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Abstract 1 

Background & Aims: Nonalcoholic fatty liver disease (NAFLD) and alcoholic 2 

liver disease (ALD) pose an important challenge to current clinical healthcare 3 

pathways due to a large number of at-risk patients. Therefore, we aimed to 4 

explore the cost-effectiveness of transient elastography (TE) as a screening 5 

method to detect liver fibrosis in a primary care pathway.  6 

Methods: Cost-effectiveness analysis using real-life individual patient data from 7 

six independent prospective cohorts (five from Europe and one from Asia). A 8 

diagnostic algorithm with conditional inference trees was developed to explore 9 

the relationships between liver stiffness, socio-demographics, comorbidities, 10 

and hepatic fibrosis, the latter assessed by fibrosis scores (FIB-4, NFS) and 11 

liver biopsy in a subset of 352 patients. We compared the incremental cost-12 

effectiveness of a screening strategy against standard of care alongside the 13 

numbers needed to test to diagnose a patient with fibrosis stage ≥F2. 14 

Results: The data set encompassed 6,295 participants (mean age 55±12 15 

years, BMI 27±5 kg/m2, liver stiffness 5.6±5.0 kPa). A 9.1 kPa TE cut-off 16 

provided the best accuracy for the diagnosis of significant fibrosis (≥F2) in 17 

general population settings, whereas a threshold of 9.5 kPa was optimal for 18 

populations at-risk for alcoholic liver disease. TE with the proposed cut-offs 19 

outperformed fibrosis scores in terms of accuracy. Screening with TE was cost-20 

effective with mean incremental cost-effectiveness ratios ranging from 2,570 21 

€/QALY (95% CI 2,456 - 2,683) for a population at-risk for alcoholic liver 22 

disease (age ≥45 years) to 6,217 €/QALY (95% CI 5,832 - 6,601) in the general 23 

population. Overall, there was a 12% chance of TE screening being cost-saving 24 

across countries and populations.  25 
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Conclusions: Screening for liver fibrosis with transient elastography in primary 1 

care is a cost-effective intervention for European and Asian populations and 2 

may even be cost-saving.  3 

Lay summary 4 

The lack of optimized public health screening strategies for the detection of liver 5 

fibrosis in adults without known liver disease presents a major healthcare 6 

challenge. Analyses from six independent international cohorts with transient 7 

elastography measurements based on economic modelling shows that a 8 

community-based risk-stratification strategy for alcoholic and non-alcoholic fatty 9 

liver diseases is cost-effective through earlier identification of patients and 10 

potentially cost-saving for our healthcare systems. 11 

Highlights 12 

 Optimal liver stiffness thresholds for community-based screening in 13 

populations with metabolic risk factors and alcoholic is between 9.1 and 14 

9.5 kPa for the diagnosis of significant fibrosis (stages ≥F2) 15 

 Transient elastography is a cost-effective intervention for identifying 16 

patients with liver fibrosis in primary care. Healthcare systems would 17 

need to invest between 2,500 (at-risk population) to 6,500 (general 18 

population) purchasing power parity-adjusted euros to gain an extra year 19 

of life, adjusted per quality of life.  20 

 The survival effect of screening is most pronounced for the identification 21 

of significant (≥F2) fibrosis.  22 
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Introduction 1 

Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are 2 

leading causes of chronic liver diseases, hepatocellular carcinoma (HCC) and 3 

liver-related deaths worldwide[1,2].  While the causes, consequences and 4 

treatment strategies for ALD and NAFLD are being studied and developed[3–5], 5 

the majority of patients are still diagnosed at an advanced stage of disease[6]. 6 

Consequently, the course of action towards early disease detection from a 7 

public health perspective remains a grey area in hepatology[7].  8 

Severe fibrosis and cirrhosis is the major predictor of excess mortality, liver 9 

transplantation and liver-related events in patients with NAFLD and ALD[8,9].  10 

Consequently, early detection before progression to advanced fibrosis might be 11 

more beneficial and cost-effective, as it allows for timely lifestyle interventions, 12 

patient guidance and disease monitoring. 13 

The high prevalence of ALD and NAFLD, in combination with a slow, 14 

asymptomatic disease progression, quickly translate into pressure on our 15 

healthcare systems, specifically on general practitioners and primary healthcare 16 

specialists. The search for optimal patient management and care pathways is 17 

thus of utmost importance, including mass preventive screening 18 

programmes[10]. 19 

The development of non-invasive diagnostic tools for the staging of liver fibrosis 20 

in ALD and NAFLD potential applications has widened. Transient elastography 21 

(TE) has been shown to be a reliable diagnostic tool for fibrosis 22 

assessment[11,12]. Use of TE could lead to highly cost-effective care pathways 23 

while minimizing costs, in comparison to magnetic resonance elastography, a 24 
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technique that either ignore or underestimate societal perspectives and limited 1 

resources[13–16].  Other alternatives, mostly based on serum biomarkers such 2 

as Fibrosis-4 (FIB-4) or NAFLD Fibrosis Score (NFS) have also been developed 3 

and validated [31]. 4 

Recently, there have been individual attempts in the literature to assess 5 

prevalence rates, diagnostic accuracy and potential algorithms to stratify 6 

patients at risk of severe fibrosis[17–22]. However, mainly due to the limited 7 

sample size and the heterogeneity of populations and healthcare systems, a 8 

broader assessment of the technology implementation encompassing both 9 

health and economic outcomes is lacking. 10 

The aim of the present study is to assess the cost-effectiveness of a liver 11 

screening program and surveillance intervention based on individual risk factors 12 

with a TE screening algorithm confirmed by percutaneous liver biopsy into a 13 

broad spectrum of populations without known liver disease, communities, and 14 

healthcare systems.   15 
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Patients and methods 1 

