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We study the hyperfine spectrum of atoms of 87Rb dressed by a radio-frequency field, and present
experimental results in three different situations: freely falling atoms, atoms trapped in an optical
dipole trap and atoms in an adiabatic radio-frequency dressed shell trap. In all cases, we observe
several resonant side bands spaced (in frequency) at intervals equal to the dressing frequency, cor-
responding to transitions enabled by the dressing field. We theoretically explain the main features
of the microwave spectrum, using a semi-classical model in the low field limit and the Rotating
Wave Approximation for alkali-like species in general and 87Rb atoms in particular. As a proof of
concept, we demonstrate how the spectral signal of a dressed atomic ensemble enables an accurate
determination of the dressing configuration and the probing microwave field.

I. INTRODUCTION

The recent developments from the precise control of
cold atoms [1–4] have paved the way to many break-
through experimental and theoretical results [5, 6]. These
span a range which runs from fundamental to applied
physics, including quantum simulation [7], atom interfer-
ometry [8, 9], high precision atomic clocks [10, 11] and
sensitive compact quantum sensors [12, 13]. Amongst
these developments, radio-frequency (RF) and microwave
(MW) dressing [14, 15] have provided the means to gen-
erate new types of control and trapping potentials for
cold atoms. By combining magnetic fields at different fre-
quencies, from DC to RF and MW, one can create highly
non-trivial potential landscapes. These can have complex
geometries that are robust against low-frequency environ-
mental noise [10, 16] and can also be transformed and ma-
nipulated adiabatically [14, 17]. This provides a versatile
platform to investigate the physics of non-trivial topolo-
gies, e.g. shell potentials [18], multiple nested shell po-
tentials [19], toroidal surfaces [20] and ring-shaped struc-
tures [9, 20–23]. The dressed manifolds of different hy-
perfine states can often be coupled and manipulated in-
dependently [24]. This together with the robustness to
temporal and spatial noise [25], makes dressed poten-
tials an ideal candidate for an interferometric, or general
atomtronic, platform [6, 17, 26–28]. However, the com-
plexity of these potentials means that when additional
fields are used to probe an atom, many new transition
lines are found. This rich spectral panorama forms the
subject of this paper.

We present an experimental and theoretical study of
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the response of RF-dressed atoms of 87Rb to MW radi-
ation for the full range of relevant microwave frequen-
cies. We identify qualitatively and quantitatively how
the microwave spectrum emerges from probing the RF-
dressing, and observe the signatures of the spectrum in
three common experimental situations. In the follow-
ing Sec. II there is a theoretical description of the in-
ternal dynamics of alkali-like atomic systems driven by
one radio-frequency and one microwave field in the limit
of a linear Zeeman shift and a weak RF field. We then
present experimental results corresponding to three dif-
ferent scenarios: freely falling atoms (Sec. IIIA), atoms
in an optical dipole trap (Sec. III B), and atoms in an
RF-dressed shell trap (Sec. III C). In each case, we de-
scribe the main features of the microwave spectrum and
compare them with our theoretical model. Finally, in our
closing section (Sec. IV), we provide a general outlook of
our findings and comment on future applications.

II. INTERACTION OF AN ALKALI ATOM
WITH RADIO-FREQUENCY AND MICROWAVE

MAGNETIC FIELDS

The internal dynamics of an alkali atom in its elec-
tronic ground state interacting with a weak, time-
dependent magnetic field B(t) are governed by the
Hamiltonian:

Ĥ =
A

~2
Î · Ĵ +

µB

~
(gI Î + gJ Ĵ) ·B(t), (1)

where A is a hyperfine structure constant, and µB is the
Bohr magnetron. The factors gI and gJ are the nuclear
and electronic g-factors, respectively They have the cor-
responding angular momentum operators Î and Ĵ.

Here we consider a magnetic field with three contribu-
tions: a time-independent (DC) part and two harmoni-
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cally oscillating components at radio-frequency (RF) and
microwave (MW) frequencies:

B(t) = BDC ez + BRF(t) + BMW(t). (2)

Without loss of generality, we choose a quantization axis
(unit vector ez) along the direction of the static field of
strength BDC.

