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A B S T R A C T

Predictions of soil hydraulic properties by pedotransfer functions (PTFs) must be treated with caution when
they are used in an application domain which differs from the domain of their original development and
calibration. However, in some settings, scientists may have little alternative but to use PTFs calibrated
elsewhere. In this paper we consider how legacy data can be used to evaluate PTFs in new regions, paying
particular attention to the challenges that arise when, as is often the case, the legacy data are not obtained by
independent random sampling, and may be clustered at multiple scales. We undertook this work in southern
Africa (Zimbabwe, Zambia and Malawi) where PTFs have been little-used, despite the scarcity of direct
measurements of the soil properties of interest. We evaluated the extent to which existing PTFs provide a
useful tool for the prediction of soil moisture content at field-capacity (−33 kPa) and permanent wilting-point
(−1500 kPa) at different spatial scales. Soil legacy data for Zambia, Zimbabwe and Malawi were collated
from various sources and PTFs from temperate and tropical domains were evaluated. We examined error
variance components of predictions at within-profile, within-site and between-site scales; and estimated their
mean errors. In general the better-performing PTFs (with respect to bias and the size of the error variance
components) were ones calibrated with data from a tropical domain. This was most apparent at −1500 kPa.
However, not all PTFs calibrated with data on tropical soils performed well, and predictions from some PTFs
calibrated over a temperate domain were better at −33 kPa. The observations were spatially clustered, with
data from different depth intervals in the same profile, from profiles in the same experimental site or farm,
and from clusters across the region. This enabled us to show, with an appropriate mixed model analysis, that
PTFs which effectively capture regional-scale variation may be less useful for predicting variation within a
profile. We propose that such studies, based on legacy data, and with a suitable linear mixed model, should
be used to screen PTFs of any provenance before their wider application.
1. Introduction

The application of predictive models in soil science has increased
in recent years. These include models which simulate crop growth, soil
erosion, catchment hydrology and effects of climate change (Wösten
et al., 2013). However, these models require soil hydraulic properties
and data on these are typically very scarce due to the costs of mea-
surement, the specialist equipment required, the time required (e.g. to
equilibrate a soil sample at the largest tensions) and the variability of
soil (Minasny and Hartemink, 2011; Wösten et al., 2013). Pedotransfer
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functions (PTFs) are an alternative to routine measurement of such soil
properties. PTFs are empirical predictive relationships between easy-
to measure soil properties (e.g. soil texture, bulk density or organic
matter), which are commonly recorded in soil surveys, and costly, time-
consuming properties (e.g. the soil moisture characteristic curve) which
are required for process models.

Various PTFs have been developed globally (Gupta and Larson,
1979; Rawls and Brakensiek, 1985; Aina and Periaswamy, 1985; Saxton
et al., 1986; Dijkerman, 1988; Vereecken et al., 1989; Van den Berg
et al., 1997; Schaap et al., 2001; Saxton and Rawls, 2006; Nemes
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et al., 2008; Minasny and Hartemink, 2011; Botula et al., 2012).
These provide an opportunity to deploy process models in regions
where, hitherto, they have not been used because of the lack of soil
hydraulic information. In particular there is unrealized potential in
tropical regions to improve the efficiency of cropping systems, and their
resilience to climate change, by developing strategies for soil water
management which are site-specific, reflecting local weather conditions
and soil properties. Agronomists, soil scientists, farmers and other land
managers may also use soil hydraulic properties to make timely and
reliable predictions of soil water dynamics, particularly in the context
of high rainfall variability due to climate change, and so to support
efficient use of irrigation water.

Most available PTFs have been calibrated on data sets such as
HYPRES (Wösten et al., 1999) and WISE (Batjes, 1996). These are
dominated by soil samples from temperate environments. Many authors
have expressed caution about the transfer of PTFs developed with data
on soils in one environment to a different setting (Givi et al., 2004;
Botula et al., 2012; Shein and Arkhangel’Skaya, 2006; Tomasella and
Hodnett, 2004). This is an important consideration in the tropics as
few PTFs have been developed in tropical regions. Furthermore, those
developed in tropical settings have typically been based on small data
sets from restricted regions compared to the data sets available to
develop PTFs for soils in temperate environments.

In regions where few or no PTFs have been developed from local
data, legacy soil information can be used to evaluate the ‘portability’ of
established PTFs into a new setting, and might also be used to develop
locally-adapted parameter sets. However, by their nature, legacy data
sets are not collected according to a single sample design, and they
may reflect the spatial distribution of experimental farms or past survey
campaigns. In such a case, the linear mixed model can be used both in
the evaluation of PTFs and in the re-estimation of local versions from
such data.

The objective of this study was to assess the applicability, across
contrasting regions of Zambia, Zimbabwe and Malawi, of PTFs devel-
oped in various calibration domains, including temperate and tropical
domains, the latter including both tropical Africa and the broader
tropics. This was done with a range of validation data from legacy
sources. These allowed us to assess the efficacy of the PTFs for pre-
dicting soil water content over different spatial scales from regional to
within-profile.

2. Methods

2.1. Data collation and editing

Three teams, based in Zambia, Zimbabwe and Malawi, undertook
a systematic search for legacy data on physical and compositional
properties of soils:– particle size distribution, organic carbon content,
dry bulk density and hydraulic data including gravimetric or volumetric
water content (VWC) at specified tensions, or at field capacity or
wilting point, defined either as −33 kPa or −1500 kPa respectively or,
n some cases determined by an irrigation method (saturating the soil
nd allowing it to drain freely for 48 h) or the sunflower method
measuring the tension at which sunflower plants grown in the soil
egin to wilt). Salter and Haworth (1961) outline these methods.
he data sources comprised peer-reviewed publications, MSc and PhD
heses, internal reports and the WOSIS database (Batjes et al., 2017)
s it stood in 2016, from which records with a CC-BY Open Access
icence, corresponding to sites in Zimbabwe, Zambia and Malawi were
xtracted. All sources are recorded in a separate reference list provided
s Appendix A in the supplementary material.

Each observed object in the final data collection was a set of data
alues for a single soil sample, collected from a particular depth interval
r horizon with recorded upper and lower depths. Each object was
iven a unique entry code. In most cases soil data were available for
ultiple horizon or depth intervals from a single sample point. All
2

objects from a single such set were given a unique profile code. Many
soil profiles in the data set had longitude and latitude recorded. For
those that did not, location information (e.g. from a local large-scale
map, descriptive notes or basic information on the farm or research
station from which the soil samples had been collected) was used
to obtain location coordinates using all information provided on the
sample location in the original source material. For example, one
profile was described as occurring ‘43 km NE of Livingstone, Southern
Province along the road to Lusaka’ (Zambia).

