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Take home message: We identify 9 distinct nasal microbiome “types” which change 

when individuals experience influenza-like illness and that probiotic use decreases the 
frequency of these changes. 
  



Abstract 
Background: Residents in long-term care (LTC) homes, who tend to be of advanced 

age and frail, are at increased risk of respiratory infections. The respiratory microbiota 
is known to change with age, but whether these changes contribute to the risk of 

infection is not known. 
Aim: Our goal was to determine how the nasal microbiota of frail older adults changes 
during symptoms of influenza-like illness (ILI) and how this may be impacted by 

enrollment in a placebo-controlled trial testing the feasibility of administering a 
Lactobacillus rhamnosus GG probiotic to prevent respiratory infection (2014 - 2017). 

Methods: The microbiome of the nasal (mid-turbinate) of 150 residents of LTC homes 
was interrogated using 16S rRNA gene sequencing. 
Results: We identified a diverse and individualized microbiota which could be 

separated into 9 distinct clusters based on Bray Curtis distances. Samples collected 
during symptoms of influenza-like illness (ILI) differed statistically from those collected 

pre- and post-cold and influenza season, and we observed decreased temporal 
stability – as measured by movement between clusters – in individuals who 
experienced ILI compared to those who did not. 

Conclusions: The use of probiotics decreased ILI-induced changes to the microbiota; 
however, it is not clear whether this decrease is sufficient to prevent respiratory illness. 

 
Keywords: aged; microbiome; 16S rRNA gene sequencing; respiratory tract 
infections 

 
Background 

The burden of respiratory infections in long-term care (LTC) residents is high1, and the 
devastating mortality and frequent outbreaks that occurred during the SARS-CoV-2 
pandemic were a painful reminder that systemic features of care homes such as 

staffing patterns, ventilation, and crowding can be major factors in infection rates2, 3. 
Independent of the increase in risk associated with LTC homes, residents are still 

vulnerable to infection due to their advanced age, frailty, and chronic health conditions. 
In fact, frailty is a better predictor of infection risk and poor outcomes than chronologic 
age4, 5 likely due to the systemic inflammation and immune remodelling that occurs in 

frail individuals6. 
 

Carriage rates of common pathogens like Streptococcus pneumoniae are 
counterintuitively reported to decrease with age, despite the fact that susceptibility to 
pneumococcal infection increases with age7, 8. It is believed that this is because 

pneumococcal carriage stimulates anti-bacterial immunity in the lungs; alveolar 
macrophages from individuals who are experimentally colonized have enhanced 

killing of both pneumococcus and other respiratory pathogens9. Age-related changes 
in other members of the airway microbiota have also been reported, and these may 
contribute to susceptibility to both bacterial and viral infections. As an example, 

individuals who are colonized with Corynebacterium spp. are less likely to naturally 
carry or be experimentally colonized with pneumococcus10, 11. Lower relative 

abundance of both Moraxella spp., and Dolosigranulum pigrum have been reported in 
children hospitalized for serious respiratory infections, but whether these are truly 
associated with protection from infection or whether they decrease in abundance 

during the course of infection is unclear12, 13. Similarly, older patients with pneumonia 
have outgrowth of some microbes in the upper respiratory tract microbiota14 but the 

degree to which this contributes to infection is not known. Age, frailty, LTC home, 



specific health conditions, and immune senescence have been previously shown to 
be associated with age-associated changes in the gut microbiota15, 16 but whether 

these factors influence the upper respiratory tract is not known . Understanding if 
members of the upper respiratory tract microbiota can protect against infection may 

provide novel preventative strategies in older, frail individuals who are the most likely 
to have poor outcomes resulting from respiratory infection. 
 

In order to understand the role of the microbiota in respiratory infection in frail older 
adults, we analyzed samples from 150 residents of LTC homes who had been enrolled 

in a randomized, double-blinded, placebo-controlled clinical trial testing the feasibility 
of probiotics to prevent respiratory infection17. Samples were collected from individuals 
not experiencing respiratory illness at the onset of cold and influenza season (Nov-

Dec), whenever a resident experienced an influenza-like illness (ILI) event, and after 
cold and influenza season in the absence of illness (May-June). We investigated 

whether frailty, health conditions, and systemic inflammation altered the composition 
of the nasal microbiota and whether there were features of the microbiota that 
predicted susceptibility to ILI. We found a diverse microbiota that could be divided into 

9 clusters. The microbiota of samples collected during ILI was statistically distinct from 
those collected outside of illness, and – when examined longitudinally – individuals 

who experienced symptoms of respiratory infection experienced decreased temporal 
stability of their nasal microbiota then those who did not. These affects appear to be 
mitigated with the use of probiotics, however a larger follow up study is warranted to 

reach a definitive conclusion. 
 

Methods 
Participant recruitment and sample collection 
Samples were collected from individuals (n=150) as part of a multi-site, randomized, 

placebo-controlled trial on the feasibility of administering probiotics to prevent 
respiratory tract infections in long-term care (LTC) residents17. This study represents 

a post-hoc analysis of the samples collected as part of this randomized, placebo-

controlled trial. Residents from 12 LTC homes in Ontario, Canada who were  65 years 

old were recruited over a 4-year period (2014-2017). Here, we sampled the nasal 
microbiota of samples collected from the later 3 years of the pilot study (Sup Fig 1). 
Participants provided a flocked nasal (mid-turbinate) swab in universal transport 

medium (Copan Italia, Brescia Italy) prior to cold and influenza season (Nov-Dec), 
when they had symptoms consistent of an influenza-like illness (ILI; symptoms of ILI 

were assessed twice weekly by a trained nurse and included a temperature 1.5C 

above baseline, cough, nasal congestion, sore throat, headache, sinus problems, 

muscle aches, fatigue, earache or infection, chills as described in17) and following the 
end of cold and influenza season (May-June). Exclusion criteria included residents on 
immunosuppressive drugs, who had hematological malignancy, structural heart 

disease, gastroesophageal or intestinal injury, or individuals who were at high risk of 
an endovascular infection. Participants were randomized to receive a probiotic (2 

capsules of Lactobacillus rhamnosus GG (Culturelle, CH Hansen, Hoersholm, 
Denmark; estimated 10 billion colony forming units (CFUs) per capsule) daily or a 
placebo (calcium carbonate) for 6 months. Details of probiotic administration have 

been previously published17. There were no differences in participant demographics 
between the placebo and probiotic groups (Table 1; reference 17). 

