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Abstract

The maintenance strategy in railway transportation is crucial in ensuring safety, availability, and reducing

operating costs. However, finding the optimal maintenance plan that takes into account the complex rela-

tionships between railway assets can be a challenging task. To address this challenge, this study introduces

an Intelligent Petri Net (iPN) model to effectively consider the maintenance and operation of railway sections

with a focus on optimising ballast maintenance. The iPN model merges Petri net (PN) with Reinforcement

Learning (RL) to create a model that is able to simulate and learn at the same time. The model is able to

use diverse information, including usage, degradation rates, maintenance effectiveness, fault probabilities,

and maintenance time, to simulate and learn at the same time. By considering the interconnections between

these factors, the model found that reducing unnecessary maintenance actions increases the age of railway

sections and leads to higher net profits. The study also introduced a method to reduce computational

effort by dividing the PN into subnets and another method to make learning faster by using multiple RL

environments. In conclusion, the developed iPN model presents a promising solution for optimising ballast

maintenance within railway operation.

Keywords: Petri net, Reinforcement learning, Q-learning, railway, maintenance modelling, degradation

models

1. Introduction1

Railway systems serve as the backbone of modern transportation, facilitating the movement of goods2

and people across vast distances with efficiency and reliability. However, the seamless functioning of these3

intricate networks relies on a complex interplay of various components, each of which demands special4

attention. One such important element is the ballast, the layer of crushed stones beneath the tracks that5

provides stability, distributes load, and facilitates water drainage. The optimization of ballast maintenance6
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is an endeavor of paramount significance, as it directly influences the safety, performance, and sustainability7

of the entire railway system.8

The settlement of ballast and other underlying layers, such as the formation, causes the deterioration of9

railway track geometry. As the track geometry degrades, the track becomes uneven and both ride quality10

and safety are affected. Track maintenance can address degraded track geometry but poor maintenance11

planning can lead to levels of degradation that are sufficiently high for the railway to become unfit for12

purpose. At best, this can lead to high monetary losses due to downtime and corrections, and at worst, to13

safety risks including fatalities and injuries to the public, users, and workforce. An example of catastrophic14

failure is the Potters Bar train derailment, which resulted in 7 fatalities, 76 injuries, and a £3,150,000 fine15

for Network Rail [1]. This is why renewal and maintenance planning in the railway is a critically-important16

decision-making problem for engineers and a crucial topic for ongoing research.17

Railway track settlement is directly affected by ballast quality. Good ballast should be free of dust,18

dirt, or small particles [2]. Ballast is fouled when it contains small particles, and this can lead to several19

undesirable consequences. Fouling impedes the water drainage path, which results in a saturated subgrade20

and permanent deformation of the soil, and can lead to wet beds that increase rail and sleeper degradation21

rates. Ballast fouling also impacts the distribution of loads, affecting the settlement within the subgrade,22

and degrading the vertical track geometry profile. Causes of ballast fouling include the breakdown of ballast23

particles due to dynamic forces from traffic and maintenance activities. Once the ballast becomes highly24

fouled, maintenance actions are no longer effective and renewal should take place. Before renewal, it is25

important to avoid unnecessary maintenance actions because of the ballast breakdown that they induce.26

This can be achieved by following a condition-based maintenance strategy, which calls for maintenance only27

when needed. However, the challenge is to know when and what type of maintenance is essential for the28

different known system conditions.29

The connection between the operational life of the ballast and maintenance actions is apparent due30

to how they are interrelated. Maintenance actions, such as tamping or stoneblowing, are carried out to31

correct the rail’s vertical geometry profile, but they also have an impact on the ballast’s condition. These32

maintenance actions might lead to an increase in the rate of degradation and a reduction in the ballast’s33

lifespan. This reduction happens because the ballast can only go through a certain number of maintenance34

actions before it becomes highly fouled and needs replacement. Consequently, a thoughtful assessment is35

required to determine whether restoring the vertical geometry in each situation is preferable or if postponing36

such actions would be a better choice to extend the ballast’s lifespan. The objective of this study is to identify37

the most suitable course of action, whether it involves tamping, stoneblowing, renewal, or no intervention,38

based on the specific conditions and the track’s maintenance history while reducing maintenance costs.39

Several studies have considered the problem of optimizing the ballast maintenance [3–5]. The basis40

for estimating the appropriate time for condition-based maintenance (CBM) interventions in railway is the41
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track degradation modeling [6]. Degradation models can be classified into physics-based, data-driven, and42

hybrid models [7]. Physics-based models, which estimate degradation based on mechanical properties of track43

components, offer adaptability to different traffic conditions and materials, particularly in the early stages of44

the life cycle when historical data is limited [7]. However, these models are deterministic and often overlook45

input uncertainties [8]. To address this limitation, hybrid approaches have been proposed, such as the46

elastoplastic physics-based model combined with a sequential model that considers parameter uncertainty [7].47

On the other hand, empirical models, particularly stochastic models, have been used to address uncertainties48

in railway asset degradation behavior and model parameter estimation. These models utilize stochastic49

processes, such as the Weibull distribution, Wiener process, Gamma process, and Petri net (PN), to represent50

degradation rates of track components and predict track deterioration [9–13]. Furthermore, Markov chain51

approaches have been employed to model the outcomes of transformations between different states of track52

degradation, incorporating maintenance operations and discretized levels of degradation progression [14–16].53

Recent advancements in artificial intelligence and machine learning have also gained attention in railway54

transportation, with applications in predictive maintenance, condition monitoring, and track fault prediction55

[17, 18].56

Among the mentioned approaches, PNs are typically regarded as powerful modelling tools for degradation57

and maintenance modelling due to their ability to account for resource availability, concurrency, and syn-58

chronisation, which are common aspects that underline the majority of the asset management models, along59

with their adequacy for dealing with highly multidimensional and heterogeneous input variables [19, 20].60

However, ordinary PNs do not have learning capabilities, and that limits the capacity to autonomously61

adapt the resulting maintenance schedule to the changing nature of the influencing conditions. Several62

efforts were made to enrich the PN model with learning capabilities to allow it to be used for optimisation63

problems. Plausible Petri nets [21], which are based on Bayesian learning, are effective in making the PN64

self-adaptive, but they are limited to homogeneous and low-dimensional variables. Possibilistic Petri nets65

[22] and fuzzy Petri nets (FPN) [23, 24] can be viewed as knowledge representation formalisms, but their66

intelligence is limited to adjusting fuzzy production rules using soft-computing techniques. More recently, a67

novel methodology referred to as iPNs has been proposed and utilizes Reinforcement learning (RL) to enable68

and optimize decision-making and to upgrade the PN to an intelligent system [25]. The iPN method best69

suits decision-making problems since RL, especially temporal difference learning, can be viewed as a more70

general extension of dynamic programming (DP) that does not require a complete model of the environment71

[26].72

In this study, the iPN method is used to optimize condition-based maintenance and renewal of railway73

ballast. Based on data from a typical European track, the method has been formulated and integrated74

into the iPN model. The formulas cover factors affecting ballast condition, the impact of maintenance75

on ballast condition and its degradation rate, and the effect of ballast condition on rail vertical geometry76
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profile and the rate of rail faults. The case of a railway system comprised of multiple sections has been77

considered, with the decisions of each section evaluated independently based on its condition and other78

pertinent factors affecting its state. This study incorporates in its objective function the costs associated79

with life-cycle, maintenance and renewal, travel, delay, and traffic disruption, either directly or indirectly.80

Distinctive features are presented by this study compared to prior work that is presented in the literature81

review (Section 2). It is the first endeavor to employ the PN for detailing the operation and maintenance82

intricacies of the ballast and other railway components, simultaneously utilizing RL to optimize maintenance83

protocols. In earlier research, the emphasis was singular, either on the modeling facets or the optimization84

components; however, a sophisticated model combined with optimization was lacking. The result was an85

optimal maintenance strategy that balances safe and good condition of sections while reducing maintenance86

frequency to decrease costs and increase the ballast’s section lifespan. The average lifespan increased from87

29.5 to 42.5 years while reducing the probability of being in a Super-red condition from 0.04% to 0.007%.88

Importantly, the developed model is not restricted to the study of the railway track sections for which it89

was developed. It can be used to study the asset management of other railway track by adjusting input90

parameters and rewards, without any need for the alteration of the core features of the PN model or the91

associated analysis.92

The iPN method, as outlined in [25], proposes a technique for integrating multiple decisions when93

simultaneous decision-making is required. This approach entails incorporating multiple RL agents with94

centralised decision-making, leading to convergence towards an optimal policy. However, the combination of95

multiple decisions results in an exponential increase in the action space, making the learning process more96

complex [27]. In order to mitigate this challenge, the method described in this study avoids the combination97

of decisions and instead treats each section as a separate RL environment with its own unique elements.98

This approach reduces the dimensions of both states and actions, as it eliminates the need to combine states99

or actions. Furthermore, it enables agents to learn from one another when they are pursuing similar goals100

under comparable conditions. This approach has been applied to a railway with 10 sections, resulting in101

2830 states and 4 actions per state, as opposed to 3.29 · 1024 states and 105 combinatorial actions per state.102

Additionally, it enables the consideration of similar states from different sections as equivalent states with103

equivalent actions, resulting in a reduction of the actually trained states to 283.104

The current study also addresses the methodological challenge of reducing the complexity of PN models105

for industrial applications in transportation, which often result in high computational costs. While previous106

literature has proposed various techniques for reducing PN complexity, each of these approaches has its107

own limitations. Reduction based on defined rules is effective in avoiding logical errors but may not be108

sufficiently general for all types of PN structures [28–31]. Symmetrical reduction of PN can only be applied109

when symmetries are present [30]. Reduction through the use of algebraic equations is only applicable when110

the PN has specific properties such as redundant transitions, redundant places, or place agglomerations111
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[32]. Proposing reduced models and inferring their parameters so that the results at key outputs are similar112

to those of the original PN requires additional computation for the inference process [20]. To overcome113

these limitations, this study provides a systematic method for reducing PN complexity by decomposing it114

into subnets with reduced computational cost while preserving its structure and functionality. This method115

can be applied to any type of PN and requires minimal additional rules, leading to a 3 times reduction in116

computational time for the considered PN case.117

The rest of the paper is structured as follows. Section 2 reviews the maintenance policies, the undertaken118

problems, the objective functions, and the methods used in the railway maintenance field. Section 3 presents119

the underlying foundations of Q-learning and Petri nets, along with an overview of the iPN model and120

the proposed method for decomposing a PN into multiple subnets. Section 4 introduces a technique for121

decomposing the RL environment into multiple environments and a method for sharing experience between122

