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This review summarises some of my work on fluid and electrolyte balance over the past 25 years and
shows how the studies have influenced clinical practice. Missing pieces in the jigsaw are filled in by
summarising the work of others. The main theme is the biochemical, physiological and clinical problems
caused by inappropriate use of saline solutions including the hyperchloraemic acidosis caused by 0.9%
saline. The importance of accurate and near-zero fluid balance in clinical practice is also emphasised.
Perioperative fluid and electrolyte therapy has important effects on clinical outcome in a U-shaped dose
response fashion, in which excess or deficit progressively increases complications and worsens outcome.
Salt and water overload, with weight gain in excess of 2.5 kg worsens surgical outcome, impairs
gastrointestinal function and increases the risk of anastomotic dehiscence. Hyperchloraemic acidosis
caused by overenthusiastic infusion of 0.9% saline leads to adverse outcomes and dysfunction of many
organ systems, especially the kidney. Salt and water deficit causes similar adverse effects as fluid
overload at the cellular level and also leads to worse outcomes. Serum albumin is shown to be affected
mainly by dilution and inflammation and is not a good nutritional marker. These findings have been
incorporated in the British consensus Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients
(GIFTASUP) and National Institute for Health and Care Excellence (NICE) guidelines on intravenous fluid
therapy in adults in hospital and are helping change clinical practice and improve outcomes.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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increase. This phase is accompanied by salt and water retention and
increased potassium excretion [3,4]. Moore added a third phase —

1. Introduction

Teleologically, the mammalian response to starvation, stress and
trauma is designed to preserve vital functions, mainly by
attempting to maintain intravascular volume and tissue perfusion,
and providing substrate for energy metabolism. Sir David Cuth-
bertson, in his studies on tibial fractures, recognised two phases in
the response to injury [1,2]. The ebb phase, usually associated with
prolonged and untreated shock, is characterised by a reduction in
metabolic rate, hyperglycaemia, hypotension and a retardation of
all metabolic processes. This either leads to death or is succeeded
by the flow phase when the metabolic rate and protein catabolism
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the anabolic or convalescent phase, during which anabolism oc-
curs, healing is accelerated and appetite returns to normal [5]. At
the same time cellular potassium uptake increases and the capacity
to excrete a salt and water load returns — which Moore called ‘the
sodium diuresis phase’ [5]. Knowledge of these changes and the
relationship between the external balance of fluid and electrolytes,
between the body and its environment, and internal balance be-
tween the body fluid compartments is vital for the rationalisation
of perioperative fluid and electrolyte therapy [6,7].

The aim of this review is to summarise some of my work on fluid
and electrolyte balance over the past 25 years and show how the
studies have influenced clinical practice. Missing pieces in the jig-
saw will be filled in by summarising the work of others. The main
theme is the biochemical, physiological and clinical problems
caused by inappropriate use of saline solutions including
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Abbreviations
aOR adjusted odds ratio
aRR adjusted relative risk
Cl confidence intervals
ERAS enhanced recovery after surgery
GDFT goal-directed fluid therapy

GIFTASUP British consensus Guidelines on Intravenous Fluid
Therapy for Adult Surgical Patients
MRI magnetic resonance imaging

NCEPOD National Confidential Enquiry into Patient
Outcome and Death

NICE National Institute for Health and Care Excellence

OR odds ratio

RCT randomised clinical trial

RR relative risk

hyperchloraemic acidosis caused by 0.9% saline. The importance of
accurate and near-zero fluid balance in clinical practice is also
emphasised.

2. Historical aspects of intravenous fluids and perioperative
fluid therapy

Some important landmarks in the development of intravenous
infusions are summarised in Table 1 [8—20] and the reader is also
referred to a comprehensive review on the subject [21].

The composition of some commonly used crystalloids is shown
in Table 2. 0.9% (w/v) saline [sodium chloride (NaCl)] is constituted
by dissolving 9 g NaCl in 1 1 water and is often incorrectly referred
to as “normal” or “physiological” saline [22]. Chemically normal
(molar) saline should contain 1 mol (i.e., 58.5 g NaCl) per litre of

Table 1

Some significant historical events in the development and use of intravenous fluids.
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water. So, “normal” saline is, in fact, 1/6.5 normal saline. Although
the solution is described as isotonic, its osmolarity, at 308 mOsm/I,
is slightly higher than that of plasma. Moreover, each litre of the
solution contains 154 mmol of sodium and chloride, which exceeds
both the sodium (135—145 mmol/1) and chloride (94—105 mmol/l)
concentration in plasma. Besides, it does not contain the other
mineral and organic constituents of plasma and cannot, therefore,
be considered a physiological solution. The 1:1 [Na™] [Cl7] ratio is
much lower than the 1.28—1.45:1 ratio in plasma and poses a
problem by causing hyperchloraemic acidosis [23] which will be
described in detail later on. Balanced crystalloids such as Ringer's
lactate, Hartmann's solution and Plasma-Lyte 148, are relatively
more physiological and may be less likely to cause adverse events
than 0.9% saline.

3. Testing the knowledge base

Fluid and electrolytes are the most often prescribed medications
in hospital practice and 0.9% saline has been, until recently, the
mainstay of intravenous fluid therapy, with patients often receiving
a median of 3 1 water and 242 mmol sodium (and chloride) per day
in the postoperative period [24]. In 1999 the UK National Confi-
dential Enquiry into Patient Outcome and Death (NCEPOD) re-
ported that many patients, especially those at the extremes of age,
were dying as a result of the infusion of too much or too little fluid
by junior doctors who had little or no knowledge and training in
the field [25]. The report also estimated that 20% of the patients
studied had either poor documentation of fluid balance or unrec-
ognised or untreated fluid imbalance [25].