 



Informed consent was received by the participants or their substitute decision makers. 
All protocols were approved by the Hamilton Integrated Research Ethics Board. 

Following collection of flocked nasal swabs, swabs were stored in universal transport 

medium at -20C until they were processed (as below). 

 
Of the collected samples, 334 from 150 individuals (n=150 pre-cold and influenza 

season, 57 ILI, 127 post-cold and influenza season) passed stringent quality control 
measures including verification of the 16S rRNA gene polymerase chain reaction 
(PCR) product on an agarose gel, quantification of 16S rRNA gene deoxyribonucleic 

acid (DNA) load, and a minimum number of high-quality DNA sequencing reads (see 
below for more detail). 

 
DNA extraction and amplification of the 16S rRNA gene 

DNA extraction was performed as previously described18. 300 l of universal transport 

medium (in which the nasal swab was stored) was combined with 800 l of 200 mM 

sodium phosphate (monobasic) NaH2PO4, 100 l of guanidine thiocyanate-ethylene 

diamine tetra-acetic acid-Sarkoyl (GTC-EDTA-Sarkosyl), and together homogenized 

using 0.2 g of 0.1-mm glass beads (Mo Bio, Carlsbad, CA) for 3 minutes at 3,000 rpm. 

50 l of lysozyme (100 mg/ml), and 10 l RNase A (10 mg/ml) were added to the 

sample and incubated at 37C for 1 hour to enzymatically lyse the sample. Following, 

25 l of 25% sodium dodecyl sulfate (SDS), 25 l proteinase K, and 62.5 l 5 M NaCl 

were added and incubated at 65C for 1 hour. Samples were then subject to 

centrifugation at 12,000 x g. The supernatant was subsequently removed to a new 

microcentrifuge tube to which an equal volume of phenol-chloroform-isoamyl alcohol 
was added and the sample again centrifuged. The solution with the lowest density was 

transferred to a new microcentrifuge tube and 200 l of DNA binding buffer (Zymo, 

Irvine, CA) added. The solution was then transferred to a DNA column (Zymo), 

washed, and DNA eluted using ultrapure H2O. 
 
Following, amplification of the 16S rRNA gene variable 3 (v3) region was performed 

as previously described19 with some modifications. 341F and 518R 16S rRNA gene 
primers were adapted to the Illumina (San Diego, CA) platform with the inclusion of 

unique 6-base pair barcodes to the reverse primer to allow for multiplex amplification19. 

A 50 l PCR reaction was performed in three equal volume reactions, collectively 

containing 5 pmol of each primer, 200 M of each deoxynucleoside triphosphate 

(dNTP), 0.4 mg/mL BSA, 1.5 mM MgCl2, and 1 U Taq polymerase (Life Technologies, 

Carlsbad, CA). The PCR reaction was subject to an initial denaturation step at 95C 

for 5 min followed by 35 cycles of 95C for 30 sec, 50C for 30 sec, and 72C for 30 

sec; the incubation ended with an extension step at 72C for 7 min. The presence of 

a PCR product was verified by electrophoresis (2% agarose gel) and only those 

samples with visible bands were sent for normalization using the SequelPrep kit 
(ThermoFisher, #A1051001) and DNA sequencing on the Illumina MiSeq platform. A 

positive control sample of known community composition sequenced in parallel to 
these data contained the same 50 ASVs in similar proportions as the positive control 
samples run on prior and subsequent MiSeq runs. Four negative controls – including 

DNA extraction and PCR controls – resulted in <1520 bacterial reads per sample, 
none of which were consistently assigned to the same ASVs (Sup Fig 2). All raw 

sequencing data is available on NCBI’s SRA PRJNA858212. 
 



Processing of 16S rRNA gene sequencing data 
Raw reads were initially processed with Cutadapt20 to trim the adapter and PCR primer 

sequences and filter to a minimum quality score of 30 and a minimum length of 100bp. 
DADA221 was used to resolve sequence variants for results from each separate 

Illumina run prior to merging data from all runs together. Amplicon sequence variants 
(ASVs) were then filtered for bimeras; taxons were classified using the SILVA 
database version 1.2.822. 

 
 

 
Quantification of 16S rRNA gene DNA load via qPCR 
Because samples from the nose have low microbial concentrations, we assessed the 

extracted DNA via qPCR in order to quantify the number of copies of 16S rRNA gene 
present in each sample. The protocol was adapted from23; briefly, reactions were 

carried out in a 96-well plate in a 20 L mixture containing 10 pmol of forward (926F 

AAA CTC AAA KGA ATT GAC GG) and reverse (1062R CTC ACR RRC ACG AGC 

TGA C) primer24, 1 L of extracted swab DNA, 10 g of bovine serum albumin, water, 

and Eva SsoFast EvaGreen supermix (Bio-Rad, Canada). Samples were placed in a 

Bio-Rad CFX96 Thermocycler (Bio-Read, Canada) and were subject to an initial 
denaturing step (98C for 2 minutes), followed by 40 cycles of 5 seconds at 98C and 5 
seconds at 60C. Melt curve analysis was generated by 0.5C increments for 5 seconds 

from 65C to 95C to ensure the generation of a single PCR product. Each reaction was 
performed in triplicate, with cycle thresholds converted to copies of 16S rRNA gene 

via standard curve of known quantities of Escherichia coli DNA within each qPCR 
plate.12 samples which had <103 copies of 16S rRNA gene sequence per sample were 
removed from all subsequent analyses. 

 
Statistical analyses of 16S rRNA gene sequencing data 

The above quality control measures resulted in a total of 334 samples included in 
microbiome analyses. 39 metadata data points were collected; to avoid over-
interpreting any correlations of such data with microbial composition, metadata 

variables were only considered if: (a) 15% of the data points were unknown/missing; 

(b) for binary variables, there was 10% variation; (c) for non-binary discrete variables, 

each value accounted for >3% of the overall variation (otherwise, the value was 
omitted). All continuous variables were included. 

 
To identify any possible correlations between metadata variables and avoid reporting 

any indirect associations between metadata and microbial composition, each pair of 
variables were investigated using a chi-squared or aov test (depending on the data 
type). When the statistical test resulted in a p-value <0.05, we rejected the null 

hypothesis that the variables tested were independent. A list of all correlating variables 
is included in Sup Table 1. 

