in Section 5.3.       

In this context, Figures 5 and 6 depict the through–thickness distribution of the non-

dimensional couple-stress parameter 𝑚̅𝑥𝑦 measured at selected axial positions of a top-stiff 

and a bottom-stiff beam, respectively, when  = 0.006 and ε = 0.1 The sinusoidal form 

that 𝑚̅𝑥𝑦 acquires in the axial direction enables the couple-stress to satisfy the homogeneous 

boundary conditions (17e, f) imposed at the beam ends. These Figures thus demonstrate the 

manner in which non-zero couple-stress distribution is created away from those ends, as well 

as the manner in which the  𝑚̅𝑥𝑦-magnitude increases with increasing distance from the left 

end of the beam. As expected, the Figures also show that, regardless of the value of x/L, the 

magnitude of 𝑚̅𝑥𝑦 attains a maximum on the top or on the bottom lateral plane of a top-stiff or 

a bottom-stiff beam, respectively.     

For different values of the fibre bending stiffness parameter, , Figures 7 and 8 

illustrate next the through-thickness distribution of the shear stress 𝜏𝑧̅𝑥 at the left end of a top- 

and a bottom-stiff beam, respectively. In line with [14], all depicted distributions satisfy the 

zero shear traction boundary conditions imposed on the upper and lower surface of the beam. 

Due to the relatively small value of the material inhomogeneity parameter (ε = 0.1), the 

depicted curves do not diverge substantially from their counterparts shown in Figure 6 of [14]. 

However, they have all lost their largely symmetric form observed in [14] with respect to the 

beam middle axis, while their highest magnitude is moved towards the direction of increased 

fibre reinforcement; namely, upwards for the top-stiff and downwards for the bottom-stiff 

beam. As the beam becomes stiffer with increasing , that highest magnitude of  𝜏𝑧̅𝑥 decreases 

and moves  naturally towards zero. It comes, however, a little as a surprise that, in the case of 

the bottom-stiff beam (Figure 8) and for the relatively large value  = 0.009 of the fibre 

thickness parameter, the relatively small value of that highest  𝜏𝑧̅𝑥-magnitude changes sign, 

along with the sign of the whole  𝜏𝑧̅𝑥-distribution. 

 Figures 9 and 10 show next the through-thickness distributions of the stresses  𝜏𝑥̅𝑧 that 

correspond to  𝜏𝑧̅𝑥-distributions illustrated in Figures 7 and 8, respectively. Due to the 

symmetry of the stress tensor when  = 0, distributions drawn for  = 0 in Figures 7 and 9 are 

identical to their counterparts shown in Figures 8 and 10, respectively. However, as 

generation of non-zero couple-stress destroys stress symmetry, all  𝜏𝑥̅𝑧 distributions associated 

with  ≠ 0 in Figures 9 and 10 acquire non-zero values on the lateral beam boundaries.  

Due to the relatively small value of the fibre inhomogeneity parameter (ε = 0.1) the 

depicted 𝜏𝑥̅𝑧-distributions present again similarities with their counterparts shown in Figure 5 

of [14]. Nevertheless, in almost all cases, the highest magnitude of the 𝜏𝑥̅𝑧-value moves again 

towards the stiffest part of the inhomogeneous structural component. An exception to this 

trend is again observed in the case of the bottom-stiff beam (Figure 10) where, for the 

relatively large value  = 0.09 of the fibre thickness parameter, the 𝜏𝑥̅𝑧-distribution reverses 

hollows and attains highest magnitude on the bottom lateral boundary.        
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 Another remarkable observation relates to the fact that, like their counterparts depicted 

in Figure 6 of [14], all 𝜏𝑥̅𝑧-distributions shown in Figures 9 and 10 intersect at a certain pair of 

material points located at the vicinity of z/h = ±0.3. At those points, the value of 𝜏𝑥̅𝑧 thus 

seems independent of the fibre thickness parameter, , although it evidently still depends on 

the fibre inhomogeneity parameter, ε. At present, there seems no obvious explanation to this 

effect, which is apparently due to the manner in which the couple-stress influences the values 

of 𝜏𝑥̅𝑧. 

Under these considerations, Figures 11 and 12 depict the through thickness 𝜏𝑧̅𝑥- and 

 𝜏𝑥̅𝑧- distributions, respectively, predicted at the left end of a beam reinforced in the 

symmetric, piece-wise linear manner (35). Remarkably, changes of the fibre bending stiffness 

parameter, , do not seem to influence notably either of these shear stress distributions. The 

considerable similarity observed between the 𝜏𝑧̅𝑥-distributions depicted in Figure 11 and 

their 𝜏𝑥̅𝑧 counterparts shown in Figure 12 is thus not surprising.  

In fact, the principal difference between corresponding results demonstrated in those 

Figures is that all 𝜏𝑧̅𝑥-distributions (Figure 11) attain, naturally, a zero value at the top and 

bottom lateral plane. Like their counterparts depicted previously in Figures 9 and 10, all 

different 𝜏𝑥̅𝑧-curves shown in Figure 12 pass again through a certain pair of material points, 

which are now moved at the vicinity of z/h = ±0.4. Moreover, the lack of fibre-reinforcement 

on the middle-axis has apparently made z/h = 0 a third point of intersection for all 𝜏𝑥̅𝑧- 

and 𝜏𝑧̅𝑥-curves depicted in Figures 11 and 12. It is thus observed that, due to low local fibre-

reinforcement, the stress state is nearly symmetric within a certain material band that 

surrounds the beam middle-axis.  

