
metals

Article

Probabilistic Modeling of Slip System-Based Shear
Stresses and Fatigue Behavior of Coarse-Grained
Ni-Base Superalloy Considering Local Grain
Anisotropy and Grain Orientation

Benedikt Engel 1,*, Lucas Mäde 2, Philipp Lion 3, Nadine Moch 4, Hanno Gottschalk 4 and
Tilmann Beck 3

1 Gas Turbine and Transmission Center Research Center (G2TRC), University of Nottingham,
Nottingham NG7 2RD, UK

2 Department for Technology & Innovation, Gas and Power Division, Siemens AG, Huttenstraße 12,
10553 Berlin, Germany

3 Institute of Materials Science and Engineering, TU Kaiserslautern, 67663 Kaiserslautern, Germany
4 School of Mathematics and Science, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
* Correspondence: Benedikt.Engel@nottingham.ac.uk

Received: 26 June 2019; Accepted: 20 July 2019; Published: 24 July 2019
����������
�������

Abstract: New probabilistic lifetime approaches for coarse grained Ni-base superalloys supplement
current deterministic gas turbine component design philosophies; in order to reduce safety factors and
push design limits. The models are based on statistical distributions of parameters, which determine
the fatigue behavior under high temperature conditions. In the following paper, Low Cycle Fatigue
(LCF) test data of several material batches of polycrystalline Ni-base superalloy René80 with
different grain sizes and orientation distribution (random and textured) is presented and evaluated.
The textured batch, i.e., with preferential grain orientation, showed higher LCF life. Three approaches
to probabilistic crack initiation life modeling are presented. One is based on Weibull distributed
crack initiation life while the other two approaches are based on probabilistic Schmid factors.
In order to create a realistic Schmid factor distribution, polycrystalline finite element models of the
specimens were generated using Voronoi tessellations and the local mechanical behavior investigated
in dependence of different grain sizes and statistically distributed grain orientations. All models
were first calibrated with test data of the material with random grain orientation and then used
to predict the LCF life of the material with preferential grain orientation. By considering the local
multiaxiality and resulting inhomogeneous shear stress distributions, as well as grain interaction
through polycrystalline Finite Element Analysis (FEA) simulation, the best consistencies between
predicted and observed crack initiation lives could be achieved.

Keywords: LCF; René80; Probabilistic modeling; slip system-based shear stresses; probabilistic
Schmid factors; polycrystalline FEA; anisotropy; Ni-base superalloy

1. Introduction

Due to the worldwide increase in fluctuating renewable energy generation, flexibly operating
gas turbine power plants are necessary to secure stable power supply and grid frequencies. However,
frequent start-ups and shut downs as well as load changes lead to high requirements to the materials
used in the hot gas section components, foremost the turbine blades. Due to their outstanding properties
at high temperatures, Ni-base superalloys are appropriate as turbine blade material. While single
crystal and directionally solidified components are nowadays used to accommodate the highest
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demands in creep and oxidation resistance, components made of polycrystalline solidified nickel-base
superalloys from conventional cast are still more often used for economic reasons. The remarkable
Low Cycle Fatigue (LCF) crack initiation life scatter observed in lab tests at polycrystalline Ni-base
superalloys samples is well known and usually considered by material safety factors for engine
part designs. Deterministic models to predict the LCF lives of the components have been applied
successfully for decades, but the increasing demand for risk-based business decision making and the
reduction of conservatism in design (safety factors) have led to the development of probabilistic fatigue
prediction models. In the early days of probabilistic modeling for LCF, defects were considered as
sources of randomness in fatigue behavior. Accordingly, [1,2] utilized measured defect size distributions
for probabilistic modeling. This approach is also used for fatigue prediction of turbine disks [3,4].
Other probabilistic fatigue models are based on the weakest link concept which is often described with
a Weibull distribution in fatigue limit [5–10] but also in fatigue life [11–15]. The probabilistic fatigue
limit and fatigue life modeling often resulted in integral approaches to model the probabilistic size effect,
which are already put down in design guidelines [16–18], but are up to now still under research [19–23].
Particularly in [22], a local probabilistic approach based on a Weibull distribution in LCF life arising
from inherent material scatter was validated with Ni-base superalloy specimens. While the previously
mentioned approaches use mostly parametric distributions to describe the stochastic nature of fatigue
mechanisms and the statistical size effect, more physics and micro-mechanics-based approaches are
favorable to improve the model accuracy. Therefore, it is necessary to determine the distributional
aspects of the high temperature fatigue mechanisms in the investigated materials and the influence of
those factors to the cyclic life and life scatter.

Coarse-grained polycrystalline Ni-base superalloys such as IN 738 LC or René80 are used for
turbine blades in the rear stages of gas turbines. Due to the vacuum casting process and geometry-related
cooling conditions, they tend to form grains of up to 3 mm and more in diameter. As a result, only a few
grains in highly stressed areas of limited size are formed within the component, such as the transition
from root to the airfoil. Due to the low grain numbers, the orientation of the crystal lattice of each grain
has a major influence on the mechanical behavior of the component. On the one hand, the orientation
has a direct influence on the elastic material behavior. Due to the pronounced elastic anisotropy of
nickel and Ni-base superalloys (anisotropy factor of up to 3), the effective value of Young’s modulus for
uniaxial loading of a single grain varies over a wide range. For room temperature it can vary between
130 GPa and 330 GPa and between 95 GPa and 260 GPa at 850 ◦C [24–26]. This aspect in combination
with low grain numbers, leads to high scatter in the determined mechanical properties, which makes
high safety factors in design inevitable. On the other hand, the crystal orientation in addition to the
elastic behavior has an influence on the onset of plastic behavior. As determined by [27], the resolved
shear stress at a slip system can be calculated by projecting the applied normal stress at the slip system
orientation. The modified Schmid factor is defined as the quotient of maximum resolved shear stress and
equivalent stress and compares the propensity of shear glide between crystals of different orientation.
The effects of Schmid factor on the crack initiation and fatigue behavior have been investigated in
several studies. Seibel et al. [28,29] could show for the coarse grain Ni-base superalloy René80 at 850 ◦C
and low total strain amplitudes, that fatigue cracks initiate on slip bands at grains with high Schmid
factors. A plot of the LCF life against the resulting shear stresses in the crack-initiating slip system
led to a significant reduction in life scatter compared to a strain Wöhler plot. Gottschalk et al. [28,30]
showed, that there is a correlation between the distribution of the Schmid factor and the lifetime of the
Ni-base superalloy René80 tested in high temperature LCF tests. Engel [25,31] could also show coarse
grained René80 that, besides the Schmid factor, also the local Young’s modulus of the crack initiating
grain has a huge influence on the resulting shear stress within the slip systems. With the proposed E·m
model, it could be shown, experimentally and analytically, that cracks predominantly initiate in grains
with Schmid factors between 0.35–0.45 and high corresponding Young’s moduli and therefore high
values in the product E·m. Cracks in grains can also initiate if these are surrounded by grains with
high E·m values (neighborhood effect). The presented models all are used to estimate the resulting
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shear stress in the slip system of the grains, to provide predictions about the LCF life distribution of
Ni-base superalloys. However, the following simplifying assumptions are applied in these models:

• Uniaxial stress states in each grain with global uniaxial load
• No influence of the deformation behavior of the surrounding grains
• Only Young’s modulus and Schmid factor in direction of a uniaxial stress were considered
• Homogeneous resolved shear stress field at slip system within the grain.

In order to improve the model for probabilistic Schmid factor distribution modeling from [30],
several polycrystalline finite element models are generated by 3D Voronoi tessellation using the
software Neper [32–34] and solved in ABAQUS® 2017; considering the elastic anisotropy of the
crystals. These simulations allow approximating the local mechanical properties in a coarse-grained
polycrystalline, uniaxially loaded LCF specimen where the local grain orientations and their interaction
lead to various multiaxial stress states. The polycrystalline Finite Element Analysis (FEA) simulations
were carried out for the case of randomly and for preferentially oriented grains. These preconditions
led to distinct distributions of local resolved shear stresses and therefore Schmid factors. Deterministic
formulae are used to derive statistical distributions for the LCF crack initiation life of both cases. In order
to verify the differences seen in the simulation results, LCF test data of two René80 batches (isothermal
850 ◦C) was generated in strain-controlled experiments. One batch has had coarse grains with
random orientation, while the other batch has had smaller grains with preferential orientation. Hence,
polycrystalline FEA simulations according to this grain orientation were carried out. The thereof
derived life distribution was shifted to a higher median compared to the case of random grain
orientation. Using the large LCF test data set of Seibel [29] (coarse, randomly oriented grains) for
calibration of the Schmid factor based crack initiation life model, it was possible to predict the observed
crack initiation lives of the René80 batch with preferential grain orientation.