 
All statistical analyses were performed in R v3.6.125 primarily using the phyloseq 
v1.28.026 and vegan v2.5.627 packages. Alpha diversity was calculated using the 

Shannon index. Beta diversity was determined using both Bray Curtis and Aitchison 
distances (using R’s microbiome package v1.14.028 in addition to phyloseq); to 

calculate Bray Curtis distances, the dataset was rarefied to the minimum number of 
reads per sample in the dataset (n=1268). The composition of microbiome 
communities in relation to included metadata variables was interrogated using a 



permanova statistical test (adonis function of the vegan package v2.5.627). 
Differentially abundant ASVs were determined using ANCOMBC29. Networks of 

cluster movement between pre-C&F, ILI, and post-C&F clusters were determined 
using R’s igraph v1.2.6 and visualized using Gephi30. R packages ggplot231 and 

patchwork (https://github.com/thomasp85/patchwork) were used to generate visuals. 
All code is provided as a supplemental R markdown file (Sup File 1). 
 

Alluvial plots were generated using the R package ggalluvial32. When individuals had 
>1 ILI sample, the first was included in the summary graphic. 

 
Clustering of samples via hierarchical clustering 
The Silhouette method, encoded in R’s factoextra v1.0.7 package33, was used to 

determine the optimal number of clusters for complete hierarchical clustering based 
on the Bray Curtis distance between samples and associated PCoA scores. Using this 

method, the optimal number of clusters was determined to be 10; of these, one cluster 
had a size of n=1 and was thus excluded from future analyses. Hierarchical clustering 
was performed using R's cluster v2.1.0 package34. The resulting 9 clusters containing 

334 samples were tested with the vegan package for statistically significant dispersion 
(betadisper27; p=<2.2e-16), differences between cluster centroids (adonis27; p=0.001), 

and to be significantly different in an analysis of similarity (anoism27; R=0.726, 
p=0.001), indicating that subsetting the data in this way generated statistically 
significant clusters. Similar analyses of clustering conducted with Aitchison distances 

similarly identifies statistically significant clustering (betadisper, p=4.543e-15; adonis, 
p=0.001; anoism, R=0.168, p=0.001). A dendrogram of all samples was split into 9 

clusters with dendextend v1.15.125 and visualized with ggtree v3.0.335. 
 
Results 

Participant demographics 
Mid-turbinate samples of the nose were collected from 150 individuals residing in LTC 

homes in Ontario, Canada (see Methods). Participants were predominantly female, 
with a median age of 86.5 years (Table 1). Individuals were on a median of 9 
medications and had a median of 9 co-morbidities. Participant’s Barthel scores – an 

index between 0 and 20 used to describe performance in daily living36 – were diverse, 
ranging from 0 to 20 with a median value of 7 (Table 1). 34.0% of study participants 

reported symptoms of influenza-like illness (ILI), with 44 participants experiencing 1 
event and 7 participants experiencing 2 events. Participants in this trial were split into 
daily probiotic and placebo arms of this study which were evenly matched for all 

participant characteristics (Table 1). 
 

The composition of the nasal microbiota of long-term care residents 
The nasal microbiota of LTC residing older adults is highly variable (Fig 1A-B). Within 
the 334 mid-turbinate samples analyzed, we observed 720 genera, of which 662 had 

a cumulative relative abundance of 0.01%, and 122 of which were observed at 1% 

relative abundance in 1 sample. On average, an individual sample contained 56 

genera; however, this ranged from 7 to 146 (sd: 27.4). Corynebacterium is the most 

abundant and most prevalent genera, with a mean relative abundance of 37.9% 
(median: 32.0%, range 0.04-98.7%) and being present in 332 of the 334 samples. 
Other abundant genera include Moraxella (mean relative abundance 1.18%, range 

0.002-99.8%), Staphylococcus (mean relative abundance 1.17%, range 0.01-
99.77%), and Dolosigranulum (mean relative abundance 1.11%, range 0.004-

https://github.com/thomasp85/patchwork


81.49%). The variability between individuals was large, as evidenced by a mean Bray 
Curtis distance of 0.80 (median: 0.87). 

 
Because of the observed inter-individual variability, we applied hierarchical clustering 

on the composition of the microbiome which identified 9 clusters in our dataset (Fig 
1A) which were verified using multiple statistical tests (see Methods; Sup Fig 3A-C). 
Samples from each cluster separate in a PCoA analysis across multiple axes (Fig 1E; 

Sup Fig 3D-G), and have more similar Bray Curtis distances within clusters than 
comparisons across clusters (Sup Fig 3C,H). The median number of samples per 

cluster is 34, ranging from n=7 (cluster 5) to n=86 (cluster 9). All but one cluster is 
associated with a dominant taxon (>35% relative abundance in >70% of samples; Fig 
1B,F). For example, clusters 6 and 4 are associated with a high mean relative 

abundance of Staphylococcus and Dolosigranulum, respectively. There are 3 clusters 
(clusters 1,3,9) in which Corynebacterium is the dominant genera, but each is 

associated with a unique ASV (Fig 1C). Similarly, Moraxella is the dominant genera 
of clusters 5,7, and 8 and each cluster is associated with a particular profile of ASVs 
(Fig 1D). 

 
Uniquely, cluster 2 is not associated with a particular dominant taxon (Fig 1F) and is 

the most diverse (Shannon index, Fig 1G), and shared the least Bray Curtis similarity 
across samples (Sup Fig3H). We hypothesized that the absence of a dominant taxon 
might mean a decrease in the total bacterial load. When we quantified total microbial 

DNA by qPCR, we did not find a statistically significant difference in bacterial DNA 
between clusters although the median value was lower in cluster 2 than in any other 

cluster (Fig 1H). However, when we investigated whether bacterial load significantly 
correlated with any particular ASV(s), we did not find a correlation with any dominant 
taxa. Instead, decreasing microbial load was associated with increased levels of other 

organisms also commonly associated with the microbiome of the oral cavity and skin 
(e.g., Streptococcus and Cutibacterium, respectively; Sup Fig 4). We hypothesize that 

this may mean that in samples with a low bacterial load, the unique biogeography of 
the mid-turbinates is lost as we have previously shown in the nasopharyngeal 
microbiome of frail older adults18. 

