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Abstract

Arctic and Subarctic environments are among the most vulnerable regions to climate

change. Increases in liquid precipitation and changes in snowmelt onset are cited as

the main drivers of change in streamflow and water temperature patterns in some of

the largest rivers of the Canadian Arctic. However, in spite of this evidence, there is

still a lack of research on water temperature, particularly in the eastern Canadian Arc-

tic. In this paper, we use the CEQUEAU hydrological-water temperature model to

derive consistent long-term daily flow and stream temperature time series in Aux

Mélèzes River, a non-regulated basin (41 297 km2) in the eastern Canadian subarctic.

The model was forced using reanalysis data from the fifth-generation ECMWF atmo-

spheric reanalyses (ERA5) from 1979 to 2020. We used water temperature derived

from thermal infrared (TIR) images as reference data to calibrate CEQUEAU's water

temperature model, with calibration performed using single-site, multi-site, and

upscaling factors approaches. Our results indicate that the CEQUEAU model can sim-

ulate streamflow patterns in the river and shows excellent spatiotemporal perfor-

mance with Kling-Gupta Efficiency (KGE) metric >0.8. Using the best-performing

flow simulation as one of the inputs allowed us to produce synthetic daily water tem-

perature time series throughout the basin, with the multi-site calibration approach

being the most accurate with root mean square errors (RMSE) <2.0�C. The validation

of the water temperature simulations with a three-year in situ data logger dataset

yielded an RMSE = 1.38�C for the summer temperatures, highlighting the robustness

of the calibrated parameters and the chosen calibration strategy. This research dem-

onstrates the reliability of TIR imagery and ERA5 as sources of model calibration data

in data-sparse environments and underlines the CEQUEAU model as an assessment
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tool, opening the door to its use to assess climate change impact on the arctic regions

of Canada.
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1 | INTRODUCTION

Water temperature is one of the most critical variables for freshwater

ecosystems because it strongly influences biological, physical, and

chemical processes within rivers (Caissie, 2006; Hannah &

Garner, 2015; Webb et al., 2008). Key biophysical properties, such as

dissolved oxygen (Ficklin et al., 2013) and the growth of living organ-

isms (Hette-Tronquart et al., 2013; Isaak & Rieman, 2013) are largely

controlled by river temperature (Caissie, 2006).

In the Northern Hemisphere, future climate projections indicate

that Arctic and Subarctic regions will undergo changes in the variabil-

ity and intensity of climate and weather conditions that will likely be

much greater than the rest of the world (Larsen et al., 2014). In north-

ern Canada, global warming has been identified as the main driver

responsible for the positive annual and seasonal trends in air tempera-

ture during the last decades (DeBeer et al., 2016). Specifically, the cur-

rent observed warming in the northeastern region of Canada (and

more broadly, the entire Arctic) is directly attributable to anthropo-

genic forcing (Ding et al., 2014). Changes in the snowmelt onset

(Foster et al., 2008), spatial precipitation patterns (Vaughan

et al., 2013) and permafrost thaw (Hinzman et al., 2005) related to this

warming will inevitably impact freshwater systems with substantial

socio-ecological implications (Bolduc & Lamoureux, 2018; Dugdale

et al., 2018; Hill et al., 2014; van Vliet et al., 2013). Global hydrological

model simulations have shown that Arctic basins will experience nota-

bly higher flows due to significant increases in precipitation and snow-

melt (van Vliet et al., 2013). In particular, northwest Canadian rivers

exhibited a significant upward trend in winter baseflow and increases

of mean annual flow, perhaps due to permafrost thawing

(St. Jacques & Sauchyn, 2009). Although there are fewer studies in

the eastern portion of the country, similar changes are expected. Fur-

thermore, the development of large hydroelectric projects in north-

eastern Canada has significantly decreased the discharge of large

watersheds such as the Caniapiscau River, because of the diversion of

its flow into the La Grande Rivière system (Déry et al., 2016). These

changes in flow regimes have been identified as an important driver

of riverine thermal dynamics in arctic rivers located in northwest

Canada (e.g., Yang et al., 2021) as well as in some notable rivers in the

southeastern regions (e.g., Charron et al., 2021). However, in spite of

the demonstrated importance of thermal regimes for arctic rivers,

there is still a lack of information and studies about Arctic and Subarc-

tic rivers in eastern Canada, even knowing that changes in river water

temperature can be harmful to numerous freshwater fish species, par-

ticularly salmonids (Klemetsen et al., 2003; Reist, Wrona, Prowse,

Power, Dempson, Beamish, et al., 2006; Reist, Wrona, Prowse, Power,

Dempson, King, et al., 2006; Svenning et al., 2016).

Arctic regions are challenging to study, given the complexities

related to data collection (Yang et al., 2014; Yang & Peterson, 2017).

Although ground-based observations of water temperature and

streamflow have been gathered since the 20th century (e.g., Lammers

et al., 2001), high spatial and temporal resolution measures are often

required to fill gaps and elucidate, quantitatively, the impacts of cli-

mate change on Arctic rivers (Hori, 2021). Applications of satellite-

derived products hold potential for filling this gap in northern regions

since they have been applied to retrieve hydrological and thermal

information from low- and mid-latitude rivers (Martí-Cardona

et al., 2019; Tavares et al., 2019, 2020). In tandem with the potential

of satellite data, reanalysis datasets have been extensively used as ref-

erence meteorological data to describe phases of the hydrological

cycle in data-sparse basins (e.g., Essou et al., 2016; Jiang et al., 2021;

Krogh et al., 2015; Tarek et al., 2020). Overall, reanalyses have been

confirmed as a reliable source of information, especially if, for exam-

ple, no or few land surface stations are available in the study area.

Tarek et al. (2020) found that ERA5 reanalysis performs very well in

North America, and simulations with a hydrological model forced with

these data sets matched the observed values. Similarly, Krogh et al.