 

5.3 Through thickness normal stress distributions   

 

Figures 13 and 14 depict the through-thickness distribution of the non-dimensional normal 

stresses  𝜎𝑧 and  𝜎𝑥, respectively, at the mid-span of a homogeneous fibre-reinforced beam (ε 

= 0). Either Figure depicts in blue ( = 0) the known distribution of the implied normal stress 

when fibres are perfectly flexible [24]. The remaining curves then show the influence that 

fibre bending stiffness exerts on those known distributions upon gradually increasing the 

value of . Figure 13 thus makes it clear that fibre bending stiffness has marginal effect on the 

transverse normal stress distribution.  

However, Figure 14 reveals that, upon increasing , the increasing resistance of the 

beam lowers the magnitude of  𝜎𝑥 and, hence, decreases the influence that the depicted, well-

known boundary layer effect of the 𝜎𝑥-distribution exerts on the strength of the structure. In 

fact, for  as small as 0.009, that influence is decreased to such an extent that the value of the 

axial normal stress might be felt notable only within a particularly narrow layer near the beam 

lateral boundary. Still though, every curve shown in Figure 14 evolves about a pivotal point, 

located at the vicinity of (𝜎̅𝑥, 𝑧) = (0, 0), in a manner that divides the corresponding bending 

stress distribution into a compressive and a tensile part (top and bottom half of the beam, 

respectively).  

In the light of these observations, Figures 15 and 16 present next evidence of the fact 

that combined action of fibre bending stiffness and material inhomogeneity (ε = 0.1) has still 

marginal effect on the 𝜎𝑧-distribution of a top- and a bottom-stiff beam, respectively. 

However, the same is not true for the corresponding 𝜎𝑥-distributions. 

A search for the effect that combined action of fibre bending stiffness and material 

inhomogeneity has on the 𝜎𝑥-distribution is facilitated by initially considering that fibres are 

perfectly flexible ( = 0) and varying only the value of the inhomogeneity parameter ε. In this 

context, Figures 17 and 18 demonstrate the manner in which the “blue”  𝜎𝑥-distribution 
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associated in Figure 14 with  = 0 evolves with increasing inhomogeneity in a top- and a 

bottom-stiff beam, respectively. A thorough study of the results presented in Figures 17 and 

18 makes afterwards clearer the corresponding results depicted in Figures 19 and 20 for 

corresponding inhomogeneous beams with embedded fibres resistant in bending ( = 0.06)       

Figure 17 thus reveals that, upon increasing ε, the observed 𝜎𝑥-distribution is initially 

transposed to the right. This is due to the dominance the ε exerts on its linearly dependent 

elastic moduli for small amounts of inhomogeneity. Hence, upon increasing ε within a narrow 

interval of relatively small values, the corresponding change of the elastic moduli suffices to 

“push” the depicted curve to the right, to an extent that soon turns the whole 𝜎𝑥-distribution 

completely tensile. Nevertheless, beyond the value ε = 0.083, which is still relatively small, 

the inhomogeneity difference between the top and the bottom parts of the beam becomes very 

dominant. Upon increasing ε further, the 𝜎𝑥-curve thus changes shape and, while still moves 

to the right and hence stays tensile, reveals that it is the upper, rather than the bottom part of 

the top-stiff beam that bares most of the externally applied loading.  

Eventually, at about ε = 0.25, the top part of the beam becomes so stiff that, while the 

value of the tensile bending stresses start to decrease at the lower part of the beam, the value 

of 𝜎𝑥 approaches a maximum on the top lateral plane. Further increase of the ε-value and, 

hence, of the stiffness of top part of the beam lowers the observed tensile bending stresses 

throughout the beam thickness. In is instructive in this regard to note that the 𝜎𝑥-curve drawn 

in Figure 17 for ε = 0.4 is essentially transposed to the left when the inhomogeneity parameter 

is increased up to ε = 0.5708, or further up to ε = 0.812. It is recalled that (34) associates 

0.5708 or 0.812 with the maximum value that ε may attain when the fibre-scale structure is 

modelled with rectangular or triangular RVEs, respectively. It is thus observed that, upon 

increasing ε towards its maximum value, the decreasing tensile value of  𝜎𝑥 observed near the 

bottom boundary of the top-stiff beam is naturally moving towards zero.     

Figure 18 demonstrates that the bending stress distribution of a bottom-stiff beam with 

embedded perfectly flexible fibres responds in an analogous manner. One of the evident 

principal differences with the trends observed in Figure 17 is the fact that, upon increasing 

material inhomogeneity, the  𝜎𝑥-distribution that corresponds to  = 0 in Figure 14 moves 

towards the left, and thus soon turns completely compressive. Moreover, the change of shape 

that the 𝜎𝑥-curve observes for higher values of ε suggests that, naturally, it is now the bottom, 

rather than the upper part of the bottom-stiff beam that bares most of the loading. Finally, the 

aforementioned observations, associated in Figure 17 with the top and the bottom plane of a 

top-stiff beam, are naturally seen in Figure 18 associated with the bottom and the top plane, 

respectively, of a bottom-stiff beam. 

In the light of these observations, Figures 19 and 20 illustrate next the manner in 

which the “yellow”  𝜎𝑥-distribution, formed in Figure 14 by setting  = 0.06, evolves with 

increasing inhomogeneity of a top- and a bottom-stiff beam, respectively. To a considerable 

extent, these results show substantial quantitative similarity with their counterparts depicted in 

Figures 17 and 18 for corresponding beams having embedded perfectly flexible fibres. 

