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Abstract 

In this study, we present an optimization scheme for the resonator distribution in 

rainbow metamaterials that are constitutive of a Π-shaped beam with parallel plate 

insertions and two sets of spatially varying cantilever-mass resonators. To improve the 

vibration attenuation of the rainbow metamaterials at frequencies of interest, two 

optimization strategies are proposed, aiming at minimizing the maximum and average 

receptance values respectively. Objective functions for both single and multiple 

frequency ranges optimization are set up with the frequency response functions 

predicted by an analytical model. The masses of the two sets of resonators clamped at 

different side walls of the Π-shaped beams constitute the set of design variables. 

Optimization functions are solved out with the employment of the Genetic Algorithm 

method. Dedicate case studies are subsequently conducted to show the feasibility of the 

proposed scheme. The receptance values are found greatly reduced within the single 

and multiple optimization frequency ranges. Moreover, it is found that, the maximum 
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value based objective function could lead to optimal structures with wider bandgaps but 

weaker vibration attenuation, while the optimal structure by the average value based 

objective function has the opposing trend with narrower bandgaps but enhanced 

vibration attenuation. Objective strategies should be selected according to the 

application requirements.   
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1. Introduction 

Metamaterials are artificial constructions that exhibit unique effective properties 

which cannot be found from conventional materials in nature. In the past decades, 

attention was first paid to metamaterials to deal with electromagnetic waves [1-4]. 

Electromagnetic metamaterials possess special negative effective properties such as 

negative permeability [5] and negative permittivity [6]. Analogically, acoustic/elastic 

metamaterials tailored to manipulate mechanical waves were developed. The 

acoustic/elastic metamaterials are composed of fundamental building components and 

additional mechanical oscillators. Owing to the resonance of oscillators, acoustic/elastic 

waves inside the acoustic/elastic metamaterials can be altered and favorable properties 

such as negative effective mass, negative elastic modulus and subwavelength bandgaps 

emerge.  

The very first acoustic metamaterial was realized by Liu et al. [7]. They fabricated 

3D sonic crystals with periodically arranged spheres that consisted of hard cores and 

soft coatings. Bandgaps as well as negative effective elastic constants were measured 

at frequencies where the lattice dimensions were two orders of magnitude smaller than 

the wavelength. Since then, plenty of acoustic/elastic metamaterials were proposed with 

various local resonant structures and negative properties. Metamaterials with negative 

mass/density were most widely mentioned in literature. Yao et al. [8, 9], Gao et al.[10] 

and Huang et al. [11, 12] investigated negative mass metamaterial structures with 

idealized mass-spring systems as resonators. Cselyuszka et al. [13], Lee et al. [14] and 

Yang et al. [15] presented metamaterials containing elastic membranes that had 

negative mass/density. With regard to negative elastic modulus metamaterials, Fang et 

al. [16], Ding et al. [17] and Lee et al. [18] created ducts or tubes with Helmholtz 

resonators which exhibited negative elastic modulus. Except for single negativity, a few 



researchers studied metamaterials with double negative properties. Liu et al. [19] and 

Wang [20] developed metamaterials with simultaneous negative mass and negative 

elastic modulus by introducing springs and rigid bodies with both translational and 

rotational motions. Ding et al. [21] produced double negativity metamaterials with two 

different kinds of spheres embedded in epoxy matrix. Lee et al. [22] investigated double 

negative metamaterials with the combination of interspaced membranes and side holes. 

In addition, given the presence of viscoelastic components, dissipative elastic/acoustic 

metamaterials were also studied extensively. Manimala and Sun [23] developed 

dissipative mass-in-mass lattice structures containing dashpots with viscous damping. 

Wang et al. [24], Lewinska et al. [25] and Krushynska et al. [26] investigated 

dissipative metamaterials that consisted of dense metallic bars with viscoelastic 

coatings. Xiao et al. [27] analyzed the influences of damped mass-spring absorbers on 

frequency response of laminated acoustic metamaterials. Damping was consequently 

found through research to reduce peak attenuation but broaden spectrum attenuation. 

Furthermore, in an effort to develop real-world metamaterials for industrial applications, 

many researchers focused on metamaterials consisting of engineering structures and 

local resonators. For typical instance, engineering beams or plates combined with 

resonators received much attention. Zhang et al. [28] and Nouh et al. [29] presented 

metamaterial beams or plates with embedded membrane type resonators. Sugino et al. 