(2015) found that ERA-Interim is a good source of meteorological

information to calibrate hydrological models in two basins in southern

Chile, where monitoring is very challenging. More recently, Gatien

et al. (2022) used ERA5 and ERA5-Land to evaluate the performance

of HEC-RAS to simulate the hydraulic and water temperature condi-

tions on a large reservoir in a date-sparse region in western Canada,

finding that the model was able to produce high-quality hydraulic and

water temperature simulations when it is forced with this reanalysis

products.

This work is framed in the context of predictions in ungauged

basins (PUB, Sivapalan et al., 2003; Hrachowitz et al., 2013). Here we

focus on deriving modelled water temperature time series as an alter-

native to long-term in-situ observations in arctic regions. We take the

Aux Mélèzes River, Nunavik, Canada as a case study and use

CEQUEAU, a semi-distributed model that can simulate both flow and

water temperature as our selected simulation tool. Our specific objec-

tives are (1) to derive high-quality water temperature time series from

spaceborne thermal infrared imagery, (2) to use these data to calibrate

the CEQUEAU model, comparing a range of calibration strategies:

single-site calibration, multi-ensemble parameter averaging (upscaling

factors), and multi-site calibration; and (3) to derive consistent

spatially distributed long-term water temperature time series in a
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data-sparse region. This represents the first attempt to derive

long-term water temperature time series in Aux Mélèzes River and

the first exercise of using spaceborne information to calibrate the

CEQUEAU water temperature model.

2 | METHODS

2.1 | The CEQUEAU model

CEQUEAU is a process-based, coupled, semi-distributed hydrological/

water temperature model (Morin & Paquet, 2007; St Hilaire

et al., 2015; St-Hilaire et al., 2000). The model simulates daily river

flow and water temperature by subdividing the watershed into a

series of whole squares (hereafter CE for the French abbreviation for

Carreaux Entiers, following the model's documentation). For each CE,

the altitude, the percentage of the forest, and the percent area cov-

ered by lakes and wetlands are computed. Each CE is further subdi-

vided into a maximum of four polygons called partial squares

(hereafter CP for the French abbreviation of Carreaux Partiels) based

on the sub-basins division of the watershed. The hydrological model

comprises two functions (shown in Figure S1 in the Supplementary

material) to calculate the water budget throughout the basin: the pro-

duction function, which calculates water availability for river routing

in each CP at each time step and the transfer function, which manages

the upstream-downstream water routing at each time step (Morin &

Paquet, 2007). The main equations describing the CEQUEAU model

production functions and the routing functions are presented in S1

and S3, respectively. Also, the hydrological model parameters can be

found in Table S1 of the supplementary material.

The CEQUEAU water temperature uses the results from the

hydrological model to calculate the water temperature. For each CE at

a time-step t, the change in water temperature ΔTwt in
�Cð Þ is given by

the Equation (1):

ΔTwt ¼
ΔQt

Vt �Θ , ð1Þ

where ΔQt is the total change in enthalpy (MJ), V is the volume of

water (m3) and Θ¼4:187 MJ m�3�C�1 which is the heat capacity

of the water. The term ΔQt in Equation (1) is the result of the surface

energy budget, which is computed at any time-step t as follows:

Qt ¼Qswt
þQlwt

þQet þQst þQat , ð2Þ

where Qswt
is the flux of incoming solar short-wave radiation, Qlwt

is

the longwave radiative flux, Qe is the latent heat transfer, Qst is the

sensible heat transfer and Qat is the advective heat transfer from

the upstream grid squares and groundwater and subsurface flow. The

terms of Equation (2) are depicted in Equations (S5)–(S7) in the sup-

plementary material. The meteorological inputs for the CEQUEAU

model are listed in Table 1.

The hydrological module has 31 parameters, of which 25 are

fitted, and the remaining are constants and dependent on the phys-

iographic characteristics of the watershed (see Table S1 in the sup-

plementary material), while the water temperature module requires

10 parameters to be fitted. The description of the hydrological

parameters is presented in Table S1 in the supplementary material,

and the water temperature module parameters are presented in

Table 2.

2.2 | Study region

Aux Mélèzes River is located in the eastern Canadian Subarctic in

Nunavik, Quebec, Canada (Figure 1). It flows directly into the Koksoak

River, which empties into Ungava Bay. The Ungava is home to several

indigenous communities whose traditional subsistence activities

revolve around hunting, gathering, and fishing (Parlee & Furgal, 2012).

This region has also been important for fisheries during the last two

centuries (Power, 1976), an activity that is strikingly threatened by cli-

mate change (Poesch et al., 2016).

The Aux Mélèzes River is a large unregulated basin that drains

an area of approximately 41 297 km2. According to the North

American Land Change Monitoring System (NALCMS), land use

within the catchment comprises a significant proportion (56.86%)

covered by shrublands and grasslands. Another substantial portion

of 24.18% is covered by forest, and surface water bodies make up

the additional 8.98%. The NALCMS dataset was used to parameter-

ize CEQUEAU with Aux Mélèzes River basin physiography and is

freely available through the following link: http://www.cec.org/

north-american-environmental-atlas/land-cover-2010-landsat-30m/. For

this river, we used a model grid size of 8 � 8 km to define the CEs, from

which CPs are subsequently delineated according to water divide and

drainage. This grid resolution was chosen as a trade-off to maximize

the resolution and minimize the model run-time (Dugdale et al., 2017)

for a total of 796 and 915 CEs and CPs, respectively.

2.3 | Meteorological and hydrometric data

Aux Mélèzes River has two gauge stations, one at the outlet point

located in the CP-1 and a second one in an upstream sub-basin

TABLE 1 CEQUEAU variables obtained from ERA5 reanalyses.

Variable Description Units

pTot Total daily precipitation mm

tMax Maximum daily air temperature �C

tMin Minimum daily temperature �C

rad Incoming net solar radiation MJ m�2

vp Vapour pressure mmHg

w Wind speed Km h�1

cc Cloud cover %

Note: The units are the input unit for the CEQUEAU model.

RINCÓN ET AL. 3 of 18
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located in the CP-213 (see Figure 1 for the location of the mentioned

CPs). A description of the data for each station is given in Table 3.