However, and in close agreement with all previously observed trends, the extra bending 

stiffness added now on the functional graded beam lowers significantly the magnitude of the 

observed bending stresses.  

The two final Figures, namely Figures 21 and 22, depict the distribution of the normal 

stresses  𝜎𝑥 and  𝜎𝑧, respectively, at the mid-span of a fibre-reinforced beam subjected to the 

symmetric, piece-wise linear fibre reinforcement (35). In line with corresponding results 

depicted in Figures 11 and 12 for corresponding shear stress distributions, both stress 

distributions attain a nearly symmetric form, with respect to the middle axis, within a narrow 

band of weak local fibre-reinforcement. Regardless of the value of the fibre bending stiffness 

parameter, that symmetry gradually fades outside that band, which surrounds the middle axis.  
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The value of the bending stress at the top boundary of the beam, where the external 

load is applied, thus becomes naturally bigger from its bottom boundary counterpart (see 

Figure 21). However, like the top-stiff beam (see Figures 17 and 19 for ε ≠ 0), the bending 

stress is always tensile throughout the beam thickness. Unlike the corresponding results 

shown in Figures 17 and 19 though, the imposed lack of local fibre-reinforcement at z/h = 0 

enables the beam middle axis to remain almost free of bending stress. It is also noticeable in 

this regard that, regardless of the value of the fibre bending stiffness parameter, the through 

thickness shape of the  𝜎𝑥-distribution resembles closely the form (35) of the corresponding 

fibre volume fraction. 

On the other hand, Figure 22 reveals that the weak reinforcement observed around the 

beam middle axis and, hence, practically the negligible influence of  𝜎𝑥 is locally 

compensated by a sharp jump of the transverse normal stress, 𝜎𝑧. The latter is seen positive 

and, therefore, tensile within the aforementioned narrow band, as well as within the bottom 

part of the beam. Unlike its top- and bottom-stiff counterparts, which are negative and 

therefore compressive throughout the beam thickness (see Figures 15 and 16), the distribution 

of 𝜎𝑧 depicted in Figure 22 is compressive at and near the top beam boundary, where the 

external load is applied, but turns tensile within the aforementioned band of weak fibre 

reinforcement. It then remains tensile in the bottom part of the beam, where it decreases and 

becomes finally zero on the unstressed bottom beam boundary.   

 

 

6.  Conclusions 

 

This study aims initially to promote the need for extension into the regime of polar material 

response of fibrous composites of relevant non-polar linear elasticity solutions. Namely, 

existing solutions of well-posed boundary value problems represented by continuous 

displacements having continuous derivatives of all orders. As non-polar elasticity of fibre-

reinforced materials assumes that fibres embedded in a structural component are perfectly 

flexible, the implied solution extensions will offer substantially better understanding of the 

behaviour of composites reinforced by stiff fibres, such as carbon nanotubes, that exhibit 

considerable bending resistance.  

In serving the first of these aims, this study continued an initial relevant extension [14] 

of the well-known Pagano’s non-polar plane strain elasticity solution [15], by considering that 

the implied stiff fibres are redistributed within their matrix in an inhomogeneous, functionally 

graded manner. Like in [14], the implied solution extension was based on the restricted 

version of the polar elasticity theory presented by Spencer and Soldatos [7], namely a theory 

that involves only a single elasticity modulus of fibre bending resistance. That extra elasticity 

modulus is associated with the global response of the fibrous composite, rather than with the 

response of individual fibres, but its involvement enables the theory to make use of an 

intrinsic length parameter that relates to an average fibre thickness.  

By setting that intrinsic length parameter and, therefore, the fibre thickness equal to 

zero, the present theory and analysis reduce naturally to their conventional, non-polar 

elasticity counterparts. It becomes thus understood that the content and the results of this 

article are useful even in cases of non-polar material response, where the fibres embedded in a 

relevant functionally graded fibrous composite are perfectly flexible. In this context, the 

parametric studies performed in Section 5, along with their counterparts presented in [14], 

enable better understanding of the influence that fibre bending resistance exerts on the plane 

strain behaviour of the implied class of fibrous composites, provided that the obtained, 

continuous solution of the boundary value problem (Section 3) prevails over potential weak 

discontinuity solutions. 
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In this connection, it is reemphasised that this communication aims further to make it 

wider known that, unlike its non-polar linear elasticity counterpart, a corresponding fully 

continuous polar linear elasticity solution is not necessarily the unique solution of the 

respective boundary value problem. Due to the lack of ellipticity that linear elasticity 

equations suffer outside their non-polar material regime, the implied polar elasticity extension 

of a continuous solution may instead be accompanied by a number of additional “weak 

discontinuity” solutions. Namely, solutions of the same boundary value problem that may 

represent fibre-scale failure modes.  

It is recalled in this context that a preliminary theoretical analysis that enables 

determination of weak discontinuity surfaces in linearly elastic structural components 

reinforced by fibres resistant in bending is already available in [8, 25]. Reference [8], in 

particular, makes use of precisely the same, restricted theoretical background employed in the 

present study, but applies its findings to three-dimensional study of composites reinforced by 

two families of straight uniaxial fibres. Specialisation of that analysis [8] to the case of a 

single fibre family is currently under way. This is expected to lead to weak discontinuity 

solutions that accompany potential three-dimensional extensions of the continuous solution 

detailed in Section 3. Identification of weak discontinuity solutions associated to the present, 

plane strain solution (Section 3) may then follow as particular cases.   
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Appendix A: Determination of to the elastic moduli appearing in (4) 

 

The Young’s modulus and the Poisson’s ratio of the isotropic matrix phase are respectively 

given, in terms of the Lamé moduli appearing in (7), by the standard formulas 
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The fibre phase of the composite can be either isotropic or anisotropic. For the purpose of the 

present study, this is considered as transversely isotropic.  