Study populations 2 

Patients from seven previous independent prospective studies that have used 3 

TE (FibroScan©) as a screening method for liver fibrosis detection were 4 

included in the study.  The final cohort includes 6,295 patients from six different 5 

countries: France (FR), Spain (ES), Denmark (DK),United Kingdom (UK),  6 

Germany (DE) and Hong Kong (HK)[23–29]. For the analysis we have 7 

considered the two studies from Spain as the same cohort, and have defined 6 8 

cohorts, one from each country. The cohorts from ES, DE and HK include 9 

patients from the general population above 18 years, the cohort from France 10 

includes patients from the general population above 45 years, the cohort from 11 

UK includes patients above 18 years with risk factors for chronic liver disease 12 

(with hazardous alcohol use or diabetes) and the cohort from Denmark 13 

comprised only patients above 18 years at risk for hazardous alcohol 14 

consumption. Hazardous alcohol use was defined as an alcohol consumption 15 

>14 units per week for women and >21 units per week for men[5]. Data on 16 

demographics, physical exam, clinical and laboratory parameters were included 17 

alongside with comorbidities. 18 

The cohorts from Denmark, Spain, France and UK were designed to obtain liver 19 

biopsy in patients to confirm liver fibrosis. All patients from Denmark were 20 

invited to undergo liver biopsy due to history of, either prior or ongoing, 21 

excessive drinking. The Spanish patients (general population cohort) were 22 

invited to undergo liver biopsy if LSM >6.8 kPa (n=299), but only a third of these 23 

patients accepted. French patients were referred to biopsy if LSM >8.0 kPa and 24 
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UK patients if LSM >8.2 kPa and at least one risk factor, either for alcohol or 1 

metabolic syndrome. 2 

Finally, data from 352 patients with successful liver biopsy were included (199 3 

from Denmark, 101 from Spain, 27 from France and 25 from UK). Liver fibrosis 4 

was classified using the Kleiner scoring system [30]. FIB-4 and NFS scores [31] 5 

were also computed for each biopsied patient in order to assess the 6 

comparative diagnostic accuracy of these screening instruments. 7 

Figure 1 presents the flowchart of enrollment, eligibility, analysis and available 8 

liver biopsies of each cohort. Inference regarding fibrosis staging is constraint 9 

by the 5.5% of patients who underwent liver biopsy.  10 

Statistical analysis 11 

Databases were merged and analyzed with conditional inference trees 12 

(CTREE) [32], to explore the relationships between socio-demographics, 13 

comorbidities, LSM, and hepatic fibrosis, as assessed by liver biopsy. The 14 

CTREE was fitted to the liver biopsied group to obtain the optimal cut-off points 15 

for which the distribution of fibrosis stage classification has highest diagnostic 16 

accuracy. Model’s goodness-of-fit was assessed by means of the area under 17 

the receiver-operating-characteristics curve (ROC) for binary outcome [≥F2], 18 

and 3-class [F0-F1, F2-F3, F4] accuracy was used to test the accuracy of the 19 

CTREE model[33]. 20 

Missing values in the development sample were lacking in 6% of the data fields. 21 

They were imputed with a multiple imputation random forest, obtaining a 22 

normalized root mean squared error of 0.0626 for numeric variables and a 23 

proportion of falsely classified entries of 0.0136. In order to avoid overfitting of 24 
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the diagnostic model, a 5-fold cross-validation procedure with five repeats was 1 

undertaken. Class balance across fibrosis stages was ensured using synthetic 2 

minority oversampling technique[34]. Calibration between observed and 3 

predicted probabilities was performed by visual inspection of calibration plots. 4 

Fibrosis groups F2, F3, and F4 were grouped in order to assess binary 5 

discrimination performance. 6 

Best-subset analysis [35] was performed for the covariates other than LSM in 7 

order to achieve a theoretical reduction in unnecessary testing. The predictive 8 

models included all available predictors as potential candidates to enter the 9 

diagnostic pathway: gender, age, active alcohol consumption, active smoking, 10 

viral hepatitis, weight, height, BMI, abdominal perimeter, systolic blood 11 

pressure, diastolic blood pressure, diabetes mellitus, obesity, hypertension, 12 

glucose level, creatinine, total cholesterol, LDL cholesterol, HDL cholesterol, 13 

triglycerides, AST, ALT, GGT, albumin, ferritin, leucocytes, hemoglobin, 14 

platelets, TE probe (M or XL), TE LSM value and TE IQR. Because of the 15 

population unobserved heterogeneity, fixed-effects were pre-specified in all 16 

models. The numbers needed to test in order to diagnose one case with 17 

significant fibrosis were computed for each country and risk factor, including 18 

general population, obesity, DM, and high risk alcohol consumption. All 19 

statistical analysis were performed with R 3.4.1.[36]  20 

Economic modeling 21 

The results of the six screening programs cohorts were used in the parameter 22 

tuning of a previously published cost-effectiveness model[37] to assess the 23 

cost-effectiveness of screening in the general population as well as populations 24 

with risk factors for chronic liver diseases such as diabetes mellitus, obesity, or 25 
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alcohol consumption. This economic model compares two different pathways of 1 

detection and risk stratification for advanced chronic liver disease (significant 2 

liver fibrosis) in adults with suspicion of NAFLD or ALD in a primary care setting. 3 