These coordinates were not treated as unique for each sample, but
comprise the best possible post-hoc identification of the central location
of a cluster of samples from a named study site, research station or
farm. The coordinates were required so that the clustered distribution
of sample sites could be appropriately reflected in the data analysis
by a between-location random effect. Spatial clustering of samples is
to be expected in such a legacy data set where measurements have
been made at fields in particular research stations, farms selected for
experimental studies, or sites where a detailed soil survey has been
made.

In addition to an entry code, profile code and location code and
coordinates, care was taken to identify all data used to obtain any of
the PTFs which had been identified for evaluation. Any such datum
was given an appropriate PTF code so that it could be excluded from
evaluation of the specific PTF.

In collating the data, particular attention was paid to the following
possible sources of error. First, the definition of particle size classes
was carefully checked in the data source. It is well-known that the
silt/sand limit differs between the conventions of USDA or FAO and
others such as the ISSS (Landon, 2014). Some of the sources presented
particle size data according to more than one convention. Many of
the sources provided more precise particle size categories (e.g. coarse,
medium and fine sand), according to specific conventions. Several par-
ticle size variables were therefore recorded separately in the database,
corresponding to the different size categories of different conventions.
Second, all units were checked and standardized (e.g. for soil organic
carbon which was recorded for all observations in units of percent by
mass). Care was taken as to whether the source reported soil organic
carbon or soil organic matter. The reported variable was recorded for
any sample. In the use of the data if an interconversion was needed
between these variables it was done on the assumption that SOM =
SOC × 1.72 (Landon, 2014), unless the source recorded that the conver-
sion had already been made with a different factor. Third, the basis for
all measurements was carefully checked. In many cases, for example,
gravimetric water content was reported alongside a dry bulk density
value by which it could be converted to volumetric water content.
Because of these criteria, by no means all data found in the initial
screening were used in the analyses reported below. We checked that
all measurements of water content of the soil at field capacity/−33 kPa
were made on intact cores, as water retained at this tension is partly in
pore space between soil aggregates.

A total of 602 horizon entries were extracted from 129 profiles at
90 locations. The locations are plotted over the borders of Zimbabwe,
Zambia and Malawi in Figure S1(a) of the Supplementary Material.
The Soil Reference Group (SRG) from the World Reference Base clas-
sification (IUSS Working Group WRB, 2006) was extracted at each
location from the Soil Atlas of Africa shapefiles (Jones et al., 2013).
The percentages of locations in each of 13 SRG are shown in Figure
S1(b) in the Supplementary Material. Note that about 30% of the soils
are Luvisols (the largest group) followed by Arenosols at just over 15%
and Acrisols and Ferralsols at about 10% each. The range of longitudes
and latitudes for the locations are {22.13, 34.01} degrees and {−21.83,
−8.83} degrees respectively. Climate information from the locations
was extracted from the AfroGRID data set, Schon and Koren (2022).
The mean annual temperature over all the sites was 21.5 degrees C,
with a range of {18.8, 25.2} and the mean annual precipitation was

846 mm with a range of {430, 1253}.
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Table 1
Summary of pedotransfer functions used in this study.

Author Broad Comment Predictors for 𝜃−33 Predictors for 𝜃−1500
domain on domain Sand Silt Clay SOM BD Sand Silt Clay SOM BD

Botula et al. (2013) Tropical Central Africa-Lower Congo ∙ ∙ ∙ ∙
Dijkerman (1988) Tropical West Africa-Sierra Leone ∙ ∙
Lal (1978) Tropical Nigeria ∙ ∙
MacLean, Yager (1972) Tropical Southern Africa-Zambia ∙c ∙ ∙ ∙b ∙ ∙ ∙b

Minasny, Hartemink (2011) Tropical Tropical soils ∙ ∙ ∙e ∙
Miti (2017) Tropical Southern Africa-Zambia ∙ ∙ ∙ ∙ ∙
Oliveira et al. (2002) Tropical S.America- N.E. Brazil ∙ ∙ ∙ ∙ ∙ ∙
Pidgeon (1972) Tropical East Africa -Uganda ∙ ∙ ∙b ∙ ∙ ∙b

Rawls and Brakensiek (1982)d Temperate North America-USA ∙ ∙ ∙ ∙ ∙
∙ ∙

Saxton and Rawls (2006) Temperate North America-USA ∙a ∙a ∙a ∙a ∙a ∙a

van den Berg et al. (1997) Tropical Tropical Oxisols ∙a ∙a ∙a

a The predictors are in a non-linear combination.
b SOC is the predictor.
c Coarse sand (FAO definition).
d Second PTF for 𝜃−33 is denoted Rawls et al (1982) b.
e Clay and Clay2.
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2.2. Initial exploratory analysis

The literature on PTFs was reviewed to identify PTFs developed
with soil observations within the region, and others used in studies
within it. We identified those PTFs for which some subset of our data
included all the predictor variables. Some were excluded because the
published PTFs did not produce predictions for VWC at the tensions
for which we had validation data, for example, the PTFs of Mugabe
(2004). The PTFs evaluated in this study are presented in Table 1. In
Figure S2 we show the range of values for the key predictor variables in
the calibration data set for each of the published PTFs, and also show
the range and quartiles of these values for our legacy data.

For any specified PTF, the appraisal using the assembled database
started with exploratory analysis. First we extracted the subset of ob-
servations in the database for which all the required predictor variables
were available. We also removed any data which had been used to
develop the particular PTF. We then used the PTF to make predictions
of volumetric water content at the tension, ℎ, for which it is specified.
We then made a plot of the observed volumetric water content at
the specified tension, 𝜃ℎ against the value predicted by the PTF, �̆�ℎ.

he bisector (1:1 line) was drawn on the plot. Inspection of the plots
hows obvious biases, unphysical predictions and any shrinkage effects
regression to the mean), with small VWC over-predicted and large
WC under-predicted.

The PTF error for each observation was then computed as

= 𝜃ℎ − �̆�ℎ, (1)

o a positive error means that the observed water content exceeds
he predicted value. The histograms of the errors and their summary
tatistics were examined. In order better to understand possible sources
f error the prediction error was plotted against the mid-depth of the
ampled horizon or interval, the sand, silt and clay content, the soil
rganic carbon content and the bulk density.

Finally, we examined the source publication for each PTF and,
here possible, identified the range of values for each predictor vari-
ble in the set which had been used to estimate the PTF parameters.
hese ranges were plotted along with the range of values for the same
ariables in our database, and a box plot (showing the median values
nd first and third quartiles).