 The elastic moduli of the fibre phase are accordingly considered to relate with their 

matrix phase counterparts as follows:   
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where 1 2,    ,…, 5  are considered as known dimensionless constants, and a subscript “L” or 

“T” indicates the axis or the plane of transverse isotropy, respectively.    

 With use of the mixture law (1), the effective elastic moduli of the functionally graded 

fibrous composite are obtained in the following form:   
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while it is still (e.g., [26])   
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The elastic moduli appearing in (4) can then be obtained by inserting (A.3) and (A.4) into the 

standard relevant formulas (e.g., [26]), after aligning the longitudinal direction of transverse 

isotropy, L, with the x-axis of the adopted Cartesian co-ordinate system. 

 

 

Appendix B: Implementation of the fictitious layers method   

 

For a sufficiently thin plate or beam (h/L << 1), an approximate solution of (23) is obtained by 

replacing the variable z appearing in (6) and, hence, in (22) with its middle-plane value, 

namely its value at z = 0. In this manner, (23) is replaced by the following system of 

approximate linear ODEs: 

 

𝐷𝑭 = 𝑻(0)𝑭,  𝑭 = [𝐷𝑓, 𝑓, 𝐷𝑔, 𝑔]𝑇.                                                                                    (B.1) 

 

As this ODE system has constant coefficients, the exact form of its general solution can be 

expressed as follows:  

 

𝑭(𝑧) = 𝑺(𝑧)𝑭(−ℎ/2),  𝑺(𝑧) = 𝑒𝑥𝑝 [(𝑧 +
ℎ

2
) 𝑻(0)],  (-h/2  z  h/2),                      (B.2) 

 

where the elements of the appearing exponential matrix S(z) are determined in the manner 

detailed in [19]. It is thus anticipated that the thinner is the inhomogeneous structural 

component of interest the nearer (B.2) approximates the exact solution of (23) or, 

equivalently, (20).   

When the thickness is not sufficiently small, the exact solution of (20) is approached 

computationally very closely by dividing the structure into N successive fictitious layers (see 

Figure 1) having the same constant thickness, h(j) = h/N (j = 1, 2,…, N). Each individual 

fictitious layer is associated with a local transverse co-ordinate parameter, z(j) = z – (j-1)h/N + 
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h/2, and, due to the FGM nature of the plate, is itself materially inhomogeneous in the region -

h(j)/2 ≤ z(j) ≤ h(j)/2. 

However, by choosing a suitably large value of N, each fictitious layer is itself 

regarded as a sufficiently thin plate or beam whose mechanical response and behaviour are 

described satisfactorily by an approximate solution of the form (B.2). The approximate 

solutions thus obtained for all N fictitious layers are then suitably connected together by 

means of appropriate continuity conditions imposed on the displacement and interlayer stress 

components. Upon increasing the value of N, this process provides a sufficiently close 

solution to that of the exact governing equations (20) (see also [18]).  

In more detail, the continuity conditions imposed on a generic j-th material interface 

(denoted by zj in Figure 1) are as follows (j = 1, 2,…, N - 1):  

 

𝑈(−ℎ(𝑗+1)/2) = 𝑈(ℎ(𝑗)/2),          

𝑊(−ℎ(𝑗+1)/2) = 𝑊(ℎ(𝑗)/2),          

𝜎𝑧(−ℎ(𝑗+1)/2) = 𝜎𝑧(ℎ
(𝑗)/2),                 (B.3) 

𝜏𝑧𝑥(−ℎ(𝑗+1)/2) = 𝜏𝑧𝑥(ℎ
(𝑗)/2). 

 

In matrix form, these are transformed into the following: 

 

𝑭(𝑗+1)(−ℎ(𝑗+1)/2) = 𝑹(𝑗)𝑭(𝑗)(ℎ(𝑗)/2),                (B.4) 

 

where 
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                                                                                                                                              (B.5) 
 

and 𝐶55
(𝑗)

, 𝐶13
(𝑗)

, …, etc, signify the constant values that the implied elastic moduli acquire on 

the middle plane, z(j) = 0, of the j-th fictitious layer (j = 1, 2,…, N). Application of the same 

notation is extended to include the appearing fibre bending stiffness parameter, 𝑑𝑓(𝑗), where, 

however, it is also implied that previous use is made of (10). 

Upon using successively Eqs. (B.1), (B.2) and (B.4), one builds up the solution of the 

problem considered in a recursive manner. Hence, for the i-th layer, it is 

 

𝑭(𝑧) ≡ 𝑭(𝑖)(𝑧(𝑖)) = 𝑺(𝑖)(𝑧(𝑖))𝑭(𝑖) (
−ℎ(𝑖)

2
) = 𝑺(𝑖)(𝑧(𝑖))𝑹(𝑖−1)𝑭(𝑖−1) (

ℎ(𝑖−1)

2
) =

        𝑺(𝑖)(𝑧(𝑖))𝑹(𝑖−1)𝑺(𝑖−1) (
ℎ(𝑖−1)

2
) 𝑭(𝑖−1) (

−ℎ(𝑖−1)

2
) = 𝑺(𝑖)(𝑧(𝑖))(𝑯(𝑖))𝑭(1)(−ℎ(1)/2) ,     (B.6) 

 

where 

 