[30], Yu et al. [31] and Liu et al. [32] investigated the flexural wave attenuation of 

Euler-Bernoulli beams with local resonators. Li et al. [33], Zhang et al. [34] and Xiao 

et al. [35] created metamaterials coupling thin plates with different periodically 

attached resonators.  

Apart from a single set of resonators, metamaterials with multiple resonators in a 

single unit cell were also explored by a limited number of researchers. Peng et al. [36], 



Pai et al. [37], Wang et al. [38] and Zhu et al. [39] developed metamaterial structures 

with multiple mass-spring subsystems. Huang and Sun [40] and Chen et al. [41] 

investigated metamaterial lattice structures which contained two mass-in-mass systems 

in each unit. Li et al. [42-45] and Xiao et al. [27] designed and optimized various 

metamaterials with multi-resonators for impact force mitigation. The multiple 

resonators are found to generate stopbands within multi-frequency ranges.  

Most of the proposed metamaterials are periodic structures, either single or multiple 

resonators were periodically distributed in the metamaterials. Even though the periodic 

metamaterials can obtain good vibration attenuation within bandgap regions, the width 

of bandgaps is still narrow for practical applications. Achievement of broad low 

frequency vibration attenuation remains a challenge for the designing of metamaterials. 

Sun et al. [46] and Pai [47] investigated nonperiodic metamaterial bars or beams with 

spatially varying resonators as an attempt to enlarge bandgaps. It was found that 

metamaterials could have better vibration attenuation with properly designed 

nonperiodic resonators. These design procedures have, however, mainly been based on 

trial and error, which is unlikely to give optimal designs and possibly leaves large 

design space unexplored. 

We hereby present the first attempt to optimize rainbow structures for maximum 

noise and vibration absorption within targeted frequency ranges. We first put forward 

design approaches for the distributions of resonators in nonperiodic metamaterials. 

These are composed of Π-shaped beams partitioned by plate insertions and spatially 

varying cantilever mass resonators. The main optimization objective is to maximize the 

vibration attenuation at frequencies of interest by changing the distributions of rainbow-

shaped resonators. To realize the objective, we devise two optimization strategies, 

including minimizing the maximum and average receptance values at prescribed single 



and multi-frequency ranges. Two optimization objective functions are set up based on 

Frequency Response Functions (FRFs) estimated by an analytical model. Compared 

with Finite Element (FE) models that are widely applied for the modelling of 

metamaterials, the analytical model can provide much faster prediction of the FRFs of 

rainbow metamaterials. Given the FRFs calculation process would be called a great 

number of times during the optimization process, the analytical model is the only 

feasible option for the optimization to converge.  

A Genetic Algorithm (GA) method is adopted to solve the aforementioned 

optimization objective functions. GA searches for the optimal results based on natural 

selection and evolutionary biology theory. Different from other optimization methods, 

such as gradient-based optimization methods that rely on the derivative calculation and 

tend to find local optimization results, GA has the ability of finding out reasonable 

global near-optimal results quickly rather than finding perfect global optimal results 

that are only partly better with much long time consumed, therefore GA is more suitable 

for multimodal function models and objectives. In fact, GA has been applied to the 

optimization of metamaterials by a few researchers. For instance, Dong et al. [48, 49] 

and Gazonas et al. [50] presented topology optimization of two-dimensional periodic 

lattice metamaterials with GA method. The present optimization objective functions are 

typically nonlinear multi-model functions, thus can be ideally solved by the 

employment of GA method.  

The paper is structured as follows. Section 2 describes the analytical model of the 

FRFs of the rainbow metamaterials and the experimental validation of the analytical 

model. In Section 3 two objective functions are set up considering maximum and 

average receptance values within the prescribed frequency ranges. After that, the GA 

method is introduced in Section 4 to solve the objective functions. Optimization 



examples are proposed in Section 5 to show the feasibility of the employed approaches. 

Finally, the main conclusions and further perspectives are summarized in Section 6.  

2. Analytical predictions of the FRFs of rainbow metamaterials  

An analytical model is first developed in this section to estimate the FRFs of the 

proposed metamaterials. The analytical model is later verified by experimental results. 

Optimization objective functions will be set up based on the proposed analytical model 

in the following sections.  

