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Scientific Significance Statement

Arctic lakes in dry regions that have weak hydrological connectivity to their watersheds accumulate large amounts of carbon
(C) as dissolved organic matter (DOM), exhibiting both autochthonous and allochthonous characteristics. The balance
between these characteristics determines the CO2 release from lakes. This study provides evidence that trends toward a warmer
and drier Arctic obscures the relative balance of autochthonous and allochthonous DOM sources by increasing the importance
of autochthonous macrophytes as sources of DOM in otherwise nutrient-poor lakes. In contrast, C stored in sediments of Arc-
tic lakes mostly originates from autochthonous algal sources.

Abstract
Arctic lakes are poised for substantial changes to their carbon (C) cycles in the near future. Autochthonous pro-
cesses in lakes which consume inorganic C and create biomass that can be sequestered in sediments are accom-
panied by allochthonous inputs of organic matter from the surrounding watershed. Both C sources can be
mineralized and degassed as CO2, but also become recalcitrant and accumulate in pelagic waters. Using stable
carbon isotope (δ13C) values and elemental ratios as geochemical proxies, we investigated diverse organic mat-
ter sources to lakes located across a hydro-climatic gradient in Southwest Greenland. Particulate organic matter
(POM) and sediments were clearly of autochthonous algal origin, while dissolved organic matter (DOM) was a
mix between autochthonous macrophytes and allochthonous watershed sources. Our results imply that a
warmer and drier Arctic will lead to decoupled C pools: a water column dominated by increasingly autochtho-
nous, macrophytic DOM, and sediments dominated by autochthonous algal POM.
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Understanding organic matter (OM) sources and cycling in
lakes is important for ecosystem functioning as well as the
degree of carbon (C) processing and its fate. Autochthony
describes conditions under which in-lake formation of OM via
primary production dominates. In contrast, allochthony
describes conditions in which external inputs of nutrients
and OM dominate. The relative balance within this “auto-
allochthony” paradigm affects the fate and source-sink status
of C in lakes (Wetzel 1992). Autochthonous lakes are net C
sinks with the potential to sequester biologically-fixed C in
lake sediments (Anderson et al. 2019). Allochthonous lakes
mineralize and release large quantities of their OM input as
CO2 via photochemical and microbial degradation (Vähätalo
and Wetzel 2008; Guillemette et al. 2016), but also may con-
tribute to C burial in lakes via flocculation (Wachenfeldt and
Tranvik 2008). In contrast to hydrologically connected sys-
tems in the boreal zone, sediment records from some arctic
lakes suggest an increase in autochthonous C burial (Sobek
et al. 2014; Anderson et al. 2019). The allochthony paradigm
is essentially derived from studies of lake-watersheds that are
hydrologically well connected, that is, boreal and wet, tundra
environments (Kling et al. 1992). Climate change will, how-
ever, alter these connections and modulate the future fate of
C in boreal to arctic regions.

Arctic lake ecosystems are poised to undergo rapid climatic
change in the near future, both from changes in temperature
and precipitation (Bring et al. 2016). The Arctic stores about
2 Pg of organic C in permafrost; this climate change will
involve altered lateral transfers of OM from their watersheds
(landscape) into lakes, leading to possible enhancement of ter-
restrial C processing in the water column and C storage in sedi-
ments (Schuur et al. 2015; Wauthy et al. 2018). Furthermore, as
climate warms, an increase in vegetation development (“Arctic
greening”) occurs as biomes shift northward and expand
locally, possibly also increasing the supply of this OM to lakes,
strengthening lateral transfers across the terrestrial-aquatic
interface (Elmendorf et al. 2012; McGowan et al. 2018; Tank
et al. 2018). The source and reactivity of OM is important: ter-
restrial DOM supplies much of the energy to lake ecosystems
(Pace et al. 2004). However, the production, mobilization, and
transfer of this OM under warming conditions are unclear
(Anderson and Stedmon 2007; Saros et al. 2015).

