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A B S T R A C T

We propose a statistical framework to analyze radiological magnetic resonance imaging (MRI) and genomic
data to identify the underlying radiogenomic associations in lower grade gliomas (LGG). We devise a novel
imaging phenotype by dividing the tumor region into concentric spherical layers that mimics the tumor
evolution process. MRI data within each layer is represented by voxel–intensity-based probability density
functions which capture the complete information about tumor heterogeneity. Under a Riemannian-geometric
framework these densities are mapped to a vector of principal component scores which act as imaging
phenotypes. Subsequently, we build Bayesian variable selection models for each layer with the imaging
phenotypes as the response and the genomic markers as predictors. Our novel hierarchical prior formulation
incorporates the interior-to-exterior structure of the layers, and the correlation between the genomic markers.
We employ a computationally-efficient Expectation–Maximization-based strategy for estimation. Simulation
studies demonstrate the superior performance of our approach compared to other approaches. With a focus on
the cancer driver genes in LGG, we discuss some biologically relevant findings. Genes implicated with survival
and oncogenesis are identified as being associated with the spherical layers, which could potentially serve as
early-stage diagnostic markers for disease monitoring, prior to routine invasive approaches. We provide a R
package that can be used to deploy our framework to identify radiogenomic associations.
1. Introduction

Lower-grade gliomas (LGG) are infiltrative brain neoplasms char-
acterized as World Health Organization (WHO) grade II and III neo-
plasms. LGG is a uniformly fatal disease of young adults (mean age:
41 years), with survival times averaging approximately seven years
(Claus et al., 2015). LGG patients usually have better survival than
patients with high-grade (WHO grade IV) gliomas. However, some of
the LGG tumors recur after treatment and progress into high-grade
tumors, making it essential to understand the underlying etiology,
and to improve the treatment management and monitoring for LGG
patients.

Due to recent technological advances, large multi-modal datasets
are being produced; these include imaging as well as multi-platform
genomics data. In complex disease systems such as cancer, integrative
analyses of such data can reveal important biological insights into spe-
cific disease mechanisms and its subsequent clinical translation (Wang

∗ Correspondence to: Department of Biostatistics, Boston University, 801 Massachusetts Ave, Boston, MA 02118, United States.
E-mail address: shariqm@bu.edu (S. Mohammed).

et al., 2013; Morris and Baladandayuthapani, 2017). Genomic pro-
filing technologies, such as microarrays, next-generation sequencing,
methylation arrays and proteomic analyses, have facilitated thorough
investigations at the molecular level. Such multi-platform genomic
data resources have been used to develop models to better under-
stand the molecular characterization across cancers and especially in
gliomas (Ohgaki et al., 2004; Ohgaki and Kleihues, 2007). While ge-
nomic data provides information on the molecular characterization of
the disease, radiological imaging, such as magnetic resonance imaging
(MRI), computed tomography (CT) and positron emission tomography
(PET), provide complementary information about the structural aspects
of the disease. In this context, radiomic analysis involves mining and ex-
traction of various types of quantitative imaging features from different
modalities obtained through high-throughput radiology images (Bakas
et al., 2017b). These image-derived features describe various charac-
teristics such as morphology and texture, among others. Integrative
vailable online 12 September 2023
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analyses of genomic and radiomic features that uncover underlying
associations between them, commonly referred to as radiogenomic anal-
yses, capture complementary characteristics of the tumor (Gevaert
et al., 2014; Mazurowski et al., 2017). However, such integrative
modeling approaches present multiple analytical and computational
challenges including incorporating complex biological structure, and
high-dimensionality of quantitative imaging/genomic markers, neces-
sitating principled and biologically-informed dimension reduction and
information extraction techniques.

Existing radiomic and radiogenomic studies typically consider voxel
-level summary features (based on intensity histogram, geometry, and
texture analyses) as representations of a tumor image, to assess the pro-
gression (or regression) of tumors using statistical or machine learning
models (Lu et al., 2018; Elshafeey et al., 2019). The main draw-
backs of using voxel-intensity summary statistics/features are: (i) they
might not capture the entire information in the voxel intensity his-
togram; (ii) there is subjectivity in the choice of the number of features
and the location where they are computed. Consequently, the ra-
diomic/radiogenomic analyses using summary features are unable to
detect potential small-scale and sensitive changes in the tumor (Just,
2014). To address these challenges, we propose a de novo strategy
for quantifying the tumor heterogeneity using voxel-intensity based
imaging phenotypes that mimic the tumor evolution process.

1.1. De novo quantification of imaging phenotypes

Tumors typically evolve from a single (or group of) cancerous cell(s)
and grow multiplicatively via cross-talk with other nearby cells, thereby
producing a central necrosis region (dead cells) (Swanson et al., 2003).
Hence, as we move from the inner core of a tumor toward the exterior,
different layers of the tumor possess distinct tissue characteristics.
Therefore, it is important to construct imaging phenotypes which (a)
mimic the underlying tumor evolution process, and (b) efficiently har-
ness the tumor heterogeneity from the imaging scans, for downstream
modeling and interpretations. To address (a), we divide the tumor
region into one inner sphere followed by concentric spherical shells
which potentially capture the tumor growth process. In Fig. 1, we show
a visualization of an example tumor region divided into three spherical
layers. Tumor spheroids (cell cultures with necrotic core and peripheral
layer of proliferative cells) have been used as reliable models of in
vitro solid tumors (Breslin and O’Driscoll, 2013; Costa et al., 2016).
To address (b), we propose to work with the probability density func-
tions (smoothed histograms) constructed using layer-wise tumor voxel
intensities from three-dimensional (3D) MRI scans. These probability
density functions (PDFs) are the data objects of interest and capture
the entire information about the distribution of voxel intensities, no
longer requiring any summaries of the distribution. Recent studies
have successfully utilized density-based approaches in unsupervised
clustering (Saha et al., 2016) and regression models for radiogenomic
analyses (Mohammed et al., 2021; Yang et al., 2020).

Briefly, we propose a novel approach to identify the genomic mark-
ers that have significant associations with the PDF-based radiomic
phenotypes. The imaging phenotype we consider arises from MRI,
as it provides high-resolution images with a wide range of contrasts
through multiple imaging sequences (see Section 2). The radiomic
phenotypes are constructed by considering the aforementioned topo-
logical structure of the tumor and mimicking its evolution process.
Our statistical framework identifies significant genomic associations
on the different concentric spherical shells. These associations better
inform the complex interplay between the molecular signatures and
imaging characteristics in LGGs, and can provide effective non-invasive
diagnostic options by monitoring the associated genomic markers prior
to invasive alternatives such as biopsy. A schematic representation of
our approach is presented in Fig. 2 (see Section 2 for details). This
figure depicts an end-to-end workflow, which includes (i) constructing
spherical layers from the tumor voxels in MRI scans and computing
2

Fig. 1. A graphic to visualize an example tumor region divided into three spherical
layers. The object on the left shows three spherical layers colored in shades of red,
blue and green. For each of these layers, the curves on the right depict corresponding
PDFs.

the corresponding imaging phenotypes, and (ii) building a statistical
framework which includes the structural information from the data to
identify radiogenomic associations, elements of which are summarized
below.

Constructing one global PDF for each tumor disregards structural
information about tissue characteristics of the tumor. This would pro-
hibit us from analyzing any potential associations of genomic markers
with local (regional) aspects of the tumor. We propose to evaluate
associations between genomic signatures of the tumor through large
(or subtle) changes in the overall shape of the voxel-intensity PDFs
from biologically motivated tumor compartments/layers. We address
this by constructing 𝜏 PDFs corresponding to 𝜏 tumor layers. Tumors
for different subjects will have distinct characteristics of these layers,
i.e., not all tumors might have structural information about all of the
layers. However, tumor spheroids have been used as in vitro models
of solid tumors (Breslin and O’Driscoll, 2013; Costa et al., 2016).
Hence, we divide the tumor region into 𝜏 spherical shells to mimic the
tumor growth process. The number of layers the tumor is divided into
remains the same across subjects. We effectively have 𝜏 voxel-intensity
PDFs as 𝑥 ↦

(

𝑓1(𝑥),… , 𝑓𝜏 (𝑥)
)

, a multivariate functional data object
with each component as a PDF. The space of PDFs is a non-linear,
infinite-dimensional manifold, which poses significant challenges in
their analysis. We use the Riemannian-geometric framework based on
the Fisher–Rao metric on the space of PDFs (Section 2) that (i) leads to
a tractable representation of each PDF, and (ii) engenders dimension
reduction of the functional objects, in a manner compatible with the
requirements of downstream statistical analyses. This process yields
a set of imaging phenotypes based on PDFs corresponding to each
spherical layer in each MRI sequence. The natural dependence between
the component functions is incorporated through a novel Bayesian prior
formulation (Section 3).

1.2. Statistical framework

We build sequential regression models for each spherical layer
starting from the inner-most sphere and moving outwards towards the
edge of the tumor. The sets of imaging phenotypes from a spherical
layer across multiple MRI sequences are then used as the multivariate
response in the regression corresponding to that spherical layer, with
the genomic markers as the corresponding predictors. This specific
structured form of the imaging phenotypes as well as assessing their
interaction with genomic covariates leads to the following challenges:
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Fig. 2. Schematic representation of the proposed modeling approach. The tumor voxels are divided into spherical layers across all of the MRI sequences. Under a Riemannian-
geometric framework, we construct principal component (PC) scores for each spherical layer across all four MRI sequences. With these PC scores as the multivariate response, and
the genomic markers as predictors, we build a layer-wise Bayesian variable selection model. The estimation occurs sequentially, allowing for borrowing of information between
layers through prior specification.
1. While handling high-resolution imaging data, the number of
parameters to estimate is usually much higher than the number
of subjects, leading to the curse of dimensionality (𝑝 ≫ 𝑛).

2. Splitting the tumor voxels into concentric spherical layers in-
duces a natural sequential ordering imitating tumor growth,
which needs to be incorporated into the model formulation.
Additionally, correlation between genomic markers needs to be
accounted for as well.

3. High-dimensionality and sequential structure in imaging data,
and correlation structure in genomic markers, create severe
computational hurdles warranting scalable approaches.