The metamaterial is composed of a Π-shaped beam partitioned by parallel plate 

insertions as backbones and cantilever-mass resonators as shown Figs. 1(a)-(c). Two 

cantilever-mass resonators are connected to the side walls of the Π-shaped beam inside 

each substructure. The cantilever-mass resonators show spatial variation along the x-

axis of the Π-shaped beam. The structure can exhibit single or multi-frequency 

bandgaps depending on whether the two sets of resonators attached to different side 

walls are symmetric. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1 Schematic diagram of the rainbow metamaterial (a) side view, (b) global 

view, (c) top view 



Based on the theory of elasticity, displacements of the thn and  1 thn segments 

of the Π-shaped beam as shown in Fig. 1(b) can be written as  

 
       j j

, , , ,l ,le e e en n n nk x x k x x k x x k x x

n l n l n l n nW    
     
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        ,  (4) 

where j  is the imaginary unit, ,i lW  and  , 1,2 ,...i rW i   are the displacements 

before and after the resonators of the thi  segments respectively,   1,2,...ix i   is the 

position of the thi  plate insertion in x  direction,  
1/4

/ zk A EI  , A  and zI  

are the cross section area and second moment of area of the Π-shaped beam respectively,

  is the density of the structure, ( )0 1 jE E= +  , 0E  and   are the Young’s 

modulus and loss factor of the material respectively. Moreover, dL   is the distance 

between parallel plate insertions and   1,2,...i dp L i   represents the locations of 

resonators inside the thi segment of the metamaterial beam.  

Given the continuities of displacement, slope, bending moment and shearing force 

inside the segment, displacements before and after the resonators of the thn  segment 

are related by 
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n n d n n d
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   

   

   



 

 
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, (5) 

where   1,2,...iF i   is the interaction force between the two resonators and the Π-

shaped beam inside the thi  segment. The calculation process of iF  is given in detail  



within the Appendix.  

Substituting Eqs. (1) and (2) into (5), arrives 

 
T1

, , , , , ,

T
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where the matrices cR , nR  and ,n lΛ  are given as 
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

  

. (7) 

Besides, the parallel plate insertions can be modeled as added mass to the Π-shaped 

beam. Thus, considering the continuities of displacement, slope and equilibrium 

conditions of the plate insertions, the displacement relationship between the  and 

segments can be written as  
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 
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, (8) 

where fm  and fJ  are the mass and moment of inertia of the plate insertions.  

Substituting Eqs. (2) and (3) into Eq. (8), yields, 

 
T 1
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T
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where R , U  are  
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Combing Eq. (6) with (9), the displacement transfer matrix between two segments 

is derived as 

 

T T

1, 1, 1, 1, , , , ,

T

-1 1 1, 1, 1, 1,

, , , , , ,

= , , ,
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T
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,  (11) 

where 
1

, ,

1

n r n ln c n

 T R R ΛU RΛ . 

Assuming a finite rainbow metamaterial is excited at one end by a force F , the 

equilibrium equations at the two ends are written as  

 

2
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2
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0
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 

 

 
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, (12) 

where q  is the number of segments of the Π-shaped beam, = dL qL  is the length of 

the metamaterial beam. According to Eqs. (9), (11) and (12), the displacement at the 

end of the metamaterial beam can be derived as 

        j 1 1 j 1 1
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
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where  
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.(14) 

Finally, the receptance function of the rainbow metamaterial can be calculated by 

 
,

1020log
q r x L

ec

W
R

F

 . (15) 

The analytical model is validated by comparison with experimental results below. 

Three rainbow metamaterials are manufactured by Additive Manufacturing (AM) 

technology with Nylon-12 powder. The Nylon-12 powder is sintered layer by layer to 

predesigned shapes with the laser as a power source, the manufacturing process is 

known as Selective Laser Sintering (SLS) method. SLS is one of the most popular AM 

technologies. Compared with other popular AM technologies such as Stereolithography 

and Fused Deposition Modeling, the SLS method requires no molds or additional 

supporting materials during the printing process, hence highly suitable for the 

fabrication of complex and delicate objects. The density of the printed structures is 930 

kg/m3, average flexural modulus is 1.8 GPa, Poisson’s ratio is 0.3, and the loss factor 

is 0.03. The density of the samples was obtained by the ratio of mass to volume, while 

the flexural modulus was determined by following the standard three-point bending 

method with standard specimens printed by the same material and SLS method. The 

geometrical parameters of the samples are listed in Table 1. 