RL agents within the context of the iPN. Section 5 details the creation of an operation and maintenance123

intelligent PN model for a railway with multiple sections. The results of the railway case study are presented124

in Section 6, followed by a discussion of the results in Section 7. Finally, Section 8 provides concluding125

remarks.126

2. Literature Review on railway maintenance127

2.1. Maintenance policies128

A maintenance policy is a decision made by managers based on maintenance models to ensure the proper129

functioning of a system [15]. Maintenance policies can be categorized into three types: preventive, corrective,130

and improvement [6]. The objective of the corrective policy is to enhance the asset’s inherent reliability,131

maintainability, or safety while preserving its original function. It involves repairing or replacing failed parts132

to quickly restore equipment [33]. However, corrective maintenance is costly and increases safety risks due133

to unexpected failures. Despite the implementation of preventive maintenance, unexpected failures can still134

occur, leading to the need for corrective maintenance. Preventive maintenance reduces failures through135

inspections and repairs [34]. It includes predetermined maintenance and CBM [6]. Predetermined mainte-136

nance involves regular inspections and repairs, while CBM utilizes real-time data for proactive maintenance.137

Predetermined maintenance can reduce the probability of disruption and system failure but can result in138

additional unnecessary maintenance actions. On the other hand, CBM can avoid unnecessary maintenance139

actions while ensuring safety and economic benefits. Predictive maintenance, a form of CBM, utilizes data140

analysis and predictive modeling to identify potential issues before they occur [6]. However, it requires141

significant resources for data collection and analysis.142
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2.2. Undertaken problems143

The planning process in maintenance management aims to address crucial decisions regarding mainte-144

nance intervals for track segments and the allocation of necessary resources [17]. It involves ensuring the145

availability of required resources, determining appropriate actions, sequencing tasks, and identifying the146

necessary skills for maintenance operations [17]. The role of a planner, as explained by [35], includes assess-147

ing the scope of maintenance tasks, identifying the required expertise and craft, estimating the duration of148

tasks, and specifying the necessary parts and tools. Moreover, the planning function encompasses various149

aspects, such as task identification, complexity assessment, workforce estimation, spare parts and materials150

identification, and tool requirement determination [36]. The objective of the planning process is to make151

important choices regarding the timing of maintenance intervals for track segments and the allocation of152

necessary maintenance resources. In the railway industry, decision-making involves planning and schedul-153

ing activities, such as budgeting, quality prediction, project definition, project prioritization, possession154

allocation, timetabling, maintenance scheduling, and performance evaluation and feedback.155

Maintenance planning involves several key aspects. One aspect is determining the timing of maintenance156

interventions based on accurate track condition prediction, which requires considering track geometry and157

track structure indices [37, 38]. However, relying solely on track geometry variables may not provide an ac-158

curate prediction of track condition [3]. To enhance maintenance planning, additional factors such as ballast159

fouling and geometry degradation should be considered when identifying maintenance needs [3]. Decision160

support systems and optimization models have been proposed to assist in the planning process. For instance,161

[39] developed a stochastic degradation model for condition-based maintenance (CBM) planning, while [40]162

optimized the number of tamping interventions considering track degradation and recovery. Furthermore,163

the setup cost of tamping equipment can be incorporated into the cost function [41].164

Maintenance action identification and prioritization are crucial steps in maintenance planning. Railway165

infrastructure maintenance can be based on predetermined schedules or condition-based approaches [6].166

Various optimization models have been proposed to determine the optimal maintenance limit intervals for167

different track quality indicators, taking into account preventive and corrective maintenance costs as well168

as potential train delays [42]. Furthermore, optimization models have been developed to decide whether169

immediate or postponed maintenance should be conducted based on factors such as reliability functions,170

associated costs, and identified defects [43]. Decision-making frameworks incorporating multi-attribute171

utility theory have also been used to prioritize maintenance tasks based on estimated conditions and multiple172

factors [44].173

The scheduling of inspection intervals plays a crucial role in ensuring track safety and reliability while174

managing maintenance and inspection expenses. Optimization models have been proposed to determine175

inspection intervals based on safety risks and maintenance costs [45]. Rescheduling of inspection intervals176

has also been explored to mitigate the disruption caused by inspection scheduling and improve decision-177
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making [46]. The close relationship between inspection scheduling and maintenance scheduling emphasizes178

the significance of inspection intervals in railway track maintenance planning and execution.179

Possession scheduling is another important aspect of maintenance planning. Possession refers to the180

closure of specific sections of railway tracks for maintenance or repair work. Effective possession scheduling181

is essential for safe and efficient railway operations [47]. The optimization of possession scheduling can be182

approached from different perspectives. Some studies focus on fixed train timetables and aim to determine183

the best possession time for maintenance activities [48]. Others consider fixed possession times and seek184

to optimize the train timetable around those periods [49]. Additionally, simultaneous possession and train185

timetable scheduling models have been developed to optimize both train operations and maintenance activ-186

ities [49]. Integrating maintenance activities and optimizing vehicle routing and crew scheduling can lead to187

cost savings and improved efficiency [50]. Furthermore, equipment logistics, such as transporting machinery188

and equipment to maintenance locations, need to be carefully planned and scheduled [51].189

2.3. Objective functions190

Objective functions of planning and scheduling play a crucial role in optimizing the efficiency and sus-191

tainability of railway transportation systems. One significant aspect considered in these objective functions192

is the life-cycle cost, which encompasses various expenses associated with the entire lifespan of railway193

transportation [6]. These expenses include maintenance and replacement costs, building expenses, track194

utilization fees, and costs related to the final stages of the system’s operational life.195

To enhance decision-making regarding new construction and the maintenance and replacement of track196

components, decision-makers utilize life-cycle cost analysis [52]. This analysis takes into account both197

measurable expenses such as construction, maintenance, and renewal, as well as intangible factors like198

quality deterioration, traffic delays, safety concerns, and environmental impacts [52]. By considering these199

various aspects, decision-makers can optimize investment strategies and ensure the long-term sustainability200

and efficiency of railway transportation systems.201

Researchers have identified four components that encompass the overall expenses associated with a202

track and its rolling stock over its lifetime [53]. These components include construction costs, operational203

aspects (such as capacity loss, fuel or energy consumption, environmental impact, accident risk, and socio-204

economic implications), maintenance expenses, and costs incurred at the end of the track and rolling stock’s205

life. Studies have established the life-cycle cost of railway tracks by considering both measurable and non-206

measurable expenses, such as maintenance, renewal activities, penalties due to track quality issues, customer207

losses, and damage caused by subpar quality [9, 53].208

Another important factor in planning and scheduling costs is the maintenance cost. A commonly used209

approach is to assign a fixed cost per activity or time unit, which forms the basis for estimating the costs210

[41]. For example, Gustavsson [41] proposed an improved linear programming model for scheduling tamping211
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operations on ballasted tracks, incorporating unit maintenance cost and the cost of maintenance occasions.212

Daddow et al. [54] utilized a similar cost formulation to calculate the cost of each unit tamping action, while213

Vale et al. [40] focused on reducing the number of tamping actions. Moreover, Letot et al. [10] considered a214

fixed cost for the tamping machine.215

Renewal costs are another important aspect of track maintenance. These costs can be classified into216

two categories: component renewal and full track renewal [11]. Researchers have proposed optimization217

frameworks to determine the optimal balance between track unavailability and life-cycle cost (LCC) [11].218

These frameworks consider factors such as the unitary cost of renewal work, residual value of track compo-219

nents, and potential savings from grouping track segments. Integrated methodologies have been developed220

to account for equipment preparation, setup expenses, and predetermined expenditures associated with each221

renewal activity throughout the lifespan of a component [55].222

Possession cost is a significant factor to consider in maintenance operations. Previous studies have223

proposed different approaches to address possession costs and their impact on overall maintenance costs.224

One approach involves assigning hourly costs to account for the time required for possession in order to carry225

out maintenance activities [56]. Another method utilizes fixed estimated possession costs per maintenance226

action [57]. Train cancellations can also be taken into consideration when estimating possession costs [58].227

The objective is to minimize the overall maintenance cost while taking possession costs into account.228

In summary, objective functions for planning and scheduling of railway transportation systems encompass229

a wide range of costs, including life-cycle costs, maintenance costs, renewal costs, and possession costs. By230

considering these costs and optimizing decision-making processes, the efficiency, sustainability, and overall231

performance of railway transportation systems can be enhanced.232

2.4. Search algorithms and simulation methods233

A suitable approach for solving the railway track maintenance planning and scheduling (RTMP&S)234

problem involves considering decision-making levels, decision variables, track condition data, objectives,235

and constraints. Linear and integer programming methods are commonly used in RTMP&S because they236

can handle both continuous and integer decision variables [6]. Depending on the characteristics of the237

decision variables, linear or nonlinear programming can be applied. For instance, integer programming is238

suitable for determining maintenance actions or resource allocation.239

In the case of single objective function models, mixed-integer linear programming methodologies that240

combine continuous and integer variables are commonly employed [6]. Commercial solvers like CPLEX,241

Gurobi, or FICO Xpress are often used to solve these optimization problems. In addition to these method-242

ologies, various heuristics and metaheuristics have been employed to provide faster satisfactory solutions.243

These include decomposition-based heuristics, multiple neighborhood search heuristics, solution frameworks244

based on Lagrangian relaxation, iterative approaches with greedy and local search algorithms, tabu search245
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heuristics, and customized metaheuristic algorithms [50, 59–62].246

For multi-objective function models, researchers have proposed various methodologies to optimize con-247

flicting or non-conflicting objectives. These methodologies consider maintenance-related unavailability, life248

cycle cost of track components, maintenance expenses, costs due to train delays, train maintenance planning,249

timetabling, and selection of maintenance strategies. Multi-objective optimization techniques like weighted250

sums and Pareto optimality are used to identify optimal solutions [16].251

While linear programming dominates in RTMP&S, there is a growing interest in utilizing non-linear252

programming. Non-linear formulations and search techniques such as the steepest gradient and improved253

genetic algorithms have been employed for maintenance scheduling [63]. Other research directions include254

the utilization of Model Predictive Control techniques at various levels, which involve methods like pattern255

search, transformation into Mixed-Integer Linear Programming, Dantzig-Wolfe decomposition, and gradient-256

free algorithms [12].257

Researchers have shown a growing interest in integrating simulation models with optimization engines for258

RTMP&S problems in recent years. Discrete event simulation is the predominant method used and offers259

advanced capabilities to address the complexities associated with real-world maintenance planning and260

scheduling problems [34]. Additionally, alternative approaches such as Monte Carlo simulation have been261

employed to represent deterioration and restoration of track geometry, providing insights into maintenance262

costs and optimal timing for interventions [42].263

One widely used approach for optimizing maintenance in the railway industry is the Markov decision264

process (MDP) [64]. MDP methods capture the stochastic nature of the railway system, incorporating uncer-265

tainties and variability into maintenance decision-making. Probabilistic transitions between states in MDP266

models allow decision-makers to account for degradation, failures, and repairs, resulting in more accurate267

maintenance optimization. MDP-based dynamic programming excels in handling large-scale maintenance268

optimization problems in the railway industry. Efficient algorithms like value iteration and policy iteration269

compute optimal policies and value functions for complex systems. This scalability is crucial for considering270

numerous components and subsystems within railway infrastructure. MDP-based approaches also facili-271

tate the development of robust and adaptive maintenance strategies. By updating the value function and272

policy based on changing system conditions, decision-makers can dynamically adapt maintenance strate-273

gies to factors such as traffic patterns, weather conditions, and component aging. Reinforcement learning274