In this paper, we build a novel statistical framework in a multiple-
multivariate regression set-up, which addresses the above mentioned
challenges incorporating the aforementioned dependence structures
within and between the responses and covariates. Specifically, we
leverage the hierarchical model specification to incorporate the se-
quential nature of the spherical layer-based imaging phenotypes as
well as the correlation between the genomic markers. We propose
a Bayesian variable selection approach that allows us to incorpo-
rate prior structural information in a natural and principled manner
within a decision-theoretic framework, and deals with the issue of
high-dimensionality. Specifically, we use continuous structured spike-
and-slab priors (George and McCulloch, 1997; Ishwaran et al., 2005;
Andersen et al., 2014) within the regression model for a specific layer
to (i) blend prior information about the correlation between the ge-
nomic markers, and (ii) borrow information about the selected genomic
markers from the estimation at one spherical layer and propagate the
information through the prior of the model to the subsequent spherical
layer(s). As opposed to existing approaches that incorporate apriori
structural information (Li and Zhang, 2010; Vannucci and Stingo,
2010), our prior formulation incorporates structural information not
only for the dependence between the predictors, but also for the
dependence between the multivariate response and across the spherical
layers.
3

Finally, the complex structure of the model warrants scalable es-
timation approaches. Toward this end, as an alternative to computa-
tionally expensive Markov chain Monte Carlo (MCMC) sampling tech-
niques, we employ an Expectation–Maximization (EM)-based estima-
tion strategy (Ročková and George, 2014), where we only search
for the posterior mode to iteratively estimate the posterior selection
probabilities. Our EM-based estimation is an generalization of Ročková
and George (2014) to a multiple-multivariate regression setting, and
provides a scalable alternative to sampling strategies; it also facili-
tates model selection. While developed in the context of this specific
imaging-genomics case study, our sequential modeling framework is
general, has independent methodological value and could also be used
in other applications, which exhibit a natural ordering, e.g. multivariate
data collected over time, space, or other axes.

Our work has innovations in two broad aspects. First, in our frame-
work, we evaluate tumor heterogeneity by mimicking the tumor evo-
lution process and constructing spherical layers from the tumor region.
We then create layer-wise imaging phenotypes that comprehensively
capture tumor heterogeneity by constructing PDFs that quantify the
voxel-intensity distribution in each tumor layer. These two steps of
evaluating the tumor as spherical layers and quantifying heterogeneity
in these layers via PDFs are novel and have not been previously
explored to the best of our knowledge. Second, the methodological
novelty arises in developing a multivariate-multiple regression set-up
that not only considers PDF-based imaging phenotypes as the multivari-
ate response and genomic markers as predictors but also incorporates
various types of structures/correlations from the imaging and genomic
data into the modeling. These structures include passing information
between the spherical layers, correlations between the genomic mark-
ers and correlations between the imaging phenotypes. Combining these
structural attributes within a hierarchical Bayesian regression model
with variable selection allows us to identify meaningful radiogenomic
associations using a statistically rigorous framework.

The rest of this paper is organized as follows. In Section 2, we
describe the radiological imaging data and the construction of the
imaging phenotypes. We present our statistical modeling framework
in Section 3, including model specification, details about the EM-
based estimation (Section 4), and model selection (Section 4.2). In
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Section 5, we include results from simulation studies under different
scenarios to assess the performance of the proposed modeling approach.
In Section 6, we provide details of the genomic data, present results of
our radiogenomic analysis of LGGs, and shed light upon some important
biological findings (Section 6). Finally, in Section 7, we conclude
with a discussion and some directions for future work. The indices to
sections, figures, tables, and equations in the supplementary material
are preceded by ‘S’ (e.g. Section S1).

2. Data characteristics and imaging phenotypes

In this section, we describe the MRI data characteristics and present
the explicit quantification of density-based imaging phenotypes. MRI
scans are a rich source of imaging data as they provide a wide range
of imaging contrasts. Consequently, different tissue characteristics in
the brain are highlighted differently by the various MRI sequences.
Primary MRI sequences include (i) native (T1), (ii) post-contrast T1-
weighted (T1Gd), (iii) T2-weighted (T2), and (iv) T2 fluid attenuated
inversion recovery (FLAIR). The utility of these imaging sequences
in providing complementary information can be seen in Figure S1,
where the tumor sub-regions appear with varying contrasts. MRI scans
typically include data on all four imaging sequences and segmentation
labels that generate a mask indicating the tumor and non-tumor regions
in the MRI scan (top-left panel in Fig. 2). We specifically consider MRI
scans of 65 LGG subjects obtained from The Cancer Imaging Archive
(TCIA) (Clark et al., 2013). Further details about the data are provided
in Section 6. Each MRI scan is structured as a 3D array where the third
axis corresponds to the different axial slices of the image. Hence, we
have four 3D arrays, each corresponding to one of the four imaging
sequences, and an additional 3D array for the accompanying segmen-
tation mask. All four MRI scans, and the segmentation mask, have
a voxel-to-voxel correspondence which allows for clear specification
of the tumor region. In Figure S1, we show an example of the axial
slice from a brain MRI for a subject with LGG for each of the four
imaging sequences. The region inside the red boundary overlaid on
these images indicates the segmented tumor region. To integrate MRI
data into our modeling, we first construct imaging phenotypes (or
radiomic phenotypes) based on the voxel intensities of the MRI scans.

Construction of PDF-based imaging phenotypes. We divide the
3D tumor region into equal-volume concentric spherical shells with
respect to a reference voxel (see Fig. 1). This reference voxel is chosen
to be the mid-point for the axis-aligned minimal bounding box of the
3D tumor region. Consider MRI scans for 𝑛 LGG subjects across all four
imaging sequences and the corresponding tumor segmentation masks.
Let 𝑁𝑖 denote the number of voxels in the tumor region (i.e., tumor
volume) for each subject 𝑖, and 𝐜𝑖 denote array indices of the mid-
point for the axis-aligned minimal bounding box of the tumor region.
When dividing the tumor into 𝜏 ∈ N concentric spherical shells, each
spherical shell will have a volume of approximately 𝑁𝑖∕𝜏. For each
spherical shell, with 𝐜𝑖 as the center, we make small increments to
the radius to determine which voxels belong to that shell so that its
volume is close to 𝑁𝑖∕𝜏. When identifying voxels corresponding to shell
𝑡, we exclude all voxels corresponding to shells 1,… , (𝑡 − 1). While the
innermost layer is a sphere, we refer to all of the 𝜏 layers as spherical
shells or layers hereafter. Hence, for each subject, we have the tumor
region divided into 𝜏 spherical shells across all four imaging sequences.
This is represented in panel A of Fig. 2, with spherical layers from four
MRI sequences and their corresponding PDFs. We outline this process
in Algorithm S1 of Section S1, and describe construction of kernel
density estimates 𝑓 (𝑡,𝑚)

𝑖 corresponding to spherical shell 𝑡 ∈ {1,… , 𝜏}
from MRI sequence 𝑚 ∈ 𝑀 = {𝑇 1, 𝑇 1𝐺𝑑, 𝑇 2, 𝐹𝐿𝐴𝐼𝑅} for subject 𝑖. Via
Algorithm S1, we obtain kernel density estimates 𝑓 (𝑡,𝑚)

𝑖 based on the
voxels from MRI sequence 𝑚 in spherical shell 𝐷(𝑡)

𝑖 for subject 𝑖. Using a
Riemannian-geometric framework for analyzing PDFs (Srivastava et al.,
2007), we implement a principal component analysis (PCA) at each
layer 𝑡 = 1,… , 𝜏, which generates layer-specific PC scores (as shown
4

Fig. 3. Pictorial representation of 𝑌 (𝑡) by augmenting PC scores across imaging
sequences.

in Fig. 2). The geometric framework for PDFs is necessary in order to
ensure that the PCA is compatible with the nonlinear structure of the
space of the voxel-intensity PDFs, and has been successfully used in
several works (Saha et al., 2016; Mohammed et al., 2021). For ease of
exposition, we omit the mathematical details here and describe them
in Section S1.2.

Layer-specific PCA of PDFs thus maps each PDF to a Euclidean
vector of PC scores, which efficiently captures the variability in the
voxel-intensity PDFs. The vector of PC scores is representative of tumor
heterogeneity, and constitutes the imaging phenotype, which is the
response in our Bayesian model. For each imaging sequence 𝑚 and
tumor layer 𝑡, we perform PCA using the sample of PDFs 𝑓 (𝑡,𝑚)

1 ,… , 𝑓 (𝑡,𝑚)
𝑛

to obtain the PC scores 𝑌 (𝑡,𝑚). The number of PCs included is decided
such that the included PCs cumulatively explain 99% of the total vari-
ance. Note that unlike the case for traditional functional data on linear
Hilbert spaces, the corresponding principal directions of variability for
PDFs are not orthogonal on the space of PDFs—they are orthogonal
in the linear tangent space at the mean. Thus, one needs to be careful
when interpreting the PC scores as capturing magnitude associated with
PDF eigenfunctions; details in Section S1 elucidate on this. Although
we consider the PDF-based PC scores as response in our modeling
framework, the methods developed in Section 3 are broadly applicable
to multivariate Euclidean responses.

3. Models and methods

Following the above quantification, our data structure is of the
following format. Let 𝐲(𝑡,𝑚)𝑖 = (𝑦(𝑡,𝑚)𝑖1 ,… , 𝑦(𝑡,𝑚)

𝑖𝑝(𝑡,𝑚)
) represent a row vector

of PC scores from imaging sequence 𝑚 ∈ 𝑀 and layer 𝑡 ∈ 𝑇 = {1,… , 𝜏}
for subject 𝑖. Here, 𝑝(𝑡,𝑚) represents the number of PCs included for layer
𝑡 and imaging sequence 𝑚. Let 𝐲(𝑡)𝑖 = (𝐲(𝑡,𝑇 1)𝑖 ,… , 𝐲(𝑡,𝐹𝐿𝐴𝐼𝑅)

𝑖 ) represent the
PC scores concatenated across all four imaging sequences and define
𝑌 (𝑡) = (𝐲(𝑡)1

⊤
,… , 𝐲(𝑡)𝑛

⊤
)⊤ ∈ R𝑛×𝑝(𝑡) where 𝑝(𝑡) =

∑

𝑚∈𝑀 𝑝(𝑡,𝑚) is the total
number of PCs included across all four imaging sequences. A pictorial
representation of this augmentation is provided in Fig. 3.