Based on this information, we surveyed 200 junior doctors in the
UK on knowledge and practice of perioperative fluid therapy and
found that there was a wide variability in prescribing practice with
the junior most member of the surgical team being responsible for
fluid prescribing in 89% of instances [26]. The perception of the

Author, year

Event/development

Reinhard Hermann, 1832 [8,9]
Jachnichen 1832 [8—10]

William Brooke O'Shaughnessy, 1831 [10]

Thomas Latta, 1832 [11—-13]

Hartog Jacob Hamburger, 1896 (cited by
Lazarus Barlow [14]) [15]

Sidney Ringer, 1882, 1883 [16,17]

Alexis Hartmann and Milton Senn, 1932 [18—20]

First to analyse blood of patients with cholera. Found that the blood had “lost 28% of its fluidity”.

Hermann's colleague, Jachnichen injected 6 oz of water intravenously into a patient with cholera. Although his
pulse returned for a quarter of an hour, he died 2 h later.

O'Shaughnessy proposed a new method of treating cholera “by the injection of highly-oxygenised salts into the
venous system”. Although his paper was published before that of Hermann and Jachnichen, he was aware of their
work.

Latta attempted to “restore the blood to its natural state” by administration of oral saline solutions only to find that
this aggravated the symptoms of vomiting and purging. He, therefore, “proceeded to throw the fluid immediately
into the circulation” and, with “no precedent to direct” him, used “two to three drachms of muriate of soda and two
scruples of the subcarbonate of soda in six pints of water”. He followed this with a description of the initial four cases
treated: an aged female who had “reached the last moments of her earthly existence”, a female of 50 and “very
destitute” and a “delicate young female, of strumous habit”. Three of the four patients died and Latta attributed the
deaths to “deficiency in quantity” of saline injected, the presence of organic disease and the “late application of the
remedy”.

The first reference to a solution similar to 0.9% saline appeared in 1896. In his article Lazarus-Barlow cites
Hamburger as the main authority for suggesting that a concentration of 0.92% saline was ‘normal’ for mammalian
blood.

Hamburger, after comparing the “freezing-points” of serum obtained from animals and human subjects, concluded
that “the blood of the majority of warm-blooded animals, including man, was isotonic with a NaCl solution of 0.9 per
cent., and not of 0.6 per cent., as was generally thought ... and which had always been called the physiological NaCl
solution”.

Ringer set out to “ascertain the influence each constituent of the blood exercises on the contraction of the ventricle”
and, having bathed frog heart muscle preparations in solutions of different constituents, found that a 0.75% saline
solution “makes an excellent circulating fluid in experiments with the detached heart”. He later discovered that the
saline solution previously used was made using pipe water supplied by the New River Water Company and not
distilled water as intended. On repeating the experiments, he found that bathing the heart muscle in saline
solution made with distilled water made the ventricle grow “weaker and weaker” leading to cessation of
contractility in about 20 min. He concluded that the effects he had previously obtained were “due to some of the
inorganic constituents of the pipe water” and developed Ringer's solution.

Hartmann and Senn modified Ringer's solution by adding sodium lactate to it with the aim of reducing the acidosis
seen in infants suffering from diarrhoea, dehydration and oliguria.
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Table 2
Properties of some commonly used crystalloids.
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Plasma? 0.9% salinet Ringer's lactate Hartmann's solution Plasma-Lyte 148
Na* (mmol/l) 135—-145 154 130 131 140
Cl" (mmol/l) 95—105 154 109 111 98
K* (mmol/l) 3.5-53 - 4 5 5
Ca®* (mmol/l) 22-26 - 2.7 2 -
Mg?* (mmol/l) 0.8-1.2 - - - 15
HCO3/Bicarbonate precursor (mmol/l) 24-32 - Lactate 28 Lactate 29 Acetate 27

Gluconate 23

Na™:Cl ratio 1.28—1.45:1 1:1 1.19:1 1.18:1 143:1
Osmolarity (mOsm/l) 275-295 308 274 278 295

4 Normal laboratory ranges from Nottingham University Hospitals NHS Trust.

quality of teaching on fluid and electrolyte balance in medical
schools was very variable, with 33% of respondents rating it as either
unsatisfactory or poor. Most respondents had not been given any
formal or informal guidelines on fluid and electrolyte prescribing
and were not aware of the sodium and potassium content of
commonly used intravenous fluids. Postoperative weighing as a
measure of fluid balance was not practised on surgical wards in any
of the hospitals surveyed and less than 10% of respondents knew
that regular weighing was the best serial measure of fluid balance.
Only 56% of respondents stated that fluid balance charts were
checked on morning ward rounds and less than half were aware of
the sodium content of 0.9% saline or the daily sodium requirement.
Although potassium supplements were usually correct, 25% of re-
spondents prescribed >2 I of 0.9% saline per day, which is three to
four times the normal maintenance requirement [26], echoing the
observations of Rhoads [27] who in 1957 wrote, “The subject of
water and electrolyte balance has been obscured by a long series of
efforts to establish short cuts. It is not a simple subject but rather
one that requires careful study and thought.“, and those of Veech
[23] who in 1986 stated, “The use of fluid and electrolyte therapy has
become such a familiar part of medicine that it is rarely scrutinised.”

We then performed a postal survey of 710 Consultant Surgeons
in the UK [28], most of whom felt that present practice in periop-
erative fluid management was unsatisfactory. Junior staff were
given written guidelines in only 22% of instances. Only 16% felt that
junior doctors were adequately trained in the subject and 35% felt
that fluid balance charts were not accurately maintained, nursing
shortages being the commonest perceived reason for inaccuracies.
Only 30% felt that postoperative patients were receiving appro-
priate amounts of water, sodium and potassium [28].