(RL) is a promising approach for addressing complex railway industry problems. RL has been applied to275

rail maintenance and renewal planning, optimizing costs and risk reduction [65]. It has also been used for276

railway alignment optimization, minimizing construction costs while satisfying alignment constraints [66].277

RL-based methods have been utilized for dynamic maintenance policies in multi-component systems with278

degradation and random shocks [67]. Additionally, RL combined with digital twin technology has enhanced279

railway maintenance efficiency, reducing maintenance activities and defects [68].280
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RL outperforms linear programming, non-linear programming, and MDP in railway maintenance and281

planning. It effectively handles uncertainties and variability, optimizing maintenance through probabilistic282

transitions and degradation probabilities in PN simulations. RL scales well, deriving optimal policies for283

complex systems. Its adaptability enables dynamic updates to maintenance strategies. Integration with284

advanced techniques like deep deterministic policy gradients and digital twin technology automates op-285

timization, reduces activities, and minimizes defects. RL proves valuable for railway track maintenance286

planning and scheduling.287

3. Methodology288

This section provides the methodological background and techniques proposed in this paper.289

3.1. Basics about Reinforcement Learning290

RL is a goal-oriented machine learning field that teaches an agent the correct decisions by trial and291

error. Single-agent RL methods can be formulated through a Markov decision process (MDP), which is292

described by a tuple of ⟨S,A, Pd⟩; where S is the set of the states of the environment, A(s) is the set of293

actions available at state s, and Pd represents the dynamics of the MDP [26]. The dynamics is defined as294

Pd = Pr{St+1 = s′, Rt+1 = r|St = s,At = a}, which is the probability of obtaining reward r and state s′295

by taking an action a at state s. At each time step, t, the agent receives a state of the environment, St,296

and takes an action, At, following a policy π(a|s), which controls the probability of taking an action a being297

at state s. This results at the next time step, t + 1, in an immediate reward, Rt+1, and a change in the298

state, St+1. The goal of the agent is to find the optimal policy that maximises the long-run rewards, not the299

immediate reward. Long run rewards coming after a time step t are called the expected return, (Gt), and300

can be calculated as:301

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
T∑

k=t+1

γk−t−1Rk (1)

where γ ∈ [0, 1] is a discount rate parameter to prevent Gt →∞ when T →∞ (known as a continuous task302

problems). On the contrary, in episodic task problem, the terminating time step T is a finite number, thus303

Gt can be calculated by choosing γ = 1.304

Having a complete model of the environment dynamics, Pd, is not always feasible. Thus, model-free305

RL by temporal-difference learning (TDL) is widely used due to its simplicity and the minimal amount of306

computation [26]. In TDL, the value of each state-action pair is called the Q-Value and the whole set of307

Q-Values represents the outcomes of the Q-function, qπ(s, a). Q-Values are updated in TDL method as308

follows:309

Q(St, At)← Q(St, At) + α[Gt −Q(St, At)] (2)
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In this equation the Q-Value is updated toward a target value, which is Gt, and α ∈ [0, 1], which is the310

learning rate, represents how much change will be made toward this target. Gt can be calculated in several311

ways. Using a one-step bootstrapping technique to calculate Gt as Gt = Rt+1 + γmaxa Q(St+1, a) results312

in the Q-learning method, which is one of the earliest and most famous TDL methods [69]. Another way313

is to calculate it based on Equation 1, and this results in one of the incremental implementations of the314

Monte-Carlo RL (MCRL) method [26]. MCRL is good to use at the beginning of the learning process since it315

does not depend on the unconverged values of the successor states, and Q-learning is better to be used later316

on because it is an off-policy TDL method that allows exploration at the successor states without affecting317

the previous ones. In this paper, the MCRL method is used at the beginning of the learning process and318

the Q-learning at the end of it. To reach an optimal policy, the ε-greedy strategy can be used as follows:319

At =

argmaxa Q(S, a), with probability (1-ε)

A ∈R A(s), with probability ε

(3)

where ε ∈ [0, 1] is the exploration rate. Choosing the action with the highest Q-Value is called exploitation320

and choosing an action randomly is called exploration. It is important to keep a balance between both steps321

because exploitation helps in getting more rewards and evaluating the Q-Values based on the policy that322

appears to be the best. On the other hand, exploration allows exploring other actions that may result in323

higher Q-Values than the already explored actions.324

3.2. The Intelligent Petri net method325

Petri nets (PN) are directed graphs with two types of nodes, which are the places, represented by circles and326

the transitions, represented by rectangles. The number of tokens, which are depicted as black dots, contained327

in each of the places represents the state of the system. A PN is defined as a 5-tuple ⟨P,T,F,M0,W
〉

328

[70], where P = {p1, p2, . . . , pnp
} is the set of places, T = {t1, t2, . . . , tnt

} is the set of transitions, F ⊆329

(P×T)∪ (T×P) is the set of arcs, W : F→ N>0 is the set of weights function, and M0 : P→ N>0 is the330

number of tokens in each place initially, which is the initial markings.331

The architecture of the PN can be summarised in the incidence matrix, A ∈ Nnp×nt , which is the332

subtraction of the backward incidence matrix A− =
[
a−ij

]
from the forward incidence matrix A+ =

[
a+ij

]
,333

where a−ij coincide with W(pi, tj), which is the weight of the arc from place pi to transition tj , and a+ij334

coincide with W(tj , pi), which is the weight of the arc from transition tj to place pi. The dynamics of the335

PN are controlled by the state of each transition, which manages the flow of tokens. Each transition has a336

set of input places, •Pt, referred to as the pre-set places, and output places, P•
t , referred to as the post-set337

places. According to the firing rule in ordinary PNs, a transition, tj , is said to be enabled once the markings338

of all its pre-set places are equal or greater than the weights of its pre-set arcs (M(p) ≥W(tj , p) ∀p ∈ •Ptj ).339

Every enabled transition has the ability to fire, and this consumes tokens from its pre-set places and produces340
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tokens in its post-set places equal to the weights of the arcs connecting the places to the transition. This341

operation can be done for all transitions together in an efficient way using the state equation defined by:342

Mk+1 = Mk +ATuk (4)

where k is the time step and u = [u1, u2, . . . , unt
]T is the firing vector. More rules can be added to deal343

with the complexity of dynamic systems. In timed PN (TPN), a transition can’t fire after it is enabled until344

a given delay, τ , passes. The value of τ can be deterministic or given by a probability density function,345

thus the PN is referred to as stochastic Petri Net (SPN). For high-level PN (HLPN), the logic flow is used346

in a wider manner by using flexible definitions of arc types, and tokens, along with transition firing rules347

to extend the basic formalism [71]. The HLPN definitions used in this paper are the inhibitor arc, which348

ends with a small empty circle, and the reset arc, which ends with a small filled circle. The inhibitor arc349

is connected from a place to a transition, and it disables the transition if the place has tokens equal to or350

more than the weight of the arc. The reset place is connected from a transition to a place, and it changes351

the marking of the place to a value equal to the weight of the arc once the transition fires [20].352

Besides, function nodes, which are nodes with rhombus shapes are defined to perform some necessary353

calculations for the PN model. This definition allows modeling continuous aspects within the PN model,354

which is a discrete even model. A function node can come alone or after a transition. If a function is not355

connected to any transition, it is executed every change of state; whereas, if it comes after a transition, it is356

executed only when the transition fires.357

To give the Petri net the ability to choose an optimum action, the intelligent PN (iPN) is used [25]. This358

variant introduces a finite set G = {g1, g2 . . . , gng
}, named action groups, to the PN tuple to incorporate RL359

in decision making. Each action group, gi, is composed of a finite set of transitions, Tgi ⊆ T, that represent360

decisions within a RL environment. Accordingly, RL selects which of the transitions will be enabled based361

on the rules described in [25]. It is important in this approach to distinguish between the RL states and the362

PN states. RL states are extracted from the RL environment and PN states are based on the markings of363

the PN.364

3.3. Decomposing the PN into multiple subnets365

This section proposes a method of decomposing the PN into multiple subnets without losing any func-366

tionality of the original net in order to reduce the computational cost. For any PN, the computational cost367

lies in getting the firing vector, u; whereas updating the state according to the state equation (Equation 4) is368

just a matrix multiplication, which is not computationally expensive. Calculating the firing vector requires369

checking the enabling conditions and then the firing conditions before assigning the firing state for every370

transition. If a PN is modeling multiple system functions, it will be known by the PN designer that groups371

of transitions will not be utilized for specific system states. Accordingly, it is possible to avoid checking372
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Figure 1: Panel a): PN structure. Panel b): Flowchart explaining the algorithm to update the state of the PN, when the PN

is decomposed into multiple subnets.

these transitions to reduce computational costs without affecting the results because it is known that they373

will be disabled either way. To do so, this paper proposes the decomposition of the PN into subnets with374

each net having a set of conditions that enables it. Then, transitions in each subnet will be checked only375

after the subnet is enabled. In this new implementation, the places and their markings will be kept in the376

main net while all other information will be in the subnets. Accordingly, the PN structure is described by377

the tuple ⟨P,SN ,M0

〉
with SN = {SN1,SN2, . . . ,SNi, . . . ,SNo} being the set of subnets as shown in378

Figure 1a. Then, any subnet, SNi, will be described by a tuple ⟨Ti,Gi,Fi,Wi,Ci⟩, with G being the set of379

the action groups that exist only if iPN is used, and Ci the set of conditions that enable the subnet. Since380

places remain common and are stored in the main net, every subnet will have an incidence matrix based381

on the connections between its own transitions and the places of the main net. This can be built in the382

same way as for an ordinary PN, but while considering only the transitions of the subnet. Based on this,383

the dynamics of the system will be described based on some additional rules shown below, and the process384

to update the state of the PN by calculating its markings is shown in the flowchart of Figure 1b:385

• a subnet is enabled if it satisfies all its enabling conditions.386

• if the subnet is enabled, all its transitions (and action groups in case of iPN) are checked, the firing387

vector of the subnet is calculated, and the state equation (Equation 4) is applied to update the markings388

of the main net based on the firing vector and incidence matrix of the subnet.389