𝑯(𝑖) = ∏ 𝑹(𝑘)𝑺(𝑘)(ℎ(𝑘)/2)1
𝑘=𝑖−1 .                                                                                        (B.7) 

 

The value of 𝑭(𝑧) on the outer lateral surface is then obtained as follows: 

 

𝑭(𝑁)(ℎ(𝑁)/2) = 𝑯𝑭(1)  (−ℎ(1)/2),        𝑯 =  𝑺(𝑁)(ℎ(𝑁)/2)𝑯(𝑁).                         (B.8) 
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If this is connected with the lateral boundary conditions (15), then (B.6) yields a linear system 

of four simultaneous algebraic equations for the four unknown components of the vector 

𝑭(−ℎ(1)/2) ≡ 𝑭(−ℎ/2). Solution of that system of algebraic equations is then substituted 

back into (B.6) and provides a semi-analytical solution of the governing differential equations 

(23).       

In the case of homogeneous fibrous composites, the first iteration of the outlined 

solution (N = 1) provides naturally the exact elasticity results obtained in [14]. For 

inhomogeneous composites, the number of iterations (N > 1) required for accurate prediction 

of displacement and stress distributions depends on the degree of the assumed material 

inhomogeneity. As is already mentioned, the convergence behaviour and success of this 

fictitious layer method has been verified repeatedly in the past (e.g,, [16-20]) as well as most 

recently in [21].  It accordingly suffices here to note that the value of  does not seem to 

exert significant influence on the observed convergence characteristics of the method, which 

thus remain essentially unchanged, regardless of whether the plate is made of polar ( 0  ) or 

non-polar material  (λ = 0).    

All numerical results shown in this communication were obtained by setting N = 100. 

In general, the maximum difference observed between corresponding results obtained on the 

basis of N = 100 and N = 70 iterations never exceeded 0.3%. It is worth noting that each 

iteration requires multiplication of 4×4 matrices only. As a result, the implied hundreds of 

iterations involved in computations do not require noticeable use of excessive computer time.  

 

 

Appendix C: Consideration of the fibre-scale structure 

 

It is assumed that fibres have circular cross-section of diameter d and, in the case of a 

homogeneous plate [14] are distributed along the z-direction in a regular form of N equidistant 

rows. The possible types of rectangular or triangular types RVEs depicted in Figure 3 

consider that each vertex of an element is the centre of a fibre cross-section. In either case, Sy 

represents the distance of two neighbouring fibres in the y-direction.  

Similarly, Sz represents the aforementioned constant distance between two 

neighbouring fibre rows. In this manner, Sz is the distance of neighbouring fibres in the z-

direction of the rectangular element while, for a triangular RVE, it represents the height of the 

depicted isosceles triangle. In the particular case that the depicted triangle is considered 

equilateral (S = Sy), it is Sz = 3Sy/2.  

It becomes then readily understood that, necessarily, the following conditions always 

hold:       

     

Sy  d, Sz  d,                                                                                                                      (C.1) 

 

for the rectangular element. For the triangular element, these are modified as follows:    

 

Sy  d, S  d.                                                                                                                       (C.2) 

 

For the purposes of the present study, d may be considered identical with the intrinsic 

parameter 𝑙 introduced in (9). However, the adopted notation distinction of those two 

parameters is retained here, in order to signify that (i) the shape of the fibre cross-section may 

be considered non-circular in different applications, and (ii) the intrinsic length parameter 𝑙 
can acquire some different meaning in the theory of polar elasticity for fibre-reinforced 

materials [7], such as the fibre spacing for example. 
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Under these considerations, the fibre volume fraction of the RVE is defined as 

follows: 

 

𝑉𝑓 =
(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑖𝑏𝑒𝑟𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑅𝑉𝐸)

(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 𝑜𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒)
 .                                                                                    (C.3) 

 

For a rectangular RVE, this definition leads directly to 

 

𝑉𝑓 =
𝜋𝑑2

4𝑆𝑦𝑆𝑧
 ,                                                                                                                         (C.4) 

 

but this result still holds true in the case a equilateral triangular RVE (S = Sy, Sz = 3Sy/2). It is 

thus seen that the plane strain assumption that underpins the principal problem of present 

interest is adequately and properly served by considering that Sy = d in (C.4), regardless of 

whether the implied element is a rectangular or a triangular one. 

It follows that maximum fibre volume fraction in a rectangular RVE is achieved by 

setting Sy = Sz = d in (C.4), thus leading to 

 

𝑉𝑚𝑎𝑥
𝑓

=
𝜋

4
≅ 0.785.                                                                                                              (C.5) 

 

This value of 𝑉𝑚𝑎𝑥
𝑓

 necessarily coincides with the maximum possible value of 𝑉𝑓 that the 

homogeneous counterpart of the present problem [14] is associated with when the fibre-scale 

structure is simulated with rectangular RVEs.  

Similarly, maximum fibre volume fraction in a triangular RVE is achieved when S = 

Sy = d. In that case, (C.4) yields  

 

𝑉𝑚𝑎𝑥
𝑓

=
𝜋

23
≅ 0.907,                                                                                                           (C.6) 

 

which coincides with the maximum 𝑉𝑓-value that the homogeneous version of the problem is 

associated with if the fibre structure is simulated with equilateral triangular elements.  