Table 1 Geometrical parameters of the printed rainbow metamaterials 

Π-shaped beam and plate insertions 



Height 10 mmdH    

Width 51 mmdw   

Side wall thickness 2 mmdt   

Backplate thickness 5 mmdb   

Plate insertion thickness 2 mmwt   

Distance between plate insertion 15 mmdL   

Number of segments 17q    

Total length of metamaterial beams 0.255 mL    

 

Cantilever beam 

Sample 1#, Sample 2# 

Height 
1 2 1.4 mms sh h   

Width 1 2 1.9 mms sb b   

Length 1 2 21.2 mms sl l   

Sample 3# 

Height 1 21.4 mm, 2.3 mms sh h   

Width 1 21.9 mm,  2.3 mms sb b   

Length 1 2 21.2 mms sl l   

 

The FRF measuring system for the printed metamaterial beams is schematically 

illustrated in Fig. 2. The printed structures are excited at one end by a mechanical shaker 

(Modal Shop 2060E) as shown in Fig. 3. A signal source is first generated by the 

computer, which goes through the junction box (Polytec VIB-E-400) and is amplified 

later (Modal Shop 2050E09 amplifier). The signal source determines the excitation 

frequency, amplitude and waveform of the input force of the shaker. An impedance head 

(PCB 288D01) is attached to the excitation point of the structures to measure the actual 

input forces. The displacements of the other end of metamaterial beam are measured by 

a Doppler laser vibrometer (Polytec PDV-100), and are later sent to the junction box 

and the computer. When the computer receives information of the actual excitation 



force and structure displacements, FRFs can be computed.  

 

Fig. 2 Schematic diagram of the FRFs testing system 

 

Fig. 3 Experimental setup of the tested beam and mechanical shaker 

Comparison between analytical and experimental results are shown in Figs. 4(a)-

(c). The resonator distributions of the metamaterial beams are also shown in the Figs. 

4(a)-(c). It is noted that 1im  and 2im   1,2,...,i q represent the mass of the two sets of 

resonators attached at different side walls of the Π-shaped beam. The reference mass 



rm  denotes unit mass of the Π-shaped beam with parallel plate insertions, as 

 = /rm M q , (16) 

where M  is the total mass of the metamaterial beam.  

It can be seen from Figs. 4(a)-(c) that the analytical results agree well with 

experimental results. Sample 1# and Sample 2# have symmetric resonators, thus single 

bandgap can be seen from both experimental and analytical curves in Figs. 4(a)-(b). 

Sample 3# has non-symmetric resonators, two bandgaps appear in both the analytical 

and experimental results as shown in Fig. 4(c). The differences between the 

experimental and analytical results are mainly the bandgap frequencies, which might 

be caused by the uncertainties of experimental conditions and 3D manufacturing 

process. Especially, the dimension and physical parameter variabilities introduced by 

the 3D printing process are found to have greatly influenced the FRFs of rainbow 

metamaterial [51], which will be explored specifically in further work.  

 

(a)  



 

(b) 

 

(c) 

Fig. 4 Receptance value comparison between the analytical ( )and experimental 

( ) results (a) Sample 1#, (b) Sample 2#, (c) Sample 3#. The mass distributions of two 

sets of resonators are shown in the subfigures. 

3. Optimization strategy 

The main optimization objective of the present study is to achieve effective 

vibration attenuation at frequencies of interest. As discussed in the last section, the FRFs 

of the rainbow metamaterials are closely related to the distributions of resonators, we 

therefore assign the mass of spatially varying resonators as design variables. In addition, 

since the rainbow metamaterial can possess multi-frequency bandgaps with non-



symmetric resonators as shown in Fig. 4(c), symmetric as well as non-symmetric 

rainbow-shaped resonators are considered in the optimization strategies for the purpose 

of obtaining both single and multi-frequency vibration attenuation.  

3.1 Optimization for a single prescribed frequency range 

To maximize the vibration attenuation in a prescribed frequency range, two 

optimization strategies are proposed that invoke two objective functions respectively. 

The objective functions can be defined based on maximum receptance value or average 

receptance value within the prescribed frequency range.  

3.1.1 Maximum value based objective function 

Receptance values within the prescribed frequency range are expected to be small 

when their maximum value remains low. Therefore, searching for the distribution of 

resonators that can minimize the maximum receptance value is naturally a method of 

optimizing the vibration attenuation within the prescribed frequency range.  