Let 𝑋 ∈ R𝑛×𝑔 correspond to the predictors from 𝑔 genomic markers
for 𝑛 subjects. For each 𝑡 ∈ 𝑇 , we model the PC scores 𝑌 (𝑡) using the
genomic markers 𝑋 as

𝑌 (𝑡) ∼ 𝑁𝑛,𝑝(𝑡) (𝑋𝐵(𝑡), 𝐼𝑛 ⊗ 𝛥(𝑡)), or equivalently,

𝑣𝑒𝑐(𝑌 (𝑡)) ∼ 𝑁𝑛𝑝(𝑡) (𝑣𝑒𝑐(𝑋𝐵(𝑡)), 𝐼𝑛 ⊗ 𝛥(𝑡)), (1)

where 𝐵(𝑡) = [𝐵(𝑡,𝑇 1),… , 𝐵(𝑡,𝐹𝐿𝐴𝐼𝑅)] ∈ R𝑔×𝑝(𝑡) and 𝐵(𝑡,𝑚) = [𝜷(𝑡,𝑚)
1 ;… ;

𝜷(𝑡,𝑚)
𝑝(𝑡,𝑚)

] ∈ R𝑔×𝑝(𝑡,𝑚) for all 𝑚 ∈ 𝑀 . Here, 𝜷(𝑡,𝑚)
𝑗 = (𝛽(𝑡,𝑚)1𝑗 ,… , 𝛽(𝑡,𝑚)𝑔𝑗 )⊤ for all

𝑗 = 1,… , 𝑝(𝑡,𝑚) and 𝑚 ∈ 𝑀 , and 𝑣𝑒𝑐(⋅) is the row-wise vectorization of a
matrix. The coefficient 𝛽(𝑡,𝑚)𝑘𝑗 corresponds to the association of genomic
marker 𝑘 and principal component 𝑗 from the imaging sequence 𝑚
in the layer 𝑡. Also, 𝐼𝑛 is the identity matrix of dimension 𝑛, and ⊗
denotes the Kronecker product. Note that 𝛥(𝑡) ∈ R𝑝(𝑡)×𝑝(𝑡) is a covariance
matrix that captures the covariance between the PCs across imaging
sequences, which naturally exists as these sequences are imaging the
same region/tumor. In other words, although the PC scores correspond-
ing to a specific imaging sequence are uncorrelated (by construction),
cross-sequence correlation could still exist (e.g. between PC scores from
T1 and PC scores from T2); this correlation is captured through 𝛥(𝑡).
We can succinctly rewrite 𝑣𝑒𝑐(𝑋𝐵(𝑡)) = 𝑍𝜷(𝑡), where 𝑍 = 𝑋 ⊗ 𝐼 ∈
𝑝(𝑡)
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𝐲

p

o
p

R𝑛𝑝(𝑡)×𝑔𝑝(𝑡) (Gupta and Nagar, 2018) and 𝜷(𝑡) = 𝑣𝑒𝑐(𝐵(𝑡)) ∈ R𝑔𝑝(𝑡) . Let
(𝑡) = 𝑣𝑒𝑐(𝑌 (𝑡)) and 𝛩(𝑡) = 𝐼𝑛 ⊗ 𝛥(𝑡); then, Eq. (1) is equivalent to

𝐲(𝑡) ∼ 𝑁𝑛𝑝(𝑡) (𝑍𝜷(𝑡), 𝛩(𝑡)).
Structured variable selection prior. Our aim is to identify ge-

nomic markers associated with the PC scores, which translates to
identifying the nonzero coefficients 𝐵(𝑡) in the model in Eq. (1). The
genomic markers could themselves be correlated or have an inher-
ent dependence structure (e.g. similar biological function or signaling
pathway). We incorporate this information within the variable selec-
tion framework by proposing a generalization of structured contin-
uous spike-and-slab priors as follows (George and McCulloch, 1997;
Andersen et al., 2014):

𝛽(𝑡,𝑚)𝑘𝑗
|

|

|

𝜁 (𝑡,𝑚)𝑘 , 𝜈2𝑘𝑗
(𝑡,𝑚) 𝑖𝑛𝑑∼ 𝑁

(

0,
[

(1 − 𝜁 (𝑡,𝑚)𝑘 )𝑣0 + 𝜁 (𝑡,𝑚)𝑘 𝑣1
]

𝜈2𝑘𝑗
(𝑡,𝑚)),

𝜁 (𝑡,𝑚)𝑘
|

|

|

𝜆(𝑡,𝑚)𝑘
𝑖𝑛𝑑∼ 𝐵𝑒𝑟(𝛷(𝜆(𝑡,𝑚)𝑘 )), (2)

𝝀(𝑡,𝑚) 𝑖𝑛𝑑∼ 𝑁(𝝁(𝑡,𝑚), 𝛬),

for all 𝑘, 𝑗, 𝑡, 𝑚, where 𝜂2𝑘𝑗
(𝑡,𝑚) ∶=

[

(1 − 𝜁 (𝑡,𝑚)𝑘 )𝑣0 + 𝜁 (𝑡,𝑚)𝑘 𝑣1
]

𝜈2𝑘𝑗
(𝑡,𝑚) is the

hypervariance of 𝛽(𝑡,𝑚)𝑘𝑗 with 0 < 𝑣0 ≪ 𝑣1. The indicator 𝜁 (𝑡,𝑚)𝑘 takes
values 1 and 0 with probability 𝛷(𝜆(𝑡,𝑚)𝑘 ) and (1−𝛷(𝜆(𝑡,𝑚)𝑘 )), respectively.
Here 𝛷(⋅) is the cumulative distribution function of a standard normal
distribution. Note that any suitable injective function could be chosen
instead of 𝛷. We use a Gamma prior on 𝜈−2𝑘𝑗

(𝑡,𝑚) with 𝑎1 and 𝑎2 as the
shape and rate parameters, respectively. If 𝜁 (𝑡,𝑚)𝑘 = 1, the hypervariance
for 𝛽(𝑡,𝑚)𝑘𝑗 is dictated by the prior on 𝜈−2𝑘𝑗

(𝑡,𝑚); when 𝜁 (𝑡,𝑚)𝑘 = 0, the
hypervariance 𝑣0𝜈2𝑘𝑗

(𝑡,𝑚) is small in magnitude allowing for shrinkage

of the coefficient 𝛽(𝑡,𝑚)𝑘𝑗 toward zero. For this purpose, 𝑣0 is chosen to be
a much smaller positive number than 𝑣1, encouraging the exclusion of
much smaller nonzero effects. We use an inverse-Wishart (IW) prior on
the covariance matrix 𝛥(𝑡) as 𝛥(𝑡) 𝑖𝑖𝑑∼ 𝐼𝑊 (𝛿, 𝛹 ), where 𝛿 is the degrees of
freedom and 𝛹 is the scale matrix.

The indicator 𝜁 (𝑡,𝑚)𝑘 corresponds to the genomic marker 𝑘 across all
PC scores 𝑗. That is, at each level 𝑡 and imaging modality 𝑚, genomic
marker 𝑘 is assumed to be correlated with the entire voxel intensity
PDF, and not just some of its features. This structure is built-in with the
assumption that we are interested in associations of genomic markers
with imaging sequences as a whole, and not just associations with
specific PCs within an imaging sequence.

Borrowing strength using 𝝁(𝑡,𝑚) and 𝛬. In essence, our model
breaks down the components of a usual multiple-multivariate regres-
sion, into a sequence of such separate models for each layer 𝑡 ∈
𝑇 . The dependence structure between the responses and hence, the
corresponding regression coefficients is captured through the hyper-
parameters in our model specification. For 𝑡 = 1, we choose a fairly
vague prior by considering 𝝁(1,𝑚) = 𝟎. However, for the model at layer
𝑡 > 1, we incorporate information from the estimation for models at the
previous layers 1,… , (𝑡 − 1). We do so through a sequential posterior
updating of the layer-specific parameters. Let 𝝀̂(𝑠,𝑚) be the posterior
estimate of 𝝀(𝑠,𝑚) for 𝑠 < 𝑡; then, some potential choices for 𝝁(𝑡,𝑚) include

1. 𝝁(𝑡,𝑚) = 𝛼𝝀̂(𝑡−1,𝑚) + (1 − 𝛼)𝟎, where 𝛼 ∈ [0, 1];
2. 𝝁(𝑡,𝑚) =

∑𝑡−1
𝑠=1 𝛼𝑠𝝀̂

(𝑡−𝑠,𝑚) + 𝛼𝑡𝟎, such that ∑𝑡
𝑠=1 𝛼𝑠 = 1;

3. 𝝁(𝑡,𝑚) =
∑𝑡−1

𝑠=1 𝛼𝑠𝝀̂
(𝑡−𝑠,𝑚) for 𝛼𝑠 ∈ R;

4. 𝝁(𝑡,𝑚) = 𝛼𝝀̂(𝑡−1,𝑚)+ , where 𝜆̂(𝑡−1,𝑚)𝑘,+ = max(𝜆̂(𝑡−1,𝑚)𝑘 , 0) for 𝑘 = 1,… , 𝑔
and 𝛼 ∈ [0, 1].

The first choice centers the prior on 𝝀(𝑡,𝑚) based only on the estimates
from the previous layer (𝑡−1). The second choice centers the prior in the
convex hull created by estimates from all previous layers 1,… , (𝑡 − 1).
The third choice induces an auto-regressive structure on the estimates
from all previous layers 1,… , (𝑡 − 1). The fourth choice places higher
prior probability of selection on those columns of 𝑋 which were
selected during the estimation for the previous layer (𝑡 − 1). That is,

(𝑡,𝑚)
5

predictor 𝑘 will have a higher chance of selection (𝜁𝑘 = 1) in layer
Fig. 4. Marginal prior selection probability 𝛷(𝜆(𝑡,𝑚)𝑘 ) (evaluated at 𝜆(𝑡,𝑚)𝑘 = 𝜇(𝑡,𝑚)
𝑘 =

𝛼𝜆̂(𝑡−1,𝑚)𝑘,+ ) versus the marginal posterior selection probability 𝛷(𝜆̂(𝑡−1,𝑚)𝑘 ) when 𝛬𝑘𝑘 = 1.

𝑡 for imaging sequence 𝑚 when 𝜆(𝑡,𝑚)𝑘 > 0. However, 𝜆(𝑡,𝑚)𝑘 > 0 has
higher probability of occurrence if 𝜇(𝑡,𝑚)

𝑘 > 0. The construction of
𝝁(𝑡,𝑚) in the fourth choice above ensures 𝜇(𝑡,𝑚)

𝑘 ≥ 0. Note that this
choice does not penalize the selection of the predictor 𝑘 in case it
was not selected for the previous layer (𝑡 − 1). That is, the marginal
rior probability of selection for that predictor at layer 𝑡 will be 0.5.

This induces a non-informative prior for those predictors that were not
selected and lets the data dictate its posterior selection probability at
layer 𝑡. In Fig. 4, for different choices of 𝛼, we plot the marginal prior
selection probability 𝛷(𝜆(𝑡,𝑚)𝑘 ) (evaluated at 𝜆(𝑡,𝑚)𝑘 = 𝜇(𝑡,𝑚)

𝑘 = 𝛼𝜆̂(𝑡−1,𝑚)𝑘,+ )
f gene 𝑘 for imaging sequence 𝑚 at layer 𝑡, versus the marginal
osterior selection probability 𝛷(𝜆̂(𝑡−1,𝑚)𝑘 ) at layer (𝑡 − 1) when 𝛬𝑘𝑘 = 1.

For example, if 𝜆̂(𝑡−1,𝑚)𝑘 = 1, then predictor 𝑘 has marginal posterior
selection probability 𝛷(𝜆̂(𝑡−1,𝑚)𝑘 ) = 0.84 for imaging sequence 𝑚 at layer
(𝑡 − 1). In this case, the marginal prior selection probability 𝛷(𝜆(𝑡,𝑚)𝑘 )
at layer 𝑡 is 0.60, 0.69 and 0.84 when 𝛼 = 0.25, 0.5 and 1, respectively.
The marginal prior selection probability 𝛷(𝜆(𝑡,𝑚)𝑘 ) = 0.5 at layer 𝑡 when
𝜆̂(𝑡−1,𝑚)𝑘 ≤ 0.