One pathway uses TE and the other pathway uses aminotransferase activities 4 

(as standard of care) to detect patients with chronic liver disease. The model 5 

considers the prevalence of each fibrosis stage in a given population diagnosed 6 

by TE and aminotransferase activities. It also considers the misclassification of 7 

diagnosis, the natural disease progression rate in each stage, the quality of life 8 

measured as quality-adjusted life years (QALYs), the annual costs of each 9 

stage of the disease, and the diagnosis costs. 10 

The perspective of the economic model was generated with provider-direct 11 

costs only, with a 30-year time horizon and a 3% discount rate both on health 12 

outcomes and costs. Health outcomes were measured as QALYs. No 13 

assumptions regarding willingness to pay thresholds were made due to the 14 

multiplicity of healthcare systems, however, following WHO 15 

recommendations[38] for international thresholds, we define "highly cost-16 

effective interventions" as those below one gross domestic product (GDP) per 17 

capita of the country per QALY gained. Costs are in 2017 euros, purchasing 18 

power parity (PPP) was adjusted for all six countries, and the target population 19 

was a cohort of patients with average age 45 at risk either with a history of 20 

alcohol consumption, diabetes, metabolic syndrome or a combination of above. 21 

Both failure rates for TE and liver biopsy were considered alongside their 22 

associated morbidity and mortality.[39] 23 

Incremental cost-effectiveness ratios (ICERs) [40] was defined as the principal 24 

outcome of the economic model. ICER expresses the economic value of an 25 
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intervention with respect to a comparator, in this case screening with TE vs. 1 

standard of care. Using difference in QALYs as incremental cost-effectiveness 2 

measure allows to compare value across interventions and across pathologies. 3 

To be able to apply the model to different healthcare systems, several 4 

assumptions had to be made, mostly regarding care and cost structure, rate of 5 

fibrosis progression and treatment effectiveness over fibrosis progression rate. 6 

Hence, probabilistic sensitivity analysis was performed for these parameters to 7 

account for the level of uncertainty associated with the estimates. 8 

The only difference applied to the modelling setting was in the elastography 9 

testing cost structure, which is described in the Model Appendix 1; details of the 10 

assumptions, states and transition probabilities of the present study are also 11 

presented there. All modelling analyses was performed in Microsoft Excel 2016 12 

and are available as Supplementary material for further non-commercial use.  13 
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Results 1 

Patient demographics 2 

Out of the 6,295 patients, 6,199 had successful LSM performed with 3 

FibroScan© devices (1.5% failure rate) and were included in the subsequent 4 

analysis. Table 1 shows the baseline characteristics of the six cohorts. Patients 5 

had a mean age of 54.7 years (±12.2), BMI of 27.1 kg/m2 (±4.9) and abdominal 6 

perimeter 91 cm (±11.5); 52% were women, 18% smoked, 33% were obese, 7 

and 13% had type 2 diabetes. In total, 3,223 of patients (52%) were from 8 

Southern Europe, 1,984 (32%) were from Northern Europe, and 992 (16%) 9 

were from Asia. 10 

Liver stiffness measurements  11 

The majority of LSM were performed with an M probe (92.3%), whereas the 12 

others were performed with an XL probe (7.7%). Mean LSM was 5.6 kPa (±5.0). 13 

Figure 2 presents the non-parametric density distributions in kPa of LSM in 14 

each of the included cohorts. It can be observed that for the Asian population 15 

(HK), LSM distribution is significantly shifted to the left as compared to 16 

European populations, only the German cohort was comparable in terms of 17 

LSM distribution. Within the European populations, English (UK) and Danish 18 

(DK) patients present similarly skewed to the right LSM distributions, whereas 19 

the Spanish (ES), German (DE) and French (FR) cohorts were less skewed. 20 

Fibrosis stages in liver biopsy and LSM cut-offs for significant fibrosis in 21 

general and at-risk populations 22 

Out of the 299 patients from the Spanish studies who were invited to perform 23 

liver biopsy, 101 underwent successful liver biopsy. In this group, 88 had 24 
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NAFLD and 7 were diagnosed with alcoholic liver disease; the remaining 1 

patients had no major histopathological abnormalities. The distribution of 2 

fibrosis stages (according to Kleiner scores) were 57% for F0, 15% for F1, 21% 3 

for F2, 3% for F3, and 4% for F4. With respect to the Danish cohort we included 4 

199 with successful liver biopsy. Fibrosis distribution was 6% F0, 52% F1, 18% 5 

F2, 7% F3, and 18% F4.  Regarding the French cohort, 89 patients presented 6 

LSM >8.0 kPa and 27 underwent liver biopsy with a fibrosis distribution of 4% 7 

F0, 30% F1, 33% F2, 0% F3, and 33% F4. Finally, 25 biopsies were performed 8 

in the UK cohort out of 98 with LSM >8.0 kPa, with a fibrosis distribution of 32% 9 