The optimization objective function that is based on the maximum receptance value 

within the prescribed frequency ranges, can be given as  

   1 2min   max , ,ecR Μ Μ Φ , (17) 

where the receptance function ecR   is calculated by Eq. (15),  1 2f fΦ  

represents the prescribed frequency regime. The matrices  1 11 12 1, ,..., qm m mΜ  and 

 2 21 22 2, ,..., qm m mΜ   represent the mass of the two sets of resonators, 1M   is 

assumed to be equal to 2M  for the single frequency range optimization.  

The mass of each resonator cannot be less than zero. Besides, the total mass of the 

resonators cannot be overweight for the sake of maintaining the dynamic stability of 

the metamaterial beam and being favorable for engineering applications. Here we 

assume that the upper limit of total resonator mass to the mass of the whole 



metamaterial beam is 30%. Constrains of the design variables are hence given as, 
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
. (18) 

In addition, the mass of each resonator could be any value between 0 ~ 0.3M  

technically, nonetheless, to make the resonator mass change naturally and the 

optimization trends easily to be cognized and utilized in applications, we use a 

sinusoidal function to express resonator mass distributions,  

  1 + sin    1,2,...,i mim A B Cx D i q   , (19) 

where  =  1,2,...,mi i i dx x p L i q    represents the position of 
1im   and 

2im   in x  

direction. In principle, more complex distributions can be also piled up based on simple 

sinusoidal functions.  

Substituting Eq. (19) into Eq. (18), the design variables are altered from each 

resonator mass to the 4 unknown parameters ,  ,  ,  A B C D  in the sinusoidal function, 

the constrains are finally given as 
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3.1.2 Average value based objective function 

The average value is another evident indicator of receptance value quality within a 

prescribed frequency range, therefore, another optimization objective function can be 

set up based on the average receptance value within the prescribed frequency range,  

 
 

2 1

, , , , d
min    

ecR A B C D f

f f

Φ
Φ




. (21) 



However, the integral is usually hard computationally expensive to achieve for 

complex receptance function as defined by Eq. (15) but, the integral can be 

mathematically approximated by 

    , , , , d , , , ,ec ecR A B C D f R A B C D f
Φ

Φ

Φ Φ  , (22) 

where f  denotes the frequency step.  

The optimization objective function hence becomes 
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Φ

Φ

. (23) 

The constrains of the design variables defined by Eq. (20) are similarly applicable 

to the average value based optimization objective function. 

3.2 Optimization for prescribed multi-frequency ranges 

Similar to the single frequency optimization, two objective functions are proposed 

by virtue of either maximum or average receptance values for the prescribed multi-

frequency range optimization. The maximum or average receptance value of each 

frequency range can be involved in the objective functions by adding weighted 

parameters.  

3.2.1 Maximum value based objective function 

The objective function based on maximal receptance values of multi-frequency 

ranges can be written as,  

        
T

1 2 1 1 2 2 1 1min   max , , ,max , , , 1ec ecR R v v     Μ Μ Φ Μ Μ Φ , (24) 

where  1 11 12= ~f fΦ   and  2 21 22= ~f fΦ   represent the two prescribed frequency 

ranges. It is noted that    
T

1 1 1, 1  0 1v v v      denotes the weighted parameters of 

the two frequency ranges. The weighted parameters can be set as equal or unequal 

values to emphasize the equal importance of both frequency ranges or the priority of 



one frequency range over the other one for specific vibration control purposes. The two 

sets of resonators are in the general case non-symmetric for the multi-frequency 

vibration attenuation.  

The constrains of the design variables are given as: 
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As discussed in the last subsection, sinusoidal functions are employed to express 

the distributions of resonating masses  
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Therefore, the constraints for the multi-frequency range optimization can be given 

as 
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3.2.2 Average value based objective function 

Similarly, the average receptance objective function to be optimized is given with 

weighted parameters, as 
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The integrals of receptance values can be approximated by  
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The constrains of design variables are identical to that described by Eq. (27).  