We focus on the fourth case for the simulations and case study.
Nevertheless, our estimation process proceeds in a sequential manner
in 𝑡, where the estimation for model at layer 𝑡 borrows information from
the model for layer (𝑡 − 1), and possibly other previous layers. In the
prior specification in Eq. (2), the parameter 𝜆(𝑡,𝑚)𝑘 serves as a structural
parameter as its prior can be used to incorporate any dependence
in the columns of 𝑋. The correlation structure between the genomic
markers is incorporated into the prior for 𝝀(𝑡,𝑚) = (𝜆(𝑡,𝑚)1 ,… , 𝜆(𝑡,𝑚)𝑔 )⊤
through its covariance specification 𝛬. If a certain genomic marker 𝑘
is associated with the PC scores from imaging sequence 𝑚 and layer
𝑡, then we assume that other positively correlated genomic markers
might also have a similar association. This assumption is driven by
the fact that voxels from the boundaries of the spherical layers are
contiguous objects with potentially similar characteristics. This can be
incorporated through a graph Laplacian or other choice of network
structure-based covariance matrix 𝛬. If 𝝁(𝑡,𝑚) = 𝟎 and 𝛬 = 𝐼𝑔 , then
the joint prior on 𝜁 (𝑡,𝑚)𝑘 and 𝝀(𝑡,𝑚) reduces to 𝜁 (𝑡,𝑚)𝑘

𝑖𝑛𝑑∼ 𝐵𝑒𝑟(𝜐(𝑡,𝑚)𝑘 ) with
𝜐(𝑡,𝑚)𝑘

𝑖𝑖𝑑∼ 𝑈 (0, 1).
Role of 𝝁(𝑡,𝑚) and 𝛬. While 𝝁(𝑡,𝑚) incorporates the layered de-

pendence structure between responses for the selection of regression
coefficients, 𝛬 incorporates the correlation between the columns of 𝑋,
and hence places higher prior probability of joint selection for any
two correlated columns 𝑘 and 𝑘′. On the other hand, 𝝁(𝑡,𝑚) induces
prior dependence for the same column across various layers 𝑡. In other
words, 𝝁(𝑡,𝑚)

𝑘 centers the prior probability of selection for column 𝑘
in layer 𝑡, based on its selection in previous layers. As a result, 𝝁(𝑡,𝑚)

and 𝛬 contribute complementary information to the model and jointly
contribute towards the selection of the regression coefficients.

4. Estimation and model selection

The full posterior distribution corresponding to the parameters of

the model in Eq. (1) with the prior structure considered in Eq. (2) is
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given in Section S2.1. Due to the multiple-multivariate regression setup,
we have 𝑔 × 𝑝(𝑡) coefficients (𝛽𝑘𝑗) and/or |𝑀| × 𝑔 posterior inclusion
probabilities to sequentially estimate for each model at layer 𝑡. A full
MCMC-based estimation can be employed, but the computation time
would be additive with each additional spherical layer included, as the
estimation is required to be sequential based on the model formulation.
As a faster alternative to MCMC, we consider the EM-based strategy to
variable selection as proposed by Ročková and George (2014). This EM-
based estimation approach is a deterministic alternative to commonly
used stochastic search algorithms, which exploits the prior formulation
to rapidly find posterior modes. We emphasize that the EM-based
estimation presented in this work is an adaptation of Ročková and
George (2014) to the multiple-multivariate regression setting. We dis-
cuss sequential estimation using EM and describe the model selection
procedure below.

4.1. Sequential EM updating

Our implementation of the EM-based estimation approach indirectly
maximizes the parameter posterior given by 𝜋(𝛽(𝑡,𝑚)𝑘𝑗 ,𝝀(𝑡,𝑚), 𝜈−2𝑘𝑗

(𝑡,𝑚), 𝛥(𝑡)

|𝐲(𝑡)), by proceeding iteratively over the complete-data log posterior
log𝜋(𝛽(𝑡,𝑚)𝑘𝑗 , 𝜁 (𝑡,𝑚)𝑘 ,𝝀(𝑡,𝑚), 𝜈−2𝑘𝑗

(𝑡,𝑚), 𝛥(𝑡)
|𝐲(𝑡)), where 𝜁 (𝑡,𝑚)𝑘 are treated as miss-

ing data. At each iteration, the complete-data log posterior is replaced
by its conditional expectation given the observed data and the current
parameter estimates; this forms the E-Step. The expected complete-
data log posterior is then maximized with respect to (w.r.t.) 𝝌 (𝑡) =
(𝛽(𝑡,𝑚)𝑘𝑗 ,𝝀(𝑡,𝑚), 𝜈−2𝑘𝑗

(𝑡,𝑚), 𝛥(𝑡)) for all 𝑚, 𝑗, 𝑘, which constitutes the M-Step. It-
erating between the E-Step and M-Step generates a sequence of param-
eter estimates, which converge monotonically to the local maximum of
𝜋(𝝌 (𝑡)

|𝐲(𝑡)), under appropriate regularity conditions.
The expression for the complete-data log posterior is given in Sec-

tion S2.1. For the 𝑢th iteration of the algorithm, conditional expectation
of the complete-data log posterior is given by

𝑄
(

𝛽(𝑡,𝑚)𝑘𝑗 ,𝝀(𝑡,𝑚), 𝜈−2𝑘𝑗
(𝑡,𝑚), 𝛥(𝑡)

|𝛽(𝑡,𝑚),(𝑢)𝑘𝑗 ,𝝀(𝑡,𝑚),(𝑢), 𝜈−2𝑘𝑗
(𝑡,𝑚),(𝑢), 𝛥(𝑡),(𝑢)

)

= 𝐸𝜻 (𝑡)|𝝌 (𝑡),(𝑢)

[

log
(

𝜋(𝛽(𝑡,𝑚)𝑘𝑗 , 𝜁 (𝑡,𝑚)𝑘 ,𝝀(𝑡,𝑚), 𝜈−2𝑘𝑗
(𝑡,𝑚), 𝛥(𝑡)

|𝐲(𝑡))
)

]

, (3)

where 𝐸𝜻 (𝑡)|𝝌 (𝑡),(𝑢) is a conditional expectation with 𝝌 (𝑡),(𝑢) = (𝛽(𝑡,𝑚),(𝑢)𝑘𝑗 ,

(𝑡,𝑚),(𝑢), 𝜈−2𝑘𝑗
(𝑡,𝑚),(𝑢), 𝛥(𝑡),(𝑢)) for all 𝑚, 𝑗, 𝑘 and 𝜻 (𝑡) = (𝜁 (𝑡,𝑚)𝑘 )𝑚,𝑘. For the

𝑢 + 1)th iteration in the EM algorithm, we (i) find the expectation
n Eq. (3) to obtain the 𝑄-function, and (ii) maximize the 𝑄-function
.r.t. 𝝌 (𝑡) to obtain new estimates 𝝌 (𝑡),(𝑢+1).

.1.1. The E-step
As the conditional expectation is computed w.r.t. 𝜁 (𝑡,𝑚)𝑘 , we note that

he only two terms in the complete-data log posterior involving 𝜁 (𝑡,𝑚)𝑘
re the terms arising from the prior for 𝛽(𝑡,𝑚)𝑗 and the prior for 𝜁 (𝑡,𝑚)𝑘 .
fter some algebra (see Section S2.2), we see that these two terms are
iven by

∑

𝑘,𝑗,𝑚

1
2
log(𝜈2𝑘𝑗

(𝑡,𝑚)) +
(𝛽(𝑡,𝑚)𝑘𝑗 )2

2𝜈2𝑘𝑗
(𝑡,𝑚)

𝐸
𝜻 (𝑡)

|

|

|

𝝌 (𝑡),(𝑢)

[ 1
(1 − 𝜁 (𝑡,𝑚)𝑘 )𝑣0 + 𝜁 (𝑡,𝑚)𝑘 𝑣1

]

,

nd

𝑘,𝑚
log(1 −𝛷(𝜆(𝑡,𝑚)𝑘 )) + 𝐸

𝜻 (𝑡)
|

|

|

𝝌 (𝑡),(𝑢)
[𝜁 (𝑡,𝑚)𝑘 ] log

𝛷(𝜆(𝑡,𝑚)𝑘 )

1 −𝛷(𝜆(𝑡,𝑚)𝑘 )
.

To complete the E-Step, the two expectations we need to compute are
given by

𝑤(𝑡,𝑚)
𝑘 ∶= 𝐸

𝜻 (𝑡)
|

|

|

𝝌 (𝑡),(𝑢)
[𝜁 (𝑡,𝑚)𝑘 ],

nd
(𝑡,𝑚)
𝑘 ∶= 𝐸

𝜻 (𝑡)
|

|𝝌 (𝑡),(𝑢)

[ 1
(𝑡,𝑚) (𝑡,𝑚)

]

.
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|

(1 − 𝜁𝑘 )𝑣0 + 𝜁𝑘 𝑣1 e
Note then that 𝑤(𝑡,𝑚)
𝑘 = 𝑃 (𝜁 (𝑡,𝑚)𝑘 = 1||

|

𝝌 (𝑡),(𝑢)) =
𝑎(𝑡,𝑚)𝑘

𝑎(𝑡,𝑚)𝑘 +𝑏(𝑡,𝑚)𝑘
, where 𝑎(𝑡,𝑚)𝑘 and

𝑏(𝑡,𝑚)𝑘 are defined in Equations (S1) and (S2), respectively. To compute
𝑑(𝑡,𝑚)𝑘 , we note than when 𝜁 (𝑡,𝑚)𝑘 ∈ {0, 1}, we have ((1 − 𝜁 (𝑡,𝑚)𝑘 )𝑣0 +

𝜁 (𝑡,𝑚)𝑘 𝑣1)−1 =
1−𝜁 (𝑡,𝑚)𝑘

𝑣0
+

𝜁 (𝑡,𝑚)𝑘
𝑣1

, almost surely. Hence, 𝑑(𝑡,𝑚)𝑘 =
1−𝑤(𝑡,𝑚)

𝑘
𝑣0

+
𝑤(𝑡,𝑚)
𝑘
𝑣1

.

4.1.2. The M-step
Once we compute 𝑤(𝑡,𝑚)

𝑘 and 𝑑(𝑡,𝑚)𝑘 in the E-step, we focus on max-
imizing the expected log posterior, i.e., the 𝑄-function, w.r.t. other
parameters. The 𝑄-function, which is a function of 𝝌 (𝑡) = (𝛽(𝑡,𝑚)𝑘𝑗 ,𝝀(𝑡,𝑚),
𝜈−2𝑘𝑗

(𝑡,𝑚), 𝛥(𝑡)) for all 𝑚, 𝑗, 𝑘, can be split into three terms as

𝑄(𝝌 (𝑡)
|𝝌 (𝑡),(𝑢)) = 𝑄1(𝛽

(𝑡,𝑚)
𝑘𝑗 , 𝜈−2𝑘𝑗

(𝑡,𝑚), 𝛥(𝑡)
|𝛽(𝑡,𝑚),(𝑢)𝑘𝑗 , 𝜈−2𝑘𝑗

(𝑡,𝑚),(𝑢), 𝛥(𝑡),(𝑢))

+𝑄2(𝝀(𝑡,𝑚)|𝝀(𝑡,𝑚),(𝑢)) + 𝑐𝑜𝑛𝑠𝑡,

where 𝑄1 only depends on 𝛽(𝑡,𝑚)𝑘𝑗 , 𝜈−2𝑘𝑗
(𝑡,𝑚) and 𝛥(𝑡), and 𝑄2 depends on

𝝀(𝑡,𝑚). The complete forms of 𝑄1 and 𝑄2 are given in Section S2.3.
Completing the EM-based estimation procedure, we maximize 𝑄 w.r.t.
𝝌 (𝑡), i.e., we maximize 𝑄1 w.r.t. 𝛽(𝑡,𝑚)𝑘𝑗 , 𝜈−2𝑘𝑗

(𝑡,𝑚) and 𝛥(𝑡), and 𝑄2 w.r.t.
𝝀(𝑡,𝑚). The objective functions for all of the maximization problems are
provided in Section S2.4.