Remark. The incidence matrices of subnets will contain many zero columns because the transitions of each390
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subnet do not have connections with all the places. One might think that distributing places on the subnets391

or creating the incidence matrices of the subnets based only on the existing connections would be helpful to392

avoid these unnecessary connections and improve computational efficiency. However, once the places are393

distributed, there will be nothing to connect the subnets together, and this will require defining additional394

rules to solve this issue, which can add complication and computational cost. On the other hand, creating395

the incidence matrices based only on the active connections will change the dimensions of these matrices.396

This is like avoiding some places in each subnet, so it will be necessary to store the set of avoided places397

in each subnet to update only the markings of the included places every time the state equation (Equation398

4) is applied inside the subnet. This will result in additional computational costs that will be in most cases399

greater than the cost of multiplying by columns of zeros.400

4. Extension of the iPN method for complex environments401

This section provides a description of how the RL environment is divided into multiple environments to402

reduce the combinatorial state-action spaces. Also, it explains how experience can be shared among agents403

of different environments in the scope of the iPN and through action groups. These two ideas make the404

learning process faster and reduce computational costs.405

4.1. Dividing the RL environment to multiple environments406

Multi-agent Reinforcement learning (MARL) methods are concerned with the cases of multiple agents407

interacting in the same environment. These methods can be cooperative, where the agents try to achieve a408

common goal, or competitive, where they try to compete to see who achieves more. In some cases, a mixed409

environment can be created, where agents form groups, cooperating within each group and competing410

against other groups. In this study, the main focus is on cooperative MARL methods to optimise systems411

with multiple tasks.412

MARL differs from single-agent RL in that the environmental state and reward function that each413

agent receives is a function of the joint actions of all agents. For this, each agent has to consider other414

agents’ actions in addition to the environment. The process of taking multiple decisions is usually modeled415

through a stochastic game [72], also known as a Markov game [73]. A stochastic game is a multi-decision416

extension of the MDP and can be described by the tuple ⟨S,A, Pd,R⟩; where S is the set of the states of the417

environment, A = A1 × . . .×An, where Ai is the set of agent i actions, Pd = Pr{St+1 = s′|St = s,At = a}418

is the transition probability function from state s to state s′ in the next state while taking the joint action419

a, and R = R1, . . . ,Rn, with Ri = Pr{Rt+1 = r′|St = s,At = a, St+1 = s′} is the reward probability420

function for agent i after transitioning from state s to state s′ while taking the joint action a. Accordingly,421

each agent will have a Q-Value function of the state and the joint action, and reaching a globally optimum422
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policy requires coordination between agents [74]. However, considering joint action results in an exponential423

increase of the action space at each state [27]. Besides, trying to optimise several agent’s policies in one424

problem requires the definition of an environment that considers the important aspect for every agent, which425

results in a great increase in the state space. The huge state-action spaces make the computational costs426

extremely high for already complex problems.427

The necessity to use MARL methods is when agents cooperate in the same environment [27]. Indeed,428

there exist some problems where it is possible to divide the environment into several sub environments, but429

without being able to divide the problem into multiple independent optimisation problems. This happens if430

the conditions and decisions of each environment do not directly affect the rewards of other environments,431

but can affect the transition probabilities or other aspects. In this paper, the RL environment is decomposed432

into multiple environments with each one having its own states, available actions, reward functions, and a433

single agent. Thus, the problem drops back to single-agent RL, but with multiple interacting environments.434

Environments can intersect to keep some information commonly available to all the agents, and in this way,435

agents can cooperate explicitly.436

4.2. Sharing agents experience through similar action groups437

A key aspect of problems with multiple agents is the allowance for experience sharing between agents438

that are solving similar tasks to learn faster and better [74]. This still applies to the case of multiple agents439

optimising multiple environments if these environments share similar characteristics.440

Multiple environments may require the same decisions at similar conditions if these environments are441

similar. For example, if two agents are optimising the maintenance of two identical components while442

considering each component as a separate environment of a system, it is expected that the two components443

require the same action if they were in the same conditions. This means that the two components can444

follow the same policies for the same decisions. In the RL formulation, the policy is directly related to the445

Q-Values. Thus, a way to exchange information between agents of similar environments is to assign the same446

Q-Values for similar actions. By doing this, any update in the Q-Value of an action in any environment will447

cause the update of similar actions in the other environments.448

In the case of iPN, actions are equivalent to enabling transitions inside an action group. Each time an449

action group is enabled, the agent receives a representation of the environmental state. If the state is new,450

it is created automatically with its available actions in that environment, and by this, the RL environment451

is populated by the states and actions. To link the Q-Values of similar actions, the following steps can be452

performed:453

• let a similar group set, SG = {g1, g2, . . . , gn}, be a set of action groups that require similar policies454

and represent similar decisions.455
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• all the action groups should have the same number of ordered transitions that represent similar actions.456

Thus, every action will have similar actions in similar action groups.457

• if a decision is required in gl and the state, S, is new, create a state in the environment of each action458

group in SG, and not only in the environment of gl.459

• any action, Al,i ∈ gl will have the same Q-Value as its similar actions in the other action groups:460

Q(S,A1,i) = . . . = Q(S,Al,i) = . . . = Q(S,An,i)461

• any time Q(S,Al,i) is updated, all the Q-Values of similar actions are updated.462

5. Case study: optimising the maintenance of ballast in multiple railway track sections for463

optimal railway operations.464

In this section, an iPN has been developed to model various aspects of a railway consisting of ten railway465

sections while optimizing the maintenance of its ballast. Each section has a length of three position keys,466

where a position key is a 220-yard length of track known as a Poskey. The track speed of the considered467

section is less than 20 MPH, the annual usage is 20 Equivalent Million Gross Tonnage (EMGT), and all468

sleepers are of small concrete type.469

The maintenance of the sections is assumed to be carried out through two types of maintenance actions:470

condition-based maintenance and opportunistic maintenance. For condition-based maintenance, the decision471

is taken after updating the condition of the section following each inspection, which is assumed to be periodic472

every six months. On the other hand, opportunistic maintenance decisions can be made for a section when473

maintenance equipment is available on-site to perform maintenance for any other section.474

Once a decision is made to repair a section based on its condition, the maintenance team prepares for475

the maintenance, travels to the site, and performs the required maintenance. If the equipment is available476

on-site, a decision to repair other sections can be made, referred to as opportunistic maintenance. This477

maintenance approach allows repairing multiple sections at once to save preparation and travel costs, even478

if these sections do not urgently require maintenance based on their conditions.479

The maintenance actions for sections are performed in series, starting from the first section and ending480

with the last one, assuming that only one maintenance team will perform the required work. Each section481

can be in one of five conditions denoted as ’E’ (Excellent), ’VG’ (Very-good), ’G’ (Good), ’P’ (Poor), and482

’SR’ (Super-red). These conditions reflect the safety and stability of the railway, and they are directly related483

to the standard deviation of the vertical geometry profile, as will be seen in the next section. Experts suggest484

that the "super-red" condition should be avoided at all costs. This is because it poses a significant safety485

risk to railway operations and can lead to speed restrictions, causing train delays and potential fines. It is,486

16



therefore, crucial to take preventative measures to minimize the likelihood of encountering this condition,487

as it can have negative impacts on both safety and efficiency.488

The problem is to find the optimal maintenance decision for each condition of each section. Two policies,489

named policy A and policy B, were proposed as base cases to find the optimal maintenance decisions.490

Policies A and B allow maintenance to be performed each time the ’Very-good’ and the ’Good’ conditions491

are reached respectively. Also, both policies follow the same sequence of maintenance actions, which is 7492

tamping actions, 3 stoneblowing actions, and then renewal. The third policy is optimised by using RL, with493

the details of the RL inputs as described in Section 5.3. For this study, it is assumed that tamping becomes494

ineffective after 7 actions, and stoneblowing becomes ineffective after 3 actions. Thus, the maximum number495

of allowed tamping and stoneblowing actions are 7 and 3 actions respectively. Besides, it is not allowed to496

perform tamping after a stoneblowing action is performed. This will prevent stoneblowing actions from497

being before tamping to follow what is done in reality. Before introducing the PN model, the following498

section provides an introduction to railway modelling and the formulas used.499

5.1. Track degradation and maintenance modelling500

The railway consists of several interacting assets, mainly Plain Line (PL) track and Switches and Cross-501

ings (S&Cs). These are made up of components that have different degradation, inspection, and maintenance502

mechanisms. The track is made up of the rail to provide guidance and a smooth running surface, sleepers503

to support the rail at the correct gauge and inclination and to transmit loads to ballast, rail pads to provide504

electrical insulation and distribute loads on the sleepers, ballast to support sleepers at the correct level,505

spread forces into the formation, and allow surface water drainage, formation to support ballast and collect506

water to the drainage system, subgrade, which is the natural layer where all other parts are built on, and507

the drainage system to convey water away from the track. The primary focus of the case study is on the508

ballast and rail, but other parts are considered if they are linked to these two parts.509

The ballast is good when it is composed of crushed angular hard rocks and stones, free of dirt and dust,510

uniformly graded, and not prone to cementing action [2]. The degradation mechanism of ballast is called511

fouling, which occurs when small particles build up within the ballast. Causes of ballast fouling can be512

the ballast breakdown, sleeper wear, and the infiltration from the surface, underlying granular layers, or513

subgrade [2]. Ballast fouling can result in a saturated subgrade and wet beds because it impedes water514

drainage [75]. This leads to differential track settlement because of the uneven distribution of loads. The515

ballast can be maintained either by tamping, stoneblowing, or renewal techniques, which restores the track516

geometry to a better condition [76]. Ballast tamping is the common form of correcting the track geometry.517

It is done using specialised trains which lift the rail with the sleepers to the target level. Then, tamping518

tines are inserted and vibrated to squeeze the ballast under the gap, recovering the correct level of the rail.519

This process causes significant breakage of ballast particles, which can result in highly fouled ballast. When520
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this is the case, tamping can no longer be effective and stoneblowing can be considered since it causes much521

less breakage of ballast and can be used even if the ballast is fouled [77]. Stoneblowing is performed using522

trains that lift the rail and the sleepers to the target level. Then, they insert tubes that use compressed523

air to blow a measured quantity of clean ballast into the gap below the sleepers, leaving the rail at the524

correct level after the tubes are removed. The only disadvantage of stoneblowing is that it is slower and525

more expensive than tamping [77]. Thus, a rule of thumb is to perform tamping operations until the ballast526

becomes highly fouled and to use stoneblowing after that [77]. However, after reaching a critical level of527

ballast fouling, maintenance actions become less effective, and renewal should be performed. Renewal can528

be performed by cleaning the ballast and reusing a portion of it mixed with new ballast, or by performing529

a complete replacement of the old ballast.530

Consequently, maintenance activities impact the quality of ballast, leading to accelerated degradation531

rates and settlement. The extent of track settlement can be quantified through the utilisation of specialised532

trains, such as the New Measurement Train operated by Network Rail (NR), which employs laser scanning533

technology to assess changes in track geometry every 0.2 metres as the train progresses along the track.534