4. GA optimization method 

The proposed objective functions are complex multimodal functions as shown in 

the Appendix. A GA method is employed to solve the aforementioned objective 

functions. The GA optimization method starts with the creation of an initial population 

of chromosomes. Multiple individuals exist in each generation. Fitness functions are 

set up to evaluate the quality of each individual. For the optimization problem 

mentioned above, objective functions defined by Eqs. (17), (23), (24) and (29) can 

be set as 4 fitness functions. Subsequently, fitness values of individuals are estimated 

by the corresponding fitness functions. If the fitness values satisfy the exit conditions, 

the optimization process ends, otherwise, the reproduction starts. The termination 

conditions can be set as average changes in the best fitness values less to be inferior to 

a customized value. Offspring that are subjected to constraint conditions in Eqs. 

(20),(27) are reproduced by three methods, namely selection, crossover and mutation. 

With the process of selection, individuals with better fitness values are selected so that 

they can transfer their genes to next generations. Afterwards, offspring is generated by 

the mating of two ‘parents’, namely crossover. Furthermore, the genes of the offspring 

are also stochastically changed with the process of mutation. After these three 

reproductions steps, fitness values of new generation are re-evaluated and guides the 

development of the population. Iterations of the abovementioned GA optimization loop 

may be repeated hundreds of times to find the optimal results. Figure 5 presents a brief 

flowchart of the GA optimization process.  



 

Fig. 5 Flow diagram of GA optimization process for the rainbow metamaterials 

5. Optimization examples 

In this section, optimization examples are presented to validate the feasibility of 

the proposed strategies. Optimization results for single and multiple prescribed 

frequency ranges are discussed respectively in Secs. 5.1 and 5.2. The optimized 

structures are assumed to have the same physical parameters as the tested samples 

shown in the last section. The geometrical parameters of Π-shaped beams and cantilever 

beams of the optimized structures are also the same as that listed in Table 1.  

5.1 Single prescribed frequency range optimization 

The prescribed single frequency range is assumed as =140~160 HzΦ  . As 

discussed in Sec. 3, two objective functions based on maximum and average receptance 

values are defined for the single frequency optimization. By substituting the objective 

and constrain functions into the GA process depicted in Fig.5, the optimal results can 

be figured out.  

The best fitness values of each generation during the optimization process by the 



two objective functions are shown in Figs. 6 and 8 respectively. It can be seen from 

Figs. 6 and 8 that the best fitness values decrease gradually with the increase of 

generation, which means the receptance value inside this frequency range declines with 

the optimization process. The process stops when the fitness value presents insignificant 

changes.  

The optimal parameters for the maximum-value based objective function are 

obtained as 
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Meanwhile, the optimization results for the average-value based objective function 

are computed as 
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Fig. 6 The evalution history of the best fitness value of each generation during the 



single frequency range optimization process with the maximum receptance value based 

objective function. Receptance values comparison between three rainbow metamaterial 

beams ( ) in the optimization process and no-resonator Π-shaped beams ( ) of the 

same mass are shown in the three subfigures. 

 

Fig. 7 Receptance value comparison between optimal rainbow metamaterial beam 

( ) by maximal receptance value based objective function and no-resonator Π-shaped 

beam ( ) of the same mass. The resonator mass of the optimal beam is plotted in the 

subfigure.  

 

Fig. 8 The evalution history of the best fitness value of each generation during the 

single frequency range optimization process with the average receptance value based 



objective function. Receptance values comparison between three rainbow metamaterial 

beams ( ) in the optimization process and no-resonator Π-shaped beams ( ) of the 

same mass are shown in the three subfigures. 

 

Fig. 9 Receptance value comparison between optimal rainbow metamaterial beam 

( ) by average receptance value based objective function and no-resonator Π-shaped 

beam ( ) of the same mass. The resonator mass of the optimal beam is plotted in the 

subfigure. 

To show the effects of GA optimization clearly, the receptance values of the two 

optimal metamaterial beams are also compared with that of Π-shaped beam and plate 

insertions of the same mass but without resonators in Figs. 7 and 9 respectively. It can 

be seen from Figs. 7 and 9 that both optimal metamaterial beams have bandgaps within 

the prescribed frequency range, the vibration attenuation is thus greatly enhanced. The 

optimal rainbow metamaterial beam obtained by maximum-value based objective 

function has a maximum receptance value that is 28.9 dB less than that of the no-

resonator complex beam of the same mass within 140~160 Hz as shown in Fig. 7, while 

the optimal rainbow metamaterial beam obtained by the average-value based objective 

function possess an average receptance value with a reduction of 28.4 dB to that of the 

no-resonator complex beam in 140-160 Hz (see Fig. 9). That is, both the maximum and 



average excited displacements the prescribed frequency range are reduced more than 

28 times within the prescribed frequency range by the two optimization strategies. In 

addition, it also can be seen from Figs. 7 and 9 that different optimization strategies 

lead to beams with different dynamic properties. The optimal rainbow metamaterial 

beam by maximum-value based objective function has broader bandgap but bigger 

receptance value within the prescribed frequency range, which is contrary to the optimal 

beam derived by the average value based objective function. Optimization strategies 

can be selected according to requirements of specific applications. 