For zero external magnetic field, the coupling between
the nuclear and electronic magnetic moments (with quan-
tum numbers I and J = L ± S) defines two hyperfine
manifolds with different total angular momentum and
corresponding quantum number F = I ± J , which are
split by an energy gap of ∆Ehfs = AJ(2I + 1). The
static component of the field, BDC, lifts the degener-
acy within each hyperfine manifold (Zeeman splitting).
When the hyperfine splitting is much larger than the en-
ergy associated with the applied magnetic fields, that is,
∆Ehfs � µB(B2

DC + |BRF|2 + |BMW|2)1/2, the total an-
gular momentum F remains a good quantum number,
and the atomic spectrum can be conveniently described
in the basis {|F = I + J,mF〉} ⊕ |F = I − J,mF〉}, with
mF = −F, ..., F [29].

In this basis, the static part of the Hamiltonian Eq. (1)
can be linearly approximated as

Ĥ0 =
∑
F

(
EF + µBgF F̂zBDC

)
1̂F , (3)

where we have defined partial identity operators to
project onto the hyperfine manifolds,

1̂F =

F∑
mF=−F

|F,mF〉〈F,mF|,

and we have used the property [1̂F , F̂z] = 0. Energies
and gF -factors for the two manifolds are given by

EF =
1

2
A (F (F + 1)− I(I + 1)− J(J + 1)) , (4)

and

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

+gI
F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)
, (5)

(e.g. see [30] and Refs. [17,20,25] therein).
The arrangement of energy levels and coupling fields is

illustrated for the 87Rb ground state in Figure 1 for the
example of a π-polarized MW field. In the case of 87Rb
(I = 3/2), the two gF -factors given by Eq. (5) are g1 =
−0.50182671 for the lower manifold and g2 = 0.49983642
for the upper manifold.

The two time-dependent terms in Eq. (2) oscillate at
frequencies close to the resonance condition and cause
two different types of transitions written as |F ′,m′F〉 ↔
|F,mF〉. The radio-frequency field, BRF(t) oscillates
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Figure 1. Energy level scheme and couplings for the RF
dressed, electronic ground state of 87Rb with two hyperfine
manifolds of total angular momentum F = 1, 2. (a) The figure
shows a linearly polarised RF field, orthogonal to the static
field, and the example of a π-polarized MW field, i.e. the
magnetic field oscillating parallel to the static field. (b) In
the laboratory frame, the RF (orange) and MW (red, black,
blue) fields with frequencies ωRF and ωMW induce intra- and
inter-manifold couplings, respectively. The example shows the
resonantly dressed |1, m̄ = 0〉 state, which is a superposition
of the two bare states |1,−1〉 and |1,+1〉, as marked by the
green circles. In the dressed picture, the RF field becomes a
component of an effective static field, and the MW field can
in principle couple any pair of states from the two manifolds.
In the ideal case of g1 = −g2 and on RF resonance some
transitions are forbidden, indicated by dashed lines, which is
shown in (c) for driving near the zero field hyperfine split-
ting frequency (n=0). Here, the dressed state |1, m̄ = 0〉
is not coupled. In (d) the situation is shown for only the
state |1, m̄ = 0〉 but for all apparent sidebands ωMW + nωRF,
with n = +2, 0,−2 (red, black, blue), which are resonant for
frequencies ωMW near the three corresponding π-transitions
between bare states. See Appendix C.

at a frequency of the order of the Zeeman splitting,
ωRF ∼ |gF |µBBDC/~, which is typically in the range of
10s kHz – MHz. It is convenient to represent the corre-
sponding atom-field interaction term in the basis of total
angular momentum |F,mF〉. In this basis, the hyper-
fine interaction AÎ · Ĵ splits the energy spectrum in two



3

blocks of Zeeman sub-states of total angular momentum
F = |I ± J |, and transitions within each block, corre-
sponding to |F − F ′| = 0, are near-resonantly coupled
by the RF field. This part of the Hamiltonian can be
approximated by a term ĤRF ∝ gFBRF · F̂.