F0, 24% F1, 12% F2, 24% F3, and 8% F4.  10 

Figure 3 presents the LSM distribution in kPa of biopsied cohorts according to 11 

fibrosis stages. The distribution of fibrosis staging in the general population (ES 12 

and FR cohorts), risk population for both NAFLD/ALD (UK cohort) and risk 13 

population for ALD (DK cohort) differs significantly (p<0.001). Patients in the DK 14 

and UK cohorts showed more advanced liver fibrosis. Table 2 summarizes the 15 

clinical, demographic and analytical characteristics of the cohorts. In 16 

comparison to the DK cohort, patients from the ES and UK cohorts presented 17 

more frequently with characteristics of the metabolic syndrome and had higher 18 

prevalence of obesity (72-76% vs. 28%), arterial hypertension (42-60% vs. 19 

28%), and diabetes (28-84% vs. 2%). On the other hand, patients from the DK 20 

cohort displayed higher serum GGT activities, probably related to alcohol 21 

consumption, and significantly lower serum albumin concentrations, 22 

corresponding to the higher prevalence of advanced fibrosis in this cohort. 23 

However, it is worth noting that the small UK biopsied cohort has a high 24 
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prevalence of concomitant risk factors for both NAFLD and ALD (76% obesity, 1 

84% diabetes, 76% hazardous alcohol use). 2 

Next, we evaluated the best cut-off for significant fibrosis (stage ≥F2) in the set 3 

of patients with liver biopsy (n=352). Through CTREE, an LSM cut-off greater 4 

than 19.1 kPa was shown to exhibit a conditional probability of 87.3% for 5 

fibrosis stage ≥F2 and 57.1% for stage F4 (cirrhosis) regardless of the sampled 6 

population. For LSM values below 19.1 kPa, distinct optimal cut-offs were 7 

identified, which depended upon the sampled populations: For general 8 

population sampling (ES cohort), an LSM threshold of >9.1 kPa was found to 9 

provide the best diagnostic accuracy with an average negative predictive value 10 

of 88.1% for finding fibrosis stage ≥F2 in patients below this threshold and a 11 

probability of 57.6% for finding it in patients above this cut-off. Table 3 presents 12 

the complete diagnostic yield of the CTREE model. 13 

In cohorts with patients who had a history of hazardous alcohol use and/or 14 

metabolic syndrome (FR, DK and UK cohorts), a slightly higher optimal 15 

threshold for fibrosis staging were obtained: With LSM lower than 9.5 kPa the 16 

probability of fibrosis stage ≥F2 was 9.7% only, while higher than 9.5 kPa the 17 

probability increased to 52.4% for this at-risk population. 18 

According to the developed predictive model, a total of 3.9% (n=238) patients of 19 

the general population samples were predicted to have ≥F2 fibrosis, whereas 20 

28.8% (n=157) of at-risk patients were predicted to have developed at least 21 

fibrosis stage F2. 22 

Figure 4 presents the detailed cut-off values alongside the tree structure and 23 

the distributions of fibrosis stages. The fibrosis CTREE had an average 5-fold 5 24 
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repeats cross-validated 3-class diagnostic balanced accuracy of 70.8% (95% CI 1 

68.9 – 72.7%), i.e. compared to a random model, CTREE presented an 2 

increase of 30.7% (p<0.001, accuracy > no information rate).  3 

The other serum surrogate fibrosis markers had the following 3-class 4 

accuracies: FIB-4 59.4% (95% CI 57.1 – 61.5%) and NFS 55.5% (95% CI 53.3 5 

– 57.6%). Compared to the CTREE, FIB-4 had 11.4% lower accuracy (p<0.001) 6 

and NFS 15.3% lower (p<0.001). The statistical supplementary appendix 7 

comprises the distributions of these markers [Figures S18-S20] alongside the 8 

comparative diagnostic performance [Figures S21, S23-25], and the calibration 9 

of the models [Figure S22]. 10 

Table 4 presents the number needed to screen (NNS) for each cohort and 11 

population sampling method. The average NNS to detect a patient with fibrosis 12 

stage ≥F2 case by general population sampling was 34.5 individuals, for obese 13 

patients 8.5, for patients with diabetes 7.0, and for at-risk patients with alcohol 14 

consumption 12.5. However, caution must be taken in interpreting these 15 

numbers, given the population sampling heterogeneity across studies. 16 

Cost-effectiveness results  17 

The optimal cut-offs defined in our set of biopsied patients were used to infer 18 

the predicted fibrosis prevalence rates in each of the heterogeneous cohorts. 19 

This real data was introduced in the economic model and given the 20 

assumptions of the cost-effectiveness model, we found that the mean ICER of 21 

the risk-stratification strategy with TE ranged from 2,570 €/QALY (95% CI 2,456 22 