Furthermore, the resonator distributions of two optimal rainbow metamaterial 

beams are also plotted in the subfigures of Figs. 7 and 9. Although the two beams have 

different resonator distributions, the total masses of their resonators are almost the same, 

e. g. with ratios of 10.5% and 10.4% to the mass of the Π-shaped beam with parallel 

plate insertions respectively. 

5.2 Multi prescribed frequency range optimization 

The prescribed multi-frequency ranges are assumed as 140~160 Hz and 410~430 

Hz. Rainbow metamaterials with non-symmetric resonators are optimized to achieve 

good vibration attenuation inside these two frequency ranges. Weighted parameter of 

the two frequency ranges is set as  
T

0.5,0.5 .  

The maximum and average receptance value based objective functions defined by 

Eqs. (24) and (29) are utilized as two fitness functions respectively. The best fitness 

values of each generation during the GA optimization process are plotted in Figs. 10 

and 12. As shown in Figs. 10 and 12, the best fitness values decrease gradually with the 

increase of generation, the vibration attenuation within the two frequency ranges are 

enlarged accordingly.  

The optimal design variables by the maximal value based fitness function are 



obtained as, 
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While the optimal design variables obtained by the average value based objective 

function are 
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The receptance values of the two optimal rainbow metamaterial beams are also 

compared with that of no-resonator complex beam of the same mass in Figs. 11 and 13. 

It can be seen that a bandgap emerges in each of the two optimization frequency ranges, 

therefore the vibration in both frequency ranges can be greatly attenuated. As shown in 

Fig. 11, the weighted maximum receptance value of the optimal beam by maximum 

value based objective function are 29 dB less than that of no-resonator complex beam 

of the same mass, which means the maximum vibration displacement is reduced 28 

times inside the two optimization frequency ranges. Meanwhile, the optimal 



metamaterial beam by average value based objective function has a weighted average 

value about 33 dB less than that of no-resonator beam of the same mass as shown in 

Fig. 13, therefore, the average displacement is shrunk by a factor of 45 within the two 

frequency ranges.  

Besides, it can be seen from Figs. 11 and 13 that the optimal metamaterial beam 

obtained by maximum value based objective function has broader bandgaps and bigger 

receptance value than the other beam obtained by average value based objective 

function inside the prescribed two frequency ranges, which is identical to the 

comparison between the two beams optimized within single frequency range.  

Moreover, although the different strategies could result in different optimal 

metamaterial beams, the two sets of resonators of the two optimal metamaterial beams 

have close total mass, with 
1 5.3% MM , 

2 3.2% MM for both beams.  

 

Fig. 10 The evalution history of the best fitness value of each generation during the 

multi-frequency range optimization process with the maximum receptance value based 

objective function. Receptance values comparison between three rainbow metamaterial 

beams ( ) in the optimization process and no-resonator Π-shaped beams ( ) of the 

same mass are shown in the three subfigures. 



 

Fig. 11 Receptance value comparison between optimal rainbow metamaterial beam 

( ) by multi-frequency maximum receptance value based objective function and no-

resonator Π-shaped beam ( ) of the same mass. The resonator mass of the optimal 

beam is plotted in the subfigure. 

 

Fig. 12 The evalution history of the best fitness value of each generation during the 

multi-frequency range optimization process with the average receptance value based 

objective function. Receptance values comparison between three rainbow metamaterial 

beams ( ) in the optimization process and no-resonator Π-shaped beams ( ) of the 

same mass are shown in the three subfigures. 



 

Fig. 13 Receptance value comparison between optimal rainbow metamaterial beam 

( ) by multi-frequency average receptance value based objective function and no-

resonator Π-shaped beam ( ) of the same mass. The resonator mass of the optimal 

beam is plotted in the subfigure. 