 
Participant characteristics and relationship to the composition of the airway microbiota 

We tested 30 metadata variables (Table 2), 5 of which (sex, LTC home site, time of 
collection, frailty (as measured by the Barthel score), cardiovascular disease) were 
significantly correlated with the composition of the mid-turbinate microbiota against 

either of two -diversity metrics employed (p0.05, PERMANOVA using either Bray 

Curtis or Aitchison distance; Table 2 see Methods). However, only time of collection 

passes multiple test correction (p0.00167, Bonferroni correction across 30 metadata 

variables) and none were significant across both -diversity distance metrics and could 

each only explain <5% of the observed variance in the data (Table 2); in contrast 
68.84% of the variability in the dataset was explained by inter-individual differences. 

 
Biologic sex significantly correlated with the composition of the microbiome (p=0.047, 

R2=0.013, PERMANOVA using Bray Curtis); however, there was no association of -

diversity or cluster membership with age. In contrast, frailty correlated with microbiota 

composition (p=0.003, R2=0.011, PERMANOVA using Aitchison). Because chronic 
inflammation (‘inflamm-aging’) is associated with both frailty and immune dysfunction, 
we investigated whether there were any relationships with circulating inflammatory 



mediators, specifically TNF, IL-1β, and IL6 and chronic health conditions such as 

cardiovascular disease, dementia, and chronic obstructive pulmonary disease 
(COPD). Although there were no associations with inflammatory cytokines, community 
composition in individuals with cardiovascular disease was significantly different 

(p=0.017, R2=0.015, PERMANOVA using Bray Curtis). 
 

The composition of the microbiome differed between the 10 LTC facilities (p=0.033, 
R2=0.082, PERMANOVA using Bray Curtis), consistent with previous studies of the 
gut microbiota16. 9 ASVs with a mean relative abundance >0.1% were differentially 

abundant across LTC sites (ANCOMBC); many of these ASVs correspond to the 
dominant taxa in the dataset – including Moraxella, Corynebacterium, and 

Dolosigranulum (Sup Fig 5A-C). There were 8 metadata variables that correlated with 
LTC home site including those associated with the time of collection (i.e., month, 
season, and year of collection) and other variables that likely reflect differences in LTC 

home practices (e.g., influenza and pneumococcal vaccination, whether the resident 
was in a shared or private room; Sup Table 1). Of these, the time of sample collection 

also significantly correlated with microbiome composition  (Table 2). 5 ASVs with 
>0.1% relative abundance were differentially abundant by month of sample collection, 
including the same Moraxella ASV which was differentially abundant by LTC home 

site (Sup Fig 5D). Collectively these data demonstrate that seasonality and LTC home 
site may have some effect on the mid-turbinate microbiota. 

 
The effect of influenza like illness (ILI) on the composition of the nasal microbiota 
We compared the composition of the nasal microbiota when individuals had symptoms 

of ILI and when they did not. We found that the microbial community significantly differs 
between samples collected pre-/post-cold and influenza (C&F) season compared to 
during ILI (p=0.003, R2=0.05 (Bray Curtis); p=0.011, R2=0.04 (Aitchison) 

PERMANOVA; Fig 2A). These results are supported by another recent comparison of 
the effect of ILI on the frail, aged nasopharyngeal microbiota37. Alpha diversity, total 

bacterial load, and cluster membership were not altered between ILI and non-ILI 
samples (p=0.297, Levene’s test, Fig 2B; p=0.120, Levene's test, Fig 2C; p=0.148, 
chi-squared test, Sup Fig 6). Further, there was no difference in the composition or 

cluster membership of the pre-C&F microbiota between those who went on to 
experience ILI and those who did not (p=0.378, R2=0.007 (Bray Curtis); p=0.095, 

R2=0.008 (Aitchison) PERMANOVA; Sup Fig 7A; p=0.121349, chi-squared test; Sup 
Fig 7B) indicating that we cannot predict who will get an infection based on the 
composition of the microbiota alone. 

 
Given that the composition of the microbiome changes with ILI, we next investigated 

whether this change could be attributed to specific ASVs. Using ANCOMBC29, we 
identified 8 ASVs which were differentially abundant between the pre-C&F season, ILI, 
and post-C&F season; however, none of these has a mean relative abundance >0.1% 

(Sup Fig 8). 
 

A decrease in temporal stability of the nasal microbiota with ILI 
Having determined that ILI affects the microbiome composition during illness, we next 
asked what effect ILI has following illness. Of those participants who reported 

symptoms of ILI during the study period, the composition of their microbiome before 
(pre-C&F) and after (post-C&F) ILI differed statistically from each other based on 

Aitchison (p=0.002, R2=0.015) but not Bray Curtis (p=0.267, R2=0.009) distance or 



cluster membership (p=0.528, chi-squared test). When the post-C&F composition of 
individuals who did and did not experience ILI were compared, the composition of the 

microbiome did not differ significantly (Aitchison, p=0.186, R2=0.009; Bray Curtis, 
p=0.095, R2=0.012; cluster membership, p=0.133, chi-squared test). Together, these 

results indicate that there is some effect of ILI on the microbiota following illness at the 
community level but that this effect is not consistent enough to distinguish between 
individuals who had and had not experienced these respiratory events. 

 
When we analysed each individual – as opposed to focusing on community-wide 

metrics – we observe substantial changes to the microbiome during and following ILI. 
We tracked each individual's microbiota across PCoA space and asked whether the 
rate of movement between clusters is affected by ILI. As shown previously, the dataset 

separates by cluster in a PCoA analysis; examining the chronological sampling of each 
individual, we see within individual movement across PCoA space (Fig 3A). By 

focusing on individuals who experienced ILI (n=51), we define 4 movement categories: 
(1) individuals who stay in the same cluster before, during, and after ILI (Fig 3B); and 
individuals who move between clusters: (2) with ILI but later returning to the pre-ILI 

cluster (Fig 3C); (3) with ILI but not returning to the pre-ILI cluster (Fig 3D); and (4) 
following – but not during – ILI (Fig 3E). These categories do not correlate with 

collected metadata (Sup Table 2); however, the within individual mean Bray Curtis 
distance are increased in categories which resulted in a permanent change in cluster 
membership (3-4) when compared to individuals who did not change clusters 

(category 1; Sup Fig 9), indicating the increased diversity between samples from 
individuals who experience significant cluster movement. 76.2% of individuals who 

experienced ILI moved between clusters, with 87.5% not returning to their original 
cluster by the end of the study period (categories 3-4; Fig 3F). Importantly, individuals 
who experienced ILI were statistically more likely to move between clusters when 

compared to those who did not have respiratory infection (76.2 vs. 48.7% of 
individuals; p=0.006, chi-squared test; Fig 3G). Movement between clusters was not 

predictable (e.g., there was no preference for a sample in a particular cluster to move 
to another at the next timepoint; Sup Fig 10). Together, these results indicate a 
significant legacy of change to the nasal microbiota associated with ILI events. 
 