.3. Statistical modelling

We first present a general statistical model for these data, before
3

xplaining how it was used for evaluation and for re-parameterization. v
Consider an observation of some variable, 𝑍, recorded for horizon
in profile 𝑗 at location 𝑘 in the data set, where location 𝑘 has

oordinates 𝐬𝑘. We may specify a linear mixed model (LMM) for this
ariable of the form

= 𝐗𝜷 + 𝝍
(

𝐬𝑘
)

+ 𝝎𝑗 + 𝜺𝑖, (2)

here the first term on the right-hand side is an expression of the
ean value of Z in terms of a fixed effect variable or variables in

he design matrix 𝐗, and a fixed effect coefficient or coefficients in
he vector 𝜷. In the simplest case where the mean is a constant the
ixed effect is a vector of ones, and the coefficient is the mean value.
n a more complex case, where 𝑍 is a soil property for which we are
e-parameterizing a PTF, the fixed effects would constitute the easy-to-
easure soil properties that are predictors in the PTF, and the fixed

ffect coefficients would be the re-estimated PTF coefficients.
The remaining terms on the right-hand side of Eq (2) are random

ffects, all assumed to be of mean zero and with a normal distribution.
he first term is a spatially correlated random variable which takes
ixed values over all observations within a given location. It is assumed
o be second-order stationary in that the covariance of any two values
(

𝐬1
)

and 𝝍
(

𝐬𝑘
)

exists and can be expressed as a function of the lag
vector 𝐬1 − 𝐬2 which denotes the difference between their locations,
independent of these locations themselves. In this study, which en-
compasses widely distributed locations in both longitude and latitude,
we could not project all locations onto a rectilinear grid, and so we
used a covariance function of great-circle distance between locations
approximated on the sphere. These distances were obtained using the
distVincentySphere function from the geosphere package for the R
platform (Hijmans et al., 2017). Given the relative sparsity of locations,
and their irregular spatial distribution it was assumed that the covari-
ance function was isotropic, i.e. its argument was just the spherical
great circle distance, which we denote by |

|

𝐬1 − 𝐬2||
⊙. Specifically we

assumed a Matérn covariance function (Stein, 1999) which takes the
form:

𝐶𝜓
(

|

|

𝐬1 − 𝐬2||
⊙
)

= 𝜎2𝜓
{

2𝜅−1𝛤 (𝜅)
}−1

(

|

|

𝐬1 − 𝐬2||
⊙

𝜙

)𝜅

𝐾𝜅

(

|

|

𝐬1 − 𝐬2||
⊙

𝜙

)

,

(3)

where 𝜎2𝜓 is the between-location variance, 𝛤 (⋅) is the Gamma function,
𝜅 (⋅) is a modified Bessel function of the second kind of order 𝜅, and

he parameters 𝜅 and 𝜓 are, respectively a dimensionless quantity that
haracterizes the smoothness of the spatial variation of 𝝍(𝐬) and a
patial parameters with units of distance which, conditional on the
alue of the smoothness parameter, characterizes the distance over
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which the variable is spatially correlated. Gneiting (2013) shows that
the Matérn covariance function is positive definite, i.e. valid, for real
positive lag distances on the sphere provided that 0 < 𝜅 ≤ 0.5.

The term 𝝎𝑗 in Eq [(2)] is a normal random variable of mean
zero, independently and identically distributed with variance 𝜎2𝜔. It is
a between-profile within-location random effect, so takes a constant
value over all observations in profile 𝑗. Similarly, the final term 𝜺𝑖 is
a normal random variable of mean zero, independently and identically
distributed with variance 𝜎2𝜀 . It is a within-profile residual term, and so

ill include the effects of any analytical error.
Because of the nested structure of this model (observations within

rofiles within sites), and on the assumption that the three random
ffects are mutually independent, one may write a covariance matrix
or a set of n observations, 𝐳 =

{

𝑧1, 𝑧2,… , 𝑧𝑛
}T. These observations

have mean 𝐗𝜷 where the first term is a 𝑛 × 𝑝 design matrix with a
set of 𝑝 values of the fixed effects the second term is a 𝑝 × 1 matrix of
fixed effects coefficients. One may specify a component of the overall
𝑛×𝑛 covariance matrix of the random effects attributable to the spatially
correlated random variable 𝝍(𝐬). This matrix is 𝐂𝜓 where

𝐂𝜓 [𝑙, 𝑚] = 𝐶𝜓
(

|

|

𝐬𝑙 − 𝐬𝑚||
⊙
)

. (4)

The vectors 𝐬𝑙 and 𝐬𝑚 denote the locations of the 𝑙th and 𝑚th obser-
vation (which might be identical, for example for observations in two
horizons of the same profile or two profiles at the same location, and
the covariance function on the right side is defined in Eq [(3)] given
values of the parameters 𝜎2𝜓 , 𝜅 and 𝜙.

If there are 𝑛𝑃 locations then one may specify a 𝑛×𝑛𝑃 design matrix
for the random effect 𝝎𝑗 . This matrix, 𝐇𝜔, has value 1 in the 𝑘th column
of the 𝑚th row if the 𝑚th observation is in the 𝑘th profile, all other
entries in that row are zero. The covariance matrix for the random
effect 𝝎𝑗 can then be written as:

𝐂𝜔 = 𝜎2𝜔𝐇𝜔𝐇T
𝜔. (5)

Finally, given the variance of the random effect 𝜺𝑖, which we denote by
𝜎2𝜀 , the covariance matrix for this residual term is given by

𝐂𝜀 = 𝜎2𝜔𝟏𝑛, (6)

where 𝟏𝑛 is the 𝑛 × 𝑛 identity matrix.
This notation now allows us to specify the overall covariance matrix

for 𝐙 as

𝐂 = 𝐂𝜓 + 𝐂𝜔 + 𝐂𝜀, (7)

assuming the mutual independence of the three random effects, and
given values of the parameters 𝜎2𝜀1, 𝜎2𝜔, 𝜎2𝜓 , 𝜅 and 𝜙.