The presented work is subdivided into three major sections. The examined material and applied
testing and simulation methods are described in Section 2. Experimental and simulation outcomes are
presented in Section 3 and discussed in Section 4. Sections 2 and 3 follow an equivalent substructure.
It starts by describing the investigated material René80 and its microstructural examination (Sections 2.1
and 3.1). The LCF testing procedure and its outcomes are detailed in the Sections 2.2 and 3.2. Sections 2.3
and 3.3 switch to the simulation part of the presented work specifying how polycrystalline anisotropic
FEA models of the LCF specimen were set up and how they can capture their global stiffness. These FEA
models are partly the basis for probabilistic Schmid factor modeling, which is introduced in Section 2.4
and presented in Section 3.4. Probabilistic Schmid factors are the basis for the microstructure-based
crack initiation life models that are described in Section 2.5 and calibrated with the test data in
Section 3.5. These microstructure based probabilistic approaches for LCF are the highlight of the
presented work and are furthermore compared to the Weibull approach from [19] in Section 4. It is
concluded that the LCF life prediction based on the “modified Schmid factor” distribution derived
from polycrystalline FEA simulations has the best prediction accuracy.

2. Materials and Methods

Two batches of René80 LCF specimens from the same melt, but different solidification processes
are investigated in the present work. The mechanical properties of the specimens are simulated with
FEA models mimicking the polycrystalline microstructure and the anisotropic stiffness of the grains.
From those FEA solutions, the distribution of normalized maximum shear stresses at the slip systems
(modified Schmid factors) are derived. It is then explained how the distribution of Schmid factors
leads to a distribution in crack initiation life.

2.1. Material

Cylindrical bars with 150 mm length made of the polycrystalline Ni-base superalloy René80 [35–39],
were conventionally casted and heat treated by Doncasters/Germany. To achieve the final microstructure,
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a two-step heat treatment consisting of solution annealing and aging was applied to the material.
From the same melt, bars with diameters of 20 mm (coarse grained batch) as well as 12 mm were
produced in order to generate a different grain size and grain orientation distribution.

These bars were machined to the final specimen geometry shown in Figure 1 and the gauge
section was polished to a surface roughness of N5.
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Figure 1. Specimen geometry. Only the cylindrical gauge section is considered in Finite Element
Analysis (FEA) simulations.

Table 1 shows the chemical compositions of the René80 melt, determined by the manufacturer,
as well as the composition of Inconel 738 with low amount of carbon (IN 738 LC).

Table 1. Chemical composition of René80 and IN 738 LC (taken from Hermann, W. (2014) [26]) in wt.%.

Element Ni Cr Co Ti Mo W Al C B Zr Ta Nb Fe

René80 Bal. 14.04 9.48 5.08 4.03 4.02 2.93 0.17 0.015 0.011 - - -
IN 738 LC Bal. 16 8.3 8.7 3.4 1.8 2.7 3.4 0.11 - 1.9 0.9 0.1

2.2. Experimental Isothermal LCF Testing

Isothermal LCF tests were carried out at 850 ◦C on an MTS 810 servo hydraulic test rig with
a maximum load capacity of 100 kN. The specimens were heated by a Huttinger TruHeat generator
MF5000 with an induction coil and temperature controlled by a ribbon thermocouple type K attached
to the middle of the gauge length. The temperature gradient was measured before the testing campaign
and was below ±8 ◦C across the entire gauge length. Total strain control condition with R = −1 was
realized by a 12 mm MTS high temperature extensometer Type MTS 632.53. Depending on the value
of total strain, the test frequency varies between 1 Hz for low total strain and 0.1 Hz for high total
strains. Cycles to failure were determined by a load drop of 2.5% from the stabilized measured stress
amplitude in order to reach a crack surface of 0.962 mm2 and to compare the results to [29].

2.3. FEA Models for Polycrystalline Microstructure Modelling

In order to simulate polycrystalline material behavior, the open source software NEPER (Version 3.3,
by Romain Quey, MINES Saint-Étienne, Saint-Étienne, France) was applied to generate random grain
morphologies using the 3D Voronoi tessellation method [40,41]. Since only the gauge lengths of the
specimens were of interest in the simulation, a cylinder with the dimensions r = 7 mm, h = 18 mm
were created. The specification of 49 Voronoi seeds leads to 49 grains with an average grain diameter
dgrain ≈ 3 mm for the given volume. This is in good accordance to metallographic analyzes of the tested
coarse grain René80 batch (random orientation) presented in Section 3.1. Equivalently, the model for
the other batch which solidified to grains with an average grain size of dgrain ≈ 1.3 mm and preferential
direction in orientation contains 500 grains. Within the meshing tool of NEPER a relative characteristic
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length value of rcl = 0.3 defines the size of the elements relative to the average cell size. As a result,
the mesh consists of a uniform distribution of approximately 50,000 quadratic tetrahedral elements for
the coarse grain model and approximately 90,000 quadratic tetrahedral elements for the fine grain
model. Both polycrystalline specimen models are shown in Figure 2.
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Additionally, to the morphology, Neper also creates a consistent mesh at the boundary interfaces
of the grains such it can be used as an input for ABAQUS® (Dessault systemes, Vélizy-Villacoublay,
France). In order to account for anisotropic stiffness of René80, a global, anisotropic, linear-elastic
material law was defined in ABAQUS®.

σ = C·ε where C =



C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44


(1)

As the authors are not aware of any values for the elastic constants of René80 at high temperatures,
elastic constants for IN 738 LC were taken from Hermann, W. (2014) [26]. Since both, composition and
content of the γ′ phase are very similar in IN 738 LC and René80, it is assumed that the elastic behavior
of both alloys are qualitatively comparable. A linear interpolation from 800 ◦C and 898 ◦C to 850 ◦C
results in C11 = 225.83 MPa, C12 = 161.45 MPa and C44 = 98.79 MPa. In order to create local material
models, each grain was rotated in a preprocessing step and the respective data written to the input file.
The grains in the first René80 batch (coarse-grained) are assumed to have no preferential direction
in orientation, which is why the rotational matrices U used in this preprocessing step are distributed
according to the isotropic measure, mathematically given by the Haar measure at the SO3 group of
rotations [42]. For the second batch (fine grains) however, the grains are assumed to have a non-isotropic
orientation distribution (see Section 3.1) and the respective FEA models are set up accordingly. During
the calculation, ABAQUS® transfers the globally defined material law by means of tensor rotation
with U into the local coordinate system of the individual grains. With this procedure, the grains
interact according to their orientation dependent stiffness. However, grain boundary interactions are
not explicitly modeled by physics-based considerations. In order to have high comparability to the
LCF experiments, all FEA simulations were modeled with given displacements using a material model
for T = 850 ◦C. Since the latter was linear-elastic and a stable cyclic behavior for low total strain
amplitudes was observed [43], only one load case was evaluated. All nodes of the cylinder top face
were displaced by 0.045 mm which is equal to a total strain of 0.25%. The nodes at the bottom face
were fixed but allowed transverse contraction.
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2.4. Derivation of the Schmid Factor Distribution

Plastic deformation of a metallic grain begins if one resolved shear stress within the slip systems
of the crystal exceeds a critical value τCRSS. As the E·m model in [25,31] proposed for coarse grained
Ni-base superalloys, the resulting shear stress in the slip systems depends on the grains local Young’s
moduli and its Schmid factor m̃. According to [28,30] m̃ is defined as

m̃ = max
i, j

(
τi, j

σvM

)
where τi, j is the resolved shear stresses at slip systems j of slip plane i (2)

The 12 possible values for τi, j, representing the slip systems <111>{110} in a fcc crystal are obviously
dependent on the crystal orientation towards the load. Let U be the rotation matrix describing the
orientation from the coordinate system of the stress tensor σ and the lattice coordinate system.
The resolved shear stresses τi, j(U) in a crystal rotated by U are calculated by

τi, j(U) =
→
n i·σaniso

(U)·
→
s i, j where U ∈ SO(3) (3)

σ
aniso

(U) = C(U)·ε
iso

(4)

→
n i are the normal vectors of the slip planes and

→
s i, j are the slip vectors on each slip plane. Equation (3)

was simplified exploiting the orthogonality of U [30]. In order to also account for the stiffness anisotropy
of the Ni lattice cell the anisotropic stress tensor σ

aniso
(U) is calculated by the tensor product of isotropic

strain tensor ε
iso

and rotated C(U) stiffness tensor. The randomness of crystal grain orientations in

a polycrystal is the root cause why the Schmid factor as defined in (2) is a stochastic variable with the
cumulative distribution function FSF(m̃) = P(SF ≤ m̃).