We compiled carbon stable isotope (δ13C) and molecular
carbon to nitrogen ratio (C:N) values from terrestrial and
aquatic environments covering a large limnological-climate-
vegetation gradient in the Kangerlussuaq area of SW Green-
land, an area with clearly defined regional climates (mean
summer air temperature, m.s.t.; and mean annual precipita-
tion, m.a.p., Table S1) that are representative of conditions
found elsewhere across the Arctic (Mernild et al. 2015). We
used these data to test the hypothesis that drier conditions in
SW Greenland have influenced where allochthonous and
autochthonous C sources are stored within these lakes. Our
results highlight the need for the broadening (redefining) of

the lake auto-allochthony paradigm in consideration of lake C
cycling in a drier Arctic.

Materials and methods
δ13C and C:N ratio data were compiled from a variety of lakes

and their watersheds situated across SW Greenland, which have
been sampled from 2001 through 2017 (Anderson et al. 2017;
Table S1). The lakes have been grouped together along a hydro-
climatic gradient of mean summer temperatures and precipita-
tion in this study to determine differences in C pools: a Coastal
lake group in a cool-wet climate (8�C, 410 mm); a Central lake
group in a warm-dry climate (11�C, 183 mm); and an Ice margin
lake group in a cool-dry climate (8�C, 269 mm) (Fig. S1 and
Table S2) (Osburn et al. 2017). Stable oxygen (δ18O) isotope mea-
surements on water from the lakes showed that the lower precipi-
tation lake groups fall along an evaporative trend, which implies
decreasing hydrological connectivity and longer residence times
(Fig. S2; Leng and Anderson 2003).

POC samples (seston) were collected in 2011 and 2012
from a number of coastal lakes (Whiteford et al. 2016). Water
samples were taken with a van Dorn sampler at 1-m water
depth and filtered through baked 0.7 μm GFF filters
(Whatman) and kept frozen until being freeze dried. Terres-
trial plants and soils were air dried after collection. For the
δ13C analyses, plants were rinsed in 5% HCl to remove any
calcite and freezer milled to a fine powder. The soils were
treated in a similar fashion to the lake sediments (see below).

Stable carbon isotope values and C:N values on solids were
measured in multiple laboratories from 2009 to 2014, however
comparable methodologies for solid samples using elemental
analysis (EA) coupled to isotope ratio mass spectrometers
(IRMS) were conducted. Solid sediment samples measured via
EA-IRMS were calibrated with acetanilide for concentrations
and normalized against IAEA and NIST-traceable stable isotope
standards for δ13C values (Anderson et al. 2018b).

Soils and lake sediment samples were treated with 5% HCl
to remove carbonate. The sediment was measured for %TOC
and %TN concentrations (from which the C:N ratio was calcu-
lated) using a Carlo Erba 1500 elemental analyzer, calibrated
through an internal acetanilide standard. Isotopic analyses
were performed on the same instrument using an on-line VG
Triple Trap and Optima dual-inlet IRMS. δ13C values (‰) were
calculated relative to the VPDB scale using a within-run labo-
ratory standard (cellulose, Sigma Chemical prod. no. C-6413)
calibrated against NBS 19 and NBS 22. Replicate analysis of
sample material gave a precision of � <0.1‰ (1 SD). For lake
particulate OM (POM), these values were measured on a
Thermo 1112 Flash elemental analyzer coupled in continuous
flow to a Thermo Delta V+ IRMS. The %OC and %TN values
were calibrated an internal acetanilide standard, while δ13C
values were calculated relative to the VPDB scale using IAEA-
C6, IAEA-C8, and IAEA-600 as within-run standards. Replicate
analysis of standard material gave a precision of � 0.3‰.
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Isotope values were adjusted for the Suess effect, which is the
increasingly depleted δ13C value of atmospheric CO2

(Verburg 2007).
DOC stable C isotope ratios were measured on an OI Analyti-

cal 1030D TOC analyzer coupled in continuous flow to the Delta
V+ IRMS (Osburn and St-Jean 2007). Prior to analysis samples
were acidified with 85% H3PO4 to pH 2 and sparged for 10 min
with ultra-high purity argon to remove inorganic carbon
(as CO2). DOC concentrations were calibrated each analytical
day with prepared solutions of caffeine, and δ13C values were cal-
ibrated VPDB scale with prepared solutions from IAEA-CH6
(δ13C = −10.8‰) and IAEA-600 (δ13C = −27.77‰). Error on

DOC concentrations was < 3% and precision on δ13C-DOC
values was� 0.2‰ (N = 23). C:N values for DOMwere estimated
as from total N concentrations minus dissolved inorganic nitro-
gen (DIN) concentrations on samples collected in 2013 (methods
detailed in Whiteford et al. 2016). Reproducibility on TN mea-
surements was� 0.1mg L−1 and� 0.01 mg L−1 on DIN.