These five variance parameters, so-called because they are the full
set required to characterize the random effects in the model, can be
estimated for any set of observation of the specified dependent variable,
𝑍, and set of fixed effects variables in the design matrix 𝐗. The
preferred method to obtain these estimates is by residual maximum
likelihood (Patterson and Thompson, 1971) which is straightforward
for unbalanced data, and which reduces the bias due to the fact that
the fixed effects coefficients in 𝜷 are unknown. We do not provide
a detailed account of REML in this paper, but refer the reader to
other sources e.g. Lark et al. (2006),Verbeke (1997). When the REML
estimates of the variance parameters have been obtained they can
be used to compute an estimate of the covariance matrix 𝐂, by the
application of Eqs (3)–(7) above, which we denote by 𝐂∗. Having
obtained this we can use it to obtain estimates of the fixed effects
coefficients by generalized least squares:

𝜷 =
(

𝐗T𝐂∗−1𝐗
)−1 𝐗T𝐂∗−1𝐳 (8)

and the covariance matrix for the estimation error of these coefficients
can be obtained by:

( T ∗−1 )−1
4

𝐁 = 𝐗 𝐂 𝐗 (9) p
In this study we obtained estimates of the variance parameters that
minimize the negative log residual likelihood (REML estimate) using
the optim function in base R (R Core Team, 2020), and specifically we
used the L-BFGS-B (Low-memory Broyden–Fletcher–Goldfarb–Shanno,
bounded algorithm) method (Byrd et al., 1995).

Rather than estimating the smoothness parameter 𝜅 by allowing it
to vary freely with the other variance parameters, we followed Diggle
and Ribeiro (2007) by using a profile method by which we fixed
𝜅 at a series of values and found the REML estimates of all other
variance parameters, conditional on this fixed value, then selected the
solution for which the residual negative log-likelihood was smallest.
We considered values of 𝜅 = 0.1, 0.2, 0.3, 0.4, 0.5. By fixing 𝜅 ≤ 0.5, we
nsured that the covariance model was positive definite for points on
he sphere (Gneiting, 2013).

.4. Specific models

The modelling procedure described in the previous section was used
o fit the following models in turn.

In the first model, 𝑀0, the dependent variable, 𝑍, was the measured
alue of volumetric water content at tensions of −33 kPa or −1500 kPa,
−33 and 𝜃−1500, with a constant mean as the only fixed effect.

The second model, 𝑀1, was for the prediction errors of the PTF, as
efined in Eq (1) above. The only fixed effect specified was a constant
ean error. This fixed effect was estimated by generalized least squares

iven the REML estimates of the random effects parameters, using
q. (8). This estimate of the mean error, with a confidence interval,
ould be examined for evidence that predictions made by the PTF
re biased overall. The variance components for each of the random
ffects were estimated, and then compared with the corresponding
omponents for model 𝑀0.

None of the PTFs were for a specified depth (unlike some in the
iterature, e.g. Hall et al. 1977), so we considered the possibility that
here is a different mean error for topsoil and subsoil. For purposes
f this analysis any horizon entirely in the 0–200 mm depth interval
as regarded as topsoil, and any horizon entirely below 200 mm depth
as regarded as subsoil. This is a somewhat arbitrary division selected
ecause 200 mm was the 80th percentile of the lower bound of all hori-
ons with the upper bound at 0 mm. A horizon spanning 200 mm depth
as regarded as topsoil if half or more of its thickness was shallower

han 200 mm, and subsoil otherwise. Under this alternative model, 𝑀2,
e computed mean errors for topsoil and subsoil predictions, and also
oted whether the confidence interval for the difference between mean
rrors in the two sets of soils included zero.

The next analysis was a re-parameterization in which the PTF was
efitted to the available data, 𝑀3. The variance components for the ran-
om effects were compared with the corresponding error variance com-
onents. If the coefficients of the PTF are improved by re-fitting then we
ould expect the variance components for the re-parameterized model

o be smaller than the error model components (overall), although this
ight not apply to all the components if there is scale-dependence. If

e-parameterizing has little effect, or only changes the constant, then
he variances for the re-parameterization and the original error model
hould all be very similar.

. Results

Results are presented on the errors of the predictions of VWC at
−33 and 𝜃−1500 in turn. To assess the evidence for the performance
f a particular PTF we examined the scatter plot of predicted and
easured values (Fig. 1 and Figure S3 for 𝜃−33), we also considered

he mean prediction error and its 95% confidence interval, and the
um of components of the variance of the error on a plot (Fig. 2
or 𝜃−33). This gives an indication of the bias and scatter in the PTF
redictions. The plots of the variance components by scale (within-

rofile, within-site, between-site) then show the scale-dependence of
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Fig. 1. Scatter plots of observed 𝜃−33 (percent by volume) against the predictions by all the PTFs published for this variable by (a) Boutula et al. (2013); (b) Dijkerman (1988); (c)
Lal (1979); (d) MacLean and Yager (1972). Note that the red line is the bisector (1:1 line) where the predicted and observed water contents are the same. Figure S2 in Appendix
C (Supplementary Materials) shows the full set of these plots for all PTFs considered.
PTF uncertainty (Fig. 3 for 𝜃−33). A plot of the variance components for
the error on refitting of each PTF to the data (estimation of the fixed
effects coefficients) shown as a proportion of the variance component
of the original VWC error, shows whether a substantial improvement
is achieved by refitting the PTF (Fig. 4 for 𝜃−33). The findings from
these four sets of results were then elucidated by examining the range
of predictor values from the data used to fit the PTF, and a comparison
of this with the range of values in the validation data (Figure S2), and
a plot of PTF error against soil properties (e.g. Fig. 5).

In the discussion section we then examine overall PTF performance,
trends and general findings.

3.1. PTF predictions of 𝜃−33

Fig. 1 shows the scatter plots of predicted VWC at −33 kPa (𝜃−33)
against the observed value for each of the PTFs considered. In Fig. 2
the mean error for the predictions for each PTF (𝜃−33), with its 95%
confidence interval, is plotted against the sum of components of the
variance of the error. The values of these separate components are
plotted in Fig. 3.

The PTF due to Botula et al. (2013) has the smallest absolute mean
prediction error, which is not significantly different from zero. The
mean error is slightly positive (i.e. a tendency to under-predict the
VWC, Fig. 2.). The sum of error variance components for this PTF is
5

relatively small (the third-equal smallest in the set, Fig. 2). Examination
of the plot of measured 𝜃−33 against the predicted value (Fig. 1a) shows
a linear relationship, although with a tendency to ‘shrinkage’ with the
variance of the predicted values smaller than that of the observations.
The error variances are the same for the PTF due to Dijkerman (1988)
(Fig. 2). These PTF both use sand content as the sole predictor, and
have the same regression coefficient, but different intercepts. As a result
the mean error for the predictions by the PTF of Dijkerman (1988) is
significantly larger than zero.