The microwave field BMW(t) oscillates at a frequency
of the order of the hyperfine splitting: ωMW ∼ |EI+J −
E|I−J||/~, which for alkali atoms ranges between 0.2 -
10 GHz [30, 31]. In this case, the couplings between
blocks of states defined by the hyperfine coupling are
resonant and the MW field leads to transitions between
states belonging to different hyperfine manifolds such
that |F − F ′| = 1. For this part of the Hamiltonian,
we neglect the small nuclear magnetic moment due to
gI � gJ , and approximate it by a term of the form
ĤMW ∝ gJBMW · Ĵ, see below.

The two oscillating fields can be expressed in spheri-
cal polarization components defined with respect to the

direction of the static field [15] as

BAC(t) = BACe
−iωACt + B∗ACe

iωACt, (6)

with complex amplitudes

BAC = BAC,+e+ +BAC,−e− +BAC,0e0 . (7)

Here we let AC→ RF,MW and we have used the defini-
tions [15]

e0 = ez, BAC,0 =
BAC,ze

−iφz

2

e± = ∓ex ± iey√
2

, BAC,± =
∓BAC,xe

−iφx + iBAC,ye
−iφy

2
√

2
,

(8)

where φi represent the phases of the ith component of
the AC field. Using this parametrisation of the fields
and taking into account the range of frequencies of each
component, the RF and MW interaction Hamiltonians
are given by:

ĤRF(t) =
∑
F

1̂F
∑

σ∈{+,−,0}

ησµBgF

(
BRF,σe

−iωRFtF̂σ +B∗RF,σe
iωRFtF̂−σ

)
, (9)

ĤMW(t) =
∑

σ∈{+,−,0}

ησµBgJ

(
BMW,σe

−iωMWtĴσ +B∗MW,σe
iωMWtĴ−σ

)
, (10)

where the raising and lowering angular momentum oper-
ators are defined by F̂± = (F̂x ± iF̂y), with similar ex-
pressions for the electronic angular momentum Ĵ±. The
factors η+1 = −1/

√
2, η−1 = 1/

√
2, η0 = 1 follow from

our definitions in Eq. (8).
In the next section, we describe how the Rotating Wave

Approximation (RWA) leads to an approximate descrip-
tion of the internal dynamics of alkali atoms subjected to
this bi-chromatic field.

A. RF-dressing in the Rotating Wave
Approximation

Let us first consider the case where there is no mi-
crowave field, i.e. BMW(t) = 0. Then the Hamiltonian
becomes,

Ĥ = Ĥ0 + ĤRF(t), (11)

where Ĥ0 is defined in Eq. (3) and ĤRF is given by
Eq. (9). The resulting dynamics can be described in the
dressed basis, i.e. by moving to a rotating frame where
the most relevant component of the field becomes time-
independent, and diagonalisation of the resulting Hamil-
tonian becomes analytically tractable. More specifically,

we describe the driven atom in the rotating frame of ref-
erence that follows from the unitary transformation

Ûz(ωRFt) =
∑
F

1̂F exp
[
−isgn(gF )ωRFtF̂z

]
, (12)

which corresponds to geometric rotations about the z-
axis at frequency ωRF, but in opposite directions due to
the opposite sign of the gF factors. In the rotating frame,
the Hamiltonian (11) becomes:

ˆ̃H = Û†z ĤÛz − i~Û†z∂tÛz
≈
∑
F

1̂F

[
EF + (µBgFBDC,z − sgn(gF )~ωRF)F̂z

+
µBgF

2

√
2(BRF,sgn(gF )F̂+ +B∗RF,sgn(gF )F̂−)

]
,

(13)

where we have neglected inter-manifold couplings and ap-
plied the Rotating Wave Approximation (RWA), which
consists of neglecting time-dependent terms oscillating
at angular frequency ±2ωRF. This procedure is valid as
long as the processes associated with these terms are far
from being resonant. The RF-dressed states are defined
as the eigenstates of Eq. (13), which can be obtained by
performing a second (time-independent) rotation within
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each hyperfine manifold,

Ûy =
∑
F

1̂F exp
(
−iθF F̂y

)
, (14)

where

θF =
π

2
− tan−1

(
BDC − ~ωRF/(µB |gF |)√

2BRF,sgn(gF )

)
. (15)

The resonance condition µB|gF |BDC = ~ωRF depends on
F and is shifted by (g2 +g1)µBBDC (or h ·2.78666 kHz/G
in the case of 87Rb), which causes a small difference in
the shape of the dressed potentials, as we will see below.