The values of 𝑉𝑚𝑎𝑥
𝑓

 shown in either (C.5) or (C.6) thus also consist corresponding 

upper limits that the 𝑉𝑓-value can attain in the present inhomogeneous version of the 

problem, where fibres are assumed redistributed in the manner described by any of (31), (32) 

or (35) within the same matrix material. However, such an upper limit of 𝑉𝑓 can here be 

associated only with the densest fibre part of the inhomogeneous beam. Namely, the part 

located at the neighbourhood of z/h = 1/2 or z/h = -1/2 in top-stiff (31) or a bottom-stiff (32) 

beam, respectively, and the neighbourhood of both lateral planes (z/h = ±1/2) in the case of a 

beam reinforced in the symmetric manner (35). This is achievable by considering that Sz is a 

suitable function of z that takes its lowest value (namely Sz = d or Sz = 3d/2 for rectangular or 

triangular elements, respectively, in those densest fibre parts of the composite.  

Hence, by associating 𝑉𝑚𝑎𝑥
𝑓

 with the top (z/h = ½) or the bottom plane (z/h = -½) of a 

top- or bottom-stiff beam, respectively, either of (31) or (32) yields the maximum value of the 

parameter ε provided in (34). The inhomogeneous fibre distributions proposed in (31) and 

(32) are accordingly connected naturally with the present analysis when the fibre-scale 

structure is accurately simulated with rectangular or triangular RVEs, as soon as the εmax-

value shown in (34 ) replaces the noted theoretical upper bound ε = 1. It is recalled that, by 

virtue of (3a), both (31) and (32) will thus still return < 𝑉𝑓 >=1/2.  
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However, in the case of the symmetric fibre distribution (35), association of 𝑉𝑚𝑎𝑥
𝑓

 with 

the densest fibre part of the beam, z/h = ±1/2, yields 𝑉𝑚𝑎𝑥
𝑓

= 𝛼/2. By virtue of (C.5) and 

(C.6) (or, alternatively, (25)), one thus obtain the maximum values of 𝛼 shown in (36). The 

corresponding average volume fractions noted in (37) are then obtained by inserting each of 

those maximum 𝛼-values into (35) and, then, performing the integration noted in (3). 

Consideration of a fibrous composite having the effective properties (26) is still 

possible for <Vf> = 0.39 in this case, after replacing (A.3) with the following:  

 

1 3 2 4 5101,   1.64165,   1,   0.25           ,                                                              (C.7) 

 

and simultaneously modifying (30) as follows: 

 

/ 1,   / 101,   / 0.6566,

0.25,   / 2 / 5.

f f f f f

T L T LT T

f f f f

LT TT TT T

E E E E G E

G E  

  

   
                                                     (C.8)  

 

In a similar manner, a fibrous composite with effective properties (26) is obtained for <Vf> = 

0.45 when all quantities appearing in (C.7) and (C.8) are replaced by their counterparts shown 

in (38). 

 

 

Appendix D: A class of through-thickness symmetric fibre volume fractions  

 

Consider a class of fibre volume fractions represented by the following even function of z: 

 

    / 1,    / 2 / 2
nf

nV z z h h z h     .                                                                      (D.1) 

 

Regardless of the value of the positive integer n, this form of  fV z is evidently symmetric 

with respect to the middle axis, z = 0, of the composite. Consider further that   

   

   1 2 2 1 2/ ,    0,  0fV z k k k k k    ,                                                                           (D.2) 

 

so that the known integers n, 1k  and 2k  are such that the inequalities noted in (1) are 

satisfied regardless of the value of the variable z.  

 It is observed in this regard that the maximum value of the fibre volume fraction, 

namely 

 

 max / 2 / 2 1f f n

nV V h     ,                                                                                            (D.3) 

 

is attained at the lateral planes of the functionally graded fibrous composite. It follows that 

satisfaction of the inequalities noted in (1) restricts the value of the coefficient n  as the 

follows:  

 

0 2n

n  .                                                                                                                         (D.4) 

 

By introducing (D.1) into (3.a) and performing the denoted integration, one obtains 
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1 22 ( 1) /n

n n k k   ,                                                                                                            (D.5) 

 

so that  

 

   1

2

2 ( 1)
/ ,    / 2 / 2

n
nf n k

V z z h h z h
k


    .                                                               (D.6) 

 

However, connection of (D.5) with (D.4) makes it clear that a fibre volume fraction of the 

form (D.6) is admissible for all values of z only if  

 

 2 1/ 1n k k  ,    2 1 0k k  .                                                                                                            (D.7) 

 

 For instance, in the particular case met in Section 4.2, where the composite contains 

50% fibre and 50% matrix material, a combination of (D.2) with (33) suggests that  

 

1 21,    =2k k .                                                                                                                      (D.8) 

 

Use of (D.7) makes it then further understood that, in that case, the only admissible value of 

the positive integer n is  

 

1n  ,                                                                                                                                   (D.9) 

 

thus leading to 1 2   and, hence, to the fibre volume fraction (35) with 2  .   

 It becomes also understood that, in cases that the fibre volume fraction is such that 

2 1/ 3k k  , (D.7) returns multiple admissible values of n and, therefore, multiple admissible 

forms of (D.1). However, cases of volume fractions that admit multiple values of n are not 

considered in this investigation.  
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TABLES 

 

 

Table 1. Through thickness in-plane displacement distributions 𝑈̅(0, 𝑧) of a top-stiff beam 

with volume fraction Vf  = 0.5 + ε(z/h). 