- 2,683) in Spain for a population at-risk for alcoholic liver disease (age ≥ 45 23 

years) to 6,217 €/QALY (95% CI 5,832 – 6,601) in the Hong Kong general 24 
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population setting. While there were significant differences in the results across 1 

countries and targeted populations, all results were highly cost-effective below 2 

the one gross domestic product per capita/QALY threshold.  3 

Figure 5 presents the survival curves derived from the state-transition 4 

probabilities. The model estimates the difference in quality-adjusted survival 5 

between patients diagnosed and undiagnosed for each fibrosis stage. The area 6 

between diagnosed and undiagnosed curves is the average effectiveness in 7 

terms of QALYs of the screening program. Figure 5 illustrates that there is a 8 

benefit in QALYs of patients when they are diagnosed compared to 9 

undiagnosed in all stages, but this benefit is higher in stages ≥F2, compared to 10 

F0-1 or F4.  11 

Figure 6 present the results of the sensitivity analyses in terms of cost-12 

effectiveness acceptability curves depending upon patient selection either 13 

based on risk factors (obese, diabetes and alcohol) or in the general population 14 

setting by country. All targeted populations present an average probability of 15 

being cost saving of 12%, highlighting the potential savings associated with the 16 

intervention. 17 

With respect to ICER estimates across sampling strategies, obese or diabetic 18 

populations require 93.2% (95% CI 91.2 - 95.3%) and 85.6% (95% CI 83.7 -19 

87.4%) of resources, respectively, compared to the general population to obtain 20 

the same value in terms of QALYs. Of note, in a population at-risk for alcoholic 21 

liver diseases, only 65.3% (95% CI 64.1 - 66.5%) of resources are needed in 22 

comparison to general population screening, highlighting the efficiency and 23 

feasibility of targeted interventions, which is highly dependent on the prevalence 24 

in the targeted population. 25 
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Discussion 1 

The results of the present study demonstrate that non-invasive screening for 2 

liver fibrosis with TE among the general population, and among patients with 3 

risk factors for chronic liver disease, is cost-effective. We have availed of 4 

individual data from seven previous prospective studies that performed 5 

screening of liver fibrosis with TE in the general population and in patients with 6 

risk factors for chronic liver disease. In our study, data from the subset of 7 

patients who had undergone liver biopsy was used to define the diagnostic cut-8 

offs for significant liver fibrosis. Having defined the best cut-offs, we applied 9 

them to our six different cohorts to assess the prevalence rates of significant 10 

fibrosis. This real-life data was then used to tune an economic model that 11 

compares two distinct pathways to detect significant fibrosis, i.e. the TE 12 

detection pathway versus the standard of care pathway (based on increased 13 

serum liver enzymes). The rationale behind non-invasive fibrosis detection by 14 

TE as public health intervention is earlier and more reliable patient identification, 15 

timely referral to specialist care, adequate treatment, and enrollment into 16 

surveillance programmes.  17 

Our study shows that, irrespective of the targeted population, screening for liver 18 

fibrosis with optimized algorithms is a highly cost-effective public health 19 

intervention, with an average probability of 12% of being cost-saving. As might 20 

be expected, when we focus on patients with risk factors for chronic liver 21 

disease, including patients with diabetes, obesity or hazardous alcohol 22 

consumption, the screening program is even more cost-effective. Differences 23 

across risk factor targeting represent cost reductions around 8.3–48.9% to 24 

achieve the same value. 25 
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Liver fibrosis is, among all the histopathological changes that occur in chronic 1 

liver diseases, the major factor that predicts the long-term outcome of patients 2 

with chronic liver diseases. Fibrosis stage determines disease progression to 3 

cirrhosis and the development of liver-related complications and mortality, 4 

irrespective of the etiology of the disease[9,41]. Liver fibrosis has the potential 5 

of regression if effective treatment to control or cure the underlying disease is 6 

implemented, being more feasible at early stages[42,43]. Therefore, under the 7 

prism of public health strategies, the goal of a screening program should be to 8 

timely detect patients with advanced fibrosis or cirrhosis at high risk of liver-9 

related decompensation or death to promote liver fibrosis regression and 10 

improve survival. In fact, our results confirm that a screening program based on 11 

the detection of liver fibrosis by TE is cost-effective, especially in early fibrosis 12 

stages ≥F2 and unsurprisingly somewhat less in patients with advanced liver 13 

disease (≥F4).   14 

In our study we used TE as non-invasive screening method for liver fibrosis 15 

diagnosis. The efficacy of TE to detect liver fibrosis has been demonstrated 16 

during the past decade[44] however, most studies have been performed in 17 

patients with already known chronic liver diseases, such as HBV or HCV 18 

infections and NAFLD lately[45]. Data to establish the best cut-offs for the 19 

diagnosis in primary care setting is scarce[45]. In our study, the best cut-off for 20 

the diagnosis of significant fibrosis among patients from general population was 21 

9.1 kPa. Interestingly, the subset of patients with liver biopsy from the general 22 

population had a high prevalence of components of the metabolic syndrome, 23 

the majority was obese and almost one third presented with diabetes, known 24 

risk factors for NAFLD. Moreover, the predominant etiology according to liver 25 
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biopsy in this subset of patients was NAFLD. Therefore, we can presume that 1 

the best cut-off for the diagnosis of significant fibrosis in the context of patients 2 

with metabolic risk factors for NAFLD among general population is 9.1 kPa. On 3 

the other hand, the cut-off for significant fibrosis among patients with alcohol-4 

risk consumption was slightly higher (9.5 kPa). However, for clinical practice we 5 

can assume that any value above 9-9.5 kPa may indicate the presence of 6 

significant liver fibrosis in the setting of general population and patients with risk 7 

factors for NAFLD or ALD. Furthermore, as it has been previously shown, in our 8 

study TE is superior to serum biomarkers (FIB-4 and NFS) for fibrosis detection.  9 