Repeated plastic deformation of the crystal causes lattice dislocations to move along the slip
systems towards the surface eventually creating persistent slip bands (PSB’s) which are manifested as
intrusions and extrusions and initiate surface fatigue cracks. Grains with an orientation leading to high
E·m̃ values under given load are creating PSB’s faster than those with a lower value of E·m̃. That is why
it could be shown that LCF cracks preferably initiate in grains with such an orientation [29,31]. A high
stiffness in direction of the load leads to high anisotropic stresses in the crystal and a high Schmid
factor leads to high resolved shear stresses at the slip system.

In order to include the stochastic character of the Schmid factor in a fatigue life prediction, it is
necessary to quantify the Schmid factor distribution FSF(m̃) in a first step. One approach uses only
the geometric considerations for a single crystal at isotropic strain, which is reflected in Equations
(3) and (4). A Monte-Carlo sampling of lattice orientations described by rotation matrices U creates
a distribution of resolved shear stresses τi, j(U) according to (3) which translates into the Schmid factor
distribution FSF(m̃) via (2.2) [30]. Note that U = U(ϑ,ϕ1,ϕ2) is conveniently defined as a function of
the Euler angles ϑ,ϕ1,ϕ2 in this publication.

This approach is computationally inexpensive but suffers from a major drawback. The derived
single crystal Schmid factor distribution has limited meaning for reflecting the true distribution of
maximum shear stresses in a polycrystal since no grain interaction and therefore no complex grain
distortion is considered.

Hence, a second approach to simulate the Schmid factor distribution was carried out in order
to overcome the drawback of simplification to only single crystal behavior. The polycrystalline
FEA simulations described in Section 2.2 were repeated three times with different grain orientations.
These were realized using Monte-Carlo sampled rotation matrices U. Following these simulations,
Schmid factor values were calculated from all nodal stress tensors according to Equations (2) and (3)
during the post-processing routine [30]. The thereby received distribution will be denoted as modified
Schmid factor m̃mod distribution in the following. Section 3.3 describes the differences from the single
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grain Schmid factor distribution. They arise from the distinct distribution of stress tensors with different
multiaxiality, even within single grains, which develops due to the mutual grain interactions which is
discussed in Section 3.2.

Note, that both approaches do not consider elastic-plastic deformation models and therefore only
linear-elastic shear stresses at the slip systems are calculated. Still, their distribution at the model
surface give an indication about the expected onset of plasticity. Table 2 summarizes the description of
the two types of Schmid factor distributions.

Table 2. Overview of Schmid factor distribution generation.

Distribution Modeling Approach

FSF(m̃)
Monte-Carlo sampling of statistically distributed orientations of a single crystal, i.e., single grain.

Maximum normalized resolved shear stresses calculated at global uniaxial stress state.
Explicit consideration of elastic stiffness anisotropy.

FSF(m̃mod)
Monte-Carlo sampling of statistically distributed orientations of single crystals in polycrystalline

FEA simulations. Maximum normalized resolved shear stresses calculated at all FEA nodes
from local (multiaxial) stress states. Explicit consideration of elastic stiffness anisotropy.

2.5. Calibration of the Probabilistic LCF Fatigue Model and the Cyclic Material Strength Model

Three probabilistic models are chosen for modeling the strain Wöhler curves of the LCF test
results. The first model combines deterministic LCF life modeling using the Coffin-Manson-Basquin
equation CMB(Ni)

εa =
σ f − σm

E
(2Ni)

b + ε f (2Ni)
c (5)

with the Weibull distribution in crack initiation life.

FN(n|η, m) = 1− e−(
n
η )

m
(6)

The deterministic Coffin-Manson-Basquin CMB life Ni is considered as the distributions median
value and hence determines the Weibull scale

η = Ni·(ln 2)−1/m (7)

The Weibull distributed crack initiation life is also the basis for the approach in [19]. There, it is
furthermore combined with a surface integration approach to cover the statistical size effect. The latter
was not carried out in the presented work. In order to calibrate the CMB parameters for this Weibull
based model, a Maximum-Likelihood estimation (MLE) is used. The other two approaches combine
the Schmid factor distribution with the CMB equation to derive a life distribution. This is based on the
hypothesis that crack initiation life scatter observed in the experiments emanates from the underlying
statistical distribution of shear stresses in the crystallites which itself originates in the statistical
distribution of grain orientation (see Section 2.4). In order to project the distributional behavior of
crack initiating shear stresses to an actual cycle distribution, the approach by [28,30] is followed.
The averaged stress in the specimen is calculated from the applied strain with the Ramberg-Osgood
model, RO(σa).

εa =
σa

E
+

(
σa

K′

)1/n′

(8)

RO(σa) is inverted such that σa = RO−1(εa)

A large sample set (>200,000 samples) is drawn from the Schmid factor distribution FSF(m̃) and
its median m̃50% renormalized to one. The specimen stress σa is then multiplied with this sample set
and all values are subsequently transferred back to strain values with the Ramberg-Osgood equation.
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εa(m̃) = RO(σa(m̃)) (9)

This set of strain samples is then calculated into a set of life samples with the
Coffin-Manson-Basquin relationship.

Ni(m̃) = CMB−1(εa(m̃)) (10)

Equation (10) is the numerical representation for the crack initiation life distribution FN(n(m̃))

based on probabilistic Schmid factors. Note, that the procedure described above is applied identically
for the distributions FSF(m̃) and FSF(m̃mod). For model calibration with MLE, the likelihood summands
are calculated from the probability density function.

fN(n(m̃)) =
d

dn
FN(n(m̃)) (11)

Since FSF(m̃) is only available as a numerical sample set, fN(n(m̃)) is differentiated numerically
from the empirical cumulative distribution function.

Furthermore, fine and coarse-grained metals have different strengths due to the different intensity
of dislocation pile up at the grain boundaries (Hall-Petch relation) [44]. In order to account for this effect,
the cyclic stress-strain relation was calibrated by estimating the Ramberg-Osgood model parameters in
Equation (8) by means of Maximum-Likelihood. Though the cyclic stress response was assumed to be
statistically distributed in a log-normal fashion for simplicity in the MLE, only the median values of
the cyclic stress prediction is used in (9).

3. Results

The results of metallographic examination of the specimen material (Section 3.1) and its implications
on the FEA modelling (Section 3.2) are described in this section. It follows that different specimen
stiffness (Section 3.2) and Schmid factor (Section 3.3) distributions are calculated for the two material
batches (coarse grains with random grain orientation and fine grains with preferential grain orientation).
By considering the different grain orientation distributions in both batches it is possible to explain the
observed crack initiation life differences qualitatively, as well as quantitatively (Sections 3.4 and 3.5).
Note that LCF test data from Seibel [29] was used for probabilistic model calibration and its predictions
are compared to the fine grain test data generated by Engel et al. [25,31].

3.1. Microscopic Material Examinations and Orientation Distributions

Metallographic investigations using scanning electron microscope (SEM) reveal the typical
γ,γ′microstructure with an averaged γ′ content of about 35 vol.%, as Figure 3 illustrated for both
batches. The average size of the primary cuboidal γ′ is 0.4 µm whereas the secondary spherical γ′

shows diameters between 10–50 nm.
Due to the different cooling conditions, especially thin cross sections of components made of

polycrystalline, Ni-base superalloys tend to form a crystallographic texture on edge layers, due to
the preferred grain growth of <100> near orientations in direction of the temperature gradient [45].
The specimen slugs for the data from Engel [25,31] were casted as cylindrical bars of 12 mm in diameter
for fine grain realization and 20 mm for coarse grain realization. It is important to note, that the fine
grain batch, with an average grain size of about 1 mm, is still coarse with regard to material science,
but in order to differentiate it from the material with an average grain size of about 3 mm it is called
fine grained batch.