We had an uneven number of samples for each pool
within each lake group across the δ13C and C:N data sets; fur-
thermore, data for each lake group were not normally distrib-
uted. Therefore, we used a Monte Carlo approach to generate
an equal number of samples constrained by the mean and
standard deviation of each OM pool. We chose N = 45 to

Coastal

DOM
POM

Sediments

Macrophytes

Vegetation
Soils

δ
13

C
 (

‰
)

-32

-30

-28

-26

-24

-22

-20

-18

Coastal

DOM
POM

Sediments

Macrophytes

Vegetation
Soils

C
:N

0

20

40

60

80

100

120

Central

DOM
POM

Sediments

Macrophytes

Vegetation
Soils

δ
13

C
 (

‰
)

-32

-30

-28

-26

-24

-22

-20

-18
Central

DOM
POM

Sediments

Macrophytes

Vegetation
Soils

C
:N

0

20

40

60

80

100

120

Ice margin

DOM
POM

Sediments

Macrophytes

Vegetation
Soils

δ
13

C
 (

‰
)

-32

-30

-28

-26

-24

-22

-20

-18

Ice margin

DOM
POM

Sediments

Macrophytes

Vegetation
Soils

C
:N

0

20

40

60

80

100

120

a
b

c

d

b

d a

b b

a

c

d

a

b

c

d

b
c

a

b b
bd

c

d

a

b
b

c

d

a

b b

a
c

Fig. 1. Boxplots of δ13C values (left panels) and C:N ratios (right panels). Boxes represent interquartile range, horizontal line within each box is the
median, and bars represent the 95% range. Solid circles are outliers. Significant differences between sources are indicated as different letters above error
bars (p < 0.05, Bonferroni post hoc test).
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match the largest number of measurements we had for any
one pool, which was macrophytes from the Central lake
group (Table S2). By taking this approach, we could then con-
firm data were normally distributed then proceed with statisti-
cal tests of significance between groups, correlation, and
regression. Linear mixing models based on stable isotope and
elemental ratio values were used to determine contributions
of vegetation, soil, and macrophyte sources to lake DOM and
contributions of POM, soil, and vegetation sources to lake sed-
iments (Table S2; Phillips et al. 2005). Two-way ANOVA
(ANOVA) tests were used on δ13C values and C:N ratios sepa-
rately to determine significant differences in OM pools among
the lakes grouped by precipitation regime. Monte Carlo
resampling, statistical tests, and linear mixing models were
conducted in Matlab v. 2018a (Mathworks).

Results
Dry conditions across the hydro-climatic gradient of SW

Greenland (Fig. S2) created in the lakes a large and variable C
pool of DOM derived from allochthonous terrestrial and
autochthonous macrophyte sources, while autochthonous
algal sources were overwhelmingly sequestered in lake sedi-
ments, irrespective of the hydro-climatic gradient (Fig. 1 and
Table S2). δ13C-DOM values of the higher precipitation
Coastal lakes were depleted by about 2‰ relative to the lower
precipitation Central and Ice margin lake groups; the latter
two groups were not significantly different (p > 0.05) (Table S2
and Fig. 1; Osburn et al. 2017). Soils, terrestrial vegetation,
POM, and lake sediments all had mean δ13C values between
─25‰ and ─30‰, which were consistent with values
reported on similar sources collected from and around ponds
in the Kangerlussuaq area (Mariash et al. 2018). Macrophyte
δ13C values showed the widest variability (ranging from
─33‰ to ─9‰). Notably, sediment δ13C values were most
depleted, and overlapped with values for POM (Fig. 1). Mean
δ13C values of DOM were enriched by 1‰ to 3‰ relative to
POM (p = 0.002; Table S2).

Values of C:N spanned the range typical for lacustrine OM
sources (Lamb et al. 2006; Fig. 1 and Table S2). By and large,
DOM was depleted in N relative to other C pools except ter-
restrial vegetation. The Central lake group, having the lowest
precipitation, also had the highest mean C:N ratio (66) com-
pared to the cool-dry Ice margin lake group (42) and the cool-
wet coastal lake group (36). Mean C:N ratios for both soil and
macrophyte sources exhibited an increase value with increas-
ing precipitation (Spearman’s rho = 0.52; p < 0.001 and
Pearson’s r = 0.52; p < 0.001, respectively; Fig. 2).