The PTF due to Lal (1978) also has a significantly positive mean
prediction error, and the sum of error variances is only slightly larger
than for the PTFs of Botula et al. (2013) and Dijkerman (1988) (Fig. 2).
This PTF uses only the clay content of the soil for prediction of 𝜃−33.
For all three of these PTFs, the variance components of the prediction
error are notably smaller than the corresponding variance component
for the variable itself (Fig. 3). On reparameterization of these PTFs
with the available data, the variance components of the random effects
are only slightly smaller than the variance components of the error of
the original PTF (Fig. 4). This reflects the fact that the re-estimated
regression coefficients are very similar to those of the original PTF,
although the difference in the intercepts is larger. For all three of these
PTFs the difference between the mean errors in the topsoil and subsoil
is significant, with 𝜃−33 more under-predicted in the topsoil (Figure S4).

The range of values of sand content in the data set originally used

by Botula et al. (2013) to fit the PTF is very close to that of the data
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Fig. 2. For each PTF for 𝜃−33, the estimate of mean error, with error bars (twice
he standard error), plotted against the sum of the variance components for the
rror. The PTF authors in the key are as follows. Botula (Botula et al., 2012);
jikerman (Dijkerman, 1988); Lal (Lal, 1978); MacLean (MacLean and Yager, 1972);
H (Minasny and Hartemink, 2011); Miti (Miti, 2017); Oliviera (Oliveira et al.,

002); Pidgeon (Pidgeon, 1972); RW (Rawls and Brakensiek, 1982); RWb (Rawls and
rakensiek, 1982); SR (Saxton and Rawls, 2006).

Fig. 3. Variances of the random effects for PTF error (𝜃−33), from the model with a
constant mean as the fixed effects. The solid black discs joined by an unbroken line
show the corresponding variance components for 𝜃−33. The PTF authors in the key
are as follows. Botula (Botula et al., 2012); Djikerman (Dijkerman, 1988); Lal (Lal,
1978); MacLean (MacLean and Yager, 1972); MH (Minasny and Hartemink, 2011);
Miti (Miti, 2017); Oliviera (Oliveira et al., 2002); Pidgeon (Pidgeon, 1972); RW (Rawls
and Brakensiek, 1982); RWb (Rawls and Brakensiek, 1982); SR (Saxton and Rawls,
2006).

used here for validation (Figure S2). However, the maximum sand
content in the soils observed by Dijkerman (1988) was less than the
third quartile of the values in the data used here (Figure S2). Despite
this the regression coefficients for the two PTFs are identical although,
as noted, the intercepts differ.
6

Fig. 4. Variances of the random effects from reparameterization of each 𝜃−33PTF
expressed as a proportion of the corresponding variance components for that PTF’s
error. The PTF authors in the key are as follows. Botula (Botula et al., 2012);
Djikerman (Dijkerman, 1988); Lal (Lal, 1978); MacLean (MacLean and Yager, 1972);
MH (Minasny and Hartemink, 2011); Miti (Miti, 2017); Oliviera (Oliveira et al.,
2002); Pidgeon (Pidgeon, 1972); RW (Rawls and Brakensiek, 1982); RWb (Rawls and
Brakensiek, 1982); SR (Saxton and Rawls, 2006).

The PTF for 𝜃−33 due to MacLean and Yager (1972) uses coarse
sand, silt, clay and organic matter content of the soil for prediction.
The sum of error variance components is smaller for this PTF than for
any other but it does have a large negative and significant bias, over-
predicting 𝜃−33 by 7.6% v/v on average. Examination of the exploratory
plots for this PTF, presented in Fig. 5, shows that the error is markedly
related to the sand and clay content, with the largest over-prediction
for the lighter-textured soils. This is also reflected in the difference
between the mean errors in topsoil and subsoil (Figure S4), with a
markedly larger mean over-prediction in the, generally lighter-textured,
topsoil. This could be because the maximum sand content in the data
set used by MacLean and Yager (1972) was smaller than for any of
the other PTFs (Figure S2), and closer to the median value in our
data than two their third quartile. As seen in Fig. 4, the variances of
the within-profile and within-site random effects on reparameterization
of the PTF of MacLean and Yager (1972) are small relative to the
corresponding error variances, although the variance at the between-
site scale is larger. This shows that there is some benefit in re-estimating
the coefficients of this particular PTF, although less for capturing broad
trends in the value of 𝜃−33 than for representing variation with depth,
or short-range variation within sites.

The two PTFs of Rawls and Brakensiek (1982) and Saxton and Rawls
(2006) were both estimated with data from the temperate region (USA).
The PTF of Rawls and Brakensiek (1982) denoted RW in the Figure
legends, uses sand, clay and organic matter content as predictors. It
has the largest sum of error variance components of all the PTFs for this
variable (Fig. 2), and the largest single variance components for each
random effect, all larger than the corresponding variance component
for the variable itself (Fig. 3). It has the largest mean prediction error,
which is negative, indicating a tendency to over-prediction (Fig. 2).
Inspection of Figure S3(i), shows that many of the data are quite tightly
clustered around the bisector. However, there are some very large
predicted values, including several unphysical ones where the predicted
VWC exceeds 100% by volume. The exploratory plots of PTF error for
this PTF (Figure S5), show that this bias can be attributed to the effect
of soil organic matter in the equation. Bias is introduced for soils with
SOC in excess of around 5% by mass. This also explains the observation
(Figure S4) that the mean over-prediction in topsoils is larger for this
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Fig. 5. Scatter plots of PTF error against the central depth of the observation, clay content, sand content, silt content, SOC content and dry bulk density. This is for the PTF for
𝜃−33of MacLean and Yager (1972).
PTF than for any other, and significantly larger than the over-prediction
in subsoils. The range of soil organic carbon contents in the soils used
by Rawls and Brakensiek (1982) is smaller than in our data (Figure S2),
but the evidence of bias in the PTF is seen at organic matter contents
within the range of the data used by Rawls and Brakensiek (1982).
It is notable that the variance components of the random effects in
the reparameterization of this PTF are all markedly smaller than the
corresponding variance components for PTF error (Fig. 4), showing that
the model is poorly parameterized for the southern African setting. In
particular the coefficient for soil organic matter in the original PTF,
0.0299, is an order of magnitude larger than in the re-fitted model
(0.0017).