Better training and education of doctors and nurses is the key to
improvement in the management of fluid and electrolyte balance
and we showed that a dedicated interactive workshop on fluid and
electrolyte therapy for postgraduate trainees was a successful way
of tackling current inadequacies in knowledge and training [29].

4. An experimental model to study the effects of fluid
infusions in healthy subjects

Before examining the response of patients to intravenous fluids,
we felt it important to define the response to intravenous infusions
of various crystalloids in normal human subjects unaffected by the
response to injury or inflammation. We, therefore, developed an
experimental model [30] with a cross-over design that has proved
fruitful and reproducible [31—37]. We infused 2 1 of fluid over 1 h
into healthy subjects who were then followed over 6 h with hourly
measurements of weight, blood chemistry, and urine volume and
chemistry. In the first study we infused 2 1 of either 0.9% saline or 5%
dextrose (effectively free water), over 1 h on separate occasions
[30]. The dextrose infusion was excreted rapidly and the subjects
got back to baseline weight fairly quickly whereas approximately
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2/3rds of the saline infused remained in the body even 6 h after
commencement of the infusion. This was associated with an
approximately 8% fall in haematocrit and haemoglobin and a 19%
fall in serum albumin concentration on completion of the infusions.
The greater fall in serum albumin concentration is because as al-
bumin is distributed mainly in the plasma while the haematocrit is
in whole blood, the dilution of albumin is much greater than that of
the haematocrit. However, the observed fall in albumin concen-
tration (~19%) was greater than the calculated fall (~14%) [30] and
this suggests that there is a redistribution element in addition to
dilution, perhaps due to damage to the endothelial glycolcalyx and
an increase in capillary permeability caused by rapid volume
expansion [38,39]. This reinforces the conclusion that the serum
albumin concentration is mainly a marker of dilution, as well as
inflammation, and is a poor marker of nutritional status. As might
be expected, there was a transient hyperglycaemia and hypona-
traemia after the dextrose infusion. All subjects developed a sus-
tained hyperchloraemia after the saline infusions, but at that time
we did not heed the importance of this finding.

We also performed dual frequency bioelectrical impedance
analysis in these subjects and were surprised to note that after
dextrose the impedance increased, resulting in a net fall in calcu-
lated total body water and extracellular fluid volume. Impedance
decreased after saline, resulting in an increase in calculated total
body water and extracellular fluid volume [30]. We hypothesised
that the reason for this was that, as there are there are no elec-
trolytes in dextrose, and free water is not a good conductor of
electricity, the dextrose solution acts as a resistor and increases
impedance, whereas the electrolytes in saline cause it to act as a
conductor, resulting in a decrease in measured impedance [30].

Subsequently we further developed Nadler's formula to calcu-
late blood volume from body weight, height and haematocrit [40]
to calculate changes in blood volume and interstitial fluid volume
based on change in weight and haematocrit over time [34].

5. 0.9% saline and hyperchloraemic acidosis

The problems with 0.9% saline were realised as early as 1911
when Evans [41] commented on the recklessness with which it was
administered, particularly in the postoperative period. He wrote, “It
must certainly be admitted, remembering that the normal amount of
salt excreted by the human body daily is about 12 gm., that the
accumulation of this amount of salt in the blood would probably
produce a decided irritation to the kidney epithelium, for with the 3 L
of solution, 27 gm. of salt were introduced. Such overloading of the
blood with salt will be more pronounced if, while the tubular epithe-
lium of the kidney is much impaired, the water expelling function of
the glomeruli is only slightly so. The water of the subcutaneously
infused solution will then be expelled, but not the sodium chlorid.”
Even in recent times, deaths have been reported as the result of
patients being given excessive amounts of 0.9% saline [42,43].
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We use the experimental model that we developed previously
[30] to compare the effects of 0.9% saline with those of Hartmann's
solution and found that, after infusing 2 10.9% saline over 1 h, all the
subjects developed hyperchloraemia sustained for over 6 h [31].
The serum chloride concentration rose to as high as 108 mmol/l
(the upper limit of normal in our laboratory is 105 mmol/l),
whereas with Hartmann's solution the serum chloride concentra-
tion remained in the normal physiological range. There was a
significantly greater fall in the strong ion difference after saline
then after the balance crystalloid which, according to the Stewart
hypothesis (Strong ion difference (mmol/l) = [Nat]+[K*]-[CI])
explains the acidosis that develops after saline [44]. Therefore, an
excess of 0.9% saline even in healthy subjects, produces a hyper-
chloraemic metabolic acidosis that lasts for more than 6 h. Changes
in body weight showed that weight increased by approximately
2 kg at the end of both infusions, but decreased more rapidly after
Hartmann's solution than saline, indicating that the former was
excreted more rapidly than the latter. This was mirrored by the
urinary changes seen. Subjects passed urine earlier (70 vs. 180 min
after commencement of the infusion) and more frequently after
Hartmann's solution than after saline. Urinary volume and sodium
excretion were also significantly greater after Hartmann's solution,
indicating a greater amount of salt and water retention after saline.
This retention occurs in the interstitial space rather than the
intravascular compartment and leads to the development of
oedema. Evolution is a slow process and has occurred in an envi-
ronment in which salt is scarce, so that, while our kidneys retain
salt effectively, they are much less efficient at excreting the excesses
to which we have only been exposed in recent times. The metabolic
response to injury has also evolved to try and retain salt and water
in order to maintain intravascular volume. Measurement of hor-
monal responses to fluid infusions in the experimental model
described above showed that natriuretic peptide levels responded
only transiently to volume expansion and were not responsive to
sodium overload per se [33]. Excretion of a sodium overload was
entirely dependent on the slow and passive suppression of the
renin-angiotensin-aldosterone system [33].