Two-way ANOVA results revealed OM characteristics in the
lakes were influenced by sources and precipitation regime
(Tables S3 and S4). There was a statistically significant differ-
ence in δ13C value based on source of OM: F5,296 = 20.13,
p < 0.0001, as well as on lake group, which varied by precipita-
tion: F2,296 = 3.88, p = 0.022 (Table S3). C:N ratios exhibited

similar distinctions (Table S4). Each source of OM was signifi-
cantly different with respect to mean C:N ratios of the lake
groups across the hydro-climatic gradient. For both two-way
ANOVA tests, interaction between the OM source and lake group
also was significant (Tables S3 and S4). Thus, the differences in
OM quality in the lakes depended both on the sources of OM to
them and the regional climatic patterns where they are located.

Dissolved inorganic carbon (DIC) δ13C values were avail-
able for the lakes near Kellyville from 2001 and 2009 only.
These values provide context for interpreting δ13C values from
primary production. The mean δ13C-DIC was ─1.6‰, while
the minimum was ─8.7‰ and the maximum was +3.4‰.
DIC concentrations were recalculated from water chemistry
data (Whiteford et al. 2016).

Linear mixing models revealed distinct sources of OM to
DOM and to sediments, respectively (Table 1). In order to esti-
mate the relative importance of these C sources in DOM and
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Fig. 2. Plots of mean δ13C ratios (top) and mean C:N ratios (bot-
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regions in SW Greenland. Error bars denote standard deviation over
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in sediments, a mixing model was developed based on mean
δ13C values and the inverse of C:N ratios (C:N−1 or N:C
ratios), which more accurately trace the contribution of terrig-
enous C than do C:N ratios (Perdue and Koprivnjak 2007;
Table S5 and Supporting Information). Results showed that
terrestrial vegetation comprised about 40% of the Coastal lake
DOM and about 50% of the Central and Ice margin lake
DOM. Soil-derived C comprised 42% of the Coastal DOM pool
and 9% in Ice margin lake DOM. Soil inputs were practically
absent in the Central lakes. Macrophytes as a source of DOM
was greatest for the Central lake group (45%) and the Ice mar-
gin (39%) lake group, and decreased for the Coastal (12%) lake
group. The mixing model revealed that POM was the over-
whelming source of OM to the sediments of the Coastal and
Ice margin lake groups (> 80% for each) and the only source
to the Central lake group sediments.

Discussion
Hydrological connectivity and lake OM characteristics

Lakes in SW Greenland exhibited consistently distinct
characteristics, which reflected different sources of C stored in
the water columns and sediments of these lakes (Fig. 3). This
distinction became more apparent across the hydro-climatic
gradient as the degree of hydrological connectivity decreased
from the relatively higher precipitation Coastal lake region to
the lower precipitation Central lake region, in which water
isotopes indicated substantial evaporation (Fig. S2; Leng and
Anderson 2003). The Coastal lakes were more similar to
terrestrial-OC dominated boreal lakes, yet the similarity
declined as hydrological connectivity decreased and the Cen-
tral and Ice margin lakes became dominated more by autoch-
thonous sources. The decrease in hydrological connectivity
evidenced by increasingly evaporative conditions (Fig. S2)
resulted in DOM becoming more influenced by macrophytes
than by soils or terrestrial vegetation (Table 1). However, the

Table 1. Results from mixing model of organic matter sources to DOM and sediments in SW Greenland lakes, by group. Sources for
DOM were vegetation, soil, and macrophytes. Sources for sediments were vegetation, soil, and POM.