The PTF of Rawls and Brakensiek (1982) denoted RWb in the
Figures, uses just sand and organic matter content for prediction. It
has the largest positive bias of all the PTFs examined for this variable
(under-prediction). Figure S3(j) shows that, while this PTF also pro-
duces over-predictions of the VWC, including unphysically large ones,
the dominant effect is a positive bias which increases with the predicted
value. Inspection of the exploratory plot for the PTF (Figure S6), shows
that, in addition to the negative bias introduced for soils with relatively
large organic matter content, there is a pronounced relationship be-
tween error and sand content, with a tendency to under-predict the
water content of soils with a smaller sand content. Note in Figure S4
7

that the mean error for subsoil predictions is significantly larger than
zero (under-prediction), and significantly different from the mean error
for topsoil which is slightly negative. As with the first predictor for
this variable from these authors, the sum of variance components for
the random effects on reparameterization is smaller than the sum of
variance components for the error (Fig. 4), although this does not hold
for the between-site random effect considered alone.

The PTFs of Miti (2017) and of Pidgeon (1972), which both use silt,
clay and soil organic carbon/matter as predictors, resemble the PTFs
of Rawls and Brakensiek (1982) in that there are unphysical predictions
associated with soils with larger soil organic content. Note that the soils
used by Miti (2017) had a narrower range of organic matter contents
than those used by Rawls and Brakensiek (1982). In both the mean
error is not significantly different from zero, but there is a tendency for
under-prediction of the VWC of soils with larger water content which
do not have large organic content. The mean errors for predictions
with these PTFs in the topsoil and subsoil are significantly different,
with more negative values (over-prediction) for the topsoil (Figure S4).
In both the relationship between error and sand content is similar,
although less pronounced, to the second PTF of Rawls and Brakensiek
(1982). The variance components of the within-profile and within-site
random effects of the error are both very large (Fig. 3), but that for the
between-site effect is smaller than for the variable itself. It is possible
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Fig. 6. Scatter plots of observed 𝜃−1500 (percent by volume) against the predictions by all the PTFs published for this variable by (a) Botula et al. (2013); (b) Dijkerman (1988);
(c) Lal (1979); (d) McLean (1972). Note that the red line is the bisector (1:1 line) where the predicted and observed water contents are the same. Figure S4 in Appendix C
(Supplementary Materials) shows the full set of these plots for all PTFs considered.
(
T
e

that these larger error variances at the two shorter-scales, for the PTFs
of Miti (2017), Pidgeon (1972) and Rawls and Brakensiek (1982) reflect
errors introduced by variation in the organic carbon content of soil
horizons of different depths, and fields within sites with contrasting
management.

The PTF of Minasny and Hartemink (2011), fitted to data from a
range of tropical soils, is the only one for 𝜃−33 which uses bulk density
as a predictor. The mean error is negative, and significantly different
from zero, and there is no significant difference between the mean
errors in the topsoil and subsoil. The error variance components are all
smaller than the corresponding variance components for the variable it-
self, and the variances for the random effects in the reparameterization
of the model are all only slightly smaller than the corresponding error
variance components. The scatterplot in Figure S3(e) shows shrinkage,
with a tendency for over-prediction for the soils with smaller than
average observed 𝜃−33, and under-prediction for those with 𝜃−33 above
average.

The PTF due to Saxton and Rawls (2006) has a significant nega-
tive bias (Fig. 2), and there is no significant difference between the
mean errors in the topsoil and subsoil, which are very similar. The
within-profile error variance is slightly larger than the corresponding
8

variance component for the variable itself, but the other two variance s
components are notably smaller. The variance for the within-profile
random effect on reparameterization is somewhat smaller than the
corresponding error variance component (Fig. 3) suggesting that there
was some scope for improving the parameters for application in the
southern African domain. The scatter plot (Figure S3k) shows some
dispersion around the bisector, but less of a shrinkage effect than for
some of the other PTFs.

The PTF due to Oliveira et al. (2002), parameterized with data from
the South American Tropics, has a significant positive bias, but error
variance components all smaller than the corresponding ones for the
variable itself. The scatterplot (Figure S3 g) shows some shrinkage in
the predictions. The variance components for the random effects on
reparameterization are not much different from the corresponding error
variance components.

3.2. PTF predictions of 𝜃−1500

Fig. 6 shows the scatter plots of predicted VWC at −1500 kPa
𝜃−1500) against the observed value for each of the PTFs considered.
he PTFs of Botula et al. (2013), Dijkerman (1988), Lal (1978), Oliveira
t al. (2002) and Van den Berg et al. (1997) for 𝜃−1500 have the smallest

ums of error variances (Fig. 7). For all the mean error falls in the
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Fig. 7. For each PTF for 𝜃−1500, the estimate of mean error, with error bars (twice
he standard error), plotted against the sum of the variance components for the
rror. The PTF authors in the key are as follows. Botula (Botula et al., 2012);
jikerman (Dijkerman, 1988); Lal (Lal, 1978); MacLean (MacLean and Yager, 1972);
H (Minasny and Hartemink, 2011); Miti (Miti, 2017); Oliviera (Oliveira et al., 2002);

idgeon (Pidgeon, 1972); RW (Rawls and Brakensiek, 1982); SR (Saxton and Rawls,
006); VdB (Van den Berg et al., 1997).

nterval [−5%,5%], and for none does the confidence interval include
ero. The error variance components are all markedly smaller than
he corresponding variance components of 𝜃−1500 and are smallest at
he between-site scale in all cases (Fig. 8). The variance components
or the random effects on reparameterizing the PTFs of Botula et al.
2013), Dijkerman (1988) and Lal (1978) are all very similar to the cor-
esponding error variance components (Fig. 9). For the PTF of Van den
erg et al. (1997) the within-profile variance for the reparameterized
odel is somewhat smaller than the corresponding error variance, for

he PTF of Oliveira et al. (2002) the between-site variance component
s somewhat larger than the corresponding error variance.

The predictors used in these five PTFs are not all the same. Dijker-
an (1988) and Lal (1978) use clay content only, and these two PTFs

how some degree of shrinkage, with under-prediction of larger values
f 𝜃−1500. The PTFs of Van den Berg et al. (1997) and Botula et al.
2013) use equivalent predictor sets (two of sand, silt or clay, with bulk
ensity). Both the scatter plots (Figures S7(k) and 6(a) respectively)
how no systematic shrinkage effect, it is notable that these two PTFs
re the ones with the smallest absolute overall mean error of prediction.
he PTF of Oliveira et al. (2002) uses all three particle size fractions and
ulk density. Given that the three fractions are a compositional variate,
umming to 100%, this is not good practice. There is more shrinkage
een with this PTF (Figure S7(g)), with notable over-prediction of small
alues of 𝜃−1500.