Based on the metallographic etching of the vertical cross section of the 20 mm bar in Figure 4,
it is assumed, that a radial and an axial temperature gradient were present during the solidification.
The edge layer shows a dendritic solidification with small elongated grains. The 20 mm specimens
show large, randomly oriented grains towards the bar center. It is assumed that rapid cooling rates
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occurred in the edge areas, resulting in small grains. The preferential grain orientation of those might
have originated from an axial temperature gradient, as the melt started to cool at the bottom of the
upright standing mold. However, it could have originated from crystal seeds at the mold wall as well.
With a decrease of the cooling rate towards the bar center, the grains have more time to grow resulting in
large grains with no preferential direction. Within the gauge length, they have an averaged diameter of
approximately dcoarse = 3 mm, determined as an equivalent circular diameter of the grain area. This size
allows roughly 49 grains in the gauge section. By machining the specimens gauge section geometry
(see Figure 1) most of the dendritically solidified material is removed. The mechanical behavior of the
specimen is then mainly determined by coarse randomly oriented grains in the gauge length.
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Figure 3. (a) Scanning electron microscope (SEM) image of the γ,γ′microstructure; (b) light microscope
image of cross section shows dendritic grain growth.
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Figure 4. Light microscopy image of the vertical cross section of a 20 mm bar of René80. Coarse
grains with random orientation solidified in the center of the gauge section but also fine, dendritically
solidified grains are also visible in the edge area. The right-hand side shows the section that remained
after specimen machining.

Furthermore, bars of René80 with a length of 150 mm and diameter of 12 mm were cast.
The metallographic etching of the vertical cross section in Figure 5 also shows small, dendritically
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solidified, elongated grains but throughout the entire cross section of the bar. While the axial and
radial temperature gradients were most likely comparable to those in the 20 mm bar, the faster cooling
in 12 mm bar prevented the formation of larger grains without preferential direction in the center.
Due to the large grain size, the determination of the orientation distribution of the material using
electron backscatter diffraction (EBSD) was not suitable as only an insufficient number of grains could
be examined, which provided inadequate statistics. Therefore, the alignment within the gauge length
were measured by light microscope and image processing. On average, the grains’ <100> direction is
aligned to the specimen horizontal in an angle ϑ of approximately 25◦.

Metals 2019, 9, 813 10 of 28 

length were measured by light microscope and image processing. On average, the grains’ <100> 
direction is aligned to the specimen horizontal in an angle 𝜗 of approximately 25°. 

 
Figure 5. Light microscopy image of the vertical cross section of a 12 mm  bar of René80. A 
preferential orientation of the grains was likely caused by the temperature gradients in the mold 
during solidification. 

The dendritic character of the grains is present in the entire gauge length. Thus, it is assumed 
that the mechanical behavior is significantly determined by this texture. In contrast to the coarse-
grained material, the grains appear rather lengthy in the cross section with an average grain size of 𝑑 = 1.3 mm. This relates to approximately 500 grains in the gauge section.  

The LCF test data from cylindrical bar slug specimens is shown in Section 3.5. However, the 
probabilistic model calibration presented there uses only LCF test data from Seibel [29] where the 
specimen slug was casted as a plate with a thickness of 20 mm. The materials microstructure is 
comparable to the just described coarse-grained bar material regarding grain size distribution and 
morphology. Therefore, a similar mechanical and fatigue behavior can be assumed. The consistency 
of properties is proven in Sections 3.2 and 3.5. 

3.2. Results of the Isothermal LCF Tests at 850 °C 

Figure 6 shows the cyclic stress-strain data in the stabilized regime and the calibration curves of 
the respective Ramberg-Osgood model. 

 

2 mm

7 mm

St
re

ss
 d

ire
ct

io
n

z 𝜗
Figure 5. Light microscopy image of the vertical cross section of a 12 mm bar of René80. A preferential
orientation of the grains was likely caused by the temperature gradients in the mold during solidification.

The dendritic character of the grains is present in the entire gauge length. Thus, it is assumed that
the mechanical behavior is significantly determined by this texture. In contrast to the coarse-grained
material, the grains appear rather lengthy in the cross section with an average grain size of d f ine = 1.3 mm.
This relates to approximately 500 grains in the gauge section.

The LCF test data from cylindrical bar slug specimens is shown in Section 3.5. However,
the probabilistic model calibration presented there uses only LCF test data from Seibel [29] where
the specimen slug was casted as a plate with a thickness of 20 mm. The materials microstructure is
comparable to the just described coarse-grained bar material regarding grain size distribution and
morphology. Therefore, a similar mechanical and fatigue behavior can be assumed. The consistency of
properties is proven in Sections 3.2 and 3.5.

3.2. Results of the Isothermal LCF Tests at 850 ◦C

Figure 6 shows the cyclic stress-strain data in the stabilized regime and the calibration curves of
the respective Ramberg-Osgood model.

It is found that the average cyclic Young’s moduli of the test specimens (global values from
hysteresis using extensometer) are different. The value E f ine from the fine-grained batch with preferential
grain orientation is 9.8% lower than the value of Ecoarse with approximately random grain orientation
(Ecoarse/E f ine ≈ 1.11). The Ramberg-Osgood model calibration using the cyclic stress strain data was
conducted using only the cyclic strength coefficient K′ as a degree of freedom. The Young’s moduli
from the experiment were set according to the experimental data of the respective batch. Since the
amount of data points in the plastic deformation regime was insufficient for a reliable description of the
hardening slope determined by the exponent n′, an n′ value for René80 was taken from the Siemens
proprietary material data base. The derived K′ values differ in the ratio K′coarse/K′f ine ≈ 1.07 meaning
the coarse-grained material has also a higher plastic strength than the fine-grained. The results for the
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experimentally derived Young’s moduli and the calibrated cyclic strength coefficient are discussed in
Section 4.1.

The cyclic stress-strain plot in Figure 6 indicates that the coarse grain batches from both data
sets (Engel and Seibel) show comparable mechanical behavior as assumed in Section 3.1. The crack
initiation life data derived from the 2.5% load drop as crack initiation criterion is presented as strain-life
Wöhler plot in Figure 14 for all data sets from Engel [25,31] and Seibel [29]. It is found that the fine
grain batch specimen withstands a significantly higher number of cycles at equal strain level. The
detailed examination of this findings and graphs of the respective data are presented in Section 3.5.
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Figure 6. Stabilized cyclic stress response data and respective Ramberg-Osgood calibration curve for
coarse grain batch and fine grain batch.

3.3. Results of the Finite Element Simulation

Linear elastic simulations of polycrystalline FEA models were carried out to model the mechanical
interactions during an LCF test in a coarse-grained Ni-base superalloy. Therefore, an anisotropic
elasticity model of IN 738 LC at 850 ◦C was applied. Figure 7 shows the computed stress and strain
distribution in z-direction for the coarse-grained batch model (49 grains with random orientation
distribution) for a globally applied strain of 0.25%. The stress distribution indicates maximal values
with more than 600 MPa near some grain boundaries as seen in (a). Most parts of the surface show
a significantly lower stress of about 300 MPa. Considering a homogenized Young’s modulus of IN 738
LC of E = 152 GPa a stress of σiso = 379 MPa is expected for isotropic modeling.

In contrast to an isotropic material behavior, high stresses do not simultaneously lead to high strains
in this anisotropic simulation, as obvious for area (b) in Figure 7. Area (c) shows both, high stresses
and high strains. The local strains can vary compared to the globally applied strain by nearly a factor
of 2. Hence, local plastic deformation may occur in some grains, despite the globally elastic response.
The yield of these grains is however not modelled explicitly. Furthermore, also inhomogeneous stress
and strain states within individual grains are observed. Figure 8 shows this for a free cut grain of the
previously described specimen.
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Figure 7. Stress and strain distribution in loading direction for a specimen with 49 grains and random
orientation at 0.25% total strain. An anisotropic elasticity model of IN 738 LC at 850 ◦C was applied.
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Figure 8. Stress and strain distribution in loading direction of a free cut grain from the specimen model
with 49 grains at 0.25% total strain and 850 ◦C.

The examination of the individual nodes in Figure 8 clearly shows that stress and strain are also
inhomogeneously distributed within the grains. An evaluation of the stress tensors at each node shows
that a globally applied uniaxial stress leads to local multiaxial stress and strain states within the grains.
The unidimensional parameter κ is introduced for describing the multiaxiality of the stress tensor
using the principal components of the stress deviator σ′.