  λ = 0  λ = 0.004  λ = 0.01  

z/h                                     ε = 0.01  

0.5  

0.25  

0  

-0.25  

-0.5  

0.011225  

-0.097383  

-0.114490  

-0.131141  

-0.228791  

-0.025557  

-0.063687  

-0.067416  

-0.071387  

-0.104571  

-0.047459  

-0.044853  

-0.041244  

-0.038791  

-0.038351  

                          ε = 0.05  

0.5  

0.25  

0  

-0.25  

-0.5  

-0.427908  

-0.522101  

-0.522724  

-0.527046  

-0.609684  

-0.292289  

-0.318635  

-0.308312  

-0.302616  

-0.329450  

-0.219078  

-0.205783  

-0.189578  

-0.178970  

-0.176406  

                        ε = 0.1  

0.5  

0.25  

0  

-0.25  

-0.5  

-0.874707  

-0.945979  

-0.922377  

-0.907455  

-0.962171  

-0.575411  

-0.585632  

-0.556283  

-0.536790  

-0.554231  

-0.405471  

-0.378715  

-0.346454  

-0.325080  

-0.319076  

                     ε = εmax = 0.812  

0.5  

0.25  

0  

-0.25  

-0.5  

-0.643334  

-0.497675  

-0.287050  

-0.141990  

-0.086794  

-0.619429  

-0.470583  

-0.269299  

-0.132669  

-0.080983  

-0.587989  

-0.434870  

-0.245997  

-0.120484  

-0.073505  
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Table 2. Through thickness deflection distributions 𝑊̅(
𝐿

2
, 𝑧) of a top-stiff beam with volume 

fraction Vf  = 0.5 + ε(z/h). 

  λ=0  λ=0.004  λ=0.01  

z/h  ε=0.01  

0.5  

0.25  

0  

-0.25  

-0.5  

-1.206993  

-1.149196  

-1.104615  

-1.078050  

-1.063969  

-0.739809  

-0.685004  

-0.645031  

-0.620907  

-0.610125  

-0.484421  

-0.431542  

-0.394655  

-0.372337  

-0.363511  

                         ε=0.05  

0.5  

0.25  

0  

-0.25  

-0.5  

-1.180509  

-1.096412  

-1.027262  

-0.976980  

-0.939239  

-0.728882  

-0.658369  

-0.604367  

-0.567067  

-0.543660  

-0.478972  

-0.416258  

-0.371167  

-0.341455  

-0.324820  

                        ε=0.1  

0.5  

0.25  

0  

-0.25  

-0.5  

-1.111774  

-1.001214  

-0.907888  

-0.834697  

-0.776832  

-0.702100  

-0.615004  

-0.546501  

-0.495854  

-0.458180  

-0.466968  

-0.393610  

-0.339828  

-0.302449  

-0.277773  

                            ε = εmax  = 0.812  

0.5  

0.25  

0  

-0.25  

-0.5  

-0.171586  

-0.083960  

-0.030777  

-0.006525  

0.002057  

-0.164078  

-0.079280  

-0.028854  

-0.006087  

0.001928  

-0.154164  

-0.073117  

-0.026333  

-0.005518  

0.001574  
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Table 3. Through thickness in-plane displacement distributions 𝑈̅(0, 𝑧) of a bottom-stiff 

beam with volume fraction Vf  = 0.5 - ε(z/h). 

  λ=0  λ=0.004  λ=0.01  

z/h  ε=0.01  

0.5  

0.25  

0  

-0.25  

-0.5  

0.250340  

0.136190  

0.112192  

0.090771  

-0.013041  

0.118811  

0.075284  

0.065065  

0.056854  

0.021001  

0.045144  

0.042483  

0.039931  

0.038507  

0.038125  

                         ε=0.05  

0.5  

0.25  

0  

-0.25  

-0.5  

0.748837  

0.627284  

0.592660  

0.564908  

0.452050  

0.423789  

0.370636  

0.348727  

0.333408  

0.293394  

0.242223  

0.229269  

0.214766  

0.206064  

0.204560  

                        ε=0.1  

0.5  

0.25  

0  

-0.25  

-0.5  

1.368695  

1.244704  

1.202953  

1.173460  

1.055960  

0.821958  

0.759189  

0.725370  

0.703956  

0.661147  

0.506558  

0.481362  

0.452783  

0.435998  

0.434126  

                                                      ε = εmax  = 0.812  

0.5  

0.25  

0  

-0.25  

-0.5  

2.811083  

2.775249  

2.784161  

2.854059  

2.877000  

2.737809  

2.680974  

2.645146  

2.671874  

2.705601  

2.637961  

2.554224  

2.461564  

2.433894  

2.480754  
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 Table 4. Through thickness deflection distributions 𝑊̅(
𝐿

2
, 𝑧) of a bottom-stiff beam with 

volume fraction Vf  = 0.5 - ε(z/h). 

   λ=0  λ=0.004  λ=0.01  

z/h  ε=0.01  

0.5  

0.25  

0  

-0.25  

-0.5  

-1.209372  

-1.165977  

-1.135000  

-1.121685  

-1.120934  

-0.741459  

-0.695181  

-0.662904  

-0.646083  

-0.642795  

-0.485668  

-0.438107  

-0.405705  

-0.387473  

-0.382980  

                          ε=0.05  

0.5  

0.25  

0  

-0.25  

-0.5  

-1.192043  

-1.178822  

-1.176597  

-1.191500  

-1.219350  

-0.736960  

-0.708742  

-0.692904  

-0.691817  

-0.704768  

-0.485114  

-0.448893  

-0.426143  

-0.416782  

-0.421728  

                        ε=0.1  

0.5  

0.25  

0  

-0.25  

-0.5  

-1.132737  

-1.157282  

-1.191433  

-1.242375  

-1.307130  

-0.717222  

-0.712660  

-0.718584  

-0.738541  

-0.773375  

-0.478691  

-0.457720  

-0.448099  

-0.450930  

-0.467856  

                                                  ε = εmax  = 0.812  

0.5  

0.25  

0  

-0.25  

-0.5  

-0.077214  

-0.203017  

-0.337329  

-0.486706  

-0.657611  

-0.077423  

-0.197384  

-0.321135  

-0.454688  

-0.609844  

-0.077602  

-0.189706  

-0.299640  

-0.412841  

-0.547717  
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Table 5. Through thickness in-plane displacement distributions 𝑈̅(0, 𝑧) of a beam with 

volume fraction 𝑉𝑓 = 1.814 |
𝑧

ℎ
|. 