Maximizing 𝑄1 w.r.t. 𝛽(𝑡,𝑚)𝑘𝑗 . Assuming we have the parameters
𝜈2𝑘𝑗

(𝑡,𝑚),(𝑢), 𝛥(𝑡),(𝑢) at iteration 𝑢 and the value 𝑑(𝑡,𝑚),(𝑢+1)𝑘 at iteration
(𝑢 + 1), maximizing Equation (S3) is equivalent to finding the max-
imum a-posteriori (MAP) estimate of a Bayesian regression 𝐲(𝑡) ∼
𝑁𝑛𝑝(𝑡) (𝑍𝜷(𝑡), 𝛩(𝑡)) with the prior 𝜷(𝑡) ∼ 𝑁(𝟎,𝜞 (𝑡)). Thus, the update (MAP
estimate) for 𝜷(𝑡) is given by

𝜷(𝑡),(𝑢+1) = 𝜮(𝑡),(𝑢)𝑍⊤(𝛩(𝑡),(𝑢))−1𝐲,

here 𝜮(𝑡),(𝑢) =
(

𝑍⊤(𝛩(𝑡),(𝑢))−1𝑍 + (𝜞 (𝑡),(𝑢))−1
)−1, 𝜞 (𝑡) = 𝑑𝑖𝑎𝑔(𝜈(𝑡,𝑚)𝑘𝑗 ∕𝑑(𝑡,𝑚)𝑘 )

nd 𝜞 (𝑡),(𝑢) = 𝑑𝑖𝑎𝑔(𝜈(𝑡,𝑚),(𝑢)𝑘𝑗 ∕𝑑(𝑡,𝑚),(𝑢+1)𝑘 ).
Maximizing 𝑄1 w.r.t. 𝜈−2𝑘𝑗

(𝑡,𝑚). Each term inside the product in
quation (S4) is the kernel of a Gamma distribution for 𝜈−2𝑘𝑗

(𝑡,𝑚). As-
uming we have the parameters 𝜷(𝑡),(𝑢+1), 𝛥(𝑡),(𝑢) at iteration (𝑢 + 1), the
pdate for 𝜈−2𝑘𝑗

(𝑡,𝑚) (maximizer of Equation (S4)) for each 𝑚, 𝑘, 𝑗 is given
y

−2
𝑘𝑗

(𝑡,𝑚),(𝑢+1) =
(

𝑎1 −
1
2

)/(

𝑎2 +
(𝛽(𝑡,𝑚),(𝑢+1)𝑘𝑗 )2𝑑(𝑡,𝑚),(𝑢+1)𝑘

2

)

,

where 𝑎1 >
1
2 .

Maximizing 𝑄1 w.r.t. 𝛥(𝑡). Equation (S5) is the kernel of a Wishart
distribution for (𝛥(𝑡))−1; thus, its maximizer is the mode of the cor-
esponding Wishart distribution. Assuming we have the parameters
(𝑡),(𝑢+1) at iteration (𝑢 + 1), the update for (𝛥(𝑡))−1 is given by

𝛥(𝑡),(𝑢+1))−1 = (𝑛 + 𝛿 + 𝑝(𝑡) + 1)
[

𝛹 + (𝑌 (𝑡) −𝑋𝐵(𝑡))⊤(𝑌 (𝑡) −𝑋𝐵(𝑡))
]−1.

Maximizing 𝑄2 w.r.t. 𝝀(𝑡,𝑚). The posterior for 𝝀(𝑡,𝑚) does not arise
rom a standard distribution. Thus, we resort to numerical methods,
pecifically gradient descent, to find the solution for the optimization
n Equation (S6), to compute the update for 𝝀(𝑡,𝑚) at iteration (𝑢 + 1).
he first derivative of the objective function 𝐹 (𝝀(𝑡,𝑚)) is given by

𝐹 (𝝀(𝑡,𝑚)) = (𝝀(𝑡,𝑚) − 𝝁(𝑡,𝑚))⊤𝛬−1 − (𝑠(𝑡,𝑚)1 ,… , 𝑠(𝑡,𝑚)𝑔 ),

here

(𝑡,𝑚)
𝑘 = −

(1 −𝑤(𝑡,𝑚)
𝑘 )𝜙(𝜆(𝑡,𝑚)𝑘 )

1 −𝛷(𝜆(𝑡,𝑚)𝑘 )
+

𝑤(𝑡,𝑚)
𝑘 𝜙(𝜆(𝑡,𝑚)𝑘 )

𝛷(𝜆(𝑡,𝑚)𝑘 )
.

hen, the update at the (𝑟 + 1)th iteration of the gradient descent
algorithm is given by

𝝀(𝑡,𝑚),(𝑢+1,𝑟+1) = 𝝀(𝑡,𝑚),(𝑢+1,𝑟) − 𝜅∇𝐹 (𝝀(𝑡,𝑚),(𝑢+1,𝑟)),

here 𝜅 is the learning rate. This learning rate can be modified within
(𝑡,𝑚),(𝑢+1,0)
ach iteration to speed up convergence. The initial value 𝝀
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at iteration (𝑢 + 1) of the EM algorithm can be set as the solution of
quation (S6) at iteration 𝑢. This solution for 𝝀(𝑡,𝑚) is used to assign the
rior mean for 𝝀(𝑡+1,𝑚) as 𝝁(𝑡+1,𝑚) = 𝛼𝝀̂(𝑡,𝑚)+ .

One of the major drawbacks of the EM algorithm is its potential to
et trapped in a local maximum. A possible solution for this is to run the
lgorithm with different starting values. In our estimation approach, we
onsider the deterministic annealing variant of the EM algorithm (Ueda
nd Nakano, 1998), referred to as the DAEM algorithm, which improves
he chance of finding the global maximum (see Section S2.5 for details).
ll of the results presented in this paper are based on the DAEM
lgorithm. We denote the DAEM algorithm-based estimates for the
arameters in our model by 𝝌̂ (𝑡).

.2. Model selection

Once we have the estimates of the parameters 𝝌̂ (𝑡), we can compute
he posterior inclusion probabilities for predictor 𝑘 in layer 𝑡 and
maging sequence 𝑚 as 𝑤̂(𝑡,𝑚)

𝑘 = 𝑃 (𝜁 (𝑡,𝑚)𝑘 = 1|𝝌̂ (𝑡)) using Equation
S8). In terms of variable selection, we set 𝜁 (𝑡,𝑚)𝑘 = 1 when 𝑃 (𝜁 (𝑡,𝑚)𝑘 =
|𝝌̂ (𝑡))⟩0.5, and set 𝜁 (𝑡,𝑚)𝑘 = 0 otherwise. Note that 𝑣0 and 𝑣1 are fixed
yperparameters and their choice determines the solution set 𝜻̂ (𝑡). The
peed of the EM algorithm makes it feasible to obtain solution sets 𝜻̂ (𝑡)

or multiple choices of 𝑣0 while fixing 𝑣1. As 𝑣0 is increased, we see
hat more coefficients with smaller magnitude get absorbed by the spike
istribution, leading to sparser models. We consider a grid of values for
0, fix 𝑣1 to be significantly larger than 𝑣0, and obtain solutions for each
ombination of 𝑣0 and 𝑣1. We denote the solution set corresponding to
he choice of 𝑣0 as 𝑆(𝑣0) =

{

(𝑚, 𝑘, 1),… , (𝑚, 𝑘, 𝑝(𝑡,𝑚))|𝜁 (𝑡,𝑚)𝑘 = 1 ∀ 𝑚 ∈
, 𝑘 ∈ {1,… , 𝑔} and 𝑡 ∈ {1,… , 𝜏}

}

.
We calculate the Bayesian Information Criterion (BIC) across all

ayers 𝑡, once the set of coefficients to be included in the models
as been identified. This is expressed as: 𝐵𝐼𝐶 =

∑𝜏
𝑡=1 −2

[

𝐾 (𝑡) log(𝑛) +
log𝜋(𝑌 (𝑡)

|𝛽(𝑡,𝑚)𝑘𝑗 , 𝛥(𝑡))
]

, where 𝐾 (𝑡) = #{𝛽(𝑡,𝑚)𝑘𝑗 ≠ 0|𝑚, 𝑘, 𝑗} is the number of
onzero coefficients included in the model for layer 𝑡. The final model
s based on the inclusion of coefficients, which minimize the 𝐵𝐼𝐶. We
utline the overall step-by-step procedure from constructing the PC
cores to final model selection in Algorithm 1.

. Simulation study

In this section, we demonstrate the effectiveness of our approach
hrough simulation studies under different scenarios. We do not directly
imulate the MRI images; instead we simulate 𝑌 (𝑡) corresponding to the
C scores for each layer 𝑡. To generate the matrix 𝑋 = [𝐱1,… , 𝐱𝑛]⊤ ∈
𝑛×𝑔 of 𝑔 genomic markers for 𝑛 subjects, we simulate 𝐱𝑖 indepen-
ently from 𝑁𝑔(𝟎, 𝛴(𝑥)) for 𝑖 = 1,… , 𝑛, where 𝛴(𝑥) is the covariance

matrix which can be specified to induce different correlation structures
between the columns of 𝑋. We broadly consider two cases for our
simulation study: the response 𝑌 (𝑡) is (i) generated from the model, and
(ii) generated directly based on fixed coefficients 𝐵(𝑡).

Case 1: 𝑌 (𝑡) is generated from the model. In this case, we want to
assess the performance of the proposed approach when the response
𝑌 (𝑡) is generated directly from the model in Eq. (1), with the prior
structure in Eq. (2). The step-by-step procedure to generate the data is
described as an algorithm in Section S3. We construct subcases defined
by different choices of 𝛹 , which incorporates the correlation structure
between the columns of 𝑌 (𝑡). For simplicity, we consider 𝛹 = 𝜎2𝐼𝑝,
where 𝑝 = 𝑝(𝑡) for all 𝑡, indicating that the number of columns of 𝑌 (𝑡)

is the same for all 𝑡. Here, 𝜎2 acts as the noise parameter that controls
the variance in the columns of 𝑌 (𝑡). The dependence structure across the
layers 𝑡 and imaging sequences 𝑚 is incorporated through the parameter
𝝁(𝑡,𝑚), as described in Section 3.
7

h

Algorithm 1 Outline of the statistical framework

1: Construct layer-wise kernel density estimates 𝑓 (𝑡,𝑚)
𝑖 as described in

Algorithm S1 for all subjects 𝑖 = 1,… , 𝑛, spherical layers 𝑡 = 1,… , 𝜏
and MRI sequence 𝑚 ∈ 𝑀 .