For |σ′I | ≥ |σ
′

II | ≥ |σ
′

III |, κ =
|σ′III − σ

′

II |

|σ′I |
(12)

For κ = 0, the stress state at the node is equal to a uniaxial load, while κ = 1 is equivalent to
a stress state where |σ′I | = |σ

′

III |which is equal to a full torsional loading on the node. Figure 9 shows
the histograms of all κ values calculated from the nodes of both FEA models, the coarse grain model
(random grain orientation) and the fine grain model (preferential grain orientation).
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The histograms indicate a continuous distribution of κ values across the entire range. No node in
the globally uniaxial loaded specimen has a real uniaxial stress state with κ = 0 but also none with
κ = 1. Although the κ distributions differ in dispersion, the median quantiles are similar. κ50% = 0.285
for the coarse grain model and κ50% = 0.293 for the fine grain model.

As described in Section 2.3, a preferential orientation of the grains was simulated in the fine-grained
FEA model (500 grains) in order to accommodate the corresponding observation at the tested material
described in Section 3.1. Hence, the rotation matrices were set up such that all grains align their <100>

direction at an angle of ϑ = 25 ◦ towards the specimen horizontal. This correlates approximately to
the grain alignment observed in the metallographic etchings (see Figure 5). The Euler angles ϕ1,ϕ2

however were assumed to be uniformly distributed as no further distribution information could be
derived from the metallographic examination. Figure 10 shows the stress and strain distribution in
z-direction computed for the fine-grained batch model for a globally applied strain of 0.25%.

Metals 2019, 9, x FOR PEER REVIEW 14 of 28 

The histograms indicate a continuous distribution of  values across the entire range. No node 

in the globally uniaxial loaded specimen has a real uniaxial stress state with 𝜅 = 0 but also none with 

𝜅 = 1. Although the 𝜅 distributions differ in dispersion, the median quantiles are similar. 𝜅50% =

0.285 for the coarse grain model and 𝜅50% = 0.293 for the fine grain model. 

As described in subsection 2.3, a preferential orientation of the grains was simulated in the fine-

grained FEA model (500 grains) in order to accommodate the corresponding observation at the tested 

material described in subsection 3.1. Hence, the rotation matrices were set up such that all grains 

align their <100> direction at an angle of 𝜗 = 25 ° towards the specimen horizontal. This correlates 

approximately to the grain alignment observed in the metallographic etchings (see Figure 5). The 

Euler angles 𝜑1, 𝜑2 however were assumed to be uniformly distributed as no further distribution 

information could be derived from the metallographic examination. Figure 10 shows the stress and 

strain distribution in z-direction computed for the fine-grained batch model for a globally applied 

strain of 0.25%. 

 

Figure 10. Stress and strain distribution in loading direction for the specimen model with 500 grains 

and directed orientation distribution at 0.25% total strain. An anisotropic elasticity model of IN 738 

LC at 850 °C was applied. 

It can be observed, that the surface distribution of stresses is generally more homogeneous than 

in the coarse-grained material (cf. Figure 7). Small maxima are located at the grain boundaries, as 

seen in area (a). Large areas of the surface show a stress in loading direction close to the average value 

of 200 MPa. Furthermore, the strains in loading direction are also very homogeneously distributed 

and close to the globally applied strain of 0.25%. Occasionally higher values occur in small areas at 

the grain boundaries as seen in (b). There, they can reach values up to 0.4%. The examination 

regarding the local stress state multiaxiality is also presented as a histogram for κ in Figure 8. 

Comparing the stress fields of both specimen simulations (coarse-grained, isotropically 

distributed grain orientation with 𝜗 = 𝑟𝑎𝑛𝑑. and fine-grained, preferential grain orientation, 𝜗 =

25°) it becomes apparent, that peak stress levels in the fine-grained model are comparable to the 

coarse-grained model. The explanation for both observations is discussed in subsection 4.1. A global 

Young’s modulus 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 is introduced for comparing the effective stiffness of the specimen models 

in loading direction. 

a) b)

𝐸𝑔𝑙𝑜𝑏𝑎𝑙 = 
𝜎𝑧𝑧,𝑛𝑜𝑑𝑒

𝜀𝑡

 (13) 

Figure 10. Stress and strain distribution in loading direction for the specimen model with 500 grains
and directed orientation distribution at 0.25% total strain. An anisotropic elasticity model of IN 738 LC
at 850 ◦C was applied.
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It can be observed, that the surface distribution of stresses is generally more homogeneous than in
the coarse-grained material (cf. Figure 7). Small maxima are located at the grain boundaries, as seen
in area (a). Large areas of the surface show a stress in loading direction close to the average value of
200 MPa. Furthermore, the strains in loading direction are also very homogeneously distributed and
close to the globally applied strain of 0.25%. Occasionally higher values occur in small areas at the
grain boundaries as seen in (b). There, they can reach values up to 0.4%. The examination regarding
the local stress state multiaxiality is also presented as a histogram for κ in Figure 8.

Comparing the stress fields of both specimen simulations (coarse-grained, isotropically distributed
grain orientation with ϑ = rand. and fine-grained, preferential grain orientation, ϑ = 25◦) it becomes
apparent, that peak stress levels in the fine-grained model are comparable to the coarse-grained model.
The explanation for both observations is discussed in Section 4.1. A global Young’s modulus Eglobal is
introduced for comparing the effective stiffness of the specimen models in loading direction.

Eglobal =
σzz,node

εt
(13)

Here, σzz,node is average of all nodal stresses in loading direction z (see coordinate system in
Figure 7.) of all simulated specimens and εt is the applied total strain. The following Table 3 shows the
results for Eglobal in dependence of the orientation distribution.

Table 3. Comparison of the determined global Young’s moduli from polycrystalline Finite Element
Analysis (FEA).

Value Random Orientation
ϑ=rand.

Preferential Orientation
ϑ=25◦ Shift

Eglobal 160 GPa 142 GPa −11%

Standard deviation ±1.5 GPa ±0.3 GPa -

The global Young’s modulus of the textured material model is 18 GPa lower than for the model
with randomly oriented grains.

3.4. Results of the Schmid-Factor Distribution Calculations

The resulting shear stresses at the slip systems τi, j were calculated for both FEA models, using
Equation (3). Figure 11 shows the distribution of the maximum resulting shear stresses max

i, j

(
τi, j

)
at

each node of the FEA models. The one with large, randomly orientated grains to the left and the one
with smaller, preferentially directed grains to the right. As in Section 3.3, the total applied strain was
0.25% and an anisotropic elasticity model of IN 738 LC at 850 ◦C was applied.

The spots marked with (a) clearly indicate local minima of the resulting shear stress distribution
in the slip systems of the grains. Here, a purely elastic behavior can be assumed because τres < τcrit..
These spots occur much more frequent at the surface of the textured specimen model. In addition,
the spot in area (b) shows an example of clearly increased shear stresses in the slip systems. There,
dislocation movement, i.e., local plastic deformation can be expected. These areas with significantly
increased shear stresses were not found at the surface of the fine-grained textured FEA model.
Most regions at the coarse-grained model show an average value of τrss ≈ 250 MPa, while the resolved
shear stresses of the fine-grained FEA model fluctuate between τrss ≈ (180–200) MPa. Values for
the critical resolved shear stresses of René80 are not known to the authors and would have to be
determined in further experiments. However, Nitz and Nembach [46] present values of the critical
resolved shear stress (crss) for different crystal orientations for the Ni-base superalloy Nimonic 105
(single-crystalline) under compression loads. The highest crss at 850 ◦C was measured with in [110]
direction (325 MPa), the crss for the [111]-orientation is slightly lower (319 MPa) and in [100] it was
measured to approximately 290 MPa. Österle, et al. showed for the Ni-base superalloy single crystal
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SC16 that besides octahedral slip, which is generally assumed in this paper, especially for grain
orientations near [111] cubic slip can occur at very high temperatures. The reason is a higher Schmid
factor of 0.46 occurring at the [011](100)-slip system compared to 0.293 at the [111](110) slip systems [47].
Due to the statistical rarity, as shown in [31], [111]-orientations with low corresponding octahedral
Schmid factors of 0.29 only occur with a probability of <0.5% and are therefore neglected in this work.
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Figure 11. Distribution of maximum resulting shear stress in the <111>{110} slip systems at total strain
of 0.25%. Coarse grain morphology and random orientation to the left and fine grain morphology with
preferential orientation (ϑ = 25◦) to the right.