To our knowledge, no meteorological stations exist, but one

water temperature station located at the outlet point of the river

(CP-1) administrated by the Québec Ministère des Forêts, de la Faune

et des Parcs (MFFP) was used for validation purposes. The discharge

data are freely available through the website of the Québec Ministère

de l'Environnement et de la Lutte contre les changements climatiques

(https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/default.

asp). Given the data scarcity, we used ERA5 reanalysis information avail-

able on the European Center for Medium-Range Weather Forecasts

(ECMWF) website (https://www.ecmwf.int/en/forecasts/datasets/

reanalysis-datasets/era5) with a native grid resolution of 0.25���0.25�

covering the entire globe. ERA5 data are obtained by combining

advanced modelling and data assimilation to generate the state of the

atmosphere at a sub-daily time scale. This reanalysis has proved to be a

reliable data source for hydrological simulations (Tarek et al., 2020) as

well as for water temperature simulations (Gatien et al., 2022; Khorsandi

et al., 2022).

2.4 | Hydrological model calibration

The typical strategy for calibrating the CEQUEAU model consists of

first calibrating the hydrological module, then calibrating the water

temperature module using the simulated flows as inputs (Charron

et al., 2021; Khorsandi et al., 2022; Kwak et al., 2016, 2017; St-

Hilaire et al., 2000). To fit the model parameters, we used the

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

(Hansen & Ostermeier, 2001), which is a stochastic non-linear opti-

mization algorithm that is efficient in finding the optimum parame-

ter value for the CEQUEAU model (Arsenault et al., 2014;

Khorsandi et al., 2022).

We used the entire available period with concomitant meteoro-

logical and hydrometric data (1979–2020) to calibrate the hydrologi-

cal model without splitting it into calibration and validation periods, as

it provides the most robust results according to Shen et al. (2022).

This calibration was made using the gauging station located at CP-1.

The calibrated parameters were then validated using the gauging sta-

tion at CP-213. We evaluated the performance of the model using the

Nash–Sutcliffe (NSE, Nash & Sutcliffe, 1970) and Kling–Gupta (KGE,

Gupta et al., 2009) efficiency coefficients, which are shown in Equa-

tions (3) and (4), respectively.

NSE¼1�

Pn
i¼1

byt�ytð Þ2

Pn
i¼1

byt�ytð Þ2
, ð3Þ

KGE¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�1ð Þ2þ bσ

σ
�1

� �2

þ bμ
μ
�1

� �2
s

, ð4Þ

where by is the simulated value in the time step t, y is the observed

value in the time step t, y is the average value of the observed time

series, r is the linear correlation, bσ and σ are the simulated and

observed standard deviations, respectively, bμ and μ are the simulated

and observed mean values, respectively. μ and y are equivalent values.

2.5 | Water temperature simulation

The water temperatures used to calibrate CEQUEAU's temperature

module were extracted from thermal infrared (TIR) images acquired by

Landsat missions 5, 7, and 8. Conversion from TIR radiance to water

temperature was performed using the Statistical Mono-Window

(SMW) Algorithm. The SMW algorithm was developed by The Satel-

lite Application Facility on Climate Monitoring (CM-SAF, Duguay-

Tetzlaff et al., 2015, 2017) This algorithm uses an empirical approach

that relates the brightness temperature at the top of the atmosphere

(TOA) of a single atmospheric window channel to land surface tem-

perature (LST) via simple linear regression. The SMW algorithm linear-

izes the radiative transfer equation while maintaining the explicit

TABLE 2 Hydrological model parameters.

No Parameter Description Units Lower bound Upper bound

1 COPROM Fitting coefficient to determine the minimum depth of the

river reach

– 1.00 2.00

2 COLARG Fitting coefficient to adjust the river width – 1.00 2.00

3 CRAYSO Fitting coefficient for incoming solar radiation – 1.00 2.00

4 CRAYIN Fitting coefficient for shortwave radiation flux – 1.00 3.00

5 CEVAPO Fitting coefficient for latent heat flux – 0.50 2.00

6 CCONVE Fitting coefficient for sensible heat flux – 1.00 2.00

7 CRIGEL Threshold for snow stock controlling water temperature mm 50.00 250.00

8 TNAP Groundwater temperature �C 4.00 8.00

9 BASSOL Minimum precipitation to define days with low solar radiation mm 5.00 10.00

10 CORSOL Correction factor for BASSOL – 0.00 1.00

4 of 18 RINCÓN ET AL.
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F IGURE 1 The Aux Mélèzes River showing the CEQUEAU model grid structure, with CPs used for calibration of the water temperature
module highlighted.
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dependency on surface temperature (Duguay-Tetzlaff et al., 2015) as

shown in Equation (5):

LST¼AiþTb

ε
þBi

1
ε
þCi , ð5Þ

where Tb is the TOA brightness temperature (K) in the TIR channel

and ε is the spectral surface emissivity. To avoid bias due to the esti-

mation of the surface emissivity and knowing that the targeted pixels

are picturing water, the value of the emissivity was set to 0.99 (Daigle

et al., 2022).

The coefficients Ai,Bi and Ci are determined via simple linear

regression throughout a calibration process of simulation of the radia-

tive transfer equation performed for 10 classes (i=1, 2… 10) of total

column water vapour (TCWV, Ermida et al., 2020). Values obtained

for Ermida et al. (2020) for the different Landsat missions were used

in the present study. For further details on the contention of these

coefficients, refer to Ermida et al. (2020) and references therein.

2.6 | Calibration strategies

During recent decades, the integration of airborne and spaceborne

sensors along with hydrological and water temperature models has

become very popular among hydrologists. For example, satellite-based

instruments have been successfully applied to calibrate a water tem-

perature model (Tavares et al., 2020) in the United States and evapo-

transpiration fluxes in western Central Africa (Odusanya et al., 2018).

(Morales-Marín et al., 2019) used Landsat satellites as reference infor-

mation to simulate the water temperature in the Canadian Prairies.