The impact of probiotic use on ILI 
There is no community-wide difference in the nasal microbiome between those on 

probiotic or placebo (p=0.13; R2=0.004 (Bray Curtis); p=0.072; R2=0.004 (Aitchison)). 
Splitting individuals into those who did or did not experience ILI, there was also no 

difference between those on probiotic or placebo who experienced (p=0.438, 
R2=0.018 (Bray Curtis); p=0.529, R2=0.017, (Aitchison)) or did not experience ILI 
(p=0.411; R2=0.005 (Bray Curtis); p=0.357; R2=0.006 (Aitchison)). Similarly, cluster 

membership did not change significantly between probiotic or placebo use (p=0.220, 
chi-squared test ILI; p=0.128 no ILI). Cluster membership nor microbiome composition 

were affected by the probiotic itself (Sup Fig 11). 
 
The number of individuals experiencing ILI and the mean number of reported ILI 

events per individual did not differ statistically between the active and placebo arms of 
this study, as previously reported17 (p=0.092, chi-squared test, Fig 4A; p=0.589, t-test, 

data not shown). Similarly, the post-C&F microbiota did not differ statistically with 
probiotic use (p=0.458, R2=0.008 (Bray Curtis); p=0.809, R2=0.007 (Aitchison) 
distances; p=0.178, chi-squared test). Collectively, this indicates that probiotic use 



does not affect the microbial composition of the nose during or following ILI in 
community-wide analyses. 

 
In contrast, individuals who experienced ILI whilst receiving probiotic were less likely 

to move between clusters compared to those experiencing ILI on placebo treatment 
(Fig 4B); 24 (85.7%) individuals on placebo treatment moved between clusters in 
comparison to 8 (57.1%) individuals on probiotics (Fig 4C). This observation is not 

statistically significant (p=0.096, chi-squared test); further investigation of a larger 
cohort is needed to determine whether probiotic use could significantly affect the 

stability of the microbiome. In particular, there was more movement between clusters 
at the onset/resolution of ILI in individuals treated with placebo versus probiotic (Fig 
4D-E). This includes movement across clusters with different dominating genera; for 

example, individuals on placebo treatment go from cluster 3 (Corynebacterium), to 
cluster 2 (no dominant organism), to cluster 4 (Dolosigranulum) over the course of the 

study (Fig 4E). These data indicate large overarching changes to the composition of 
these communities. Together, these results indicate that the administration of 
probiotics did not have an observable effect on the overall nasal microbiota and that 

further studies are needed to assess whether probiotics can mitigate the long-term 
impact of ILI on the individual. 

 
Discussion 
Here we show that the diverse microbiota of frail, older residents of long-term care 

homes could be grouped into 9 distinct clusters based on ASV presence and 
abundance. We find that the nasal microbiota of frail older adults exhibits an 

individualized response to ILI, often resulting in a lack of stability which is possibly 
mitigated, at least in part, by probiotic use. 
 

The observed diversity of this community is perhaps not surprising given that inter-
individual variability is also a feature of the aging immune system, where a lifetime of 

environmental exposures and immune experiences shapes the immune response and 
age-associated inflammation38. Interestingly, age did not correlate with microbiota 
composition, but frailty did, results which are in line with frailty being a better indicator 

of infection risk than age4, 5. 
 

Although this study is unique in its focus on a more frail, LTC dwelling cohort, previous 
studies have similarly identified changes to the respiratory tract microbiota in 
individuals who experience respiratory infection 39, 40. In particular, a recent study of 

older (mean age of 70) community dwelling adults found similar distinctions between 
individuals experiencing ILI versus healthy controls37. Interestingly, this study found a 

difference in the stability of the microbiota post-ILI in individuals with higher 
abundances of core microbiota species (including Corynebacterium, Dolosigranulum, 
and Staphylococcus) 37; in contrast, we see no evidence of a difference in stability 

between individuals in clusters associated with or without a dominant taxa, perhaps 
suggesting that any protective effect of dominant taxa from ILI-induced changes to the 

microbiota in healthy older adults is weaker in this frail population. 
 
We identified a microbiome that lacked stability and changed longitudinally in 76% of 

individuals with ILI. The microbiota did not change in a predictable way or converge 
on a particular ASV or cluster, but instead was highly individualized. These results 

indicate that the introduction of a pathogen – be it viral or bacterial – often leads to 



profound changes in the frail, aged nasal microbiota. The results of the pilot study of 
a probiotic targeted for the gastrointestinal tract suggest that it may be possible to 

mitigate these changes, at least in part. Only 21 (of 77) individuals on probiotic 
treatment experienced ILI, and of those only 8 moved between microbiome clusters; 

this is in contrast to 30 of 73 individuals on placebo experiencing ILI with 24 of those 
30 moving between clusters. This pilot trial is too small to be able to statistically 
conclude that probiotic use is beneficial to the stability of the nasal microbiota during 

and following ILI; further, the use of antibiotics – reported in 17 – was not investigated 
here due to the small sample size. Further investigation – perhaps with a nasal 

probiotic – are encouraged. 
 