Figure 12 shows the z-component of the stress (middle) and maximum resolved shear stress
(left) distribution for three grains of the coarse-grained FEA model (49 grains, random orientation).
Grain 1 and 2 show the previously discussed high stresses near the grain boundaries (area a). However,
the maximum resolved shear stresses at these nodes are low, due to the local grain orientation with
corresponding low values for the local Schmid factors. Grain 3 shows high stress and high corresponding
resulting shear stress. Therefore, a high local Schmid factor can be observed for this grain.
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Figure 12 also shows that the inhomogeneous stress field at the surface nodes leads to
an inhomogeneous shear stress distribution, i.e., pronounced shear stress gradients across the grain.
As presented in Section 3.3, the polycrystalline FEA simulations have confirmed the observed differences
in the global Young’s modulus between the two specimen models (randomly oriented grains and
preferentially oriented grains). It was also of interest whether a systematic effect of grain orientation
could be found for the crack initiation life. For that reason, the Schmid factor distributions for both
polycrystal realizations were computed with the two approaches explained in Section 2.4.

In the first approach two Schmid factor distributions FSF(m̃) are created by rotating a single crystal
lattice using Monte-Carlo sampled rotation matrices U(ϑ,ϕ1,ϕ2) from the isotropic distribution of
orientations and calculating the Schmid factor according to Equations (2)–(4). This corresponds to
the coarse-grained material batch. The effect of the preferential grain orientation in the fine grain
batch (see Section 3.1) was modelled by creating a distribution of rotation matrices U(ϕ1,ϕ2,ϑ = 25◦)
with fixed Euler angle ϑ to 25◦ while the other Euler angles ϕ1 and ϕ2 were uniformly distributed.
This corresponds to the observation of the <100> alignment to the specimen horizontal and the
assumption of no preferential orientation of the other crystal directions.

In the second approach, the Schmid factors were calculated from the nodal stress states in the three
different realizations (different grain rotations) of the two polycrystalline FEA models. The resulting
Schmid factor distribution densities of the two modeling approaches are compared to each other in
Figure 13.
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Figure 13. Comparison of the Schmid factor distribution density functions for a single crystal fSF(m̃)

and a polycrystal fSF(m̃mod) (from FEA). The random Euler angle ϑ (coarse grain batch) refers to
isotropically and ϑ = 25◦ (fine grain batch) refers to preferentially distributed grain orientations.
A uniaxial stress was applied to all models. Vertical lines indicate the median values.

Figure 13 visualizes that the Schmid factor distribution densities derived from polycrystalline FEA
simulations are less structured, resulting in lower median values than the densities from the first, purely
geometric approach (see Table 4). The distributions from nodal Schmid factors are also broadened,
especially towards the upper tail. Particularly the distribution for a randomly oriented single crystal at
purely uniaxial load has a concentration at high Schmid factors. Values larger than 0.5 are reached
because of the elastic anisotropy. This is discussed in more detail in Section 4.2. Figure 13 further
shows that the median values of the Schmid factor distributions are shifted to lower values for the
cases where a preferential orientation was modeled. The median shift for m̃50%

mod (FEA model approach)
is more significant.
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Table 4. Comparison of the median values of the Schmid factor distributions fSF(m̃) (geometric
approach) and fSF(m̃mod) (from FEA).

Schmid Factor Random Orientation
ϑ=random

Preferential Orientation
ϑ=25◦ Shift

m̃50% 0.512 0.493 −4%
m̃50%

mod 0.468 0.431 −8%

These differences will affect the calibration and prediction result presented in the following
Section 3.5.

3.5. Procedure of the LCF Life Calibration and Prediction

Three different probabilistic fatigue models were created and calibrated only with the LCF data of
the coarse-grained batch (random grain orientation). They are then used for prediction the LCF life
distribution of the fine-grained batch (preferential grain orientation). All values commonly use the
CMB model (2.5) as deterministic baseline for the median curve modeling but use different distributions.
They are listed Table 5 below.

Table 5. Comparison of crack initiation life distribution densities for the applied probabilistic crack
initiation model approaches.

Model Nr. Distribution Approach Distribution Density Visualization

1 Weibull distributed life fN(n|η, m)
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The aim of creating these three models is to evaluate their applicability for predicting the observed
differences in crack initiation life between the two tested batches. The latter two Schmid factor-based
models are taking the grain orientation into account. The applicability of each model is tested by
visual comparison of calibration and prediction curves, and the associated negative log-Likelihood.
The life differences of the strain-Wöhler curves are quantified at a strain range ∆εcomp = 0.6%, which is
common for all three analyses. Equivalently to the Ramberg-Osgood model calibration, all CMB
model calibrations use fixed exponents b and c as not enough test points in the plastic deformation
regime exist to confidently calibrate a slope for the elastic-plastic branch c which in return largely
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influences the slope b of the elastic branch when calibrated. Hence, Siemens proprietary values for b
and c for René80 are used here as well and only the cyclic fatigue strength coefficient σ′f and the cyclic
fatigue ductility coefficient ε′f are calibrated with the coarse-grained batch data and the same values
are used for predicting the fine-grained batch data. Furthermore, all calibrations and predictions were
conducted using the respective average value for the Young’s modulus of each batch. During the
calibration of the model CMB with Weibull distribution, the Weibull shape value m is also calibrated at
the test data. The presented strain-Wöhler curves are drawn by interpolating the median values of the
respective LCF life distribution along the strain axis.

Prediction of the Wöhler Curve from a Weibull Distribution

The strain-life Wöhler plot in Figure 14 contains all LCF data from the present work and the LCF
data set from Seibel [29]. As mentioned in Section 3.2, the data of the coarse-grained batch generated by
Engel [25,31] and the presented data of Seibel [29] show comparable fatigue behavior due to the similar
microstructure and grain size. Moreover, the grains in both material batches (Seibel and Engel-coarse)
seemed to be oriented randomly, according to the isotropic distribution of orientations. Since the data
set from Seibel contains many more values, only those are used for calibrating the probabilistic LCF
models. The other coarse grain batch test points from Engel [25,31] are therefore not shown in the
further strain-life Wöhler plots. Figure 14 shows the test points as well as the calibrated and predicted
strain Wöhler curves given by the median of the Weibull LCF life distribution.
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The CMB model was calibrated with the coarse-grained batch test data. The LCF life distributions
are qualitatively equal (relative dispersion) for both data sets since the Weibull shape value calibrated
with the coarse grain batch data set is also used for the prediction curve of the fine grain batch.
The difference between fit and prediction curve results only from the different values of global Young’s
modulus. The lower value of E f ine compared to Ecoarse (Ecoarse/E f ine ≈ 1.11) causes a positive shift of
the fine batch prediction curve in ∆εa direction and effectively results in shift towards higher LCF
life by a factor of 2.11 at ∆εcomp. Hence, the Weibull model explains the increased crack initiation life
observed in the strain controlled LCF experiments only with the decreased stiffness of the fine grain
batch material (preferential grain orientation).

N50%
f ine ≈ 2.11·N50%

coarse
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Prediction of the Wöhler Curve from the Single Grain Schmid Factor Distribution

Figure 15 shows the strain Wöhler curves given by the median values of the LCF life distributions
FN(n(m̃)) calculated according to Equations (9) and (10) from the Schmid factor distributions FSF(m̃).
One was computed for random single grain orientation (for coarse batch) and the other for preferential
single grain orientation (for fine batch) as described in Section 3.4.Metals 2019, 9, 813 19 of 28 
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The CMB model was also calibrated only with the coarse batch test data. The lower E value of
the fine grain batch causes the prediction to shift in positive ∆εa direction. Additionally, the effect of
the grain orientation becomes apparent. For the modeled preferential orientation, the median value
of the Schmid factor distribution m̃50% is 4% lower than for an entirely random grain orientation
(see Figure 13). This is visible as a second, positive shift of the life distribution FN(n(m̃)). Altogether,
the total effective life shift factor between coarse and fine batch median is 2.53 at ∆εcomp. It is already
apparent that both curves are located too far left of the test point clouds. The reason for that is the
shape of the underlying distribution which is discussed in more detail in Section 4.3.

N50%
f ine ≈ 2.53·N50%

coarse

Prediction of the Wöhler Curve from the Modified Schmid factor Distribution

Figure 16 shows the strain Wöhler curves given by the median values of the LCF life distributions
FN(n(m̃mod)) calculated according to Equations (9) and (10) from the modified Schmid factor
distributions FSF(m̃mod) derived from the coarse FEA model (random grain orientation) and fine
FEA model (preferential grain orientation) described in the Sections 3.3 and 3.4.

As before, the CMB model was calibrated with the coarse batch test data. The difference between
fit and prediction curve originates on one hand from the different values of global Young’s modulus
between both batches and on the other hand significantly from the different median values m̃50%

mod of the
modified Schmid factor distributions FSF(m̃mod). The Schmid factor distribution from the fine-grain
FEA model where a preferential orientation of <100> aligning with ϑ = 25◦ to the specimen horizontal,
the median value of the Schmid factor distribution m̃50%

mod is 8% lower than for an entirely random grain
orientation (see Figure 13). The total median life is shifted by a factor of 3.6 at ∆εcomp.