2: Consider 𝑋 ∈ R𝑛×𝑔 as the gene expression matrix for LGG-genes.
3: for each layer 𝑡 = 1,… , 𝜏 do
4: for each MRI sequence 𝑚 ∈ 𝑀 do
5: Compute the PC scores 𝑌 (𝑡,𝑚) ∈ R𝑛×𝑝(𝑡,𝑚) using PCA in

Algorithm S3.
6: Define 𝑌 (𝑡) = [𝑌 (𝑡,𝐹𝐿𝐴𝐼𝑅); 𝑌 (𝑡,𝑇 1); 𝑌 (𝑡,𝑇 1𝐺𝑑); 𝑌 (𝑡,𝑇 2)] ∈ R𝑛×𝑝(𝑡) .
7: for each 𝑣0 ∈ Set of values to consider do
8: for each layer 𝑡 = 1,… , 𝜏 do
9: Bayesian Modeling:

𝑌 (𝑡) ∼ 𝑁𝑛,𝑝(𝑡) (𝑋𝐵(𝑡), 𝐼𝑛 ⊗ 𝛥(𝑡)),

𝛽(𝑡,𝑚)𝑘𝑗
𝑖𝑛𝑑∼ 𝑁

(

0,
[

(1 − 𝜁 (𝑡,𝑚)𝑘 )𝑣0 + 𝜁 (𝑡,𝑚)𝑘 𝑣1
]

𝜈2𝑘𝑗
(𝑡,𝑚)),

𝜁 (𝑡,𝑚)𝑘
𝑖𝑛𝑑∼ 𝐵𝑒𝑟(𝛷(𝜆(𝑡,𝑚)𝑘 )),

𝝀(𝑡,𝑚) 𝑖𝑛𝑑∼ 𝑁(𝝁(𝑡,𝑚), 𝛬),

𝜈−2𝑘𝑗
(𝑡,𝑚) 𝑖𝑖𝑑∼ 𝐺𝑎𝑚𝑚𝑎(𝑎1, 𝑎2),

𝛥(𝑡) 𝑖𝑖𝑑∼ 𝐼𝑊 (𝛿, 𝛹 ).

10: Estimation (Section 4) with deterministic annealing:
a: E-Step: Compute the E-Step as described in Section 4.1.1.
b: M-Step: Sequentially maximize 𝑄1 w.r.t. 𝛽(𝑡,𝑚)𝑘𝑗 , 𝜈−2𝑘𝑗

(𝑡,𝑚), 𝛥(𝑡)

and 𝑄2 w.r.t. 𝝀(𝑡,𝑚).
11: Model Selection: Choose the model corresponding to that 𝑣0, which

minimizes the BIC as described in Section 4.2.

We use 𝑛 = 100 samples, 𝑝 = 12 columns in each 𝑌 (𝑡) with 𝑝(𝑡,𝑚) = 3
or all 𝑚 ∈ 𝑀 and 𝑡 ∈ 𝑇 , 𝑔 = 20 genomic markers, and 𝜏 = 3 layers.

e consider two choices for the covariance in the columns of 𝑋: (i)
(𝑥) = 𝐼𝑔 , indicating no correlation between the genomic markers, and

ii) 𝛴(𝑥) as a (2 × 2)-block matrix, where 𝛴(𝑥)
11 =

(

(𝛴(𝑥)
11 )

)

1≤𝑖,𝑗≤10 with

𝛴(𝑥)
11 )𝑖𝑗 = 10 if 𝑖 = 𝑗 and 9 otherwise, 𝛴(𝑥)

12 = 𝛴(𝑥)
21 = 𝟎 and 𝛴(𝑥)

22 = 𝐼10.
he second choice of 𝛴(𝑥) indicates two groups of genomic markers,
ith one group having high between-group correlation and the other
roup being uncorrelated. For the noise parameter, we consider 𝜎2 =
, 10, 20, 30. For each combination of 𝜎2 and 𝛴(𝑥), we replicate the
imulation 30 times.

Table S1 presents the complete results of EM-based estimation
nd subsequent model selection (as described in Section 3) for the
imulated data in Case 1. We include the true positive selection rate
TPR), the average absolute error for the inclusion probabilities 𝑤(𝑡,𝑚)

𝑘 ,
.e., 𝐸𝑤 = 1

𝑔|𝑀|𝜏
∑

𝑘,𝑚,𝑡 |𝜁
(𝑡,𝑚)
𝑘 − 𝑤̂(𝑡,𝑚)

𝑘 |, and the average squared error for
he estimates of 𝛽, i.e., 𝐸𝛽 = 1

𝑔𝑝|𝑀|𝜏
∑

𝑘,𝑗,𝑚,𝑡(𝛽
(𝑡,𝑚)
𝑘𝑗 − 𝛽(𝑡,𝑚)𝑘𝑗 )2. In Fig. 5,

e plot the average TPR across 30 simulations for the four scenarios
ased on different choices of 𝜎2 for the case 𝛴(𝑥) = 𝐼𝑔 , i.e., assuming
o correlation between the genomic markers. As the magnitude of the
oise 𝜎2 increases, the TPR decreases across all layers. In this case,
e also evaluate the performance of estimation while ignoring the
ependence between the layers, by setting 𝝁(𝑡,𝑚) = 𝟎 for all 𝑡; this
esult is shown as model (B) in Fig. 5. From the results for layers 2
nd 3, we see that including dependence across layers within the prior
f 𝝀(𝑡) improves the performance in terms of the TPR for all noise levels.
ote that these two scenarios perform similarly in layer 1 as we have
(1,𝑚) = 𝟎. The first panel in Table S1 shows these rates in more detail
long with 𝐸𝑤 and 𝐸𝛽 . Since 𝛴(𝑥) = 𝐼𝑔 and we use 𝛬 to denote the
orrelation matrix of 𝑋, i.e., 𝛬 = 𝑐𝑜𝑟(𝑋), we expect 𝛬 ≈ 𝐼𝑔 .
Comparative analysis. In Fig. 6, we consider the case where 𝛴(𝑥)
as a block structure and evaluate performance of the model under
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Fig. 5. Average TPR in each of the three layers for Case 1 when 𝛴(𝑥) = 𝐼𝑔 . Model (A):
(𝑡,𝑚) ≠ 𝟎;𝛬 = 𝑐𝑜𝑟(𝑋) ≈ 𝐼𝑔 . Model (B): 𝝁(𝑡,𝑚) = 𝟎;𝛬 = 𝑐𝑜𝑟(𝑋) ≈ 𝐼𝑔 .

our scenarios: (A) including both 𝝁(𝑡,𝑚) and 𝛬, (B) ignoring only 𝝁(𝑡,𝑚),
C) ignoring only 𝛬, and (D) ignoring both 𝝁(𝑡,𝑚) and 𝛬. Ignoring 𝝁(𝑡,𝑚)

orresponds to choosing 𝝁(𝑡,𝑚) = 𝟎 for all 𝑡; ignoring 𝛬 implies choosing
= 𝐼𝑔 . Scenario (A) refers to incorporating the structure as described

n Section 3; Scenario (B) is similar in spirit to other variable selection
pproaches (Li and Zhang, 2010; Vannucci and Stingo, 2010) that
ncorporate dependence in the covariates through the indicator variable
(while ignoring the layer structure); Scenarios (C) and (D) correspond

o vanilla Bayesian variable selection for each layer with uniform priors
n selection probabilities for 𝜁 (George and McCulloch, 1997). To
stablish comparison, we use the same data replications across all four
cenarios. We see that incorporating the structure in 𝑋 through the
yperparameter 𝛬 = 𝑐𝑜𝑟(𝑋), and borrowing information from previous
ayers for the mean 𝝁(𝑡,𝑚), yields better estimation performance in terms
f TPR, compared to having no structure by choosing 𝝁(𝑡,𝑚) = 𝟎 ∀ 𝑡 or
= 𝐼𝑔 , or both. This improvement in performance holds true for all

hoices of the noise parameter 𝜎2. Detailed results are shown in the
econd panel of Table S1. We have not included the false positive rates
n the results as they were less than 0.1% on average in all scenarios.
o the best of our knowledge, there are no other modeling frameworks
hat we could fairly compare with our proposed method that includes
ayer-wise modeling. However, LASSO-type regularization approaches
ave been used to identify imaging genetic associations in other appli-
ations (Du et al., 2016, 2020). Hence, we compared the estimation
nder a multivariate-multiple regression with LASSO penalty, which
ould be construed as a state-of-the-art approach, although it does not
ncorporate the layered nature of the responses. We observed high TPRs
ut also substantially higher false positive rates (for both Cases 1 and
). Results presented in Table S1 report the averages obtained across
0 replications and the corresponding standard deviations. Details of
he various hyperparameter choices in the data generation and model
8

stimation processes are given in Section S3. S
Fig. 6. Average TPR in each of the three layers for Case 1 when 𝛴(𝑥) is a (2×2)-block
matrix. Model (A): 𝝁(𝑡,𝑚) ≠ 𝟎;𝛬 = 𝑐𝑜𝑟(𝑋). Model (B): 𝝁(𝑡,𝑚) = 𝟎;𝛬 = 𝑐𝑜𝑟(𝑋). Model (C):
(𝑡,𝑚) ≠ 𝟎;𝛬 = 𝐼𝑔 . Model (D): 𝝁(𝑡,𝑚) = 𝟎;𝛬 = 𝐼𝑔 .

Case 2: 𝑌 (𝑡) is generated directly based on fixed 𝐵(𝑡). In this
ase, we evaluate the performance of our approach in identifying the
ssociations if they are indeed sequentially dependent across layers.
imilar to Case 1, we evaluate performance of the model under the
our scenarios (A)-(D). Each of these scenarios determines the choices
or 𝝁(𝑡,𝑚) and 𝛬 as described in Case 1.