Hyperchloraemia is a critical determinant of changes in renal
blood flow and has been shown to have adverse effects on the
kidneys in animal studies [45—49]. Intrarenal infusion of chloride-
containing solutions, such as 0.9% saline or ammonium chloride,
led to a decrease in renal blood flow and glomerular filtration rate
in dogs [46]. Other animal experiments have shown that
potassium-induced renal vasoconstriction was both dependent on
and responsive to increasing concentrations of extracellular chlo-
ride [48,49]. Moreover, chloride concentrations in the pathological
range led to severe renal vasoconstriction in vitro [49]. On the basis
of these studies, we used the previously developed experimental
model [30,31] to study the effects of 2 | infusions over 1 h of 0.9%
saline and a balanced crystalloid (Plasma-Lyte 148, Baxter
Healthcare, Thethford, UK) on renal haemodynamics using mag-
netic resonance imaging (MRI) [35]. Changes in blood volume
calculated using equations we had developed previously [34],
were almost identical after the two infusions. However, after saline
the expansion of the interstitial fluid volume was much greater
than after Plasma-Lyte. As in our previous experiment [31], a
sustained hyperchloraemic acidosis was seen after saline and
urinary changes were similar [35]. Using MRI, mean renal blood
flow velocity was significantly decreased after the saline infusions
and remained around baseline after Plasma-Lyte. In addition, renal
cortical tissue perfusion fell significantly after saline but remained
around baseline after Plasma-Lyte [35]. Renal volume increased
after saline to a greater extent than after Plasma-Lyte but this was
not statistically significant. However, as the kidney is a relatively
small organ enclosed within a tight capsule, even small changes in
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volumes can increase the intraorgan tissue pressure and disturb
haemodynamics.

We repeated the experiment using 1 1 infusions over 1 h of 6%
hydroxyethyl starch suspended in 0.9% saline or a balanced crys-
talloid [36]. Although the blood volume expanding capacity of both
infusions was almost identical, it was interesting to observe that
after the colloid in the balanced crystalloid, renal cortical tissue
perfusion increased significantly while it remained around baseline
after the colloid in saline. This suggests that colloids in balanced
crystalloids could increase renal cortical tissue perfusion and this
effect is negated by the presence of saline and the associated
hyperchloraemic acidosis [36].

So, what does a hyperchloraemic acidosis do to the kidneys?
Collating the information we gathered from our own experi-
ments and those of others, we see that when hyperchloraemia is
present in the afferent renal arteriole, chloride is filtered through
the glomerulus and is not reabsorbed in the proximal tubule. A
high chloride concentration is presented to the distal tubule and
the chloride enters the macula densa causing depolarisation of
the basement membrane and release of adenosine. In the kidney,
unlike the heart, adenosine acts on the A; receptor and produces
a vasoconstriction rather than a vasodilatation and this leads to
increased arterial resistance and a decrease in renal blood flow
and perfusion [50]. The net result is that both urinary volume
and sodium excretion decrease, leading to salt and water reten-
tion [50]. In addition to the effects on the kidney, saline excess
and the resultant hyperchloraemic acidosis have adverse effects
on various metabolic processes and organ functions [23,50]
(Fig. 1).

The next question is do these pathophysiological changes make
a difference to postoperative outcomes? The first randomised
clinical trial (RCT) comparing 0.9% saline with Ringer's lactate in
patients undergoing abdominal aortic aneurysm repair showed
that those receiving saline needed significantly greater volumes of
packed red blood cells (780 vs. 560 ml), platelets (392 vs. 223 ml),
and bicarbonate therapy (30 vs. 4 ml) than those receiving Ringer's
[51]. Although median blood loss was 600 ml greater in the saline
group, this difference was not statistically significant. Hyper-
chloraemic acidosis was demonstrable in the saline group, but this
did not result in an apparent difference in outcome other than the
need for larger amounts of bicarbonate to correct base deficit and
the use of greater volumes of blood products [51]. Another RCT
comparing 0.9% saline with Ringer's lactate in patients undergoing
renal transplantation had to be stopped prematurely because 19%
of the patients in one group were shown to develop hyperkalaemia.
It was thought that this was in the Ringer's group because of the
potassium content of the solution. However, when the random-
isation code was broken, this turned out to be in the saline group
[52]. In addition, 31% of the patients in the saline group versus zero
in the Ringer's group were treated for metabolic acidosis. Although
there was no statistically significant difference in postoperative
renal function when the two groups were compared, patients who
received saline tended to have a lower 4 h postoperative urine
output (1.6 vs. 2.11) and 24 h creatinine clearance (84 vs. 94 ml/min)
than those receiving Ringer's [52]. A third RCT randomised adult
patients sustaining trauma to receive either 0.9% saline or Plasma-
Lyte A for resuscitation during the first 24 h after injury [53]. Of the
46 patients who were evaluable the improvement in base excess
was significantly greater with Plasma-Lyte A than with 0.9% saline.
At 24 h, arterial pH was greater and serum chloride concentration
was lower with Plasma-Lyte A than with 0.9% saline. However,
there was no significant difference between groups when volumes
of fluid administered, 24 h urine output, resource utilisation, and
clinical outcomes were compared [53]. These RCTs [51—53] were
performed on relatively small numbers of patients and it is,
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Fig. 1. The adverse effects of excess 0.9% saline (Image: Freepik.com).

therefore, possible that the absence of difference in clinically
relevant outcome measures between the two groups may represent
a type Il error.