One of the main strengths of our project lays on the refinement of the parameter 10 

tuning of the economic model for target populations and diagnostic accuracy in 11 

a wide set of populations and healthcare systems. The cost-effectiveness 12 

analysis showed that the screening program targeting patients at risk for ALD 13 

and obese or diabetic populations is highly cost-effective. When implementing 14 

liver screening, we would need to invest between 2,500 (at-risk population) to 15 

7,500 (general population) purchasing power parity-adjusted euros to gain an 16 

extra year of life, adjusted per quality of life. From a public health point of view, 17 

anything below one GDP per capita is deemed as highly cost-effective [38]. One 18 

of the sensitive issues around the cost-effectiveness estimates is the cost 19 

structure of the testing. A constant marginal cost per test is assumed, whereas 20 

in real-world settings, amortization through usage and labor imputation might 21 

result in decreasing marginal cost, hence biasing upwards our cost estimates. 22 

Our data highlights the specific diagnostic and economic consequences of 23 

targeted populations for such a public health intervention in hepatology.  24 
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Notwithstanding that the implementation in itself is not the objective of this 1 

study, in public settings, budgetary impact and difficulties in provision of public 2 

services have to be taken into account, as observed in preventive screening 3 

interventions in other fields of medicine.[46–52]. Interestingly, as compared to 4 

screening in later stages of chronic liver disease for HCC[53], screening for 5 

significant liver fibrosis (≥F2) presents 10-fold improvement in terms of 6 

efficiency, highlighting the relevance of early identification, referral and 7 

surveillance of these patients. In the present scenario of a growing epidemic of 8 

NAFLD, the implementation of screening programs to detect the patients with 9 

advanced fibrosis is essential. The implementation of TE in the primary care 10 

setting would allow involving community-based resources, including nurses and 11 

primary care physicians, to maximize value of performed interventions[24]. 12 

The current study has some limitations that should be acknowledged. First, only 13 

5.5% of patients included in the analysis underwent liver biopsy. However, we 14 

performed analysis to evaluate the potential sample selection bias and 15 

uncertainty around parameter estimates of the economic model and both 16 

analyses were robust to exclude bias and uncertainty. Secondly, our economic 17 

model had several assumptions, mostly regarding care and cost structure, rate 18 

of fibrosis progression and treatment effectiveness over fibrosis progression 19 

rate. To account for the level of uncertainty associated with the estimates, 20 

probabilistic sensitivity analysis was performed for these parameters.  Finally, it 21 

has been proposed that serum biomarkers should be used as a first step for 22 

liver fibrosis detection in general population leaving TE for a second 23 

step[10,44,54]. Our results clearly show that TE performed better than serum 24 

biomarkers for fibrosis detection. Whether a two-step approach using serum 25 
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biomarkers followed by TE it is more cost-effective and cost-saving in mass 1 

screening should be tested in future studies.  2 

 3 

In summary, a screening program for the detection of liver fibrosis with transient 4 

elastography at primary care centers is a highly cost-effective intervention and 5 

potentially cost-saving and could represent a valuable public health strategy in 6 

the era of NAFLD epidemics.  7 
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Figure Legends: 1 

Figure 1. Patient flowchart, combined database: enrollment, TE and biopsy for 2 

studies in six countries in Europe and Asia.  3 

Figure 2. TE LSM distributions across studies: the figure presents the non-4 

parametric kernel distribution of liver stiffness measurements in kPa across 5 

studies. Studies ES and DE present a somewhat similar distribution, while 6 

studies DK and UK present more skewed LSM distributions in accordance with 7 

the risk factor, either NAFLD, ALD or both sampling of the population. Study FR 8 

distribution lays in between the previous studies. Study from HK, the Asian 9 

population presents a less right-shifted distribution of LSM.  10 

Figure 3. TE LSM distribution across fibrosis stage groups: kernel density 11 

estimates of TE LSM by fibrosis stage and sampling strategy. Study ES 12 

(Spanish cohorts, n=101) are grouped and presented in the upper panel. UK 13 

biopsied subsample (n=25) are represented in the middle panel, while study DK 14 

(Danish cohort n=199) is presented in the lower panel. For general population 15 

(ES) the distribution of LSM is more concentrated around defined thresholds. 16 

ALD biopsied population (UK & DK) F2-F4 LSM are flattened in respect with the 17 

general population.  18 

Figure 4. CTREE fibrosis staging for LSM thresholds with empirical 19 

distributions: The first split of the algorithm, LSM >19.1 kPa (node 9, p<0.001) 20 

denotes a probability of the patient having a fibrosis stage 2-3-4 of 88% 21 

independently of the sampled population. For values below 19.1 kPa the next 22 

split is the study population (p<0.001). The algorithm automatically differentiates 23 

conditional on the unobserved characteristics of studies ES and UK&DK. 24 

NAFLD and ALD populations are split. For NAFLD population an optimal LSM 25 
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kPa threshold is identified at >9.1 kPa with a probability of being F2-F3 of 1 