However, the application of such techniques has never been tested in

data-sparse Arctic river environments prone to strong seasonal vari-

ability, nor using the CEQUEAU model.

To correctly estimate river temperature using TIR images, a mini-

mum of three pixels covering the river's width is required

(as recommended in the literature; e.g., Cherkauer et al., 2005;

Handcock et al., 2006) to reduce the radiative bank effect on center-

line temperatures, given that mixed pixel effects are usually found

along river banks (Cherkauer et al., 2005; Martí-Cardona et al., 2019).

This normally reduces the applicability of the Landsat TIR images (60–

120 m resolution) to rivers of 180–360 m in width. However, the

recent algorithm developed by Martí-Cardona et al. (2019) showed

that this limitation can be overcome by filtering out mixed pixels

based on the earth-exiting thermal radiance of the Landsat scene.

Using this approach, it is now possible to use Landsat to measure the

temperature of rivers with widths as narrow as 120 m (Martí-Cardona

et al., 2019). Taking the derived water temperature with the SMW

algorithm described in Section 2.5, we applied the algorithm proposed

by Martí-Cardona et al. (2019) to filter out mixed water-land pixels

within each scene to avoid the effect of reflected radiance near the

bank to retrieve reliable water temperatures distributed throughout

the basin.

Given our CEQUEAU model's spatial discretization (8 � 8 km), it

is in theory possible to map for every single CP a water temperature

value from the Landsat images. However, as mapping water tempera-

ture for each CP in the CEQUEAU structure would be unnecessarily

expensive in computational terms, we choose to calculate Root Mean

Square Error (RMSE) at 21 distributed sites highlighted in red in

Figure 1.

2.6.1 | Single site calibration strategy

We tested several different strategies for calibrating CEQUEAU's

water temperature model. The first calibration approach we imple-

mented is the single-site strategy (SSS). This is the traditional

approach used by researchers and modellers, and consists of calibrat-

ing the CEQUEAU temperature module by using each of the individ-

ual selected CP sites separately. We used the Root Mean Square

Error (RMSE) as the objective function, as the strong seasonality of

river temperature inhibits the use of other metrics (e.g., NSE and KGE)

commonly used for assessing the performance of discharge (rather

than temperature) simulations (Ouellet-Proulx et al., 2019). The RMSE

for a given CP is estimated using the Equation (6).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

byt�ytð Þ2
vuut , ð6Þ

where byt and yt are the simulated and observed values at each time

step, respectively.

2.6.2 | Upscaling factors calibration strategy

The second calibration strategy is the Upscaling Factors

Strategy (UFS). The UFS takes the different sets of locally cali-

brated parameters using the SSS and combines them all using the

upscaling factors proposed by Samaniego et al. (2010) to obtain

one final set of parameters. This approach suggests that we can

derive global parameters from a set of local parameters obtained

from different SSS. This approach has recently been applied for

CEQUEAU by Khorsandi et al. (2022). In this study, we used the

Arithmetic, Harmonic, and Geometric means as upscaling factors.

For further details, we suggest reading Samaniego et al. (2010) and

the references therein.

TABLE 3 Gauging station
information.

Station ID CP location Date range Frequency Missing data

103 603 CP-1 1979/01–1993/07 Daily 13%

103 605 CP-213 1962/08–2019/09 Daily 24%

6 of 18 RINCÓN ET AL.
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2.6.3 | Multi-site calibration strategy

The third approach used in this study is the multi-site strategy (MSS).

This method consists of taking into account all the CPs during the cali-

bration period. Two ways of multi-site calibration were used: (1) pool-

ing all CPs together into a single, larger calibration database of water

temperatures, which subsequently serves as the reference data to be

evaluated with Equation (6), and (2), using a weight factor to give

importance to the CP based on the length of the observed time series

and the accumulated area downstream. This weighted objective func-

tion is shown in Equation (7)

RMSEw ¼

Pn
i¼1

RMSEi �Mi

Pn
i¼1

Mi

, ð7Þ

where i¼1,2,3…n as the ordinal number for each CP within the

CEQUEAU model structure, RMSEi is the calculated RMSE using 6 for

the ith CP and Mi refers to the weighting factor that can be either the

accumulated area or the length of the available water temperature

time series. These weights can be found in Table S2 of the Supple-

mentary material. The previous procedure effectively constitutes a

multi-site objective function through which we can calibrate our

model.

2.7 | Water temperature validation

Following the establishment of the optimal calibration parameter set,

the performance of CEQUEAU's water temperature simulations were

validated by comparing the simulated temperatures against water

temperature observations (summer 2015–autumn 2019) from the

MFFP's temperature monitoring station (see Section 2.3).

3 | RESULTS

3.1 | Hydrological model calibration

Results of the hydrological calibration indicate that CEQUEAU repre-

sents flows in the Aux Mélèzes River with a good degree of accuracy

(KGE = 0.86 and NSE = 0.79). The comparison between the simu-

lated and observed flows from 1979 to 2020 at the most downstream

point of the basin is presented in Figure 2. The model correctly simu-

lated the recession curves during the end of spring (Apr–Jun) and the

beginning of winter (Oct–Nov) as shown by the interannual hydro-

graph (Figure 2a), although there is a misrepresentation during the

beginning of snowmelt. The model performs well in representing

the seasonality of the two high peak flows during the snowmelt onset

and the autumn rainfall (Figure 2c). However, the highest peaks are

underestimated, especially during the period 1980–1999, where the

(a)

(c)

(b)

F IGURE 2 Comparison between the observed (blue line in station ID 103605) and simulated (red line in CP-1) streamflow in the Aux Mélèzes
from 1979 to 2020. (a) represents the long-term multi-annual averaged observed and simulated hydrographs. The envelopes show the 10th and
90th percentile for simulated and observed flow, (b) represents the observed and simulated daily duration curves and (c) shows the daily observed
and simulated streamflow time series. The precipitation shown in the (c) panel is partitioned between snow (grey lines) and rain (green lines) and
represents the averaged total precipitation in CE-1. (KGE = 0.86, NSE = 0.79, RMSE = 348.66 m3/s and BIAS = �45.64 m3/s).
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higher variability was exhibited. Given our interest in mainly the sum-

mer flows and water temperature, our calibrated parameters allowed

us to correctly represent the flow values throughout the considered

time period. The flow duration curve (Figure 2b) suggests that in spite

of the model not correctly catching the distribution of the maximum

values, it accurately represents the mean values during the whole

period. This agreement was confirmed by computing the relative

RMSE for the whole simulation period (RRMSE = 14.54%).