For all this group of five PTFs, the difference in mean error between
opsoil and subsoil is small, with the topsoil error slightly more positive
not a significant difference for the PTFs of Lal (1978) and Oliveira et al.
2002)). For the PTFs of Dijkerman (1988), Botula et al. (2013) and Van
en Berg et al. (1997), it is notable from the exploratory plots (see the
lot for Van den Berg et al., 1997 in Fig. 10), that there is some relation
etween the error and the clay or sand content, suggesting non-linear
ffects not fully captured in the PTF.

The PTFs of Saxton and Rawls (2006), Minasny and Hartemink
2011), and Pidgeon (1972) have somewhat larger sums of error vari-
nce components than do the five considered so far for this variable
9

Fig. 8. Variances of the random effects for PTF error (𝜃−1500), from the model with
a constant mean as the fixed effects. The solid line with no symbols shows the
corresponding variance components for 𝜃−1500. The PTF authors in the key are as
ollows. Botula (Botula et al., 2012); Djikerman (Dijkerman, 1988); Lal (Lal, 1978);
acLean (MacLean and Yager, 1972); MH (Minasny and Hartemink, 2011); Miti (Miti,

017); Oliviera (Oliveira et al., 2002); Pidgeon (Pidgeon, 1972); RW (Rawls and
rakensiek, 1982); SR (Saxton and Rawls, 2006); VdB (Van den Berg et al., 1997).

Fig. 7). Their error variance components are all smaller than the
orresponding components for 𝜃−1500 (Fig. 8) and with the within-
rofile component the smallest and the within-site component the
argest. Saxton and Rawls (2006) and Minasny and Hartemink (2011)
ave a negative mean error, significantly different from zero, and
o significant difference in mean error between topsoil and subsoil
Figure S8). For all these PTFs the variance components for the repa-
ameterized model are distinctly smaller than the corresponding error
omponents (Fig. 9), most notably at the between-site level. It is notable
hat these PTFs all use soil organic matter or carbon as predictors, along
ith the proportion of one or more textural fractions. Exploratory plots

or these PTFs are all suggestive of sources of error. For both Saxton
nd Rawls (2006) (Figure S9) and Minasny and Hartemink (2011)
Figure S10) there is a notable relation between PTF error and the
lay or sand content (more negative errors for heavier soils) and bulk
ensity (more negative errors for soils of smaller bulk density). For
oth Minasny and Hartemink (2011) and Pidgeon (1972) there is a
lear negative bias introduced for soils with organic carbon content
arger than 5% by mass, see the exploratory plot for Minasny and
artemink (2011) in Figure S10. The scatterplots for these PTFs show
o evidence of shrinkage effects. It is notable that there is a very strong
luster of points in the plot for Pidgeon (1972) (Figure S7(h)) parallel
o the bisector, along with a ‘‘fringe’’ of over-predicted values.

MacLean and Yager’s (1972) PTF for 𝜃−1500 has a somewhat larger
um of error variances than the others considered so far (Fig. 7), and
positive mean error, although the confidence interval includes zero.
he error variances at the within-profile and within-site levels are
omewhat larger than the equivalent variances for the variable itself
Fig. 8). The variances for the random effects at these two levels are
otably smaller for the reparameterization of the model than for the
rrors (Fig. 9). The exploratory plots for this PTF (Figure S11) show
hat soils with organic carbon content above 5% by mass tend to be
arkedly over-predicted for the variable, while many heavier-textured

oils are under-predicted. It is notable that the range of concentrations
f soil organic matter in the data set used by MacLean and Yager
1972) is much narrower than these data, with the maximum at less
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Fig. 9. Variances of the random effects from reparameterization of each 𝜃−1500 PTF
xpressed as a proportion of the corresponding variance components for that PTF’s
rror. The PTF authors in the key are as follows. Botula (Botula et al., 2012);
jikerman (Dijkerman, 1988); Lal (Lal, 1978); MacLean (MacLean and Yager, 1972);
H (Minasny and Hartemink, 2011); Miti (Miti, 2017); Oliviera (Oliveira et al., 2002);

idgeon (Pidgeon, 1972); RW (Rawls and Brakensiek, 1982); SR (Saxton and Rawls,
006); VdB (Van den Berg et al., 1997).

han 10%, close to equivalent to 5% SOC above which the bias is
een (Figure S2). Note that these effects are similar to those seen
or Minasny and Hartemink (2011) and Pidgeon (1972), explaining the
ncreased dispersion of the scatterplots for these PTFs with increasing
−1500 (Figure S7d,e,h).

The PTFs of Miti (2017) and Rawls and Brakensiek (1982), have
he largest sums of error variances (Fig. 7) and all three variance
omponents for the error are larger than the corresponding components
or the variable itself (Fig. 8). On reparameterization the variances
f the random effects for these two PTFs are markedly smaller than
he corresponding variances of the prediction error (Fig. 9). For both
hese PTFs there is a large negative mean error, with a larger absolute
ias than for any other PTF for this property. In both cases the bias is
ore negative for the topsoil than the subsoil, and there is a significant
epth effect (Figure S8). Both these PTFs generate unphysical values of
−1500, and inspection of the exploratory plots (Figure S12, for Rawls
nd Brakensiek, 1982), shows that in both there is a marked bias
n predictions for soils with larger organic content, and in the case
f Rawls and Brakensiek (1982), there is also a tendency to over-
rediction of water content for heavier-textured soils. For both PTFs the
rganic matter content of the calibration data, and the clay contents,
re rather narrower than for the validation data used here.

. Discussion

.1. PTF predictions of 𝜃−33

It is notable that the variance components for 𝜃−33 at the within
nd between-site level are very similar, and larger than the within-
rofile variance (Fig. 3, solid discs joined by an unbroken line). For
he PTFs with the four largest sum of error variance terms (as shown
n Fig. 2), the error variances at the within-profile and within-site level
re markedly larger than the between-site components. This may be
ecause errors associated with the organic carbon or particle size effects
ave a big effect on predictions in contrasting horizons. For most of
10

he PTFs in which the error variances are all smaller than (or close
to) the variances of the original variable, the error variance at within-
profile level is the smallest, and within-site the largest. These PTFs are
particularly unsuitable for predicting variation of 𝜃−33 within profiles.
This is an important consideration for scientists who want to convert
profile descriptions into information on vertical variation in soil water
properties for modelling water and nutrient movement.