The train’s journey is affected by variations in the track profile, with long and smooth undulations having535

minimal impact on train safety and comfort and are thus disregarded in assessments. The most commonly536

used metric for measuring track settlement is the vertical standard deviation (SD) of a set of measurements537

taken for each Poskey along the track [78]. This is due to the vertical geometry being the most prone to538

degradation and having the greatest influence on ride quality and maximum permissible speed. On a typical539

European track, a vertical SD of less than 5.2, 7.4, 8.3, 9.9, or ∞ is classified as "Excellent," "Very Good,"540

"Good," "Poor," and "Super-red," respectively, for track speeds below 20 MPH.541

The vertical geometry profile of the track is expected to improve as a result of maintenance activities542

performed on the ballast. However, as the quality of the ballast deteriorates, the ability of maintenance543

actions to correct the rail level becomes diminished. As the fouling index of the ballast increases, small544

particles fill the voids between rocks resulting in denser ballast. Maintenance activities may temporarily545

create voids between rocks, but the resistance to loads becomes weak, and as a result, small particles tend546

to quickly fill these voids once the track is subjected to loads [77]. This in turn makes the maintenance547

actions less effective.548

The irregularities of the track surface have a substantial effect on the incidence of rail faults, in addition549

to the safety and quality of the ride [79]. As trains traverse the rail network, they exert substantial forces on550

the rails, which can result in a wide spectrum of defects and faults [80]. Rail corrugations, for instance, can551

impair the quality of the ride and accelerate the degradation of many track and vehicle components [79].552

On the other hand, head wear can decrease the rail-wheel interface area and reduce the grip for braking553

and accelerating, thereby increasing the likelihood of faults [81]. In the event of a break, increased forces554

are imposed on the surrounding parts, and speed restrictions may be necessary to maintain safety, leading555
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Figure 2: Summary of the railway relations that are considered in this study.

to delays and financial losses [82]. It is crucial to maintain appropriate vertical geometry to ensure the safe556

and efficient operation of the rail network and to minimise the risk of rail faults. Correction of rail faults557

may involve grinding or welding if the fault is not severe, while replacement of the rail may be required in558

more severe cases.559

The relationships between railway infrastructure components, such as the track condition expressed in560

terms of the vertical geometry profile and the degradation of the ballast, are summarised in Figure 2. A561

degradation in track condition due to ballast settlement leads to an increase in the frequency of faults562

in the rail and necessitates more frequent maintenance activities. Conversely, while maintenance of the563

ballast can improve track condition, it can also result in ballast fouling and faster degradation, reducing564

the effectiveness of maintenance efforts. Thus, it is imperative to have a comprehensive understanding of565

these interrelated factors for effective railway infrastructure management and the maintenance of safe and566

efficient rail operations. To do so, models were created for the degradation rate of the track, the ballast567

maintenance effectiveness, and the rate of rail faults and their maintenance frequencies based on data from568

a typical European track. The data covered track geometry, fault and maintenance records of a European569

national rail network operator over a period of approximately 8 years, and also covered all uses from freight570

to passenger services and all levels of track speeds. Although the data are treated confidentially here,571

representative models were chosen to demonstrate the techniques introduced in this paper.572

Several factors were tested to determine which of them affect the degradation rate and it was found that573

the type of sleepers, the speed of the track, and the maintenance history have an impact. A stochastic model574

was built relating the degradation rate (mm/EMGT) to these three factors, proposing a Weibull distribution575

for each entry. The study considered a track speed of less than 20 MPH with small concrete sleepers, and576

Table 1 summarises the parameters of the Weibull distributions for each maintenance history required for577
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Table 1: Shape parameter, β, and size parameter, η, of Weibull distributions for the degradation rate [m/EMGT] of small

concrete sleepers with track speeds 5-20MPH and different maintenance histories.

After: 1st Renewal 1st tamp 3rd tamp 5th tamp 6th tamp 7th tamp 1st stoneblowing

η 1.93E-04 2.15E-04 2.22E-04 2.06E-04 2.21E-04 2.37E-04 2.12E-04

β 1.03E+00 8.18E-01 1.05E+00 1.17E+00 7.25E-01 1.00E+00 6.49E-01

Table 2: The vertical geometry SD [mm] after each maintenance activity representing the maintenance effectiveness

Renewal Tamping StoneBlowing

1st 1st 3rd 5th 6th 1st 5th 7th

0 1 1.5 3 3.5 1 2.5 3.5

modelling the degradation rate. The values of β and η are of the order of magnitude expected for this type578

of track and the observed variation in these values with changing maintenance history is, to some extent,579

due to the variation in the use of low speed track, which includes, for example, sidings and access to depots580

used by freight trains. This model allows the calculation of the SD of the track after a certain usage by581

using the following formula:582

SD∗ = SD +DR · (U∗ − U) (5)

where DR represent the degradation rate that can be sampled from the distributions of Table 1 and U583

represent the usage in EMGT. The variables with and without asterisks represent the current and the last584

state respectively.585

Conversely, ballast maintenance actions have the potential to improve the SD of the track. Nevertheless,586

the frequency of maintenance actions increases the rate of settlement as previously discussed. In light of587

this, Table 2 presents some assumed values that depict the impact of each maintenance action on the SD588

of the track in relation to the maintenance history of the track.589

The analysis revealed a strong correlation between the vertical geometry SD of the track and the rate of590

faults, leading to the creation of a model that calculates the normalised rate of each rail fault as a function of591

the SD. The rate of faults increases with the length and usage of the track, thus normalisation was deemed592

necessary. Data recordings of various rail faults including Squat, Tache Ovale, Bolt Hole, Weld, Other,593

Rolling Contact Fatigue (RCF), Wheel burn, Lipping, Side Wear, Head Wear, Corrugation, and Unknown594

faults were analysed. To calculate the rate of each fault, the data was stacked and lines were fitted to the595

data, starting with squats and adding faults one by one, simplifying the decisions within the model.596

Algorithm 1 outlines the procedure for determining the rate of occurrence of faults within each stacked597

group. To begin, a list of faults, denoted as FL, is established, and a set of faults stacked groups, denoted598
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Algorithm 1 Calculation of the probability of having a fault and its type

1: Define List of faults, FL = ["Squat", "Tache Ovale", "Bolt Hole", "Weld", "Other, "Rolling Contact

Fatigue (RCF)", "Wheel burn", "Lipping", "Side Wear", "Head Wear", "Corrugation", "Unknown"].

Define stacked sets based on the order of FL are defined as: FS1 = {FL[1]}, FSi = FSi−1 ∪ {FL[i]}

∀i ∈ {2, . . . , 12}.

2: The rate of having a fault from each of the lists FSi∀i ∈ {1, . . . , 12} can be calculated based on the

following equation:

FRi[/poskey/EMGT] = Ai · SD3 +Bi · SD2 + Ci · SD (6)

with Ai, Bi, and Ci for each set can be found in Table 3.

Function 1 – Fault type based on SD:

3: choose R ∈R [0, 1]. Then, R → R/(L ·∆U), with L and ∆U being the length in Poskeys and usage in

EMGT respectively.

4: if R < FR12(SD) then ▷ having fault is probable because FS12 contain all faults

5: for i ∈ {1, . . . , 11} do

6: if R < FRi(SD) then

7: Return FLi ▷ fault i from list FL

8: Return FL12 ▷ unknown fault

9: else

10: Return ∅ ▷ no fault

Function 2 – Correction type based on the fault type:

11: Maintenance types list is MT =["rerail", "weld", "grind or other"]

12: any fault type, i, has 3 stacked probabilities, SPi,1, SPi,2, and SPi,3, that stands for the elements of

MT respectively and stored in Table 4.

13: To know which maintenance type corresponds to the fault, choose R ∈R [0, 1]

14: for j ∈ {1, 2, 3} do

15: if R ≤ SPi,1 then

16: Return: MTj
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Table 3: Parameters for the calculation of the fault rate of different sets. FL1,...,12 are the stacked sets of faults defined in

Algorithm 1

FS A B C FS A B C

1 7.64E-05 -6.45E-04 3.44E-03 7 1.12E-04 -3.87E-04 4.93E-03

2 7.85E-05 -6.55E-04 3.73E-03 8 7.34E-05 1.31E-04 3.87E-03

3 6.90E-05 -5.45E-04 3.56E-03 9 1.66E-04 -3.48E-04 4.61E-03

4 9.38E-05 -7.96E-04 4.85E-03 10 1.61E-04 -1.98E-04 4.28E-03

5 1.18E-04 -6.94E-04 5.22E-03 11 1.60E-04 -1.92E-04 4.27E-03

6 1.13E-04 -5.46E-04 5.07E-03 12 1.70E-04 -2.31E-04 4.33E-03

Table 4: Stacked probabilities for each maintenance action based on fault type. FL is the list of faults defined in Algorithm 1

FL Rerail Weld Grind or other FL Rerail Weld Grind or other

1 0.328 0.954 1 7 0.267 0.874 1

2 0.722 0.963 1 8 0.029 0.134 1

3 0.9 0.919 1 9 0.044 0.338 1

4 0.519 0.904 1 10 0.213 0.752 1

5 0.641 0.918 1 11 0.706 0.765 1

6 0.508 0.786 1 12 0.464 0.63 1

as FS, is constructed based on the elements of FL. For instance, if the first, second, and third elements of599

FL are Squat, Tache Ovale, and Bolt Hole respectively, then FS1 consists of only Squats, FS2 encompasses600

Squats and Tache Ovale, and FS3 encompasses Squats, Tache Ovale, and Bolt Hole.601

Subsequently, a third-order polynomial function is utilised to model the fault rate of each stacked group.602

The parameters of the fitted functions are listed in Table 3. Using these rates, the probability of encountering603

a fault after a specified usage over a certain track length can be calculated as depicted in the first function604

of Algorithm 1.605

The second function of Algorithm 1 presents a method for sampling a correction for the fault from the606

available options. This function is based on the values in Table 4, which are derived from the stacked rates607

of correction methods for each type of fault. For instance, for the RCF, which is the sixth element of FL608

list, the rate of performing "Rerail", "Welding", and "Grinding and other" methods are 0.508, (0.789-0.508),609

and (1-0.786) respectively, as demonstrated in Table 4. These rates serve as sampling probabilities for the610

correction methods.611
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Figure 3: The iPN for modelling and optimising the railway maintenance and operation.