Large observational studies have suggested that 0.9% saline may
cause adverse events, especially when renal outcomes are studied
[54—57]. A propensity-matched study of 2788 adults undergoing
major open abdominal surgery who received only 0.9% saline and
926 who received only a balanced crystalloid on the day of surgery,
showed that unadjusted in-hospital mortality (5.6 vs. 2.9%) and the
percentage of patients developing complications (33.7 vs. 23%)
were significantly greater (P < 0.01) in those receiving 0.9% saline
[54]. Mortality in the saline group remained higher after correction
for confounding variables, but the difference was no longer statis-
tically significant. Patients in the saline group had a significantly
greater need for blood transfusion, had more infectious complica-
tions, and were 4.8 times more likely to require dialysis (all
P < 0.001) than those in the balanced crystalloid group. The odds of
developing complications were 21% less in the balanced crystalloid
group [54]. An open-label prospective sequential study, in which
consecutive patients admitted to intensive care (30% after elective
surgery) received either chloride-rich (n 760) or chloride-
restricted regimens (n = 773) found that after adjusting for con-
founding variables, patients in the chloride-restricted group had a
lower risk of developing acute kidney injury [odds ratio (OR) (95%
CI): 0.52 (0.37—0.75), P < 0.001] and had a decreased requirement
for renal replacement therapy [OR (95% CI) 0.52 (0.33—0.81),
P = 0.004] [55]. However, there were no significant differences in
in-hospital mortality, or in the lengths of hospital or intensive care
unit stays.

A study on 22,851 surgical patients with normal preoperative
renal function and serum chloride concentration demonstrated
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a 22% incidence of acute postoperative hyperchloraemia
(>110 mmol/l) [56]. After propensity matching with patients who
had normochloraemia, those with hyperchloraemia were at a
greater risk of 30-day postoperative mortality [3.0 vs. 1.9%; OR
(95% CI): 1.58 (1.25—1.98)] and had a 0.7 day longer median hos-
pital stay than those with normal postoperative serum chloride
concentrations [56]. Patients with postoperative hyperchloraemia
were also significantly more likely to have postoperative renal
dysfunction.

Another propensity-matched study in 3116 patients with the
systemic inflammatory response syndrome showed that in-
hospital mortality (3.27% vs. 1.03%, P < 0.001) and length of stay
(4.87 vs. 4.38 days, P = 0.016) were greater in the saline than in the
balanced crystalloid group. Readmission rates and cardiac, infec-
tious and coagulopathic complications were also significantly
greater in the saline group, but there was no difference in the
development of acute renal failure [57].

An RCT randomised 2278 patients admitted to intensive care
units to receive either balanced crystalloid or 0.9% saline to deter-
mine the effects on renal complications [58]. The proportion of
patients requiring renal replacement therapy as well as the survival
probability were identical after both solutions. However, the mean
total amount of fluid that patients received during their entire stay
in the intensive care unit (not just in a day) was 2 1. In addition, the
authors did not report serum chloride concentrations. With the
relatively low volumes of fluid administered, patients were unlikely
to develop fluid overload nor were they likely to have developed a
hyperchloraemic acidosis after saline and this may explain the lack
of difference between the groups. Our own work has suggested that
for adverse events to occur, the serum chloride concentration
should be >107 mmol/l [35—37].
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Two other RCTs performed in the United States looked at
balanced crystalloids versus 0.9% saline in non-critically ill (SALT-ED
study, n = 13,347) [59] and critically ill patients (SMART study,
n = 15,802) [60]. In the SALT-ED study there was a significant
decrease in the occurrence of major adverse kidney events within
30 days in the patients who received a balanced crystalloid
compared with those who received saline [adjusted odds ratio
(aOR) 0.82 (95% C10.70 to 0.95), P = 0.01] [59]. Similar results were
seen in the SMART study where major adverse kidney events were
fewer [aOR 0.90 (95% CI 0.82 to 0.99), P = 0.04] and renal
replacement therapy-free days were greater [aOR 1.11 (95% CI 1.02
to 1.20), P = 0.01] in the balanced crystalloid group [60].

In a recent in vitro experiment published in abstract form we
sought to ask the question if there was a vascular component to
acute kidney injury caused by hyperchloraemic acidosis [61]. We
first used isolated porcine renal arteries and showed that if we
placed them in a bath containing increasing concentrations of KCl
there was an almost linear relationship between concentration and
contraction. We then used increasing concentrations of NaCl and
found a similar, albeit smaller degree of contraction, even at clini-
cally relevant concentrations of chloride [61]. The concentration-
dependent contractions were greater in the renal than in the
mesenteric arteries. The next aim was to determine if these con-
tractions were sodium-dependent or chloride-dependent. We used
similar concentrations of sodium gluconate, but this did not pro-
duce a concentration-dependent increase in contractility, con-
firming that the high chloride concentration was responsible for
this [61].

A very recent pragmatic, double-blind RCT on deceased donor
kidney transplantation in 808 participants showed that intrave-
nous fluid therapy with balanced crystalloids reduced the incidence
of delayed graft function compared with 0.9% saline [aRR 0.74 (95%
CI 0.66 to 0.84); p < 0.0001], further confirming the deleterious
effects of 0.9% saline on the kidney [62].

6. The concept of near-zero fluid balance

Wilkinson and co-workers found that the excretion of both so-
dium and chloride was reduced for the first six days after surgery
[3] and initially thought that this may have been a result of lack of
salt intake during the usual period of postoperative starvation.
However, these findings persisted even when the salt intake was
maintained intravenously or orally, making them conclude that the
decrease in sodium and chloride excretion was “an expression not
merely of a failure of intake but also of some active process leading to a
retention of sodium and chloride”. This is akin to the sodium reten-
tion that occurs in the catabolic phase of the response of injury
described by Moore and leads to sodium and water retention
manifesting as oedema [5,63].