 

z/h λ=0 λ=0.004 λ=0.01 

0.5 -1.986187 -1.829115 -1.642851 

0.25 -1.609659 -1.460507 -1.283656 

0 -1.304430 -1.172045 -1.015665 

-0.25 -1.330097 -1.185678 -1.015671 

-0.5 -1.394719 -1.242775 -1.063927 

 

 

 

Table 6. Through thickness deflection distributions 𝑊̅(
𝐿

2
, 𝑧) of a beam with volume fraction 

𝑉𝑓 = 1.814 |
𝑧

ℎ
|). 

z/h λ=0 λ=0.004 λ=0.01 

0.5 -0.227618 -0.209966 -0.188966 

0.25 -0.073957 -0.066799 -0.058321 

0 0.003799 0.003735 0.003642 

-0.25 0.064515 0.057539 0.049324 

-0.5 0.144491 0.127854 0.108322 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 Sep 2019 06:12:07 PDT
Version 2 - Submitted to J. Mech. Mater. Struct.



31 
 

FIGURES 

 Figure 1. Geometrical features and nomenclature of a prismatic beam. 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2. Schematic representation the active stress and couple-stress components  
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Figure 3. Fibre representative element discretisation: (a) homogeneous composite, Sz = constant; 

(b) inhomogeneous composite, Sz = variable; (c) rectangular and triangular fibre representative 

elements. 

11 Sep 2019 06:12:07 PDT
Version 2 - Submitted to J. Mech. Mater. Struct.



33 
 

 

Figure 4. Schematic representation of fibre volume fractions of the type (28), (31), (32) and 

(35), respectively. 
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Figure 5. Through-thickness distribution of the couple-stress,  𝑚̅𝑥𝑦, at different axial 

positions of a top-stiff beam (ε = 0.1). 
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Figure 6. Through-thickness distribution of the couple-stress, 𝑚̅𝑥𝑦, at different axial positions 

of a bottom-stiff beam (ε = 0.1). 
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Figure 7. Through-thickness distribution of the shear stress 𝜏𝑧̅𝑥 at the left end of a top-stiff 

beam (ε = 0.1). 
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Figure 8. Through-thickness distribution of the shear stress 𝜏𝑧̅𝑥 at the left end of a bottom-

stiff beam (ε = 0.1) 
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Figure 9. Through-thickness distribution of the shear stress  𝜏𝑥̅𝑧 at the left end of a top-stiff 

beam (ε = 0.1). 
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Figure 10. Through-thickness distribution of the shear stress 𝜏𝑥̅𝑧 at the left end of a top-stiff 

beam (ε = 0.1). 
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Figure 11. Through-thickness distribution of the shear stress  𝜏𝑧̅𝑥 at the left end of a beam 

subjected to the symmetric, piece-wise linear fibre reinforcement (35). 
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Figure 12. Through-thickness distribution of the shear stress  𝜏𝑥̅𝑧 at the left end of a beam 

subjected to the symmetric, piece-wise linear fibre reinforcement (32). 
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Figure 13. Distribution of the normal stress  𝜎𝑧 at the mid-span (x/L = 0.5) of a homogeneous 

beam (ε = 0). 

 

11 Sep 2019 06:12:07 PDT
Version 2 - Submitted to J. Mech. Mater. Struct.



43 
 

 

Figure 14. Distribution of the bending stress,  𝜎𝑥, at the mid-span (x/L = 0.5) of a 

homogeneous beam (ε = 0). 
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Figure 15. Distribution of the normal stress  𝜎𝑧 at the mid-span (x/L = 0.5) of a top-stiff beam 

(ε = 0.1). 
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Figure 16. Distribution of the normal stress  𝜎𝑧 at the mid-span (x/L = 0.5) of a bottom-stiff 

beam (ε = 0.1). 
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Figure 17. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with 

increasing inhomogeneity of a top-stiff beam reinforced by perfectly flexible fibres (λ = 0).  
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Figure 18. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with 

increasing inhomogeneity of a bottom-stiff beam reinforced by perfectly flexible fibres (λ = 

0). 

. 
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Figure 19. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with 

increasing inhomogeneity of a top-stiff beam reinforced by fibres resistant in bending (λ = 

0.006). 
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Figure 20. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with 

increasing inhomogeneity of a bottom-stiff beam reinforced by fibres resistant in bending (λ = 

0.006). 
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Figure 21. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with 

increasing fibre bending stiffness of a beam subjected to the symmetric, piece-wise linear 

fibre reinforcement (35). 
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Figure 22. Variation of the distribution of the transverse normal stress, 𝜎𝑧, at the mid-span 

(x/L = 0.5) of a beam subjected to the symmetric, piece-wise linear fibre reinforcement (35). 

 

 

 

 

 

 

 

 

 

11 Sep 2019 06:12:07 PDT
Version 2 - Submitted to J. Mech. Mater. Struct.