Figure 3 shows the results of our hydrological model validation,

conducted by comparing simulations at CP-213 to streamflow obser-

vations at the corresponding gauging station (ID 103603) from 1979

to 1993. The obtained performance metrics (KGE = 0.79,

NSE = 0.65, and RMSE = 80.75 m3/s) show that the CEQUEAU

model correctly represents the streamflow in this station even when

the reference for calibrating the model was the outlet point. This

obtained value indicates that any biases in our subsequent water tem-

perature simulations relating to flow volume will likely be minimal.

3.2 | Water temperature model calibration

Table 4 shows the parameter values for the CEQUEAU water temper-

ature model after the calibration. These parameters were obtained for

the period of 1990–2019. The obtained set of parameters is consis-

tent in each case, with CRAYIN, CEVAPO and CORSOL having the

most uniform values among all the parameters. The parameter TNAP

is consistently chosen around 8.0�C, which is a good approximation of

the actual groundwater temperature.

Calibration results (in terms of RMSE) are given in Figure 4. Over-

all, the different calibration strategies produce RMSE values ranging

from 1.6 to 4.2�C. Best model performance was generally found in

CPs centred on the Melezes' main stem (i.e., CP-1, CP-4, CP-6, CP-18,

CP-82, CP-91, CP-118, CP-192, CP-296 and CP-326), which deliver

RMSEs around 2.0�C in most of the cases. The lowest RMSE values

were obtained using the parameters delivered with the CP-192,

whereas the worst-performing main stem-located CPs are CP-84 and

CP-91.

Conversely, the worst performance was generally observed at

CPs located within headwater regions of the watershed. Indeed, the

CP that performed worst across all calibration strategies is CP-141,

which, from Figure 1, is seen to correspond to a headwater location

comprising a fluvial lake (see Figure S2 in the Supplementary material).

Poor behaviour at CPs corresponding to small streams and lakes is

likely due to inadequacies in CEQUEAU's parameterisation. For exam-

ple, in CPs corresponding to lakes or headwater streams (e.g., CP-35,

CP-39, CP-141, CP-213, CP-270 and CP-350), CEQUEAU likely

underestimates residence time and heat surface fluxes because it does

not formally address lake stratification, surface flow velocities/

residence times and/or additional surface heat inputs on large sur-

faces with no canopy.

Unlike the SSS-derived parameters, the MSS-derived parameters

perform better across all individual CPs, even in those that showed

poor performance using an SSS-derived parameter set. Here, the best

RMSE value obtained across all CPs was 1.62�C (CP-435) using the

multi_length strategy. The worst performing site (with the exception

of CP-141) with an RMSE value of 3.09�C (for the weighted

(a)

(c)

(b)

F IGURE 3 Same as Figure 2 but for the station ID 103603, CP-213 and CE-184 from 1979 to 1993. (KGE = 0.79, NSE = 0.65,
RMSE = 80.75 m3/s and BIAS = �1.5 m3/s).
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multi_area strategy) was CP-270 (located in an upstream tributary),

comparing favourably to the SSS method, which yielded a worst

RMSE of 3.62�C under all SSS runs. The same occurrence is repeated

across CP-350, CP-431, CP-477, CP-571 and CP-596, highlighting

how the MSS outperforms most of the SSS-delivered RMSEs.

The UFS-derived calibrations also outperform individual CP-

based parameter sets. However, when compared with the MSS

approach, it can be seen that despite their good performance, RMSEs

are generally slightly poorer than those obtained using the MSS. Nev-

ertheless, the differences in RMSE (between 0.01 and 0.1�C) are not

significant when comparing the RMSEs obtained for the main river

(i.e., CP-1, CP-4, CP-6, CP-84, CP-91, CP-118 and CP-192). Within all

the three considered upscaling factors, the worst RMSE (again,

excluding CP-141) was found with the Arithmetic mean (2.98�C at

CP-270), and the best was 1.67�C in CP-435 using the Geometric and

Harmonic means.

Figures 5 and 6 show the multi-annual means and scatter regres-

sion plots for both simulated and observed Landsat water

temperature. Comparing simulated water temperatures with the MSS

against the Landsat-derived water temperature suggests that both

simulated and TIR-derived water temperatures range from around

0�C to 24�C throughout the basin. Note that data collected from the

Landsat missions do not continuously span the whole calibration

period, and only a subset of Landsat-derived temperature data were

obtained for each individual CP. The time series length for Landsat

data at each CP is presented in Table S2 of the Supplementary mate-

rial. The absence of data at certain CPs/times is generally due to cloud

cover obscuring the river channel at the moment of TIR image

acquisition.

The simulated water temperatures fit well with the observed

Landsat temperature, and for most cases, the CEQUEAU model

reaches the annual mean observed values along the basin (see

Figure 5).

Figure 6 allows us to see how well the simulated water tempera-

ture time series fits the derived Landsat temperature. Overall, the

CEQUEAU model performs well in the temporal distribution of the

TABLE 4 Water temperature parameters values obtained for each calibration strategy.