5.2. Railway iPN model612

The aim of the railway iPN model is to create an expert decision support system (DSS) that helps613

in finding an optimal maintenance strategy for the ballast and rail taking into consideration the working614

conditions of the railway. Figure 3 shows the subnets that form the PN model, where node descriptions615

are provided in Table 5 and function descriptions in Figure 4. The railway is composed of 10 identical616

sections, with each section being modeled by two subnets. The names of the subnets of an arbitrary section617

i ∈ {1, 2, . . . , 10} are PN1,i and PN2,i. An additional subnet called PN1 models the common activities for618

all sections. Figure 3 does not show the subnets of sections 2, . . . , 10 due to lack of space. However, these619

subnets are identical to the ones of the 1st section. As with the subnet names, nodes that are in the common620

Subnet have one-number subscripts while the ones in the other subnets have two-number subscripts with621

the 2nd number referring to the ID of the section. The decomposition method provided in Section 3.3 can be622

used to reduce the computational costs as explained. If the decomposition method is used, the conditions to623

enable subnet PN1,i or PN2,i is to have a token in place p1,i or p8,i respectively, and PN1 is always enabled624

without the need for any conditions.625

Initially, all places are unmarked, time is equal to 0, and all the sections are in Excellent state. The626

information about each section is not represented by the PN places but is calculated through the functions627
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described in Figure 4 as explained below. Function f1,i does not have any input arcs, so it runs every time628

the state of the PN changes. This function updates the condition, calculates the probability and the cost629

of having a fault, and calculates the reward based on the condition of the section. The dynamics of the630

problem start with transition t1, which is a timed transition representing the inspection. This transition631

fires every 0.5 yrs. to mark p1,i and p2,i and execute function f2,i. The function f2,i updates the available632

actions by excluding the non-available actions from action group g1,i. These actions are no-action, tamping,633

stoneblowing, and renewal, represented by transitions t1,i, t2,i, t3,i, and t4,i in g1,i, respectively. After 7634

tamping actions, tamping cannot be chosen for the ballast due to the reached fouling level, and after 3635

stone blowing actions, the only option becomes renewal. Thus, based on the maintenance history, available636

actions are updated.637

By marking p1,i, action group g1,i becomes enabled, representing the need to make a maintenance638

decision. Accordingly, the RL agent selects one of the available transitions from g1,i. If t1,i is chosen, p3,i639

will be marked to indicate that no maintenance decision was made. On the other hand, if t2,i, t3,i, or t4,i640

is triggered, p4,i will be marked. f3,i and f4,i will be executed, and p1, p2, or p3 will be marked to indicate641

that the preparation for tamping, stoneblowing, or renewal, respectively, has commenced.642

Each maintenance action consists of two distinct steps: preparation and travel, followed by the actual643

maintenance itself. The duration for executing each of these steps is determined using the functions denoted644

as f3,i and f4,i (Figure 4). Function f3,i is responsible for updating the actual maintenance time, influencing645

the progression of maintenance time transition (t15,i), and aggregating RL rewards based on the associated646

maintenance costs. Meanwhile, function f4,i pertains to the adjustment of maintenance preparation time,647

governing the timing of preparation time transitions (t2,i, t3,i, t4,i), and accumulating RL rewards linked to648

the preparatory expenses.649

A single maintenance preparation can effectively address the repair needs of multiple sections when they650

require the same type of maintenance. Transitions t2, t3, and t4 model the durations for maintenance651

preparations: t2 for tamping, t3 for stoneblowing, and t4 for renewal. Places p1, p2, and p3 indicate that652

preparations are underway. All preparation actions must be completed in order for the maintenance of the653

first section to commence. The initiation of maintenance is represented by transition t5. As depicted in the654

PN model, this process involves inhibiting transition t5 with places p1, p2, and p3, ensuring that maintenance655

cannot start until all preparation tasks are finished.656

Following the commencement of maintenance (triggered by the firing of t5), the option to repair sections657

not previously selected for repair becomes available. This can be seen as a form of opportunistic maintenance.658

An advantage of deciding to repair a section on-site is the utilization of available maintenance trains to repair659

additional sections, thus saving costs associated with preparation and travel. To indicate the availability of660

maintenance trains, functions f1 and f2 are executed upon the firing of transitions t2 and t3, respectively,661

signifying the availability of tamping or stoneblowing trains.662
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The actual maintenance comes after finishing the preparation and reaching the site. It starts after663

transition t5 is fired to mark p7,i and p8,i. If p5,i is marked, p7,i enables t8,i indicating that a decision not664

to repair section i was taken. Then, t8,i fires to allow a decision through action group g2,i regarding the665

opportunistic maintenance. If the opportunistic decision was not to repair section i, t10,i fires to mark p12,i666

indicating that this section is finished; whereas, if a maintenance action was decided, f3,i will be executed667

and p10,i will be marked indicating that the maintenance can start. On the other hand, if the section668

was already decided to be maintained, p6,i and p7,i will allow t9,i to fire, which marks p10,i, indicating the669

possibility to proceed directly in performing the maintenance. The time taken to perform maintenance670

is modeled by transition t14,i while its effectiveness is modeled by f6,i. It is assumed that maintenance671

is only done during non-working hours of the train, which means that maintenance can be a number of672

interrupted intervals. Working hours can cause further degradation of the non-reached parts of the section673

before the maintenance ends. This is why f6,i is not directly executed by t14,i but by t15,i, allowing for674

f1,i to account for degradation that occurs during the maintenance period. The firing of t15,i marks p12,i,675

indicating that this section is finished. After the ith section is finished, t16,i fires to mark p7,i+1 and p8,i+1,676

and the maintenance of the next section starts.677

5.3. RL inputs678

To optimize track maintenance, multiple optimization problems are tackled by breaking down the track679

into separate RL environments. Each section of the track is treated as an individual environment, complete680

with its own agent, states, actions, and value function. As these environments make up the same system,681

each one impacts the transition probability function of the others. Reward functions are specific to each682

environment and are solely dependent on the agent’s decisions within that environment. The optimization683

problems are episodic and terminate when the decision to renew the section ballast is made, as this represents684

a new investment and a fresh start. The goal of the agent is to increase rewards, which equate to the cost685

function and are defined in terms of revenues and expenses. This approach requires the agent to maximize686

the use of the section’s ballast before renewal.687

5.3.1. Definition of the rewards function (cost function)688

Rewards in RL play a crucial role in guiding the RL agent towards optimizing the maintenance strategy.689

In the context of the railway industry, these rewards can be expressed in monetary terms, as the railway690

companies aim to ensure financially efficient operation while ensuring appropriate levels of safety. The691

rewards can be either positive, representing revenues, or negative, representing costs. However, due to692

the commercial sensitivity of costs and revenues, it is not possible to represent rewards in terms of actual693

monetary values. Therefore, the rewards are presented in unitless forms while maintaining their realistic694

values relative to each other through consultation with railway experts.695
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Table 5: The description of the iPN nodes.

Node Description

PN1,i

p1,i taking maintenance decision

t1,i, t2,i, t3,i, t4,i no-action, tamping, stoneblowing, and renewal decisions respectively

p2,i subnet key

p3,i, p4,i no-action or a maintenance action is chosen respectively

t5,i opportunistic maintenance is not possible, reset the PN key

t6,i, p5,i opportunistic maintenance is possible, reset the PN key

t7,i, p6,i Perform maintenance after finishing the preparation, reset the PN key

PN2,i

p7,i site is reached

p8,i subnet key

t8,i, p9,i no maintenance was decided, check for opportunistic maintenance

t9,i maintenance was decided, proceed

t10,i, t11,i, t12,i, t13,i no-action, tamping, stoneblowing, and renewal decisions respectively (opportunistic)

p10,i ready to perform maintenance

t14,i models the time taken to finish repairing the section, which is controlled by function

f3,i, and allows for f1,i to consider the effect of further degradation

p11,i, t15,i models the maintenance effectiveness and update condition

PN1

t1 inspection, with delay equal to 0.5

(p1, t2), (p2, t3), (p3, t4) tamping, stoneblowing, and renewal preparation respectively with the delay of transi-

tions controlled by function f4,i

p4 there exist a section that will be maintained

p5 one or more preparations are finished

t5 site is reached, ready for doing maintenance

p12,i, t16,i section is finished move to the next section
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f1,i if t∗S > tS then (t∗S = t is the current time and tS is the last time the section was updated)

Calculate the usage, U∗, at the current time, t∗S , based on the usage rate: U∗ = 20t∗S

Get SD∗ using Equation 5.

Get, Rc, the continuous reward between the two states of the section based on Algorithm 2.

Accumulate the reward of the last RL state: Rt → Rt +Rc

Update the variables: U = U∗, SD = SD∗, tS = t∗S

f2,i Update the available actions for g1,i according to the following rules:

tamping is not allowed after 7 tamps or after stoneBlowing.

stoneblowing is not allowed more than 3 times

f3,i sample the output rate, OR [yrds/hr.], from W(1.28, 249.27) for tamping and W(1.30, 237.26) for

stoneblowing

Convert OR to [Poskeys/hr.]:OR→ OR/220

Calculate the maintenance time, tM [yrs.], assuming 2,080 working hours per year: tM = OR · L/2080

Get the actual maintenance costs based on the section’s length, Cm

Accumulate the reward of the last RL state: Rt → Rt − Cm

Update the maintenance history

f4,i The time to prepare for maintenance and reach the site, tp, will be equal to: 1 night if the condition is

super-red, 1 week if the condition is poor, 2 weeks if the condition is good, and 1 month otherwise.