Fraction of source (mean�SD)

Lake group DOM Vegetation Soil Macrophytes

Coastal 0.43�0.10 0.42�0.21 0.15�0.23
Central 0.52�0.09 0.03�0.10 0.45�0.03
Ice margin 0.45�0.17 0.09�0.21 0.46�0.11

Sediment Vegetation Soil POM

Coastal 0.21�0.04 0 0.88�0.04
Central 0 0 1.0�0.1
Ice margin 0 0.14�0.13 0.86�0.14
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Fig. 3. Biplot of C:N ratios and δ13C values for organic matter pools in
SW Greenland lakes. Single markers are means and error bars represent
standard deviations. Individual lake data are shown for DOM and sedi-
ments. POM values are mostly obscured by the range of sediment obser-
vations. Inset figure shows regions of organic matter sources and is
redrawn from Lamb et al. (2006).
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sediments were consistently sourced from a variable mix of
benthic and planktonic algal OM across all lake groups. These
results confirmed our hypothesis and imply that drier condi-
tions reduced the terrestrial C subsidy to these lakes.

Accumulation of terrestrial and autochthonous DOM in
the water column

Soil-derived DOM sources became less important to SW
Greenland lakes under drier conditions (Table 1). Lack of soil
development in the watersheds of these lakes (south facing
slopes are often devoid of vegetation and soils due to moisture
stress) was consistent with the relatively low estimates for
soil-derived DOM influencing the lakes, though as pointed
out by Osburn et al. (2017), seasonal variability can be quite
marked. For example, fresh inputs of soil-derived DOM fol-
lowing active layer melt in the spring may give way to larger
inputs from macrophytes during the summer (Syväranta et al.
2006). Despite these spring pulses, the fraction of soil-derived
DOM decreased significantly with decreasing precipitation
(Spearman’s rho = 0.68; p < 0.001), reflecting the general
decrease in hydrological connectivity and increase in
evapoconcentration (Fig. S2). Overall, the lack of soil-derived
DOM in the Central and Ice margin lake groups could result
from its rapid photochemical and/or microbial degradation
after active layer thaw (Osburn et al. 2017).

Across the region of SW Greenland, conditions favorable to
plant growth led to greater relative contributions from autoch-
thonous DOM sources. These lakes have deep euphotic zones
that reach to > 80% of their maximum depth (Whiteford et al.
2016). Low mass-specific DOM absorbance and low particu-
lates in the Central and Ice margin lakes near Kangerlussuaq
results in a larger euphotic zone depth than in most boreal
lakes (Whiteford et al. 2016; Osburn et al. 2017), although
transparency is changing (Saros et al. 2016). Primary produc-
tion in Arctic lakes tends to be dominated by the benthos
including periphyton, macrophytes, and their associated epi-
phytic communities (Vadeboncoeur et al. 2003). Deep eupho-
tic zones support extensive and diverse macroalgal and
macrophyte beds in these lakes (Chara, Potamogeton spp and
aquatic mosses such as Depranocladus spp.). Macrophyte exu-
dation and senescence can thus account for a large proportion
of DOM in shallow lakes with substantial littoral zones and
high light transparency, particularly where allochthonous
inputs are low (Wetzel 1992). This was very clear from the
results of our mixing models that showed large contributions
(ca. 45%) of autochthonous macrophytes to DOM in the Cen-
tral and Ice margin lakes (Table 1).

Stable isotope and C:N results from this study support evi-
dence from DOM’s optical properties that indicated macro-
phytic sources dominated the water column DOM in
southwest Greenland lakes (Osburn et al. 2017). Stable hydro-
gen (δD) and δ13C values of DOM from a series of ponds near
Kangerlussuaq likewise showed the importance of macro-
phytes to water column DOM (Mariash et al. 2018). Results

also are comparable to lakes of the Mackenzie River delta, in
which littoral primary production was distinct from pelagic
primary production in contributing to lake OM cycles, espe-
cially in shallower systems (Tank et al. 2011; Mendonça et al.
2013). The Mackenzie Delta lakes have considerable DOM
inventories but exhibit a stronger connection to macrophytic
DOM sources as hydrological connectivity declines (Tank
et al. 2011). Therefore, a shift in lake DOM source from soils
to macrophytes is thus quite reasonable to occur under drier
conditions in the Arctic, exemplified by the evaporative con-
ditions of the Central lake group (Fig. S2).

Accumulation of autochthonous OM in sediments
Sediment OM was dominated by autochthonous processes

despite the hydro-climatic gradient (Table 1). In fact, a terres-
trial C signature was absent in the sediments of the lakes as
evidenced by the general lack of visible terrestrial macrofossils
(Anderson et al. 2009). As in many oligotrophic lakes globally,
the SW Greenland lakes had POM concentrations that were
generally much lower than DOM concentrations (Tranvik
et al. 2009; Whiteford et al. 2016). Consequently, organic C
burial rates are low (Sobek et al. 2014; Anderson et al. 2019).
Therefore, we argue that despite the hydro-climatic gradient,
low carbon accumulation rates in sediments reflect a
decoupling from landscape influence with C burial being
strongly controlled by autochthonous planktonic processes.