Id COPROM COLARG CRAYSO CRAYIN CEVAPO CCONVE CRIGEL TNAP BASSOL CORSOL

1 CP1 1.00 1.00 2.12 1.00 0.50 1.99 113.69 8.00 10.00 0.16

2 CP4 2.00 1.62 2.30 1.10 0.50 1.93 50.97 5.68 6.16 0.01

3 CP6 2.00 2.00 1.92 1.00 0.50 1.32 211.36 4.00 5.90 0.01

4 CP18 1.00 1.00 2.12 1.00 0.50 2.00 141.10 5.54 9.97 0.01

5 CP35 1.00 1.00 1.85 1.00 0.50 1.46 67.22 8.00 8.38 0.03

6 CP39 1.24 1.00 1.76 1.00 0.50 1.62 123.88 8.00 5.53 0.07

7 CP84 1.00 1.00 1.94 1.16 0.50 1.95 142.31 5.50 5.09 0.27

8 CP91 1.00 1.00 1.80 1.21 0.50 2.00 250.00 4.20 7.14 0.22

9 CP118 1.00 1.00 1.75 1.00 0.50 1.79 50.00 6.54 8.42 0.19

10 CP141 2.00 1.65 1.49 1.21 0.50 1.47 204.01 8.00 10.00 0.01

11 CP192 1.00 1.15 2.15 1.22 0.58 2.00 233.17 8.00 8.14 0.14

12 CP213 1.58 1.41 1.79 1.18 0.55 1.19 93.62 8.00 9.17 0.01

13 CP270 1.00 1.00 1.29 1.00 0.50 2.00 237.28 8.00 5.61 0.48

14 CP296 1.00 1.00 1.93 1.00 0.50 1.92 56.61 5.47 7.14 0.03

15 CP326 1.00 1.00 1.87 1.00 0.50 1.89 101.56 8.00 8.45 0.04

16 CP350 1.63 1.02 1.64 1.00 0.50 1.80 50.00 7.99 5.00 0.51

17 CP431 1.00 1.00 2.07 1.00 0.50 2.00 52.12 8.00 9.59 0.01

18 CP435 1.07 1.54 1.89 1.00 0.50 2.00 137.03 8.00 9.49 0.01

19 CP477 2.00 2.00 2.08 1.00 0.50 1.97 50.00 8.00 5.55 0.04

20 CP571 2.00 1.85 2.12 1.00 0.50 1.89 64.58 8.00 9.80 0.01

21 CP596 2.00 2.00 2.10 1.00 0.50 1.90 67.03 8.00 5.28 0.01

22 Arithmetic 1.36 1.30 1.90 1.05 0.51 1.81 118.93 7.09 7.61 0.11

23 Geometric 1.30 1.25 1.89 1.05 0.51 1.80 101.64 6.94 7.39 0.04

24 Harmonic 1.24 1.21 1.87 1.05 0.51 1.78 88.14 6.77 7.18 0.02

25 multi_area 2.00 1.39 2.22 1.52 0.50 1.63 74.36 7.81 9.14 0.05

26 multi_length 1.00 1.04 1.88 1.00 0.50 2.00 56.67 7.69 9.28 0.00

27 multi_pooled 1.83 1.00 2.21 1.32 0.50 1.82 51.55 7.91 6.36 0.00

Note: Rows 1–21 represent the single-site calibration strategy (SSS), 22–24 are the upscaling factors strategy (UFS), and the 25–27 rows are the parameter

sets obtained with the multi-site strategy (MSS). The shade serves as separation between different sets of calibration strategies.

RINCÓN ET AL. 9 of 18

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15008 by T

est, W
iley O

nline L
ibrary on [26/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



water temperature. There are some cases where the values were

underestimated, such as in CP-596 and CP-477 (R2 = 0.81 and R2

= 0.79, respectively) and some others with a relatively large spread,

as in CP-213 (R2=0.72). In the downstream CPs such as CP-1, CP-4,

CP-6 and CP-118, among the others, the agreement is very good, with

R2 > 0.75 in all the cases. However, this also shows that the

CEQUEAU model does not reach the maximum Landsat-retrieved

water temperature value (around 20�C) in those CPs.

3.3 | Comparison against surface station

The last column in Figure 4 shows the validation results achieved

through simulating water temperature at the MFFP's surface water

temperature station (see Section 2.7) with the various calibration

strategies. In terms of the Single Site Strategy (SSS), CP-4, CP-6, CP-

435 and CP-477 parameter sets perform better than the rest, reaching

values of RMSE as low as 1.31�C in the CP-4. Validation performance

F IGURE 4 Heatmap comparing the obtained RMSEs for the different calibration strategies. The rows (y-axis) represent the CP point and/or
the calibration strategy that was used to derive the parameter set, and the columns (x-axis) represent the result of evaluating these parameters at
that specific location. The last column represents the surface station evaluation for validation purposes. RMSE is given in �C.
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decreases when evaluating the surface station against

headwater-derived parameters set as in CP-270, which delivered the

highest RMSE (2.50�C).

The MSS-derived parameter sets increase the validation perfor-

mance of the CEQUEAU model compared with the SSS. The best

RMSE (1.38�C) was obtained with the multi_area method, whereas

the worst RMSE of 1.92�C (using the multi_length strategy). This high-

lights the consistency of the MSS approach. Among the UFS, the

Arithmetic mean delivered the best RMSE value (1.77�C), whereas

the Harmonic performed worst (RMSE = 1.79�C). The best calculated

RMSE with the MSS has significant differences with the best RMSE

obtained with the UFS.

Based on these validation results, we selected the multi_area

parameter set to explore how the model performs temporally using

the surface station. The time series of observed and simulated water

temperature are presented in Figure 7. In total, three summers of

observed water temperatures are available. Figure 7A shows the

multi-annual means of water temperatures for the period 2016 to

2019, and it is possible to see that the CEQUEAU model matches the

onset of positive observed water temperature (blue line). This is a key
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F IGURE 5 Multi-annual means simulated (red lines) and Landsat derived (blue lines) water temperature for each of the selected CPs. These
multi-annual means were produced using the multi_area parameters set.
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insight about the performance of the CEQUEAU model in Aux Mélèze

river since this metric is likely to change across Canada under climate

change conditions (see Daigle et al., 2010, for details). Although the

model can represent such an important metric, its performance is

reduced during the peak of the summer and the start of the autumn.