Although daily maintenance requirements for water are in the
range of 25—30 ml/kg and those for sodium are 1—1.2 mmol/kg and
potassium 1 mmol/kg, postoperative patients can receive large
amounts of salt and water for maintenance despite the fact that the
early postoperative period is associated with a state of salt and
water retention. In 1938 Mecray and co-workers [64] rendered a
group of ten dogs hypoproteinaemic by a combination of a low
protein diet, repeated plasmapheresis and replacement of the
blood withdrawn on each occasion by an equal volume of 0.9%
saline. They showed that mean gastric emptying time, as measured
by fluoroscopic observation of the transit of a barium meal, was
inversely proportional to the serum protein concentration [64]. We
felt that this may have been due to salt and water overload rather
than hypoalbuminaemia per se, especially as they were able to
demonstrate gross oedema of the stomach in the hypoproteinaemic
dogs at surgery and also histologically at autopsy.
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We, therefore, designed a physiological experiment to study the
clinical consequences of modest fluid gains by randomising pa-
tients undergoing uncomplicated colonic surgery to receive post-
operative intravenous fluids according to hospital practice at the
time [>3 | water and 154 mmol sodium/day (standard group)] or
<2 | water and 77 mmol sodium/day (restricted group) [65]. The
primary end point was solid and liquid phase gastric emptying
time, measured by dual isotope radionuclide scintigraphy [66] on
the 4th postoperative day. There was 3 kg weight gain in the
standard group, reflecting positive salt and water balance,
compared with zero balance in the restricted group. There were no
significant differences between the groups when urine output,
urinary sodium excretion and blood urea concentration were
compared. In the standard group solid and liquid phase gastric
emptying times (T5g) were significantly longer (median: 175 vs.
72.5 min, P =0.028 and 110 vs. 73.5 min, P = 0.017 respectively) and
passage of stool 2.5 days later (median: 6.5 vs. 4 days, P = 0.001).
Although the study was not designed to look for a difference in
complication rate, patients in the restricted group had fewer side
effects and complications and were able to be discharged 3 days
earlier. These results showed that salt and water retention is not a
harmless and inevitable epiphenomenon, and should be avoided
where possible, by restricting maintenance fluids to the amount
necessary to achieve zero balance.

Brandstrup and co-workers performed a similar but larger study
where they compared a restricted group who received fluids to
maintain them in a state of near-zero fluid balance with those in a
standard group who received fluids sufficient to increase their body
weight by 3—7 kg [67]. They showed that complications were
almost twice as high in the standard group than in the restricted
group and, when they broke these down according to the amount
of fluid patients received, they found that, if patients received less
than 3.5 | on the day of the operation the complication rate was
much less than if they received more than 5.5 1. Similarly, if the
weight gain was <0.5 kg complications were fewer than if weight
gain was >2.5 kg.

Another RCT was unable to show a difference in outcome be-
tween patients receiving restricted and standard fluids after colo-
rectal surgery [68]. However, as the patients in the standard group
gained about 1 kg in weight and those in the restricted group lost
about 1 kg, the lack of difference in clinical outcomes between the
two groups could have been because patients in the standard group
did not receive an excess of salt and water. By contrast, scrutiny of
the fluid regimens shows that the “standard” group in our study
[65] and that of Brandstrup and co-workers [67] actually received
an excess of salt and water, while the “restricted” group received
the right amount of fluid to maintain a state of zero fluid balance.

Another study [69], in which the “standard” group received the
right amount of fluid to maintain balance and the “restricted” group
may have received too little fluid, showed that the standard group
fared better than the restricted group.

Fluids are similar to drugs in having a dose dependent response.
As the dose in increased, positive effects are seen until an optimal
plateau is reached. As the dose is increased further, the adverse
effects of excess become apparent. We performed a meta-analysis
of RCTs that randomised patients to receive either standard/lib-
eral fluid regimens or restricted regimens using firstly the authors’
definitions then re-examining what the patients actually received
and comparing the outcome between those who achieved a state of
fluid balance and those who received too little fluid or a significant
excess [70]. Using the authors’ definitions, there was no difference
in complication rates or length of hospital stay between groups.
However, when we reanalysed the data according to what patients
actually received, we found that patients managed in a state of fluid
balance had a 41% reduction in the risk of developing complications
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and a 3.4 day shorter length of stay compared with those with a
deficit or excess [70]. This has been confirmed in two large US
cohort studies on >90,000 patients each [71,72] in which the au-
thors showed that patients given the right amount of fluid fared
better than those given too much or too little when length of stay,
costs and complications were considered.

Salt and water overload also impairs the healing of gastroin-
testinal anastomoses. An experimental study on rats showed that
animals overloaded with crystalloid developed submucosal intes-
tinal oedema and that anastomotic breaking strength was mark-
edly reduced compared with animals that were not fluid
overloaded [73]. A retrospective cohort study in patients under-
going colonic resection and anastomoses after sustaining trauma
found that patients who developed anastomotic dehiscence had
received more fluids on the each of the first three days than those
without dehiscence [74]. After multivariable analysis, the authors
determined that there was a 5-fold greater risk of developing
anastomotic dehiscence if the cumulative crystalloid load over the
first 72 h was >10.5 | [74].