57.6%. For the ALD population the optimal threshold for detecting F2-F3-F4 is 2 

identified at 9.5 kPa with a probability of 52.4%. 3 

Figure 5. Cost-effectiveness model survival estimates by fibrosis group and 4 

diagnostic arm: Survival estimates of fibrosis stage patients F0-F1, F2-F3 and 5 

F4 either diagnosed or undiagnosed. The area between diagnosed and 6 

undiagnosed curves is the average effectiveness in terms of survival of the 7 

screening program.  8 

Figure 6. Cost-effectiveness acceptability curves by country and targeted 9 

population, n=1,000: The figure presents the probability of the screening 10 

intervention being cost-effective for a given willingness to pay level. The curves 11 

are estimated from the probabilistic sensitivity analysis. It is worth noting that all 12 

models have a baseline 12% probability of being cost-saving. The upper panel 13 

shows the analysis for general population screening settings, the second for 14 

obese population, the third for diabetes type 2 and the lowest panel shows the 15 

results for an alcoholic population.  16 
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Table 1. Baseline characteristics of patients from 6 countries included in 1 

the study.   2 

 
ES DE UK DK FR HK 

 

N=3333 N=106 N=378 N=199 N=1357 N=922 

Female n (%) 1906 (57.2%) 79 (74.5%) 123 32.5% 53 26.6% 553 40.7% 533 57.8% 

Age 55.0 (12.1) 35.7(12.8) 61.8(15.0) 54.9(11.3) 57.9(8.95) 48.1(10.5) 

Smoke active 0.23 (0.42) n/a n/a 0.59(0.49) n/a 0.10(0.30) 

Viral hepatitis 0.01 (0.12) 0.02(0.14) 0.00(0.00) 0.00(0.00) n/a 0.00(0.00) 

BMI 28.3 (4.91) 24.2(4.19) 28.5(5.25) 26.8(5.27) 26.7(4.23) 22.8(3.50) 

Abd. per. 94.7 (12.8) 80.3(11.6) n/a n/a 90.0(11.4) 81.7(10.1) 

DM 10% 4% 56% 2% n/a 4% 

Obesity 31% 10% 35% 28% 20% 3% 

Arterial HT 26% 7% 46% 28% n/a 16% 

Glucose  6.05(14.0) 5.12(0.64) n/a 6.81(1.91) 5.75(1.67) 5.14(0.92) 

Creatinine 0.90(0.24) 0.85(0.16) 1.02(0.28) 0.73(0.17) 0.82(0.18) 0.75(0.16) 

Cholesterol 5.53(1.03) 4.88(0.98) 4.61(1.27) 5.05(1.24) 5.41(1.02) 5.16(1.00) 

Triglycerides 1.24(0.81) 1.14(0.63) 1.74(1.03) 1.54(1.02) 1.32(0.89) 1.37(1.19) 

AST 23.7(9.15) 25.1(8.92) 28.0(18.9) n/a 22.6(14.6) 21.4(12.2) 

ALT 23.9(14.3) 23.5(11.8) 28.2(19.3) 40.0(31.5) 25.3(15.5) 26.0(16.0) 

GGT 33.4(38.7) 23.3(17.4) n/a 226(392) 37.4(56.3) n/a 

Bilirubin 11.3(5.08) 8.93(6.24) 12.0(5.06) 14.0(10.9) n/a 13.5(5.96) 

Albumin 44.0(3.25) n/a 37.8(2.92) 40.2(5.27) n/a 45.2(2.58) 

Ferritin 118(119) n/a n/a 267(384) 165(179) n/a 

Leukocytes 9.85(176) n/a 7.02(2.19) n/a 6.42(1.83) 6.01(1.51) 

Platelets 243(60.0) n/a 241(62.3) n/a 251(59.4) 244(54.3) 

Probe: 
          M 3233 104 (99.0%) 338 (89.4%) 186 (95.4%) 1357 (100%) 922 (100%)  

    XL 96  1 (0.95%)  40 (10.6%)   9 (4.62%)   0 (0.00%)   0 (0.00%)  

Mean TE kPa 4.94(2.18) 4.62(1.57) 7.98(7.41) 17.2(20.6) 5.72(2.36) 4.84(2.62) 

 3 

Average values and standard deviations in brackets (). All liver blood metrics are presented in 4 
mmol/L. BMI: body mass index, Abd. per.: abdominal perimeter in cm, DM: diabetes mellitus, 5 
HT: hypertension, AST: aspartate aminotransferase, ALT: alanine aminotransferase, GGT: 6 
gamma-glutamyl transpeptidase. ES= Spanish cohorts 1&2, DE= Germany cohort, UK= 7 
England cohort, DK= Danish cohort, FR= French cohort, HK= Hong Kong cohort. 8 
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Table 2. Baseline characteristics of patients from cohorts with liver biopsy 1 