Our analyses identify 9 distinct clusters of nasal microbial communities across this 

dataset. All but one of these clusters are associated with a dominant taxa (present at 
>35% relative abundance in >70% of samples), similar to that of the, community 

dwelling older adult microbiota37. Our use of hierarchical clustering outlined the 4 ASVs 
of Corynebacterium and 5 ASVs of Moraxella prevalent in the dataset. The ASVs of 
each species rarely co-occur within an individual (with the exception of cluster 1) 

suggesting possible intra-species competition within this niche. This may have 
downstream implications on the ecology of these communities, especially when we 

consider that certain Corynebacterium and Moraxella ASVs were differentially 
abundant across various collected metadata (Sup Fig 5). Cluster 2 was unique in that 
it wasn’t dominated by a particular taxa and that it was more diverse than the other 

clusters as measured by the Shannon diversity index. Interestingly, this increase in 
diversity correlated with a decrease in bacterial load (as measured by qPCR 

concentration), perhaps indicating the loss of a once-present prevalent taxon leaving 
only the less abundant – but highly diverse – taxa in its wake. 
 

Of the tested metadata variables, we identified a correlation of microbial composition 
with LTC home site, sex, time of collection, frailty, and cardiovascular disease with 

either Bray Curtis or Aitchison beta-diversity metric. Variability of the microbiota with 
LTC home is already well-established in the gut16 and underlies known variations in 
management practices, air quality, diet, location etc. between LTC home sites. 

Similarly, changes to the nasal microbiota with the seasons has been previously 
documented in children41, and year-to-year differences may represent the effect of 

circulating viruses (and variants thereof) on the nasal microbiota. Importantly, none of 
these correlations were found to be significant by both beta-diversity metrics 
employed; here, we used the well-established Bray Curtis metric due to its robustness 

and popularity in the field in addition to the compositionally-aware Aitchison metric. 
 

Preventing respiratory infection – and/or the long-term consequences of – in frail older 
adults will have an outsized impact on their care, quality of life and use of health care 
resources. Frailty, disability, and loss of independence is exacerbated by having a 

respiratory infection42 and hospitalization rates – especially for strokes and 
cardiorespiratory events – increase months to years after infection43. Some, but not all 

vaccines, are less effective in frail individuals44 so understanding the features of the 
frail microbiome and exploring new preventative measures are essential to reducing 
the burden of respiratory infections. 
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Table 1: Participant (n=150) characteristics across the dataset split by active 

and placebo arms of the trial.  

Characteristic Active Placebo 

Sex 56 Female (73%) 47 Female (64.4%) 

Median age ( standard deviation; sd) 86 (±7.4) 87 (±6.7) 

Smoker 33 No, 40 Prior, 3 
Yes (1 Unknown) 

38 No, 33 Prior, 2 
Yes 

Median # of medications ( sd) 9 (±3.2) 9 (±4.0) 

Median # of co-morbidities ( sd) 9 (±3.3) 8 (±2.9) 

Median Barthel score ( sd) 30 (±28.1) 45 (±29.8) 

Num. of Individuals reporting 

Respiratory Events 

21 (27.3%) 30 (41.1%) 

Mean # of events per individual 1.11 1.16 

Probiotic Group 77 (51.3%) 73 (48.7%) 

 
 



Table 2: p- and R2 values of anova statistical test of association between 
metadata variables and the composition of the microbiome. Values marked with 

an asterisk indicate p<0.05; values marked with an asterisk and bold pass 
Bonferroni multiple test correction across the tested metadata variables. 

Characteristic By sample distance 

metrics (Bray Curtis p-value 
(R2 value)/Aitchison p-value 
(R2 value) 

By cluster membership 
(test statistic in brackets) 

Age at enrolment 0.224(0.008)/0.821(0.006) 0.295 (aov) 

Sex 0.047*(0.013)/0.149(0.008) 0.248 (chisq) 

LTC home site 0.033*(0.082)/0.084(0.068) 0.616 (chisq) 

Month 0.699(0.018)/0.001*(0.034) 0.745 (chisq) 

Season 0.966(0.003)/0.004*(0.011) 0.734 (chisq) 

Year 0.204(0.017)/0.001*(0.032) 0.418 (chisq) 

Clinical trial treatment 
group (i.e., probiotics or 

placebo) 

0.921(0.004)/0.439(0.007) 0.821 (chisq) 

Had respiratory event 0.402(0.007)/0.079(0.008) 0.121 (chisq) 

Smoker 0.782(0.017)/0.367(0.021) 0.788 (chisq) 

Medications (number of) 0.346(0.007)/0.859(0.006) 0.674 (aov) 

Influenza vaccination 
(current season) 

0.837(0.004)/0.307(0.007) 0.689 (chisq) 

Influenza vaccination 

(previous season) 

0.261(0.015)/0.358(0.014) 0.145 (chisq) 

Influenza vaccination 
(ever) 

0.095(0.019)/0.175(0.015) 0.100 (chisq) 

Pneumococcal 

vaccination (ever) 

0.689(0.006)/0.586(0.007) 0.891 (chisq) 

Shared room (yes/no) 0.480(0.006)/0.370(0.007) 0.478 (chisq) 

Barthel total 0.121(0.01)/0.003*(0.011) 0.653 (aov) 

COPD 0.059(0.011)/0.441(0.007) 0.904 (chisq) 

CHF 0.365(0.007)/0.825(0.006) 0.638 (chisq) 

CVD 0.017*(0.015)/0.083(0.009) 0.465 (chisq) 

Anemia 0.923(0.003)/0.673(0.006) 0.974 (chisq) 

Dementia 0.912(0.004)/0.597(0.006) 0.438 (chisq) 

Stroke 0.074(0.011)/0.449(0.007) 0.201 (chisq) 

Diabetes mellitus  0.108(0.01)/0.191(0.007) 0.106 (chisq) 

Hypothyroid 0.957(0.003)/0.863(0.006) 0.998 (chisq) 

Comorbidities (number of) 0.765(0.005)/0.337(0.007) 0.891 (aov) 

Seizures 0.555(0.006)/0.609(0.006) 0.810 (chisq) 

Cancer 0.531(0.006)/0.422(0.007) 0.376 (chisq) 

IL-1β 0.887(0.004)/0.830(0.005) 0.483 (aov) 

IL6 0.866(0.004)/0.921(0.005) 0.269 (Kruskal-wallis) 

TNFA 0.652(0.006)/0.990(0.004) 0.177 (aov) 

COPD: chronic obstructive pulmonary disease, CHF: congestive heart failure, 
CVD: cardiovascular disease. 