From our own work and that of others, we have shown the ill-
effects of excessive salt and water administration and the impor-
tance of accurate prescription to achieve as near zero balance as
possible. We have also shown the adverse effects of excess saline
and its consequent hyperchloraemic acidosis on postoperative
outcome, anastomotic healing and gastrointestinal function (Fig. 2)
[75]. The evidence shows that a small amount of fluid overload
causing weight gain of around 1-2 kg does not have adverse ef-
fects, but when the body weight increases by at least 2.5—3 kg due
to fluid excess, adverse effects are caused and complications in-
crease [76].

Recently, in a multicentre, multinational RCT, 3000 patients who
had a predicted increased risk of complications while undergoing
major abdominal surgery were randomly assigned to receive a
restrictive or liberal intravenous fluid regimen during and up to
24 h after surgery. The primary outcome, disability-free survival at
1 year was identical in both groups. However, the number of pa-
tients who developed surgical site infections and acute kidney
injury and needing renal replacement therapy was significantly
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higher in the restrictive than in the liberal group [77]. However, the
fluid used was a balanced crystalloid and not 0.9% saline and it has
been shown that balanced crystalloids are less likely to be retained
in the body and cause less fluid overload than saline. Fluid balance
was not recorded after the first 24 h and the liberal group gained
only 1.6 kg in body weight, which is below the threshold of
2.5—3 kg needed to produce adverse effects [76]. Hence, this study
shows that a modestly liberal fluid regimen may be safer than a
truly restrictive regimen when balanced crystalloids are used.

More recently, a multicentre RCT on goal-directed aggressive or
moderate resuscitation using Ringer's lactate in patients with acute
pancreatitis had to be stopped prematurely after interim analysis
(after recruiting 249 of a planned sample size of 744) because early
aggressive fluid resuscitation resulted in a higher incidence of fluid
overload [20.5% vs. 6.3% (adjusted relative risk (aRR), 2.85; 95% ClI,
1.36 to 5.94, P = 0.004)] without improvement in clinical outcomes
compared with those who received a more moderate amount of
resuscitation fluid [78].

A recent meta-analysis of three RCTs and four non-randomised
studies that included a total of 883 patients showed that although
the quality of evidence was moderate to low, avoidance of post-
operative fluid overload in patients on surgical wards was associ-
ated with a reduction in overall complication rate in the RCTs (RR
0.46, 95% C1 0.23 to 0.95; P < 0.03), but not in the non-randomised
studies (RR 0.74, 95% CI 0.53 to 1.03; P = 0.07) [79]. In addition,
avoidance of fluid overload was associated with a significant
reduction in length of stay in the non-randomized studies (mean
difference —1.81 days, 95% CI -3.27 to —0.35; P = 0.01) but not in
the RCTs (mean difference 0.60 days, 95% CI -0.75 to 1.95; P = 0.38)
[79].

7. Dehydration and outcome

While fluid overload is not uncommon, neither is dehydration.
Overnight fasting and fluid deprivation been shown to increase
urinary osmolality to >800 mOsm/kg [33] indicating dehydration.

On the other hand, if current preoperative fasting guidelines are
adhered to and patients are allowed to drink clear fluids up to 2 h
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Fig. 2. The effects of salt and water overload on the gastrointestinal tract. STAT-3 = signal transducer and activation of transcription-3 (Modified and redrawn from Chowdhury AH

and Lobo DN [75]).
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before the induction of anaesthesia, they come to theatre with in a
state of normal hydration and with a normal urinary osmolality
[34]. Mechanical bowel preparation without adequate rehydra-
tion results in a mean loss of about 1.6 kg body weight indicative
of a loss of 1.6 1 of total body water [80]. A study in patients un-
dergoing paediatric surgery showed that a longer duration of
preoperative fluid deprivation was associated with increased risk
of hypotension after induction of anaesthesia [81]. Nevertheless,
even in this decade, patients are still fasted and fluid deprived for
unnecessary lengths of time, with those admitted for emergency
surgery likely to fast for even longer than those having elective
surgery [82].

In a prospective study in 200 older adult patients who were
admitted to medical wards as an emergency we found that 37%
were dehydrated and that those who are dehydrated at admission
were six times more likely to die in hospital than those who were
normally hydrated at admission [83].

In a retrospective cohort study of 32,980 older adults admitted
to medical specialties, dehydration was present in 2932 (8.9%) and
was the primary reason for admission in 190 (0.6%) [84]. Acute
kidney injury was seen in 47.7% of patients with dehydration,
compared with 15.9% of patients without dehydration (P < 0.001).
Patients admitted with a primary diagnosis of dehydration had a
17% 30-day mortality and 44% one-year mortality compared with
7% and 25% respectively in patients without dehydration
(P < 0.001). Moreover, patients diagnosed with dehydration during
hospitalisation were twice as likely to die in hospital than those
without dehydration.

In a further retrospective database study, we found that of a total
of 6632 older adults admitted to emergency medical wards, 27%
had hyperosmolar dehydration and 39% of these had acute kidney
injury [85]. Patients with hyperosmolar dehydration were four-
times more likely to develop acute kidney injury and had 60%
greater 30-day mortality compared with those who were normally
hydrated [85].