Accumulate the reward of the last RL state: Rt → Rt − Cp

f5,i Update the available opportunistic maintenance actions for g2,i based on f2,i rules while considering the

prepared transitions

f6,i Update SD based on the maintenance effectiveness (Table 2)

Update DR from the distributions in Table 1

If the maintenance action is a renewal, terminate the old RL episode and start a new one

f1 Indicate that the preparation for tamping maintenance is done

f2 Indicate that the preparation for stoneblowing maintenance is done

Figure 4: Description of the functions used in the iPN model.
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The study examines the direct and indirect effects of RL decisions on the rewards function. To construct696

the reward function, various effects are considered, including maintenance and renewal costs, preparation697

and travel costs, possession costs, delay costs, catastrophe costs, and revenues. Directly influenced by the698

RL agent’s decisions are the costs associated with ballast maintenance, preparation, and travel. Ballast699

maintenance costs are incurred on a per-section basis, while preparation and travel costs are paid once to700

address multiple sections that undergo maintenance at the same time in close locations. The RL agent701

can strategically choose to repair multiple sections simultaneously, known as opportunistic maintenance, in702

order to minimize the expenses related to preparation and travel.703

Indirectly affected by the RL decisions are the costs that depend on the condition of the track. When704

the track’s condition deteriorates, the likelihood of rail faults increases, resulting in higher maintenance705

costs required to address these faults [79]. These costs are incurred for each track section, as outlined in706

the effects summary provided in Table 6. It is important to note that this study does not specifically focus707

on optimizing decisions related to this particular maintenance type; instead, it considers it as part of the708

overall costs influenced by decisions concerning ballast maintenance. Consequently, the expenses associated709

with travel and preparation for this maintenance type are included within the broader maintenance costs,710

rather than being treated separately.711

Additionally, a degraded track condition can result in increased delay, possession, and catastrophe costs,712

while simultaneously decreasing rail revenues. Therefore, the reward function incorporates these costs and713

revenues as a function of the track’s condition, which are represented as condition-based rewards, rc, as714

illustrated in Figure 5. It is widely recognized that as the railway condition deteriorates, precautionary715

speed restrictions should be imposed to minimize the risk of failures. However, in severe cases of track716

degradation, speed restrictions alone may not be sufficient to mitigate the risks, which could potentially717

lead to catastrophic outcomes. Furthermore, deteriorated tracks may require urgent maintenance during718

operational hours, leading to increased possession costs. On the other hand, poor rail conditions directly719

impact revenue generation. Deteriorated rail infrastructure reduces operational efficiency, leading to slower720

trains, longer travel times, and unreliable services. These obstacles discourage potential customers and erode721

the trust of existing passengers, resulting in reduced ridership and decreased revenue. It should be noted722

that excluding revenues from the reward function even if the revenues are not affected by the condition may723

lead the agent to make decisions to prematurely renew sections and terminate the episode. Thus, including724

revenues is crucial to motivate the RL to continue the episode in a logical manner.725

Condition-based rewards capture the difference between revenues and costs at different track conditions,726

as depicted in Figure 5. Positive rc are associated with favourable rail conditions, where revenues exceed727

costs. However, as costs and losses surpass revenues, as observed in the "Poor" and "Super-red" conditions,728

rc become negative. These negative rewards serve as an indicator of the adverse impact that these condi-729

tions could have on overall profitability. Importantly, these rewards are calculated per Poskey and usage,730
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Action Type Effect Decision

Ballast maintenance
tamping -1000/section

Chosen by RL agent

stoneblowing -2000/section

Ballast preparation and travel
tamping -1000

stoneblowing -2000

Ballast renewal - Start a new episode

Rail maintenance (includes

preparation and travel)

rerail -1500/section

Affected by the track condi-

tion, which is related to the

RL decisions

welding -300/section

grinding -100/section

Delay -
Form rc, which is

function of the con-

dition (Figure 5)

Possession -

Catastrophe occurrence -

Revenues -

Table 6: Breakdown of input costs and revenues (unitless) influencing rewards (cost function).

accumulating continuously based on the usage. Conversely, other rewards are constant and calculated only731

once per occurrence of the action. In summary, the reward function comprises constant rewards specific732

to each action and continuous condition-based rewards (rc) that are determined by the track’s condition,733

calculated per usage and Poskey, which are all summarized in Table 6.734

5.3.2. Definition of the environment735

The environment of each section is defined in terms of the important features that the RL agent needs736

for taking decisions. Thus, the factors describing the environment are chosen to be:737

• the condition of the section, which depends on the value of the SD[mm] and is classified by the intervals738

[0,4], (4,5.2], (5.2,6.5], (6.5,7.4], (7.4,8.3], (8.3,9.9], and (9.9,∞). These intervals are named E1, E2,739

V G1, V G2, G, P , and SR respectively.740

• the settlement rate, which is represented by the rate of change in the SD [mm/EMGT]. It is divided741

into two groups depending on whether the degradation rate is less than or greater than 0.2. These742

groups are denoted as slow and fast and represented by letters S and F respectively.743

• the maintenance history, which is represented by the last maintenance type and the number of times744

this maintenance was performed previously. The maintenance history is named by a letter and a745

number with the letter representing the types and the number representing the number of previous746

actions. The letters T , SB, and R stand for the tamping, the stoneblowing, and the renewal actions747
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(a) The revenues and costs that are a function of the condition,

which form up the condition-based reward, rc.

Condition reward
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(b) Condition-based reward, rc, which is the summation of rev-

enues and costs that are a function of the condition.

Condition SD (mm) Revenues
Costs

Condition reward (rc)
Possession Delay Catastrophe

Excellent (E) 0 200 0 0 0 200

Very Good (VG) 5.2 200 0 0 0 200

Good (G) 7.4 200 0 20 0 180

Poor (P) 8.3 150 70 50 210 -180

Super Red (SR) 9.9 0 100 150 550 -800

(c) Summary of revenues, costs, and rewards that are a function of condition at different condition thresholds.

Figure 5: Visualization of revenues and costs influenced by rail conditions, depicted as condition-based rewards, rc. The

accompanying table presents corresponding values at each condition threshold in terms of SD, specifically for a track speed

range of 5-20 MPH on a typical European track.
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Algorithm 2 Calculation of the continuous rewards existing between two states of a section.

1: Inputs: Degradation rate DR, initial usage U , final usage U∗, initial SD , final SD∗.

2: Get, CT , the set of condition thresholds that are crossed between SD and SD∗: {cT 1, cT 2, . . . , cT n}.

3: Get the usage of the section when crossing each of the conditions thresholds values by rearranging

Equation 5: Ui = (1/DR)cT i + (U − SD/DR)∀i ∈ 1, . . . , n.

4: Divide the degradation between U and U∗ into n + 1 intervals: [U,U1], [U1, U2], . . . , [Un, U
∗].

5: Initialize the continuous reward, Rc = 0

6: for i ∈ {1, . . . , n+ 1} do ▷ for all the intervals.

7: Calculate the average standard deviation SD to do the calculations based on it.

8: Check if a fault will occur using function 1 of Algorithm 1.

9: Check the probability of having a fault using function 1 in Algorithm 1.

10: Sample the correction method of the fault using function 2 in Algorithm 1.

11: calculate the usage, △U , during this interval.

12: Calculate the cost for correcting the fault, cf .

13: Get the condition reward, rc, using Figure 5.

14: Accumulate the continuous reward: Rc → Rc + (rc + cf ) · L · △U .

respectively. For example, T2 stands for 2 previous tamping actions.748

• the PN state, which is represented by the markings of places p1,i and p7,i for each section. This details749

which type of decision is required.750

5.3.3. Algorithm tuning and parameter scaling751

The Q-learning method uses the bootstrapping effect, which means that Q-Values are updated based752

on the values of the successor states. At the beginning of the learning process, all the Q-Values start with753

random numbers, which makes these updates far from their actual values. This can give an advantage to the754

Monte-Carlo RL method over the Q-learning at the beginning of the learning process. However, Q-learning755

is an off-policy method that outperforms the Monte-Carlo or other on-policy methods by being able to756

explore the environment without affecting the Q-Values updates [26]. For this, the learning process was757

divided into two parts, with the Monte-Carlo RL method being used in the first one, and the Q-learning in758

the second one.759

The problem of optimising the policy for each section is considered an episodic task. However, the760

number of episodes cannot be used to control the duration of the learning process because each environment761

for each section has its own episode counter. A common variable that is shared among all environments is762

the time. This variable has an effect on the number of episodes in each environment without affecting their763

conditions, so it can be used as an arbitrary variable to control the duration of the learning process. For764
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this, the duration of the learning process is chosen to be equal to 6 × 107 yrs., with 2 × 107 yrs. using the765

Monte-Carlo RL method and 4 × 107 yrs. using the Q-learning method. The model and its formulas are766

affected by the time difference and not by the time, so the accumulation of time throughout the learning767

process is just a way to increase the number of episodes, but it does not have any physical meaning or effect.768

Three parameters, which are the discount rate γ, the learning rate α, and the exploration rate ε, should769

be specified for the RL methods. The discount rate is assigned a value γ = 1 to avoid being biased to early770

returns. The learning rate, α, is controlled by the following formula:771

α =

1/nu if nu < 1000

10−3 if nu > 1000

(7)

where nu is different for each state-action pair and it represents the number of times its Q-Value is updated.772

For nu less than 1000, the formula ensures that the Q-Value is equal to the average of all the previous773

expected returns, and neglects the effect of initial values of the Q-Values [25].774

σε(t) = a+ b exp(−c · t), with: (8)

a = εmin

b = εmax − εmin

c = ln[(ε
′

min − a)/b]/te

ε
′

min = v(εmin − εmax) + εmax

Equation 8, which is based on Equation 12 in [25], presents an exponential decay function with easily775

adjustable parameters that is utilized to regulate the decay of ε. The parameters of this function are the776

end of the decay process, te, the maximum, εmax, and minimum, εmin, values of the controlled variable, and777

a parameter called v. v = 1− ϵ indicates how close the practical minimum is to the actual minimum. The778

argument of the function is t, and for a range of t ∈ [0, te] the output of the function decays from εmax to779

εmin.780

Exponential decay parameters are assigned for each part of the learning process. For the Monte-Carlo781

RL method part, εmax, εmin, te, and v are chosen as 1, 10−4, 0.95× 2× 107, and 0.99 respectively, with the782

argument, t being equal to the time (t =time). On the other hand, for the Q-learning method part, εmax,783

εmin, te, and v are chosen as 0.2, 10−3, 0.9× 4× 107, and 0.99 respectively, with the argument, t passed as,784

t =time−2× 107 to shift the argument to the starting point of the Q-learning part.785

Since all the sections share the same characteristics, it is expected that they have the same optimal786

policy. To make the learning process faster, the RL agents were allowed to share the experience by updating787

the Q-Values in all environments once a Q-Value of similar state-action pair is updated in any environment.788
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Figure 6: The variation of rewards as a function of the episode number.