Many of the PTFs for 𝜃−33 show a regression to the mean effect,
ith smaller values over-predicted and larger values under-predicted.
his can be seen, for example, with the PTF of Lal (1978) in Fig. 1c.
t is notable that this PTF uses only clay content as a predictor. This
hrinkage effect should be of concern if PTFs are used to predict
ydraulic properties of the soil for spatial models, because the tendency
ot to represent extremes may bias estimates of aggregate quantities
ade through non-linear process models, for example if one were to

stimate total nutrient leaching for an aquifer or catchment.
Several of the PTFs produced unphysical predictions of 𝜃−33, which

re associated with larger organic carbon concentrations. Although
hese errors cannot all be accounted for purely in terms of extrapo-
ation outwith the range of the data used for calibration, as shown
n Figure S2, this is likely to be a factor, e.g. for Miti (2017). This
inding underlines the importance of careful and critical use of PTFs
or modelling, particularly with large data sets. If PTFs are to be
sed routinely in workflows where their outputs (e.g. values of 𝜃) are
ntermediate values only, and might not be directly inspected, then it
s important to build in error-catching rules to identify PTF predictions
hich are implausible or unphysical.

The PTFs for 𝜃−33 developed on temperate data from the US are
ot notably poorer than those developed in Africa or the Tropics more
enerally. Note, for example, the very similar scatterplots for the PTFs
f Miti (2017), Figure S3(f), and Pidgeon (1972), Figure S3(h), PTFs
rom Zambia and Uganda respectively, and the second PTF for this
ension from Rawls and Brakensiek (1982) in Figure S3(j). For the soils
ot obviously affected by the soil organic matter bias, these PTFs all
how marked shrinkage in the predictions (i.e. less variation of the
redicted values than the corresponding observations). The PTF due
o Saxton and Rawls (2006) shows little shrinkage effect, Figure S3(k).
his shows that a PTF selected from the literature should not neces-
arily be accepted or rejected for use in a particular study simply on
he basis of the geographical domain in which it was developed and in
hich it is to be applied. However, a comparison of the range of basic

oil properties in the two domains may well be useful for decisions on
uitability.

Our evaluation of a set of PTFs from the literature allows us to draw
ome general conclusions about their possible limitations. They also
llow us to make some recommendations for the use of PTFs to predict
−33 for soils in Zimbabwe, Zambia and Malawi with the range of values
f basic properties in our legacy data set.

1. In terms of bias and prediction error variances, the PTF of Botula
et al. (2013) for 𝜃−33 appears to perform well, with only small
changes on reparameterization. None the less, it does show some
shrinkage, which could reduce its usefulness in some contexts

2. The PTF of MacLean and Yager (1972) for 𝜃−33 has marked
bias, but the error variance components are small. There are
marked changes on reparameterization, but this suggests that the
assemblage of predictors could be useful in the region. Note this
is the only PTF to use coarse sand as a predictor.

3. The first PTF of Rawls and Brakensiek (1982) for 𝜃−33 shows very
little shrinkage, and may well be useful for soils with organic
carbon less than 5% by mass.

4. The PTF of Saxton and Rawls (2006) for 𝜃−33, which combines
polynomial terms in the predictors, has a small bias, but shows
little shrinkage, has a relatively small sum of error variance

components and might also be useful in this setting.
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Fig. 10. Scatter plots of PTF error against the central depth of the observation, clay content, sand content, silt content, SOC content and dry bulk density. This is for the PTF for
𝜃−1500 of Van den Berg et al. (1997).
.2. PTF predictions of 𝜃−1500

There are two distinct groups of PTFs for 𝜃−1500 with respect to
the performance of their predictions. PTFs in the first group (Botula
et al., 2013; Dijkerman, 1988; Lal, 1978; Oliveira et al., 2002; Van
den Berg et al., 1997), have the smallest error variances and, on
reparameterization, the variance components for the random effects are
close to the corresponding variances in the model for PTF errors. The
mean bias for these PTFs are in the range [−5%, 5%]. Of these five PTFs,
three have a calibration domain in tropical Africa and two are in the
wider Tropics. The PTFs due to Saxton and Rawls (2006), Minasny and
Hartemink (2011) and Pidgeon (1972) (one from a temperate domain,
on generic Tropical PTF, and one from an African domain respectively)
show somewhat larger error variances and reparameterization effects,
and have clear errors due to particle size or SOC effects. Similar, but
more pronounced effects are seen for the PTFs of Miti (2017) and Rawls
and Brakensiek (1982). It is notable that PTFs show less shrinkage in
the predicted values for 𝜃−1500 than we observed for 𝜃−33.

For 𝜃−1500 the best-performing PTFs are from tropical settings, but
again it is clear that this does not guarantee good performance. The
range of values for the predictor variables must be checked, and, as for
11

𝜃−33, it is necessary to check for implausible or unphysical results. In
the absence of other information one might therefore select one of the
first set of PTFs to predict 𝜃−1500 in the southern African setting.

5. Conclusions

Differences were found in the performance of published PTFs when
they were tested on a set of legacy data from Zambia, Zimbabwe and
Malawi. The prediction of 𝜃−33 and 𝜃−1500 from soil properties measured
in soil surveys could be undertaken with selected PTFs from the exam-
ined set. It was notable, in the case of 𝜃−33, that PTFs calibrated at other
African or tropical sites were not necessarily the best, but it was clearly
important to ensure that the range of predictor values in the calibration
data set was comparable with the range of values over which the PTF
was to be applied. However, PTFs originally calibrated with data from
an African or other tropical calibration domain were notably the best
for prediction of 𝜃−1500.

The legacy data used in this study were strongly clustered in space
with multiple observations in different horizons of common soil pro-
files, and multiple profiles observed at the same site. We contend that
this state of affairs is likely to be typical, as many legacy data sources
are soil survey reports which include profile descriptions, and were
several profiles may be examined over a surveyed farm or estate. Our

evaluation of the PTFs was therefore based on linear mixed models
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to account for correlations within-profile, within-site (between profile)
and spatially dependent between-site correlation. The estimated ran-
dom effects were very informative about the scales at which published
PTFs are most reliable, with error variance typically small relative to
the native variance of the variables at the between-site scale. Most
of the PTFs observed here show the largest reduction in unexplained
variation at the between-cluster scale. This means that they will be
particularly useful for modelling large-scale variations in soil and crop
behaviour. However, they may be less reliable for predicting variation
at within-farm or within-field scale (as might be required for precision
management of inputs) or at within-profile scale (as might be required
for modelling water and nutrient movement in the rooting zone). Not
all studies which use legacy data on soil pay attention to the structure
of the data and its likely implications, e.g. Hengl et al. (2021)

We propose that such studies, based on legacy data, and with
a suitable LMM, should be used to screen PTFs before their wider
application, and, where possible, to reestimate them for local use.
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