These studies emphasise yet again the U-shaped relationship
between fluid status and complications. Some of the cellular and
metabolic effects of fluid overload are similar to those of fluid
and electrolyte deficit and deviating in either direction from a
state of normal fluid balance can increase complications [7,23,86]

(Fig. 3).
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8. Goal-directed fluid therapy

Intraoperative goal-directed fluid therapy (GDFT) using mea-
surements of stroke volume and cardiac output to inform admin-
istration of a small volume of fluid (usually 200—250 ml of a colloid,
sometimes a crystalloid) to optimise stroke volume has been used
for over two decades. The aim is to optimise the patient's stroke
volume on their individual Frank-Starling curve. An improvement
in stroke volume exceeding 10% indicates the requirement for an
additional fluid bolus, whereas responsiveness less than 10% sug-
gests adequate cardiac contractility, and that maintenance of the
current background fluid infusion is sufficient [87]. Haemodynamic
monitoring can be performed using a number of devices such as
trans-oesophageal Doppler, lithium dilution techniques, corrected
flow time, and stroke volume variation monitoring. Although initial
studies indicated that GDFT resulted in fewer complications and
shorter length of stay, two meta-analyses, one in patients under-
going major abdominal surgery [88] and the other in those un-
dergoing colorectal surgery [89], have shown that although GDFT is
of benefit in patients managed with traditional perioperative reg-
imens, it was of no statistically significant benefit in patients who
were managed with enhanced recovery after surgery (ERAS) pro-
tocols [90]. This may be because patients managed with ERAS
protocols are less likely to be fluid overloaded that those having

traditional care.

However, evidence suggests that GDFT may be more beneficial
in high-risk patient populations [91]. This is yet to be firmly
established, as a large, multicentre, RCT [92] on 734 high-risk pa-
tients undergoing major gastrointestinal surgery that compared
cardiac output-guided haemodynamic therapy with usual care
demonstrated no significant difference in the incidence of a com-
posite outcome of 30-day moderate or major complications and
mortality. When these data were included within a meta-analysis
within the same paper, the intervention was associated with a
significant reduction in the incidence of complications (RR 0.77,
95% CI 0.71 to 0.83) but no significant reduction in hospital or 30-
day mortality [92]. Hence, it is recommended that within ERAS
programmes GDFT should be used for high-risk patients undergo-
ing high-risk surgery [93]. However, stroke volume variation may
be monitored in low-risk patients undergoing high-risk surgery or

high-risk patients undergoing low-risk surgery [93].
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9. De-escalation

Sometimes, especially in the intensive care unit, salt and water
overload is an inevitable consequence of the resuscitation process
during the salvage and optimisation phases of resuscitation when
the aims are to save life and optimise cardiac output and oxygen
delivery [94,95]. It has been shown that in the first 48 h of resus-
citation of patients with sepsis, they can gain 12.5 1 in total body
water, manifest by 12.5 kg increase in body weight [96]. It takes up

Resuscitation

(replenish intravascular

no ongoing losses
Replacement
(maintenance + like for
like replacement of
ongoing losses)

Inadequate
maintenance/
ongoing losses

volume)
= %
@ )
5. L%
S & ° <

Adequate replacement,

Clinical Nutrition 42 (2023) 2270—2281

to three weeks for this retained fluid to be excreted [96]. Therefore,
once patients have been stabilised, it is important to de-escalate
fluid therapy in order to avoid further unnecessary fluid overload
and prevent further organ damage. This can be achieved by
weaning patients from vasopressors and aiming for a negative fluid
balance [94,95]. We showed that if fluid overloaded patients dis-
charged from the intensive care unit were managed with low so-
dium, low volume feeds, sometimes combined with a low dose
diuretic or occasionally salt-poor 20% albumin infusion, the

Salt and water
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inevitable

_

Aim for negative

fluid balance
(de-escalate)

Maintenance
(daily requirements)

Intravenous
fluids no
longer required

Oral

maintenance

Fig. 4. Indications for intravenous fluid therapy (Modified and redrawn from Lobo DN et al. [7]).
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Fig. 5. A suggested practical algorithm for perioperative fluid therapy (Images: Freepik.com).
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oedema resolved over 7—14 days with a loss of about 10 kg in body
weight, while the serum albumin concentration increased by 10 g/l,
mainly as a result of getting rid of the fluid accumulation, and
reversing the of dilution and redistribution of albumin rather than
being due to increased albumin synthesis [97].

10. A practical guide to perioperative fluid and electrolyte
therapy

Before prescribing intravenous fluids, we need to question their
necessity. If fluids are necessary, there are three possible reasons for
this: resuscitation, maintenance or replacement (Fig. 4). Patients
move from one phase to the other fairly rapidly. This should be
recognised and appropriate fluid and electrolytes should be pre-
scribed according to the patient's needs. The ultimate goal of fluid
therapy is to support the patient until gastrointestinal function is
restored and the patient is able to eat and drink. The gut, along with
the kidney, is the best regulator of fluid balance.

A practical algorithm for fluid management in the pre-, intra-
and postoperative periods of the surgical pathway is suggested in
Fig. 5.

11. Conclusions

The provision of fluid and electrolytes is inseparable from that of
food and nutrients [6]. The work presented in this review has
shown that perioperative fluid and electrolyte therapy has impor-
tant effects on clinical outcome in a U-shaped dose response
fashion, in which excess or deficit progressively increases compli-
cations and worsens outcome. Salt and water overload, with weight
gain in excess of 2.5kg worsens surgical outcome, impairs gastro-
intestinal function and increases the risk of anastomotic dehis-
cence. Hyperchloraemic acidosis caused by overenthusiastic
infusion of 0.9% saline leads to adverse outcomes and dysfunction
of many organ systems, especially the kidney. Salt and water deficit
causes similar adverse effects as fluid overload at the cellular level
and also leads to worse outcomes. The importance of accurate and
appropriate prescribing of fluid and electrolytes and the value of
monitoring (e.g., by weight) has been emphasised. Serum albumin
is shown to be affected mainly by dilution and inflammation and is
not a good nutritional marker. These findings have been incorpo-
rated in the British consensus Guidelines on Intravenous Fluid
Therapy for Adult Surgical Patients (GIFTASUP) [98] and National
Institute for Health and Care Excellence (NICE) guidelines on
intravenous fluid therapy in adults in hospital [99,100] and are
helping change clinical practice and improve outcomes.
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