6. Conclusions 

In the present paper, optimization approaches were proposed for rainbow 

metamaterials which were composed of Π-shaped beams as backbones and two sets of 

nonperiodically distributed cantilever-mass resonators. FRFs of the rainbow 

metamaterials were first estimated by an analytical model which was then verified by 

experimental results. Two optimization strategies were subsequently devised to 

maximize the vibration attenuation within frequency ranges of interest on the basis of 

the analytical model, including minimizing the maximum and average receptance 

values. By carrying out dedicated optimization examples, it was found that optimal 

metamaterial beams obtained by both strategies could have dramatically reduced 

receptance values within the prescribed single and multiple frequency ranges compared 

with complex beams of the same mass. Besides, optimal beams by different 

optimization strategies exhibited different resonator distributions and hence various 

FRFs properties. The optimal beams with resonator distributions obtained by maximum 



value based objective functions had wider bandgaps but weaker vibration attenuation 

in the prescribed frequency ranges than the optimal beams obtained by the average 

value based objective functions. Furthermore, although the optimal resonator 

distributions differ with optimization strategies, their total mass is fairly close.  

The proposed design routes in the present paper can control the FRFs of the rainbow 

metamaterials at frequencies of interest accurately, hence help improve the applicability 

of the metamaterials for various applications. The rainbow metamaterials can not only 

be easily extended to industrial honeycomb composites that have found application in 

many industrial fields, the optimization scheme can act as a benchmark that inspires 

researchers in related areas to design various nonperiodic metamaterials with superior 

dynamic properties following the same procedures.   
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Appendix 

 

Fig. A1 Cross section of the Π-shaped beam with cantilever-mass resonators 

For a slender cantilever beam clamped to the Π-shaped beam as shown in Fig. A1, 

the deflection of the cantilever beam can be written as 

   1 1 1 1j j

1 1 2 3 4= e e e es s s sk x k x k x k x

i x Q Q Q Q  
   , (A1) 

where  
1/4

1 1 1s s sk A EI   , 1sA   and 1sI   are the cross section area and second 

moment of area of the cantilever beam respectively.   denote the angular frequency. 

 ,x z  is the local coordinate on the cantilever-mass resonator as shown in Fig. A1.  



Due to the clamped boundary condition, both the deflection and slope of the 

cantilever beam are zero at the interface of the Π-shaped beam and the cantilever beam, 

 
1 0

0i x



   (A2) 
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
   . (A3) 

At the other end of the cantilever beam, the displacement of the mass is governed 

by 

 

1

3

1
1 1 1 3

=

x ls

i i sm w EI
x








,  (A4) 

where 1sl  is the length of the cantilever beam, 1im  and 1iw  represent the mass and 

its displacement in the thi  segment of the Π-shaped beam respectively. The quantity 

1iw  is related to the deflection of the cantilever beam by 

  
1

1 1 ,= +
s i i d

i i i lx l x x p L
w x W
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. (A5) 

In addition, the rotatory movement of the mass is governed by 

 
1

1 1 1 1+ 0
x ls

s i i iEI J 


  , (A6) 

where 1iJ  represents the moment of inertia of the mass, 
1i  denotes the rotation angle 

of the mass (see Fig. A1). Since the rotation angle of the mass is small, it can be 

approximated by 

 
1

1 1 1tan
s

i i i x l
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Substituting Eq. (A7) into (A6), yields 
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Combing Eqs. (A2), (A3), (A4), (A8) with Eq. (A1), the unknown parameters 

are derived as 
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where sT  is 
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The interaction force between the cantilever-mass resonator and the Π-shaped beam 

can be obtained based on Eqs. (A9) and (A1), 

 
1

1 1 ,11 0
=

i i d
i s i i lx p Li x x

F EI WN


  
  ,  (A11) 

where         3

1 1

2 1 1 1 1

1 1 1,3 2,3 3,3 4,j j 3T T T Ts si i s s s sEI kN m          . 

Therefore, the total interaction force ,i tF  between the Π-shaped beam and the two 

cantilever-mass resonators inside each substructure can be derived by the deflections of 

the two cantilever beams 

 
1 2i i iF F F  ,  (A12) 

where 2iF  is the interaction force between the other mass 2im  and Π-shaped beam 

which can be figured out by following the same calculation method of 1iF .  