The geochemical proxies measured in this study support
this argument (Fig. 3). C:N values in sediment cores were
ca. 10 at surface and increased with depth, while δ13C values
ranged from −30‰ to −28‰ with the more negative values
in surface sediments. The ranges for each proxy encompass
freshwater POC as influenced by freshwater algae (inset to
Fig. 3; Lamb et al. 2006). Diagenesis possibly exerted a weak
influence on the sedimentary OM as was indicated for several
of these lakes previously (Sobek et al. 2014). This would
explain the mean C:N ratios for each lake group that were
slightly greater than Redfield ratio for plankton (i.e., > 7) espe-
cially if N was removed. Two-way ANOVA results clearly
showed no link between DOM and sediments characteristics
that would suggest substantial release of pore water DOM into
the water column, from whence our observations were
obtained, that would imply substantial diagenesis (Tables S3
and S4). This further underscores the disconnect between C
cycles in the water column of the lakes and C cycles in their
sediments.

Sediment δ13C and C:N values implied that DOM in the
Kangerlussuaq lakes is not readily flocculated by the physico-
chemical processes that dominate C accumulation in boreal
lake sediments (Wachenfeldt and Tranvik 2008; Guillemette
et al. 2017). Notably, even sediments from lakes at the Green-
land coast exhibited mostly autochthonous algal characteris-
tics (Table 1; Olsen et al. 2013; Anderson et al. 2018a). This
contrast between sediment C characteristics of boreal lakes
vs. the Kangerlussuaq lakes further emphasizes that the
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breakdown of the terrestrial-aquatic linkage will weaken as the
Arctic becomes drier. Despite this disconnect, increases in
reactive nitrogen from the atmosphere may enable the
nutrient-limited SW Greenland lakes to continue to sequester
CO2 in their sediments from autochthonous aquatic primary
production (Anderson et al. 2019).

Implications for lake C cycling in a drier Arctic
As the Arctic warms, regions are predicted to become

greener via shrubification, leading to enhanced terrestrial veg-
etation in catchments and possibly increasing relative
amounts of vegetation and soil inputs to Arctic lakes (Phoenix
and Bjerke 2016; Anderson et al. 2017). Many Arctic lakes that
have large DOM inventories, e.g., the well-studied Alaskan
lakes near Toolik, accumulate this C via strong hydrological
connectivity to their watersheds originating from seasonal
inputs from active layer thawing, a process that will be
enhanced by permafrost melt (Judd and Kling 2002). How-
ever, altered hydrological pathways, either reduced due to
drought or enhanced by permafrost melt will result in
changes to C cycling and terrestrial-aquatic linkages, such as
the “active-pipe” model (Cole et al. 2007; Schuur et al. 2015).

Much of the Arctic also is predicted to become drier, likely
transitioning large regions from cool-wet tundra conditions
similar to the Coastal lake group, to warm-dry steppe condi-
tions similar to our Central lake group (Hu et al. 2010). Cur-
rent estimates place environments such as those observed in
the dry Central lake region at roughly 25% lake area within
the northern circumpolar permafrost landscape (Bogard et al.
2019). Our results suggest that under these climatic changes,
lakes will diverge from landscape influence and store more
autochthonous macrophyte-derived C as potentially recalci-
trant DOM in the water column, and store autochthonous
algal-derived C in sediments, even under low C accumulation
rates.

The auto-/allochthonous balance of lakes is largely derived
from studies of boreal lakes and eutrophic lakes. However, our
study revealed that drier conditions will shift C sources from
allochthonous subsidies to autochthonous processes. Further,
our results suggest the need for a broadening the context of
changing lake-landscape interactions in response to global
warming and land cover changes. Given the importance of
the Arctic for future global C dynamics (Schuur et al. 2015;
Anderson et al. 2017), the interaction and transfer of terres-
trial C between land and water need to incorporate the impact
of reduced runoff and drier conditions, which may modulate
the sources of C delivered to them.
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