This can be seen in Figure 7b, where a considerable portion of the

points are below the regression line. Nonetheless, the R2 = 0.90 coef-

ficient confirms good agreement between the observed and simulated

values. This positive result emphasizes the very strong ability of our

calibration approach (MSS using TIR-derived temperature data) to

provide parameter values that lead to accurate simulations of water

temperature in Aux Mélèzes River.

The comparison between the surface observations, the simulated

water temperature and the Landsat TIR-derived water temperature is

shown in Figure 7c. The maximum surface observed (blue line) value

for this time period is 17.71�C, while the maximum value obtained

with the Landsat TIR images (blue dots) was 20.25�C. The overestima-

tion of the observed water temperature was obtained during the sum-

mers of 2016 and 2017. In general, the comparison between the

observed surface temperature and Landsat-derived temperature leads
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F IGURE 6 Scatter plots for observed (x-axis) Landsat-derived water temperature and simulations (y-axis) with the CEQUEAU model in each
of the selected CPs. These diagrams were produced using the multi_area parameter set.
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to an RMSE = 1.40�C, which can be considered a very good estima-

tion of the actual observed water temperature. The comparison of the

simulated water temperature (red line) along with the Landsat-derived

temperature for this time period delivered an RMSE = 2.03�C.

4 | DISCUSSION

The relative paucity of river discharge and water quality data in the

Arctic and Subarctic makes river science very challenging in these

regions. The development of new algorithms for processing space-

borne and reanalysis data sources has given researchers new tools to

exploit and develop new knowledge in these data-sparse regions. In

this study, we combined information from ERA5 and Landsat TIR

images with simulations from the CEQUEAU hydrological-water tem-

perature model to produce consistent, accurate daily water tempera-

ture and flow time series in the Aux Mélèzes River, located in the

northeastern Canadian Subarctic region. Although studies have been

carried out describing water temperature and flow patterns in other

regions of the Canadian Arctic (e.g., Stadnyk et al., 2020; Yang

et al., 2014; Yang et al., 2021; Yang & Peterson, 2017), this represents

the first effort to incorporate satellite-based thermal imagery along

with hydrological/water temperature models over this region and is

also the first to focus on the eastern portions of the Canadian Arctic.

4.1 | Water temperature estimation from satellite-
based thermal imagery

The use of TIR-based instruments to monitor and quantify river tem-

perature has gained attention during the last decades, particularly in

remote areas where deploying in situ instruments that allow the mea-

surement and monitoring of actual kinetic water temperature (Tk) is

very challenging (Dugdale, 2016; Handcock et al., 2012). The radiant

temperature measured by TIR-based instruments serves as a good

approximation of the river temperature (Daigle et al., 2022;

Dugdale, 2016; Handcock et al., 2012; Martí-Cardona et al., 2019;

Tavares et al., 2020). However, given the high cost involved in ‘con-
ventional’ monitoring campaigns across large rivers, such as the one

involved in this study, would not be economically or logistically viable
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F IGURE 7 Validation of the simulated water temperature using the multi_area parameters set against the surface observations of water
temperature and Landsat-derived temperature. (a) Represents the multi-annual means of observed (blue line) and simulated (red line) time series
of water temperature for the period of 206–2019, (b) is the scatter plot of surface observed and simulated water temperature time series, and
(c) shows the comparison between the surface observed water temperature (blue line), simulated water temperature (red line) and Landsat
derived water temperature (blue dots) from 2016 to 2019.
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(see Dugdale, 2016, for details). The use of space-borne Landsat TIR

images allowed us to spatially understand the river temperature

dynamic for a considerable time period over a remote area in the

northeastern Canadian region.

Using the algorithm proposed by Martí-Cardona et al. (2019) to

filter out mixed land-water pixels enabled us to estimate river temper-

ature in reaches with widths ranging from 150 m in CP-431 to >350

m in CP-84. This greatly increases the applicability of satellite-derived

river temperature data, meaning that they can now be used to consti-

tute ‘virtual’ temperature gauging stations in relatively small water-

courses. This overcomes the limitation highlighted in the recent study

of Daigle et al. (2022), where only rivers with a minimum width rang-

ing from 300 to 350 m were used to derive Landsat-based water

temperature.

The comparison of the obtained Landsat-derived water tempera-

ture in CP-1 with the surface station has shown a high degree of accu-

racy (RMSE = 1.41�C) of the proposed method. This represents an

improvement in the estimations given by Daigle et al. (2022), where

an RMSE = 1.7�C was obtained in the same river. This indicated that

filtering out the mixed bank river pixels improves the estimations of

water temperature, as was stated by Martí-Cardona et al. (2019) in

their study. Also, this result is in accordance with the estimations

given by (Tavares et al., 2019), where after atmospherically correcting

a set of TIR-based Landsat images and selecting (manually) only

centred water pixels, they obtained an RMSE = 1.44�C. Our method

allowed us to define automatically only pure water pixels distributed

in space and time, avoiding human intervention, which reduces pre-

processing time and errors by incorrectly choosing the wrong pixels.

4.2 | Surface flow simulations

The simulated discharge presented in Figure 2 suggests that ERA5 is a

reliable source of information to obtain robust daily streamflow simu-

lations. KGE = 0.86 and NSE = 0.79 give us confidence in our model's

representation of the seasonal behaviour of the surface stream flow

in the Aux Mélèze River. Unlike CEQUEAU's water temperature

model component, the underlying hydrological model was calibrated

using a single-site strategy. However, the validation results, when

compared to observations from gauging station ID 103603 are equally

good (KGE = 0.79, NSE = 0.65, RMSE = 80.75 m3/s, and

BIAS = �1.5 m3/s). This validation highlights the strong ability of

CEQUEAU to simulate high discharges at the outlet point while also

correctly representing (reduced) flows in sub-basins. Although the

obtained performance metrics are lower than at the principal calibra-

tion site (as expected), these results are still acceptable and reaffirm

that the CEQUEAU model correctly represents the general seasonal

patterns in the sub-basins within the Aux Mélèzes River. This, in turn,

gives confidence in our reproduction of water temperature patterns

throughout the basin. This study's results agree with similar investiga-

tions (e.g., Krogh et al., 2015), where ERA-Interim successfully allowed

them to improve the streamflow simulation in a remote mountainous

area in the Chilean Patagonia.