6. Results789

This section shows the results of the different simulations performed to find the best policy for the790

operation and maintenance of the railway sections. Other simulations were performed to test the idea of791

dividing the PN into multiple subnets. To do so, the PN proposed in Section 5.2 is simulated two times, one792

while dividing the PN into multiple subnets, and another without dividing it. Each of the two simulations793

was performed for multiple lifetimes such that the total duration of the accumulated lifetimes is 5000 yrs.794

in each simulation. Besides, no optimisation was done in these simulations and a random policy was used795

to select transitions from action groups. As a result, the time taken for the simulation with and without the796

subnet rules was 201 and 613 seconds respectively. This indicates a 3 times reduction in the computational797

cost between the two simulations.798

Figure 6 shows the variation of the total reward as a function of the learning process. The learning process799

is divided into short intervals to be able to plot the mean and other measures for each of the intervals. It800

can be seen that the total reward increases until the end of the Monte-Carlo RL part of the learning process,801

then drops and continues increasing after the Q-learning starts. The end of the learning process shows a802

stable curve which indicates that the policy is no longer changing. The decisions of the final RL policy are803

summarised in Figure 7. The left part of the Figure shows the decisions for normal maintenance while the804

right part is for opportunistic maintenance. The 11 rows show the possible maintenance history states while805

the columns describe the condition of the section and settlement rate. The different decisions are described806

by the colours in the legend above the figure, where the white areas represent the unexplored states. For807

example, the decision shown in the red square is tamping and it corresponds to the state described by the808

section being in good condition with a slow settlement rate and 4 previous tamping actions. This figure809

shows that a sequence of 7 tamping actions followed by 3 stoneblowing actions and a renewal action is good810
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Figure 7: The final RL policy, which is described by the optimal actions at each of the RL states. The acronyms are defined

in Section 5.3.2, white areas are unexplored states, and the red square is an indication of an example explained in the text.

for all track conditions since no stoneblowing action can be found above row T7 and no stoneblowing action811

can be found above row S3. This means that the RL policy does not differ from policies A and B described812

in the introduction of Section 5 in terms of the type of maintenance action. However, the decision regarding813

the need for maintenance is shown to be dependent on all the features of the RL environment because the814

no-action decisions are scattered in different zones. It can be seen that the need for maintenance increases815

as the condition of the section worsens especially in the cases of a fast settlement rate. Also, the distribution816

of actions over states is similar for opportunistic and normal maintenance actions.817

The decisions shown in Figure 7 are reflected in the total rewards, the percentage of time spent in818

each condition, the distribution of maintenance actions over time and the section condition. Table 7 shows819

the average percentage of time spent in each condition when following each of the policies. Comparing820

percentages of time spent in each condition is preferable to using total absolute durations spent in each821

of the conditions per episode in order to avoid unfair conclusions. This is because absolute durations822

can be misleading due to episodes terminating with the ballast’s life, rather than the rail’s service life.823

Rail operators should maintain the rail according to its service life, not the life of the ballast. By using824

percentages, conditions can be reflected relative to the duration of the rail’s service life, and can indicate825

probabilities of each state. It can be noted that Policy B increases the probability of being in the Poor826

and Super-red conditions while the RL policy was able to reduce the probability of being in the Super-red827
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Table 7: The average percentage of time spent in each condition for each of the simulated policies.

Excellent Very good Good Poor Super-red

Policy A 87.33 11.75 0.53 0.33 0.04

Policy B 57.19 35.43 5.06 1.59 0.70

RL policy 66.17 30.97 2.40 0.34 0.007

Figure 8: The distributions of rewards for the three considered policies.

condition to almost 0 while having a very low probability of being in the Poor condition. Policy A showed828

the ability to have the highest percentage of the Excellent condition but without being able to have the829

lowest percentage in the Super-red condition.830

Figure 8 shows the distribution of rewards of the considered policies. The distributions are plotted831

because the problem is stochastic, and comparing based on one value can be misleading in such cases. The832

figure shows that Policy A resulted in the minimum rewards of all the policies, but it ensures that the833

rewards of an episode are always greater than 0, whereas Policy B results in rewards greater than Policy A,834

but can result in negative rewards. On the other hand, the RL policy ensures positive rewards whilst also835

ensuring the maximum rewards of all policies in terms of the mean and mode.836

Figure 9 shows the distribution of maintenance actions over the condition of the section. It can be837

seen that the maintenance actions are concentrated in the Very-Good condition for Policy A, in the Good838

condition for Policy B, and in different conditions for the RL Policy. The figure also shows that there are very839

few actions taken in the Super-Red condition for Policy A and RL policy, whereas Policy B has a significant840

number of actions taken in this condition. Figure 10 shows the distribution of maintenance actions over the841

age of the section. For the three policies, tamping is followed by stoneblowing then by renewal. The renewal842

action is an indication of the end of life of the section. Policy A resulted in the shortest life with an average843

equal to 29.5 yrs, followed by the RL Policy with an average of 42.5 yrs., then by Policy B with an average844

equal to 45.2 yrs.845
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Figure 9: The distributions of the maintenance actions over the condition of the section for the three considered policies.

Figure 10: The distributions of the maintenance actions over the age of the section for the three considered policies.

7. Discussion846

Regarding the division of the PN to multiple subnets, comparing the random simulations for the PN847

case, which is presented in Section 5.2, revealed a three-fold decrease in computational costs despite some848

parts of the PN being computed in parallel. The subnet rules can result in greater reduction if more subnets849

were in series because, for parallel subnets, all of the transitions are important to be checked at the same850

state, which weakens the effect of unchecking unimportant transitions because they will be few.851

Regarding the optimisation problem, the total rewards shown in Figure 6 indicate that the optimal RL852

policy was reached since stable results are seen by the end of the learning process. The drop in the total853

rewards shown when the Q-learning started is due to the change in the exploration rate. Since the Q-learning854

is an off-policy RL method, increasing the exploration rate does not cause any diversion to the Q-Values and855

keeps their updates correct [26], but it allows the RL agent to discover other decisions that may be better856

than those already explored.857

The results displayed in Figure 7 depict the decisions made by the RL agent for condition-based and858

opportunistic maintenance actions, which together constitute the final policy. Notably, the zones where the859
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agent chose to perform opportunistic maintenance are a subset of those where condition-based maintenance is860

performed. This implies that the costs saved by avoiding the preparation and travel involved in opportunistic861

maintenance did not influence the agent’s decision. The optimal policy, therefore, advocates for repairing862

a section only if it requires maintenance based on its condition, and not on the availability of equipment.863

Following this policy means that opportunistic maintenance is only triggered if there is a change in the864

section’s condition between the inspection and the arrival at the site. In such cases, the decision to repair865

will be made on-site, which makes it opportunistic, but the decision will be due to the change in condition866

rather than the availability of equipment on site. Pursuing this policy ensures that maintenance actions are867

conducted only when required, given that each action has an impact on the ballast’s life by crushing its868

particles and making it more susceptible to fouling, thereby shortening its lifespan. In addition, the policy869

tries to delay ballast maintenance as much as possible to extend its usage period until it reaches a highly870

fouled state where it can no longer be utilized. By postponing ballast maintenance, the overall maintenance871

costs can be reduced, as the ballast can be used for a longer duration before replacement becomes necessary.872

Table 7 shows that the final RL policy was the best in avoiding the Super-red condition but without873

having the maximum percentage in the Excellent condition. Since the goal is to increase the net profit of874

each section, it is not important in which condition the section stays the most, but rather the effect of being875

in each of the conditions. As shown in Figure 5, the Super-red condition has very high negative rewards that876

make avoiding it more important than being in Excellent condition. In addition to that, keeping the section877

in the best condition all the time may result in performing additional maintenance actions that require878

more costs and may result in performing maintenance before it is needed. This can result in reducing the879

remaining useful life as explained in the previous paragraph, which shortens the age of the section as shown880

in Figure 10a, and decreases the total rewards gained per episode as shown in Figure 8a. Besides, postponing881

the maintenance can increase the age of the section as shown in 10b, but it can lead to having negative882

consequences due to being in undesired conditions as shown in Figure 8b. On the other hand, the RL policy883

was able to increase the rewards to a mean and mode better than the other two policies without having884

any episodes with negative rewards by taking the maintenance decision just before reaching any negative885

consequences based on different features. This required having the actions distributed over the condition of886

the section as shown in Figure 9c in contrast to Policies A and B which show a concentration of actions in887

specific zones. This shows that the decision to perform maintenance actions is not only a function of the888

section condition but also of the settlement rate and the maintenance history.889

The RL policy outperforms both policies A and B in terms of rewards and in terms of avoiding the890

Super-Red condition. It can be concluded from the results that the effect of the maintenance action on the891

remaining useful life was more important than their costs. The RL agent was trying to avoid the maintenance892

action until the condition becomes unacceptable in order to use the section for producing revenues as much as893

possible before the section moves to the next stage, which is the after-maintenance stage. Each maintenance894

37



can be seen as a new beginning that has its own revenues before the losses start, so performing another895

maintenance before all the revenues after the first maintenance are harvested was like losing them. At the896

same time, the RL agent was successfully able to avoid the risk of being in the Super-Red condition as897

can be seen from Figure 9 and Table 7. This was due to the intelligent strategy shown in Figure 7, which898

considered the condition and the settlement rate. The figure shows that even if the condition was Excellent899

but the settlement is fast, the decision was to perform the maintenance for some occasions. This decision900

may result in a great reduction in the age of the section, but it also results in avoiding any risk of being in901

the Super-Red condition.902

The outcomes presented in this paper are highly influenced by the reward functions that have been903

assigned. These functions, which are based on estimations and expert opinions, describe the costs and904

revenues involved, allowing for the calculation of the net profit. However, the accuracy of the simulations905

and results could be improved if more precise information regarding the costs and revenues associated with906

railway transport were available. This could potentially result in changes to the findings.907

Nevertheless, the paper provides a reliable method for optimizing operation and maintenance based on908

the currently available data. However, to enhance the paper’s findings further, it would be beneficial to909

incorporate the impact of maintenance activities of all railway components, such as infrastructure, super-910

structure, signalling, and catenary. By including this level of detail, the model’s accuracy and precision can911

be significantly improved. Such a comprehensive analysis could be addressed in future studies.912

An improvement can be made to the methodology, which is using function approximation RL methods,913

e.g. Deep Reinforcement learning. This can help in avoiding the discretisation process of the states and914

considering continuous states instead. For example, the condition of the section can still be a feature that915

describes the condition of the environment, but it will take the SD as a continuous variable argument instead916

of dividing the condition into several groups based on SD. This wipes out the need to use thresholds, which917

can result in further improvements in terms of taking the decisions at more specific states instead of having918

the same decisions for wide intervals of values.919

In addition, the use of prognostic methods can be important in predicting the remaining useful life of920

the section based on its current state. This can be included as a feature in the RL environments to improve921

decision-making and can be more realistic than including the settlement rate which is difficult to measure922

in real-life applications.923

8. Conclusions924

An iPN model was created for the maintenance and operation of railway sections while focusing on925

optimising the maintenance of the ballast. This model is able to find the optimal maintenance strategy926

that can reduce the risk of being in undesired conditions while increasing revenues and decreasing costs.927
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This paper also proposes several ideas to improve the computational efficiency of the model. A method to928

divide the PN into several subnets was proposed and found to be successful in reducing computational costs.929

Besides, each section of the railway was considered a separate environment that has its own RL elements.930

This allows the RL agents to focus only on the important aspects when taking the decisions of each section931

and neglecting unnecessary information, which reduces the number of RL states. This, in turn, facilitates932

experience sharing between RL agents relating to sections of similar characteristics.933

The model was applied to a practical problem and it shows the ability to reach an optimum maintenance934

strategy. The results show that it is crucial to avoid unnecessary maintenance actions because they can935

reduce the ballast age. This is because tamping and stoneblowing actions play a direct role in ballast936

fouling, which requires replacement once it becomes highly fouled. At the same time, the maintenance937

should be done before any risk of reaching a bad condition in order to avoid downtime or safety risks. A938

maintenance plan that gives the optimum decision as a function of various features of the railway section was939

found. This was able to avoid undesired conditions while increasing the age of each section and increasing940

the net profits per life of each section.941
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