available.  2 

 
    ES          UK          DK          FR      

P value 

 
   N=101       N=25        N=199       N=27     

Female n (%) 33 (32.7%)   5 (20.0%)  53 (26.6%)   2 (7.41%)  0.055 

Age 58.1 (8.83) 61.1 (10.2) 54.9 (11.3) 59.2 (9.33) 0.003 

Hazardous alcohol use 0.16 (0.37) 0.76 (0.44) 1.00 (0.00) 0.70 (0.47)  <0.001   

Active smoking 0.24 (0.43) n/a 0.59 (0.49) n/a  <0.001   

Viral hepatitis 0.01 (0.10) 0.00 (0.00) 0.00 (0.00) n/a 0.331 

BMI 33.1 (5.30) 33.9 (6.05) 26.8 (5.27) 28.4 (5.89)  <0.001   

DM 0.28 (0.45) 0.84 (0.37) 0.02 (0.14) n/a  <0.001   

Obesity 0.72 (0.45) 0.76 (0.44) 0.28 (0.45) 0.33 (0.48)  <0.001   

Arterial hypertension 0.42 (0.50) 0.60 (0.50) 0.28 (0.45) n/a 0.001 

Glucose 6.30 (1.69) n/a 6.81 (1.91) 7.31 (3.52) 0.035 

Creatinine 0.95 (0.22) 0.99 (0.22) 0.73 (0.17) 0.80 (0.22)  <0.001   

Cholesterol 5.51 (0.94) 4.06 (1.20) 5.05 (1.24) 5.15 (1.04)  <0.001   

Cholesterol LDL 3.40 (0.95) 1.99 (1.03) 3.09 (1.52) 3.19 (0.82)  <0.001   

Cholesterol HDL 1.26 (0.27) 1.18 (0.34) 1.40 (0.50) 1.28 (0.39) 0.018 

Triglycerides 1.84 (1.09) 2.06 (0.94) 1.54 (1.02) 1.49 (0.98) 0.022 

ALT 39.1 (25.8) 43.2 (23.3) 40.0 (31.5) 61.3 (53.0) 0.011 

GGT 63.4 (87.9) n/a  226 (392)   144 (250)   <0.001   

Bilirubin 11.8 (5.24) 10.5 (4.38) 14.0 (10.9) n/a 0.065 

Albumin 44.2 (5.15) 37.2 (2.55) 40.2 (5.27) n/a  <0.001   

Ferritin  206 (221)  n/a  267 (384)   440 (678)  0.152 

Mean TE kPa 10.4 (5.66) 18.0 (9.09) 17.2 (20.6) 14.0 (8.04) 0.005 

IQR TE 2.20 (0.64) 3.93 (3.64) 2.22 (3.27) 2.29 (1.66) 0.025 

Fibrosis Stage                                                  <0.001   

    F0 58 (57.4%)   8 (32.0%)  12 (6.03%)   1 (3.70%)            

    F1 15 (14.9%)   6 (24.0%)  103 (51.8%)  8 (29.6%)            

    F2 21 (20.8%)   3 (12.0%)  35 (17.6%)   9 (33.3%)            

    F3  3 (2.97%)   6 (24.0%)  13 (6.53%)   0 (0.00%)            

    F4  4 (3.96%)   2 (8.00%)  36 (18.1%)   9 (33.3%)            

 3 

Average values and standard deviations in brackets (). All liver blood metrics are presented in 4 
mmol/L. BMI: body mass index, DM: diabetes mellitus, ALT: alanine aminotransferase, GGT: 5 
gamma-glutamyl transpeptidase, TE: transient elastography, IQR: interquartile range ES= 6 
Spanish cohorts 1&2, UK= England cohort, DK= Danish cohort. 7 



29 

 

Table 3. Diagnostic yield CTREE model, 5-fold by 5-repeat cross-1 

validation. 2 

F F0-F1 F2-F3 F4 

Prevalence 62.15% 24.92% 12.92% 

Sensitivity 79.01% 54.54% 79.55% 

Specificity 80.17% 83.56% 91.86% 

PPV 85.63% 53.16% 62.50% 

NPV 71.85% 84.30% 96.34% 

Balanced accuracy 79.59% 69.05% 85.70% 

Overall Average 95% CI L. 95% CI U. 

Accuracy 70.79% 68.86% 72.72% 

P [Acc. > NIR]  3.621*10-7 

PPV: positive predictive value, NPV: negative predictive value, Balanced accuracy: sensitivity + 3 
specificity / 2. P [Acc > NIR]: p-value for testing accuracy larger than no information rate. 4 
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Table 4. Number needed to screen by risk factor and country 1 

 
General Obese Diabetic Alcohol 

 
NNS 95% CI NNS 95% CI NNS 95% CI NNS 95% CI 

ES 30.6 25.8 37.5 12.2 10.2 14.1 7.7 6.1 10.5 7.6 6.1 10.1 

DE 52.0 21.9 139.6                   

UK       2.7 2.2 3.6 3.9 3.1 5.0 5.5 4.5 7.3 

DK                   2.5 2.1 3.0 

FR 29.1 22.6 40.8 10.7 7.6 17.7       21.9 16.4 32.9 

HK 26.6 20.0 39.6 8.3 4.0 13.5 9.5 4.9 15.2 25.1 15.0 38.3 

Average 34.5 22.6 64.4 8.5 6.0 12.2 7.0 4.7 10.2 12.5 8.8 18.3 
ES= Spanish cohorts 1&2, DE= Germany cohort, UK= England cohort, DK= Danish cohort, FR= 2 
French cohort, HK= Hong Kong cohort. 3 