 
 
Figure 1: The nasal microbiota of frail older adults groups into 9 distinct clusters. A. A 

dendrogram based on hierarchical clustering of  Bray Curtis distances between samples. Coloured and 



numbered bars indicate the 9 clusters determined by hierarchical clustering. B. Taxonomic summaries  
ordered according to the sample order in the dendrogram accompanied by a legend of  the most 

abundant 30 genera. C-D. The relative abundance of  each amplicon sequence variant (ASV) within 
Corynebacterium (C) and Moraxella (D). Each ASV is coloured a dif ferent shade of  orange/blue; grey 
bars indicate relative abundances of  other taxa E. A PCoA plot of  the Bray Curtis distances of  all 

samples within the dataset coloured by cluster membership . Colours of  each cluster match those used 
in panel A. F. The mean relative abundances of  the 4 most abundant taxa separated  by cluster. Colours 
of  each taxa match those used in panel B. (Corynebacterium: orange, Moraxella: dark blue, 

Staphylococcus: purple, Dolosigraniulum: light blue). G. The median Shannon diversity metric dif fers 
signif icantly between clusters (p=0.04962; Levene's test); H. however, the median qPCR 
concentrations do not (p=0.08108, Levene's test).  

 
Figure 2: The composition, but not the -diversity or bacterial load, of the frail older adult nasal  
microbiota is significantly altered during ILI events. A.  Community-wide, the microbiome 

composition changes signif icantly between samples collected during ILI versus times of  relative health 
(p=0.003/0.0011, permanova with Bray Curtis and Aitchison distances; PCoA displayed is based on 

Bray Curtis distances). B-C. However, there is no signif icant change in -diversity (as measured by the 

Shannon metric, p=0.297, Levene’s test; B) or bacterial load (as measured by qPCR Concentration,  
p=0.120, Levene's test; C) when samples collected during ILI were compared to those collected pre- 
and post-cold and f lu season. pre-C&F = pre-cold and f lu season; ILI = inf luenza like illness; post-C&F 

= post-cold and f lu season. 

 
Figure 3: The longitudinal effect of ILI on the frail older adult nasal microbiota. A. The PCoA of  

all samples coloured by cluster with lines connecting longitudinal samples of  each individual. Examples 
of  individuals which stay in the same cluster throughout samp ling (B, category 1), change cluster upon 
ILI but return to their pre-ILI cluster upon resolution (C, category 2), change cluster upon ILI but do not 

return to their original cluster (D, category 3), and change cluster following an ILI (E, category 4). Counts 
of  individuals who fall into each of  these cluster movement categories are quantif ied (F) and the 
f requency of  cluster movement is compared to that of  individuals who did not experience respiratory 

events (G; p=0.006, chi-squared test). 

 
Figure 4: The effect of an oral Lactobacillus rhamnosus GG probiotic on ILI. A. There was no 

statistical dif ference in the number of  individuals who experienced ILI between the probiotic (active) 
and placebo arms of  the trial (p=0.0918757, chi-squared test). B. The number of  participants in each of  
the 4 cluster movement categories separated by whether they were part of  the probiotic/active or 

placebo arms of  the trial. C. The f requency of  cluster movement between individuals receiving probiotic 
vs. placebo treatments (p=0.096, chi-squared test). D-E. Alluvial graph representation of  cluster 
movement of  individuals who experienced ILI on active (D) and placebo (E) treatment. Each cluster is 

labelled with the dominant genera that def ines it; cluster 2 does not have a dominant genera and is 
instead labelled as a mixed community. 
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Supplemental Figure 1: A time series schematic of mid-turbinate sample 
collection. A time series of sample collection in this multi-year, longitudinal dataset 

(n=334). Labelled dates on the x-axis represent approximate start and end dates of 
collection for each cohort of samples. pre-C&F = pre-cold and influenza season; post-
C&F = post-cold and influenza season; ILI = influenza like illness. 
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Supplemental Figure 2: Details of the control data versus the aging frail 
dataset. (a) Taxonomic summaries of 3 mock community positive control samples, 4 
negative control samples, and the mean taxonomic diversity of the dataset. Positive 

samples remain consistent in their composition over sequencing runs, and negative 
controls do not contain any universal ASV and very few ASVs at very different 

proportions than the dataset itself. (b) Read counts of each sample from the dataset, 
negative, and positive controls.  

positive controls negative controls mean of dataset
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Supplemental Figure 3: Evidence that 9 clusters is optimal. A-B. The dendrogram 

and taxonomic summaries as shown in Fig 1 redisplayed here for comparison. A 
detailed legend matching colours to genus-level taxonomic assignments is provided 

in Sup Fig 3. C. A heatmap of Bray Curtis distances between samples ordered as in 
panels A-B. D-G. PCoA analyses of various axes show separation of samples from 
each cluster across PCoA space. H. Median Bray Curtis distances within (black) and 



between (grey) each cluster show more similarity within clusters (with the exception 
of cluster 2) than between clusters. 

 

 
Supplemental Figure 4: ASVs which are differentially abundant with qPCR 
concentration. A. ANCOMBC was used to determine ASVs which were differentially 

abundant with qPCR concentration. Here, the log fold change of each differentially 
abundant ASV is displayed as well as the adjusted p-value. The genus (or family if the 
genus was undefined) taxonomic id is used to identify each ASV. B-G. The log-

transformed qPCR concentration and relative abundance of each differentially 
abundant ASV is shown. A regression line with confidence intervals is shown in blue. 

 

 
Supplemental Figure 5: ASVs which significantly correlate with particular 

metadata variables. A-C. When examining the LTC site, among the 9 differentially 
abundant ASVs with a mean relative abundance >0.1% include 3 taxa which are 

dominant across the dataset. D. Of the 5 differentially abundant ASVs across the 
month of collection, 2 also correlated with LTC site, including a Moraxella ASV. 
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Supplemental Figure 6: The proportion of pre-C&F, ILI, and post-C&F samples 
in each cluster type. Samples collected at different points in the study period were 

not preferentially found in any particular cluster (p=0.148252, chi-squared test). 
 