4.3 | Water temperature simulations

Among the calibration strategies considered in our study, the Single-

Site-Strategy (SSS) produced the worst RMSE values when the

derived parameters are evaluated in other CP locations. The Upscaling

Factor Strategy (UFS) accounts for some spatial variability since it

transfers local variability in the water temperature parameters to the

basin scale. In our case, the Harmonic mean was found to be the most

consistent in retrieving the lowest RMSE values throughout the differ-

ent CP locations. This coincides with the results obtained by Khor-

sandi et al. (2022), where the harmonic mean was found to be the

best upscaling factor to obtain global water temperature parameters

for the CEQUEAU model. All the considered upscaling factors outper-

formed most of the SSS when comparing the performance in the indi-

vidual CP locations.

However, comparing the obtained RMSE from UFS with those

obtained with the Multi-Site Strategy (MSS), indicates that MSS can

generate consistent improvements over UFS. MSS explicitly adjusts

the parameters using all of the distributed Landsat-derived water tem-

perature values in a single calibration. The latter ensures that the MSS

approach represents the spatial variability better than the upscaling

factors, as shown by the obtained RMSE values (Figure 4). Another

fundamental advantage of the MSS is the computational time. The

application of the UFS requires performing several single-site calibra-

tions to compute the respective Upscaling Factor subsequently. In this

particular case, the computation of each upscaling factor required

21 times the computational resources than the MSS. This, by itself,

implies that MSS must be chosen over the UFS if future multi-site cal-

ibrations of the CEQUEAU model are required. This agrees with the

result obtained by Khorsandi et al. (2022), where the reason for

choosing MSS over UFS was mainly the computational time. Our

study showed that even increasing the number of CP sites to derive

basin scale parameters using Upscaling-Factors, the multi-site calibra-

tions perform better. Indeed, in the case of the CEQUEAU model, the

selected MSS that outperformed the rest was the multi_area, which

coherently derived parameters taking the actual flow structure as a

proxy to adjust the optimal parameters values. The simulated water

temperature series for the different CPs considering the best perfor-

mance calibration strategy (Figures 5 and 6) suggest that the

CEQUEAU model simulations correctly fit into the range of variability

of the estimated water temperature with Landsat TIR images. A

biased behaviour is shown during summers and autumn for the period

2016 to 2019 when the simulations were compared against the

surface-gauged station (see Figure 7a,c). The same pattern is shown in

the whole considered calibration period, where the summer tempera-

ture is mostly underestimated during the end of the season (see

Figure 5). As already mentioned in Section 4.1, the Landsat-derived

radiance temperature is a good estimation of the surface water tem-

perature. Therefore, our simulations produce coherent water temper-

ature time series during the whole calibration period (1990–2019).

The excellent degree of concordance between these water tempera-

ture observations and simulations from a model parameterized and

calibrated purely using satellite/reanalysis data suggests that it is now
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possible to generate long-term water temperature time series using

information from satellite-based datasets and the CEQUEAU model.

4.4 | Limitations

This research presents some assumptions about how Aux Mélèze

River hydrological and water temperature patterns work. Although

hydrological calibration delivered excellent performance metrics, there

are no observed data to confront the obtained subsurface and surface

water fluxes. For example, the poor performance of spring peak flows

is likely due to a misrepresentation of the physics of the snowmelt

process, as stated by Landine et al. (1988). However, a large part of

the uncertainty can be attributed to negative biases in ERA5 winter

precipitation in the arctic zones (e.g., Tarek et al., 2020). This needs to

be addressed in the future with better observation of snowmelt and

precipitation near the study area.

Validating the TIR-derived water temperature with a longer time

series of surface water temperature in such environments would be

essential to define the existence of systematic biases between esti-

mated TIR-based water temperature and surface water temperature.

In our case, the difference between the obtained RMSE with the TIR-

based water temperature and the RMSE comparing the simulated and

surface water temperature is around 0.6�C. This would mean that

evaluating the performance of the CEQUEAU model with TIR-based

temperature would require some corrections for future applications

since water temperature simulations taking ERA5 as reference data

were already tested, and it showed good accuracy elsewhere in

Canada (e.g., Gatien et al., 2022; Khorsandi et al., 2022).

5 | CONCLUSION

The main goal of this research was to demonstrate how simulated

water temperature time series from a process-based water tempera-

ture model, parameterized using satellite and reanalysis data, can form

a viable alternative to long-term in-situ time series of water tempera-

ture in remote Arctic regions, where problems relating to data-

gathering and access persist. For those reasons, we framed this work

in the context of the PUB problem, which has been widely explored in

terms of flow simulations but lacks equivalent research focusing on

water temperature in ungauged basins, particularly at sub-annual

scales. This study constitutes the first application of the CEQUEAU

model in a Subarctic environment. Our results show that the model is

a very reliable tool to simulate both runoff and water temperature

spatiotemporal patterns, even in the northeastern Canadian Arctic

where conventional field data are almost absent. Indeed, our research

shows the value of combining satellite-based remote sensing and

meteorological reanalysis data for model parameterization and calibra-

tion. Our proposed approach suggests that the multi-site calibration

strategy for calibrating the CEQUEAU model outperforms the single-

site and upscaling factor calibration strategies for simulating water

temperature throughout the entire basin, ultimately producing

discharge and water temperature simulations equal or better to

models calibrated and parameterized using ‘conventional’ data and

approaches. This research emphasizes the strengths of the CEQUEAU

model to simulate the main hydrological and river temperature pat-

terns in complex environments such as the cold Canadian Subarctic

region. Future research can now have confidence in using the

CEQUEAU model to produce and assess future climate change stud-

ies, which will be fundamental for fisheries managers in the Arctic and

Subarctic rivers.
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