N50%
f ine ≈ 3.6·N50%

coarse
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4. Discussion

4.1. Influence of the Grain Orientation Distribution on the Mechanical Properties

The tested René80 batches were different with respect to grain size and grain orientation
distribution. It was observed that specimens of the fine-grained material batch which had a preferential
grain orientation (see Section 3.1) showed lower global Young’s moduli (in loading direction) in
average. An equivalent observation was made for the polycrystalline FEA models whose grain
orientations were sampled according to the assumed distributions in the two batches (isotropically
distributed orientations for the coarse-grained batch and preferentially oriented for the fine-grained
batch). Both orientation distribution density functions (ODF) are visualized as inverse pole plot in
the left column of Figure 17. The right column shows the histograms of local stiffnesses in z-direction
calculated by Equation (13). For both orientation cases, σzz was once derived from the respective
polycrystalline specimen FEA results and once from a single crystal Monte-Carlo-simulation. For these,
a single crystal with the elastic anisotropy of IN 738 LC at 850 ◦C was rotated according to the respective
ODF (100,000 times) and an isotropic strain load was applied to it.

The global Young’s moduli averaged from nodal FEA stresses (z-components only) have a difference
of 18 GPa between the batch with (coarse) and without preferential grain orientation (fine). The ratio
Ecoarse/E f ine = 1.13 of the Young’s moduli averaged from FEA results is slightly larger for the
experimental results where Ecoarse/E f ine = 1.11. Although also the absolute values of the tested Young’s
moduli are slightly lower than the averaged computed values the comparison of the ratios indicates
a good qualitative consistency. That is a satisfying outcome as it confirms the applicability of the
elasticity model from IN 738 LC for René80 with respect to the anisotropies at 850 ◦C. Nevertheless,
the uncertainties in the determination of the Young’s moduli must not be neglected. The computed
average value is based on FEA solutions considering just three different grain orientation realizations
at one grain morphology. The simulated grain orientation distributions are also an approximation
derived from the results of a limited microstructure evaluation. Particularly approving the assumption
of uniformly distributed Euler angles ϕ1,ϕ2 would need further investigations. Moreover, the scatter
in experimentally determined Young’s moduli is significant, particularly for large grain realizations.
Only the grains between the extensometer tips (distance of 12 mm) are influencing on the measurement
results of Young’s moduli. As investigations in [31] reveal, the measured Young’s moduli strongly
depend on the extensometer position. Different measurements positions along the gauge length
lead to results in a window of ±18 GPa for a coarse-grained specimen. Further polycrystalline FEA
simulations in combination with a virtual 12 mm extensometer revealed differences of up to 20 GPa
between the Young’s modulus derived from this virtual extensometer strain and the globally averaged
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Young’s modulus considering the entire volume. The reason for that is the large stiffness anisotropy of
the René80 lattice. Many grains are required to homogenize the materials global stiffness (Young’s
modulus) over a certain volume of interest [48]. Due to the lower standard deviation of local stiffnesses
in the case of preferentially oriented grains (see green histogram in Figure 17b), homogenization and
quasi-isotropic mechanical behavior is more pronounced at lower grain numbers already.
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Figure 17. Orientation distribution functions and resulting local stiffness distributions (z-direction).
(a) Isotropically distributed grain orientation: Resulting local stiffness distribution from a single crystal
Monte-Carlo simulation (Esg, cyan) and from polycrystalline FEA results (EFEA, violet). (b) Preferential
grain orientations: Resulting local stiffness distribution from a single crystal Monte-Carlo simulation
(Esg, gray) and from polycrystalline FEA results (EFEA, green).

A Monte-Carlo simulation on different orientations of a single-grain was conducted to study
the pure effect of orientation at the stiffness distributions. Figure 17a shows the resulting z-stiffness
distribution (in z-direction) of a single crystal with random orientation (as for the coarse-grained
material). The values vary between 100–260 GPa because orientations leading to low and high stiffness
in loading direction are equally likely. The equivalent distribution of local stiffnesses from FEA in
comparison is less dispersed but centered around a similar average. The single grain z-stiffness
distribution in subfigure Figure 17b) however shows a very different result. The ODF was constructed
as described in Section 3.5. This results in a slim peak band in the ODF with values > 2 (left column).
Hence, also the distribution of z-stiffness from all single grain rotations is hardly dispersed and
varies only between 126–129 GPa. Especially orientations near [111], which correlate to high stiffness
and orientations close to [001], with the lowest stiffness are unlikely for this orientation distribution.
The equivalent distribution of local stiffnesses from FEA in is now much more dispersed, has a higher
average and resembles a normal distribution. The latter is also reflected in the stress fields shown in
Figure 7; Figure 10 (Section 3.3). Despite discriminated contact stresses (gray) at the top and bottom
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surface comparable surface stresses are observable in Figure 7 at the coarse-grained model and at the
fine-grained model in Figure 10. All boundary conditions (material law, temperature, applied strain
load) were identical. The mutual mechanical grain interaction which is considered in the polycrystalline
FEA leads to different multiaxial stress tensors across the specimen and even within single grains
(Figure 8). Due to the high elastic anisotropy of the material (anisotropy up to a factor of 3 [31]),
agglomerations of grains with different stiffnesses in load direction undergo strain restrictions near the
grain boundaries, which result in the observed inhomogeneities and high peak stresses. These peak
stresses emerging from grain interactions are the reason why the resulting local stiffnesses from the
FEA model with preferential grain orientation are so different from the single grain simulation.

Besides the elastic anisotropy and the related consequences, which were observed in the
experiments and FEA simulations, also a difference in the elastic-plastic strength of the examined
material batches was observed. Calibration of the Ramberg-Osgood models returned cyclic strength
coefficients with K′coarse/K′f ine ≈ 1.07. At first sight, this contradicts the typically occurring hardening
effects of grain refinement, known as Hall-Petch relationship [44]. However, the difference in average
grain size (dcoarse = 3 mm, d f ine = 1.3 mm) is not significant for such effects and the grain orientation
distribution is more likely to play a role, similarly as for the elasticity properties. The onset of plastic
deformation is largely determined by the critical resolved shear stress τcrss. Nitz [46] and Österle [47]
presented orientation dependent values for τcrss of Ni-base superalloys at high temperature but the
investigated materials were not sufficiently comparable to René80. Therefore, no simulation study
using an orientation-dependent elastic-plastic material model could be conducted equivalently to the
procedure presented for the elastic mechanical behavior.

4.2. Influence of Grain Orientation Distribution on the Fatigue Behavior

All Schmid factor distributions shown Figure 13 have non-zero likelihood values m̃ > 0.5, even for
the simulation of a single grain under uniaxial stress. The reason for that is definition (2) identifying
the maximum resolved shear stress at the slip systems as Schmid factor combined with anisotropic
elasticity. Uniaxial external stresses can then translate into multiaxial stress states in the crystal leading
to quotients τi, j/σvM > 0.5. Note, that σvM is always calculated from the external stress tensor. Consider
the following example case:

ϕ1 = 304.9◦, ϕ2 = 341.6◦, ϑ = 112.0◦ and
→
σ ext = (1, 0, 0, 0, 0, 0)T in Voigt notation

In the case of isotropic elasticity, the rotated stress tensor deviator σ′
iso
(U) results to

→
σ
′

iso(U) = (0.076, 0.172,−0.248, 0.208,−0.187,−0.454)T (Voigt notation)

→
σ
′

iso(U) is the deviator of a uniaxial stress state (κ = 0) and leads to m̃ = 0.43. Considering the
anisotropic elasticity of IN738 LC at 850 ◦C however yields to the multiaxial stress state deviator

→
σ
′

aniso(U) = (0.044, 0.099,−0.143, 0.368,−0.331,−0.805)T

The multiaxial stress state
→
σ aniso(U) in the material yields a Schmid factor m̃ = 0.56. In both cases,

the same slip system (1–11) [011] is activated. Furthermore the Schmid factor distributions shown in
Figure 13 differ significantly for the two modeling approaches polycrystalline FEA and single grain
Monte-Carlo simulation (MCS). The higher dispersion of the distributions FSF(m̃mod) calculated from
nodal FEA stress tensors is attributed to the effect of grain interactions. The thereof created multiaxial
stress states create the observed, broadened Schmid factor distributions. The major difference to those
created from single grain MCS, the shallow, not steeply descending right tail, is consistent with the
studies of Moch [30]. There, it was shown that the steep right tail of the Schmid factor distribution for
a single grain under uniaxial load decreases and flattens with increasing stress multiaxiality. The steep
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right tail of FSF(m̃) leads to a steep left tail of FN(n(m̃)) since FN(n(m̃)) = 1− FSF(m̃) due to the inverse
proportionality of shear stresses and life cycles (compare Figure 13 and Table 5).