 
Supplemental Figure 7: Respiratory events are not predictable from a priori 

collected samples. A. There are no observable differences between pre-C&F 
samples collected before ILI events did or did not occur (p=0.378/0.099, permanova 

with Bray Curtis and Aitchison distances, respectively). B. Clustering of pre-C&F 
samples did not statistically differ between individuals who did and did not 
subsequently experience ILI (p=0.121349, chi-squared test). 
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Supplemental Figure 8: ASVs which are differentially abundant across pre-C&F, 
ILI, and post-C&F sample types. A. ANCOMBC was used to determine the ASVs 

which were differentially abundant across the three sample types. Here, the test 
statistic (W) of each differentially abundant ASV is displayed along with the adjusted 
p-value. The genus (or family if the genus was undefined) taxonomic ID is used to 

identify each ASV. B-I. The log-transformed relative abundance of each differentially 
abundant ASV across the three sample types. 

 

 
Supplemental Figure 9: The intra-individual Bray Curtis distance is increased 

when significant cluster movement is observed. In individuals who did not have 
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events, those whose microbiome moved between clusters (“change”) have a 
statistically significant increased Bray Curtis distance when compared to those who 

did not move between clusters (“same”). Similarly, individuals who experienced 
influenza-like illness (ILI) had an increased intra-individual Bray Curtis distance when 

the illness resulted in a permanent change in cluster membership (categories 3-4) 
when compared to individuals who did not change clusters (category 1). 
 

 
Supplemental Figure 10: There is no discernible pattern in cluster movement 

between samples. Nodes and edges are weighted based on the number of samples 
in each category. Rows and columns of nodes are labelled with the sample type (pre-
C&F, ILI, post-C&F) and cluster number (1-9). 
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Supplemental Figure 11: Relative abundance of Lactobacillus across samples. 

There were no differentially abundant ASVs between individuals on active and placebo 
treatments, including any ASV with the taxonomic assignment of Lactobacillus. 

 
 
 

Supplemental Table 1: Correlating metadata variables. 

Variable 1 Variable 2 Statistical test, p-value 

Age at enrolment Sex aov, p=0.040 

Age at enrolment Smoker aov, p=0.0002 

Age at enrolment Influenza vaccination 
(current season) 

aov, p=0.044 

Age at enrolment Anemia aov, p=0.006 

Age at enrolment Seizures aov, p=0.020 

Site at enrolment Month chisq, p=2.519e-05 

LTC Site Season chisq, p=0.009 

LTC Site Year chisq, p=2.427e-13 

LTC Site Influenza vaccination 
(previous season) 

chisq, p=0.026 

LTC Site Pneumococcal vaccine 

(ever) 

chisq, p=0.001 

LTC Site Shared room chisq, p=9.711e-10 

LTC Site Seizures chisq, p=0.041 
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Month Season chisq, p < 2.2e-16 

Month Year chisq, p=7.831e-16 

Month Smoker chisq, p=0.0004 

Month Pneumococcal vaccine 
(ever) 

chisq, p=0.024 

Month IL1B aov, p=0.005 

Season Year chisq, p=0.0003 

Season Pneumococcal vaccine 

(ever) 

chisq, p=0.019 

Season Dementia chisq, p=0.018 

Season IL1B aov, p=0.027 

Had respiratory event IL1B aov,p=0.042 

Smoker COPD chisq, p=0.012 

Smoker IL1B aov, p=0.050 

Medications (number of) COPD aov, p=0.015 

Medications (number of) CHF aov, p=0.0003 

Medications (number of) Dementia aov, p=0.017 

Medications (number of) DM aov, p=0.022 

Medications (number of) Comorbidities (number of) aov, p=8.03e-07 

Influenza vaccination 
(current season) 

Influenza vaccination 
(previous season) 

chisq, p=0.001 

Influenza vaccination 
(current season) 

Influenza vaccination 
(ever) 

chisq, p=3.596e-08 

Influenza vaccination 

(current season) 

Pneumococcal vaccine 

(ever) 

chisq, p=7.083e-05 

Influenza vaccination 
(current season) 

IL1B aov, p=0.032 

Influenza vaccination 

(previous season) 

Influenza vaccination 

(ever) 

chisq, p=7.785e-10 

Influenza vaccination 
(previous season) 

Pneumococcal vaccine 
(ever) 

chisq, p=0.001 

Influenza vaccination 

(previous season) 

Comorbidities (number of) aov, p=0.014 

Influenza vaccination 
(ever) 

Pneumococcal vaccine 
(ever) 

chisq, p=0.003 

Influenza vaccination 

(ever) 

Barthel total aov, p=0.037 

Influenza vaccination 
(ever) 

Comorbidities (number of) aov, p=0.044 

Influenza vaccination 

(ever) 

IL1B aov, p=0.015 

Pneumococcal vaccine 
(ever) 

Cancer chisq, p= 0.029 

COPD CVD chisq, p=0.002 

CHF Comorbidities (number of) aov, p=0.002 

CVD Comorbidities (number of) aov, p=2.56e-06 

Anemia Comorbidities (number of) aov,p= 0.008 

Dementia IL6 aov, p=0.027 

Stroke Comorbidities (number of) aov, p=0.017 



Diabetes mellitus Comorbidities (number of) aov, p=0.045 

 
 

Supplemental Table 2: p-values of correlation tests (per individual) between 
collected metadata variables and cluster movement categories.  

Characteristic p-value Statistical test 

Age at enrolment 0.312 aov 

Sex 0.123 chisq 

LTC home site 0.722 chisq 

Allocation Group 

Probiotics 

0.091 chisq 

Smoker 0.192 chisq 

Num Medications 0.326 aov 

Influenza vacc this season 0.743 aov 

Influenza vacc last season 0.419 chisq 

Influenza vaccine ever 0.447 chisq 

Has pt received 
pneumonia vaccine 

0.290 chisq 

Is pt in shared room 0.985 chisq 

Barthel total 0.668 aov 

COPD 0.190 chisq 

CHF 0.148 chisq 

CVD 0.424 chisq 

Anemia 0.206 chisq 

Dementia 0.312 chisq 

CVA Stroke 0.123 chisq 

DM 0.403 chisq 

Hypothyroid 0.176 chisq 

Num Comorbidities 0.725 aov 

Seizures 0.309 chisq 

Cancer 0.468 chisq 

IL1B 0.438 aov 

IL6 0.569 aov 

TNFA 0.675 aov 

Correlation was determined either with a chi squared or aov test, depending on 
the data type of the variable. COPD: chronic obstructive pulmonary disease, 
CHF: congestive heart failure, CVD: cardiovascular disease. 

 