We assume 𝑝 = 𝑝(𝑡) ∀ 𝑡 and consider fixed values of 𝐵(𝑡) for all
ayers 𝑡 = 1,… , 𝜏 = 3. We further assume that 𝑝(𝑡,𝑚) = 3 for all
, 𝑡 and 𝑔 = 20. The choice of 𝐵(𝑡) is considered so that the genomic
arkers which are associated with layer 𝑡 are based on the associations

n layers 1,… , (𝑡 − 1). These associations are built so that they do not
ecessarily need to hold across all imaging sequences. Specifically, we
onsider 𝐵(1) = block-diag(𝐵(1)

15,9, 𝟎), 𝐵(1) = block-diag(𝐵(2)
10,6, 𝟎), and

(1) = block-diag(𝐵(3)
5,3, 𝟎), where 𝐵(𝑡)

𝑟,𝑠 is an (𝑟 × 𝑠)-matrix whose entries
re filled by randomly sampling 𝑟𝑠 values from a double-exponential
istribution centered at 0 with scale parameter 𝜃. The value of 𝜃 acts as
he effect size, and we consider four choices: 𝜃 = 0.7, 0.8, 0.9, 1. We use
= 1,… , 4 to index the four MRI sequences. Here 𝐵(1) indicates that

he first 15 genomic markers are associated with all three PC scores
orresponding to 𝑚 = 1, 2, 3. As indicated by 𝐵(2), the first 10 of these
5 markers are further associated with all three PC scores for 𝑚 = 1, 2.
imilarly, from 𝐵(3) we see that the first five markers are associated
ith all three PC scores for 𝑚 = 1. We construct 𝑋 such that the first
5 columns are positively correlated with each other and uncorrelated
ith the next five (16-20) columns. The last five columns are also

onsidered to be positively correlated with each other. That is, we
onsider 𝛴(𝑥) as a (4 × 4)-block matrix as shown in Figure S6 of Section

(𝑡) (𝑡) (𝑡) 2
3. To generate 𝑌 , we first simulate 𝛥 ∼ 𝐼𝑊 (𝛿 = 𝑝 , 𝛹 = 𝜎 𝐼𝑔) with



Medical Image Analysis 90 (2023) 102964S. Mohammed et al.

m
𝝁

𝜎
i

a
o
d
a
i

(
o
a
m
v
L
w
e
b
3
d
e
o
c
6

w
t
d
o
𝐼
b
t
𝛹
W

Fig. 7. Average TPR in each of the three layers for Case 2 when 𝛴(𝑥) is a (4×4)-block
atrix. Model (A): 𝝁(𝑡,𝑚) ≠ 𝟎;𝛬 = 𝑐𝑜𝑟(𝑋). Model (B): 𝝁(𝑡,𝑚) = 𝟎;𝛬 = 𝑐𝑜𝑟(𝑋). Model (C):
(𝑡,𝑚) ≠ 𝟎;𝛬 = 𝐼𝑔 . Model (D): 𝝁(𝑡,𝑚) = 𝟎;𝛬 = 𝐼𝑔 .

2 = 20, which is one of the higher choices for the noise parameter
n Case 1. We then generate 𝑣𝑒𝑐(𝑌 (𝑡)) ∼ 𝑁𝑛𝑝(𝑡) (𝑣𝑒𝑐(𝑋𝐵(𝑡)), 𝐼𝑛 ⊗ 𝛥(𝑡))

and appropriately reshape 𝑣𝑒𝑐(𝑌 (𝑡)) to 𝑌 (𝑡) ∈ R𝑛×𝑝(𝑡) . This step-by-step
procedure of generating the data under Case 2 is provided in Section
S3.

We now discuss the results of the simulation study under Case 2.
Similar to Case 1, we present the TPR, 𝐸𝑤 and 𝐸𝛽 for each of the
𝜏 = 3 layers separately in Table S2. For each choice of the effect
size 𝜃, we present results corresponding to four scenarios, which are
determined based on incorporating (or ignoring) the structure through
𝝁(𝑡,𝑚) and 𝛬. Fig. 7 shows the average TPR under all four choices of
𝜃. We note that including the structure through 𝝁(𝑡,𝑚) and 𝛬 provides
higher values for TPR thereby improving performance, even for smaller
effect sizes. From Table S2, we see that by including this structure we
also obtain lower values for error metrics 𝐸𝑤 and 𝐸𝛽 . We note that
including the dependence structure in the columns of 𝑋, through 𝛬, has
a pronounced influence on the performance compared to ignoring it by
considering 𝛬 = 𝐼𝑔 . Including the structure between the layers through
𝝁(𝑡,𝑚) also has an incremental effect in the performance for all choices
of 𝜃. The results for layer 1 are similar for scenarios with 𝝁(𝑡,𝑚) = 0
nd 𝝁(𝑡,𝑚) ≠ 0 for fixed 𝛬 as 𝝁(1,𝑚) = 0. Table S2 reports the averages
btained across 30 replications, and are accompanied by the standard
eviations; false positive rates are not reported as they were negligible
cross all scenarios. Details of the hyperparameter choices are provided
n Section S3.
9
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6. Radiogenomic analysis in lower grade gliomas

We leverage the radiology-based imaging data from TCIA and the
genomic data from The Cancer Genome Atlas (TCGA; www.cancer.gov/
tcga) in the context of LGG, to understand the associations between
imaging phenotypes and genomic markers. In this section, we describe
the data acquisition and pre-processing steps, and present results from
our Bayesian modeling approach. A R package is provided with the
supplementary material that includes relevant data and code.

Imaging data. The imaging data acquired from TCIA contain pub-
licly available pre-operative multi-institutional MRI scans for the TCGA
LGG cohort. Specifically, we obtained MRI scans and the corresponding
tumor segmentation labels for 65 LGG subjects from Bakas et al.
(2017a,b). The segmentation labels were constructed using an auto-
mated segmentation method called GLISTRboost (Bakas et al., 2015).
One of the hurdles posed by MRI for statistical analysis is that the
voxel intensity values are not comparable either between study visits
for the same subject or across different subjects. Hence, it is required
to pre-process these images to perform intensity value normalization.
We employ a biologically motivated normalization technique using the
R package WhiteStripe for intensity normalization (Shinohara et al.,
2014). However, we discard imaging data for two subjects due to issues
with segmentation masks and intensity value normalization, leaving us
with a total of 63 LGG subjects with imaging data.

Imaging phenotypes. Gliomas contain various heterogeneous sub-
regions broadly categorized into three groups: necrosis and non-
enhancing core, edema, and enhancing core. These sub-regions reflect
differences in tumor biology, have variable histologic and genomic
phenotypes, and exhibit highly variable clinical prognosis (Bakas et al.,
2017b). Typically, the area of dead cells in the center is referred to
as necrosis or non-enhancing core, and the tissue swelling caused in
the outer region due to accumulation of fluid is referred to as edema
(https://mayfieldclinic.com/pe-braintumor.htm). Following suit, we
divide the tumor region for each subject into 𝜏 = 3 spherical shells,
i.e., one inner sphere and two spherical shells. For each subject, we
follow the procedure described in Algorithm S1 to construct the PDFs
corresponding to the three spherical shells. The PDFs estimated in each
layer are used to construct the PC scores 𝑌 (𝑡), which act as the imaging
phenotypes.

Genomic data. We obtained the genomic data from LinkedOmics
Vasaikar et al., 2017), a publicly available portal that includes multi-
mics data from multiple cancer types in TCGA. The genomic data we
cquire are normalized gene-level RNA sequencing data from the Illu-
ina HiSeq system (high-throughput sequencing) with the expression

alues on the log2 scale. This data is obtained for all of the 63 matched
GG subjects across 20086 genes. We focus our analysis on LGG-genes,
hich are genes specifically reported as cancer drivers in LGG (Bailey
t al., 2018). The cancer driver genes were cataloged as driver genes
ased on a PanCancer and PanSoftware analysis (comprising of all
3 TCGA projects and several computational tools). The set of cancer
river genes for LGG includes the 24 genes reported in Table S3, whose
xpression profile was retrieved from the expression of the full set
f genes from LinkedOmics. We work with the gene expression data
orresponding to these 24 LGG-genes as the genomic markers for the
3 subjects.
Prior elicitation. For our statistical analysis of the LGG data,

e choose 𝝁(𝑡,𝑚) = 𝛼𝝀̂(𝑡−1,𝑚)+ , which prioritizes selection of genes in
he previous layer, and 𝛬 as the correlation matrix of 𝑋 capturing
ependence structure between the genes. The choices of some of the
ther hyperparameters include 𝑣1 = 100, 𝑎1 = 4, 𝑎2 = 5, 𝛼 = 0.5, 𝛹 =
𝑔 , 𝛿 = 𝑝(𝑡). As 𝑣1 is expected to be very large, we have compensated
y placing an informative prior on 𝜈−2(𝑡,𝑚)𝑘𝑗 with more mass around
he value 1 based on our choice of 𝑎1 and 𝑎2. The choice of 𝛿 and

are made such that we have a non-informative prior around 𝛥(𝑡).
ithin the estimation for each model for layer 𝑡, we choose 10−5 as
he threshold for convergence. The choice of 𝛼 is such that we place the

http://www.cancer.gov/tcga
http://www.cancer.gov/tcga
http://www.cancer.gov/tcga
https://mayfieldclinic.com/pe-braintumor.htm
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Fig. 8. Associations of layer-wise PC scores from the four imaging sequences with the
gene expression. Each panel corresponds to an imaging sequence, and a block filled
with color indicates association for that gene with one of the three specific layers
(𝜏 = 3).

prior mean at the midpoint of zero and 𝝀̂(𝑡−1,𝑚) for the selected genes.
Further details about hyperparameter choices are provided in Section
S4.4. For model selection, we estimate the model on a grid of values
for 𝑣0 ∈ {0.001 + (𝑖 − 1)0.001|𝑖 = 1,… , 40} and compute the BIC based
on each value of 𝑣0 to choose the best model as the one with lowest
BIC.

We implement the multiple-multivariate Bayesian regression model
with the gene expression of the LGG-genes as predictors and the PC
scores from the MRI images as responses. Fig. 8 presents the results
of our analysis, where each panel corresponds to one of the four
imaging sequences (FLAIR, T1, T1Gd and T2). The inner sphere from
the tumor region is represented as the inner circle (layer 1). Similarly,
the two spherical shells are represented as concentric annuli (layers
2 and 3). The circular region in the plot is divided into 24 sectors,
with each representing one of the 24 LGG-genes under consideration.
Consequently, each sector defined by a gene is divided into three
concentric blocks corresponding to the three layers. If 𝜁 (𝑡,𝑚)𝑘 = 1 for gene
𝑘 in layer 𝑡 of imaging sequence 𝑚, the corresponding block is colored
in blue. Based on our estimation and model selection, if 𝜁 (𝑡,𝑚)𝑘 = 1,
the expression of gene 𝑘 has significant association with the PC scores
corresponding to layer 𝑡 from the imaging sequence 𝑚. For example, in
FLAIR, the block in layer 3 corresponding to the sector for gene ATRX
is colored, indicating significant association of the expression of ATRX
with PC scores from layer 3 in this imaging sequence.

Figure S13 shows plots corresponding to the 𝑄-function maximiza-
tion in the EM algorithm. In terms of computation time, our algorithm
requires about 20 s for estimation and model selection across 𝜏 = 3
ayers with 𝑔 = 24 genes and 𝑝(1) = 22, 𝑝(2) = 18, 𝑝(3) = 17 PC scores. The

analysis was executed on a computer with an Intel(R) Core(TM) i7-7700
CPU @ 3.60 GHz, 3601 MHz, 4 cores, 8 logical processors with 32 GB
RAM; model selection for 40 values of 𝑣0 was done in parallel across 4
processors. Under the same settings, generating 200 MCMC samples of
the model parameters for each layer sequentially would require about
50 s. We demonstrate the utility of our EM-based estimation compared
to a MCMC-based approach. Details of this comparison under different
choices for the number of parameters are provided in Section S5.