Furthermore, the inhomogeneous resolved shear stress distributions exemplarily shown in
Figures 11 and 12 lead to different probabilities of crack initiation within the grains in a polycrystal
compound. Hence, the polycrystalline FEA based modelling approach even indicates the location
within a grain while the E·m model only determines which grain shows the highest shear stresses
under a given stress condition.

Even more important, the determined grain alignment in the fine-grained batch (preferential
orientation distribution) also aligns the slip systems such that lower median values result for the
distributions FSF(m̃mod) and FSF(m̃). Therefore, higher local stresses or more load cycles are in average
required to trigger shear glide with the same intensity as for random grain orientation. Additionally,
it was explained how the observed preferential grain orientation also lead to lower global Young’s
moduli. That again decreases the resolved shear stress at the slip systems and retards shear glide
and PSB cracking. Both effects are combined in the case of strain-controlled LCF testing and the
subsequent strain-life Wöhler curve representation of the data points. In a stress-life representation
only the decreased probability of high Schmid factors obviously takes effect. An example is shown in
Section 4.3. The grain size does not have an influence on the Schmid factor FSF(m̃mod) distribution and
the thereof derived life distribution.

As already mentioned in Section 4.1, the simulated grain orientation distributions are
approximations motivated by metallographic analyses of few specimen cuts. Both, isotropic distribution
of orientations as well as the full texturing with fixed Euler angle ϑ = 25◦ are rather special cases of
a real material.

4.3. Comparison of Fit and Prediction Quality of Probabilistic Models

Table 6 shows the average negative Log-Likelihood (nLL) per test point for all probabilistic models.
The nLL was chosen as an appropriate coefficient of determination since the fitted relationship is
non-linear and the residual distribution is not normal.

Table 6. Values of negative Log-Likelihood for the different distribution approaches.

Model Combination:
Scale Model + Life Distribution

Neg. Log-Likelihood per
Data Point at Calibration

Neg. Log-Likelihood per
Data Point at Prediction

CMB + Weibull distribution 10.7 8.7

CMB + Schmid factor-corrected life distribution 0.87 12.38

CMB + modified Schmid factor-corrected life distribution 0.57 0.61

Since low negative Log-Likelihood values in Table 6 indicate good accordance of the test data
with the estimated distribution it becomes apparent that the Weibull distribution is not well suited
to describe the statistical behavior of the tested LCF lives compared to the microstructure-based
approaches. Out of those, the modified Schmid factor-corrected life distribution performs significantly
better in predicting the LCF test points of the fine grain material batch. The comparison of the nLL
values supports the visual impression of Figure 16 where the prediction curve goes through the test
point cloud splitting it approximately into halves.

It was not expected that this could be achieved using the single grain Schmid factor-corrected
life distribution FN(n(m̃)) since the underlying simulation comprises the strong simplification of no
grain interaction and the same homogeneous stress state at all grains. Although the calibration curve
for this case has low nLL, Figure 15 shows that its position is dominated by the position of the far-left
curve point at ∆εa = 0.5%. The reason for that is the sharp left flank of the distribution density
which is zero, allowing no point before the first visible ascent. But not only the missing consideration
of grain interaction in FN(n(m̃)) is a simplification. FSF(m̃) is the cumulative distribution function
for the probability P(SF ≤ m̃) of for a single grain. However, there are many grains in the gauge
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section of the specimen in between the extensometer tips. Hence, the maximum value distribution
for m̃ in the observed section would have to be calculated. It combines the probabilities of all grains
for reaching a Schmid factor SF ≤ m̃. Gottschalk et al. [28] have shown that such an approach
assuming independently distributed grain orientations at uniaxial stress leads to distributions with
unrealistically small scatter bands. If such an approach would be followed, the nLL values would be∞
for the given data set. That is why further grain interaction and dependencies have to be taken into
account, e.g., with a crack percolation model [28,30]. The modified Schmid factor distribution from
polycrystalline FEA solutions is a step towards that as it considers the intergranular dependencies of
the local stress states but is also computationally expensive.

Comparing the Weibull LCF life distribution and the modified Schmid factor based LCF life
distribution it becomes apparent that both are very different. Specifically, the lower probability tails
which are important for reliable design of components, e.g., hot gas parts of gas turbines in the case of
René80, differ largely. The modified Schmid factor based Ni distribution implicates that there is a safe
life cycle range with zero probability of crack initiation from PSB formation. Of course, care must
be taken, and further evaluations and tests must be conducted before transferring such outcomes to
component design. Note in this context that considerable efforts are necessary to achieve a sufficiently
high number of LCF tests to verify the distribution tail shape. Additionally, LCF tests are always
subject to experimental uncertainties, such as limited crack initiation detection accuracy [49].

All in all, the microstructure-based modeling approach shows that there is potential for increasing
a parts time in service at the same risk for crack initiation at persistent slip bands. Note, that the
approach presented here is not suitable for quantitative design assessments since it does not utilize the
local approach for LCF life evaluation and therefore does not consider the statistical size effect such as
the local probabilistic model for LCF which is presented and validated in [19,20,22,23].

Furthermore, it was observed that a preferential direction in the polycrystal grain orientation has
a beneficial impact on the LCF life. The previously shown E-N-plots visualize two root causes. On the
one hand, the material with preferential grain orientation has a lower stiffness and therefore, the total
stress at the grains and hence slip systems is lower compared to the material with random grain
orientation. On the other hand, also the distribution of the Schmid factors has a lower expectation value
than in the case of randomly oriented grains. That itself, again results in lower resolved shear stresses at
the slip systems in average for the material with preferential grain orientation. Both effects are present
in strain controlled LCF experiments but only the latter plays a role for engineering components which
are typically under a certain force load. Figure 18 shows the stress Wöhler curve predictions for both
material batches using the modified Schmid factor concept.
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5. Conclusions

Probabilistic LCF life models for the high temperature fatigue behavior of the Ni-base superalloy
René80 (CC) were derived. The models are based on the statistical distributions of resulting shear
stress, respectively Schmid factors, depending on the grain orientation distribution. One the one hand
geometrical concepts, Monte-Carlo sampling of a single crystal orientations under uniaxial load and
resolved shear stress evaluations were carried out. One the other hand polycrystalline FEA models were
computed for different grain morphologies, i.e., randomly oriented coarse and preferentially oriented
fine grains. It turned out that grain interaction has a crucial influence on the local stress and strain
states and thus the shear stresses in the slip systems. The fine-grained material batch with a preferential
grain orientation showed higher crack initiation life in the experiment. The respective simulations
revealed lower Schmid factors and lower Young’s modulus in average. Both effects combined lead to
higher crack initiation life in the strain-controlled tests compared to the coarse-grained material with
random grain orientation. The Schmid factor based LCF life model was calibrated with test data from
a batch with isotropic grain orientation distribution (random) using a Maximum-Likelihood approach.
The thus calibrated model was then used to predict the LCF life for the other material batch with
the preferential grain orientation. The LCF life predictions based on the Schmid factor distributions
derived from FEA show the best coincidence with the experimentally determined lifetimes and is
superior to the well-established Weibull-approach and the Schmid factor distributions calculated from
geometric considerations. However, it has the drawback of not covering the statistical size effect
and being computationally expensive. That makes it difficult for direct fatigue-risk assessment tool
integration, e.g., as an FEA post-processor.

While the conducted studies shed light on the elasticity anisotropy of René80 and comparable
materials like IN 738 LC, no anisotropic plasticity models were available in the literature. Hence,
the lower yield strength of the preferentially oriented material batch could not be explained.

The presented work covers two cases of grain orientation distribution. It is favorable to conduct
validation studies with further, different, more precisely determined orientation distributions. But it is
already possible to draw conclusions from few polycrystalline FEA simulations and in certain cases
extrapolate the influence of preferential grain orientations on the fatigue behavior. It is of course also
desirable to study more component relevant geometry and loading conditions and their effect on the
modified Schmid factor distribution such as notches or torsional loads.
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