Biological findings and implications. We now describe the bi-
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ological significance of the radiogenomic associations identified by
our model. These results are presented separately for each imaging
sequence in Fig. 8. Most of the radiogenomic associations appear in
FLAIR, which presents most of the tumor regions in LGG with relative
hypointensity (dark signal on MRI), except for a hyperintense (bright)
rim (Weerakkody et al., 2020). The other three sequences usually
present a hypointense signal compared to other brain tissues, with
exceptions at certain times. We specifically focus on the following
identified associations:

1. The genes IDH1 and IDH2 demonstrate significant associations
with all three layers for the FLAIR sequence. Several recent stud-
ies (Yan et al., 2009; Leu et al., 2013, 2016) have highlighted
the prognostic importance of IDH mutations in gliomas as well
as their distinctive genetic and clinical characteristics. Mutations
that affect IDH1 were identified in more than 70% of low grade
gliomas and in glioblastomas that developed from lower-grade
lesions; most of the other tumors often had mutations affecting
the gene IDH2 (Yan et al., 2009). These mutations were also
shown to be strong predictors for survival, specifically in the
case of LGG (Leu et al., 2013). During the developmental stage
of most LGG tumors, one of the earliest genetic events is the
acquisition of IDH1 or IDH2 mutation (Leu et al., 2016).

2. The PI3K pathway (group of genes), which includes genes such
as PTEN, PIK3CA and PIK3R1, is one of the most deregulated
and druggable pathways in human cancer (Arafeh and Samuels,
2019). We see associations of the genes PTEN, PIK3CA and
PIK3R1 with the spherical shells in both T2 and FLAIR. The
PI3K pathway controls multiple cellular processes including
metabolism, motility, proliferation, growth and survival (Janku
et al., 2018). Somatic mutations in PIK3R1 act as oncogenic
driver events in gliomas and are known to increase signaling
through the PI3K pathway; they also promote tumorigenesis of
primary normal human astrocytes in an orthotopic xenograft
model (Quayle et al., 2012).

3. Another significant association across all of the three spherical
shells in the FLAIR imaging sequence, and partially in T2, is with
the genes ARID1 A and ARID2. Studies have shown that somatic
mutations in the chromatin remodeling gene ARID1 A occur in
several tumor types (Jones et al., 2012). ARID1 A is known to be
a tumor suppressor and inhibits glioma cell proliferation via the
PI3K pathway (Zeng et al., 2013). ARID2 is a gene associated
with chromatin organization and has been predicted to be a
glioma driver (Ceccarelli et al., 2016). Moreover, recent studies
have identified ARID2 as a direct target and functional effector
in other cancers such as oral cancer (Wu et al., 2020).

4. The genes PTPN11 and NIBPL also present significant associa-
tions across all three spherical shells in the FLAIR sequence. Ad-
ditionally, NIPBL presents association across all spherical shells
in T2. NIPBL is a somatically altered glioma gene that is known
to be a crucial adherin subunit, and is essential for loading
cohesins on chromatin Ceccarelli et al. (2016). PTPN11 is known
to mediate gliomagenesis in both mice and humans (Liu et al.,
2011).

5. NRAS is a member of the RAS oncogene family, which encodes
small enzymes involved in cellular signal transduction (Fiore
et al., 2016). In our analysis, NRAS shows significant association
with the exterior layers of the tumor in FLAIR. RAS pathways,
when activated, trigger downstream signaling pathways such as
MAPKs and PI3K/AKT, which modulate cell growth and sur-
vival (Schubbert et al., 2007). NRAS was also identified as a gene
which promoted oncogenesis in glioma stem cell (Gong et al.,
2016).

6. We see significant associations of the gene CIC with the in-
ner and middle layers in T1, T1Gd and T2. CIC is a tran-
scriptional repressor that counteracts activation of genes down-

stream of receptor tyrosine kinase (RTK)/RAS/ERK signaling
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pathways (Bunda et al., 2019). Loss of CIC potentiated the
formation and reduced the latency in tumor development in
an orthotopic mouse model of glioma (Yang et al., 2017). Tu-
morigenesis in high-grade gliomas is attributed to hyperactive
RTK/RAS/ERK signaling, while CIC has a tumor suppressive
function (Bunda et al., 2019). This indicates an inverse func-
tional relationship between CIC and the genes in RTK/RAS/ERK
pathways (e.g., NRAS). Interestingly, we see that associations
with CIC are picked only when there are no significant associa-
tions with NRAS.

These findings indicate several associations between the LGG-genes,
nd related pathways, with imaging phenotypes from the spherical
hells. It is promising that several of these genes have been found
o play important roles in the genesis of glioma. It is not surprising
hat we see most of the associations in the FLAIR sequence, as it
xhibits the best contrast between normal brain tissue and presumed
nfiltrating tumor margins (Grier and Batchelor, 2006). It is also the
rincipal imaging sequence for assessment of LGG growth (Bynevelt
t al., 2001). Furthermore, we provide a detailed analysis of consistency
n identifying these radiogenomic associations by refitting the model
ultiple times while including randomly chosen genes as predictors in

ddition to the LGG-genes. Further details are provided in Section S4.5
f the supplementary material. Results from this analysis (see Figure
14) show that the associations we reported above are consistently
eing identified even when the LGG-genes are paired with other genes
s predictors. These findings encourage a deeper corroboration, which
ould potentially indicate intricate characteristics of tumor growth.

In the analysis presented above, the tumor region was divided into
hree spherical shells to conform with the number of natural sub-
egions: necrosis or non-enhancing core, edema and enhancing tumor.
owever, we also deployed our framework with other choices for the
umber of spherical shells including 𝜏 = 4, 5, and 6. We plot these re-

sults in Figures S10-S12 in Section S4.2 of the supplementary material.
We see that the results are reasonably robust, i.e., most of the genes
associated with the layers from the imaging sequences are consistent
(except for a few additions/deletions) across different choices of 𝜏. This
ndicates that our approach is broadly able to identify the underlying
adiogenomic associations between the radiomic phenotypes and gene
xpression.

. Discussion and future work

In this paper, we propose a new statistical modeling framework
o analyze radiological imaging and genomic data that is biologically-
nformed, mimics the tumor evolution process, and accounts for (struc-
ural) tumor heterogeneity. In the context of LGG, we identify molec-
lar determinants of this tumor evolution process by borrowing in-
ormation sequentially from concentric spherical shells; this process
ries to emulate tumor growth since 3D spheroids are known to better
imic real tumors (Breslin and O’Driscoll, 2013). We build layer-wise

equential Bayesian regression models that consider (i) the PC scores
onstructed from the PDFs of the MRI-based tumor voxel intensities
s the responses, which effectively capture tumor heterogeneity, and
ii) the transcriptomic profiling data in terms of the gene expression
f LGG-genes as predictors. Information about the multiple imaging se-
uences, multiple PC scores from a given sequence, and the correlation
etween the genes was encoded into the prior structure of the regres-
ion model. The estimation is based on an computationally-efficient EM
lgorithm, and it identifies genes which have significant association
ith tumor heterogeneity in each spherical shell. We have proposed
ovel methodology in terms of multiple-multivariate regression to si-
ultaneously incorporate complex dependence structure between (i)

he genomic covariates, and (ii) the components of the multivariate
esponse. Our model incorporates a sequential variable selection strat-
gy to borrow information across layers of the tumor. Furthermore, this
11
sequential strategy can be deployed to model similar structured data,
e.g., any imaging data that mimics a growth process or data where the
sequencing arises due to time.

An important aspect of our analysis is that we borrow information
about the selection of genes starting from the interior sphere and
moving in an outward direction. This approach captures the process
of tumor growth which starts as a single cancerous cell and grows
radially outward to form the entire tumor. The choice of spherical
shapes for the different tumor layers is an uninformative one, due to
the lack of prior knowledge about the tumor’s growth process. If the
tumor’s growth dynamics are available, this new information can be
used to build the layers. This growth process is incorporated through
the parameter 𝝁(𝑡,𝑚), necessitating sequential estimation. However, we
re only interested in the posterior inclusion probabilities for each
f the LGG-genes to identify the radiogenomic associations. Hence,
nstead of using MCMC sampling techniques, we perform estimation
sing an EM-algorithm, which iteratively searches for the posterior
ode of the inclusion probabilities; this, in turn, reduces computational

ime of estimation. Information about the selection of genes across
pherical shells is propagated, and many significant associations in the
nner sphere carry their effect forward to subsequent spherical shells.
learly, this is not always the case, which is reassuring, as these results
re not dominated by our choice of prioritizing the previously selected
enes through 𝝁(𝑡,𝑚). Additionally, dependence structure between the

genes is incorporated using 𝛬. We see that gene pairs, such as NIBPL
and ARID2 or NF1 and ZBTB20, have high positive correlation (Figure
S9), and are either jointly selected or jointly not selected in most
layers and imaging sequences. Similarly, the genes ATRX and CIC have
negative correlation, and their selection alternates, i.e., one of them is
not selected while the other one is selected.

Our analysis identifies several associations between image-based
tumor characteristics and expression profiles of LGG-genes. The genes
associated with the imaging phenotypes in the inner spherical layers
can act as potential biomarkers for early events. Monitoring these
selected genes from the onset, or the time of diagnosis, could lead
to a better understanding of the molecular underpinnings as well
as provide effective diagnostic options prior to invasive approaches
such as a biopsy. One of the limitations of our data is that the gene
expression might not be derived from the spherical layers separately
during the biopsy. This can be potentially addressed in the future
using more modern technologies that facilitate analyses using spatial
transcriptomics (Burgess, 2019)—an area which is still maturing. In the
proposed model setup, the parameter space is high-dimensional due to
the multivariate regression setting. This results in a high computational
burden during estimation while incorporating an extremely large num-
ber of genomic markers within the sequential multivariate regression
framework; this issue needs to be explored further using highly scalable
or approximate estimation algorithms.

Future work. Our work tries to identify radiogenomic associations
between radiomic phenotypes and genomic markers in LGGs by in-
corporating the biological structure of the tumor into the modeling
framework. However, this could be further explored in several direc-
tions such as identifying the tumor regions/spherical shells based on
known segmentation of the tumor sub-regions. This could additionally
be informed by the shape of the tumor, which the PDFs do not capture,
as they only assess the heterogeneity in the tumor voxel values. Also,
our model explores linear relationships between the imaging-based PC
scores and the gene expression, which could potentially be extended
to study nonlinear associations (e.g. using semi-parametric additive
models Scheipl et al., 2012; Ni et al., 2015). Our future work will
include integrating these radiogenomic findings into predictive models
for clinical outcomes such as overall survival, time to progression.
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Software and supplementary material

We provide the R package marbles (MultivARiate Bayesian Layered
variablE Selection) that includes relevant data as an online supplemen-
tary file. For the most recent version of the package, see www.github.
com/shariq-mohammed/marbles. All of the details in the text which
were referenced as supplementary material are provided as a separate
online document. This document includes details of: (i) construction
of layer-wise radiomic phenotypes, and computation of the principal
component scores from a sample of probability density functions, (ii)
full posterior of the model, and its logarithm, as well as some computa-
tional details related to the Expectation-Maximization (EM) algorithm
used for estimation, (iii) results from simulation studies, (iv) gene ex-
pression, and some additional results for the The Cancer Genome Atlas
lower grade glioma data, and (v) comparison of computational burden
for the EM-based estimation and model selection versus a Markov Chain
Monte Carlo sampling-based approach.
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