In the basis of RF dressed states, the Hamiltonian ˆ̄H =

Û†y
ˆ̃HÛy becomes

ˆ̄H =
∑
F

1̂F

[
EF + ~ΩFRFF̂z

]
, (16)

with the Rabi frequencies, ΩFRF, defined by:

~ΩFRF = µBgF

√(
BDC −

gF
|gF |

~ωRF

µBgF

)2

+ 2
∣∣BRF,sgn(gF )

∣∣2.
(17)

With this construction, the dressed states are defined as a
time-dependent superposition of Zeeman states, i.e. they
can be expressed in the bare basis as:

|F, m̄〉 =
∑

m=−F...F
e−isgn(gF )m̄ωRFtdFmm̄(θF ) |F,m〉 ,

(18)
where dFmm̄(θ) is the Wigner d-matrix,

dFm′,m(θ) = 〈F,m′| e−iθF̂y |F,m〉 , (19)

which represents the rotation of the operator Ûy(θ). In
the case of 87Rb, the nuclear angular momentum I =
3/2 implies that the ground state manifold splits into
two hyperfine manifolds of total angular momentum F =
1, 2, with Hilbert space dimensions 3 and 5, respectively.
Values for the dFm′,m(θ) for rotations about the y-axis are
presented in matrix form in Appendix A. In combination
with time-dependent factors in Eq. (18), matrices (A1)
and (A2) give us the time-dependent relation between
the bare and dressed representations.

When dealing with problems restricted to a single hy-
perfine manifold a simpler treatment is possible [15].
The unitary transformation to the basis of RF dressed
states can then be expressed in terms of separate spatial
rotational matrices, exploiting the equivalence between
spin and spatial rotations for interactions of the form
V̂ = µ · F̂. More concretely, in a rotating frame reached
by the unitary transformation Û = exp(−θn̂ · F̂), the
interaction can be obtained using the Baker-Campbell-
Hausdorff Lemma:

Û†V̂ Û = µ · Û†F̂Û
= Rn̂(−θ)µ · F̂ (20)

where Rn̂(−θ) is a 3 × 3 matrix corresponding to the
rotation by an angle −θ around the axis aligned in the
direction of n̂ [20, 32]. Here, we are concerned with cou-
plings between RF dressed manifolds with different total
angular momentum and therefore it is more convenient to
use the transformation between the Zeeman and dressed
bases as given by Eqs. (18)-(19).

B. MW coupling of RF-dressed states in the
Rotating Wave Approximation

RF-dressed states of the electronic ground state of an
alkali atom can be prepared by starting in bare states
and adiabatically tuning into resonance with the dressing
field. The resonance frequency is given by the Zeeman
splitting, which corresponds to ωRF ∼ 2π× 0.70 kHz per
Gauss for 87Rb. In this section, we study how a coherent
superposition of RF-dressed states of the two hyperfine
manifolds can be prepared by a applying a second field
with a frequency set by the hyperfine splitting, which
corresponds to ωMW ∼ 2π × 6.834 GHz for 87Rb.

This problem can be studied in the context of the re-
sponse of continuously driven quantum systems, which
has been the subject of theoretical and experimental
study over several decades [32–34]. The experimental
observations of the spectrum of off-resonant RF-dressed
states made by Haroche and Cohen-Tannoudji can be
understood using perturbative expansions of driven two-
level systems (TLS) [35–39]. In addition, more recent
experiments demonstrate that the modified response of
resonantly RF-dressed alkali atoms to MW fields enables
the encoding and manipulation of qudits exploiting the
full complexity of the hyperfine manifold [29, 40], and
going beyond the TLS paradigm. In this section we ex-
plain how the response of RF-dressed 87Rb to a MW
field can be obtained by applying a second rotating wave
approximation (for the MW field), which allows us to cal-
culate selection rules, resonant conditions and coupling
strengths.

Similar to the RF case, the interaction with the MW
field has contributions from both the nuclear and elec-
tronic magnetic moments. However, since the nuclear
gyromagnetic factor (gI = −0.000995) is three orders
of magnitude smaller than the electronic one (gJ =
2.002319), within the RWA it is sufficient to consider
only the electronic coupling in Eq. (10). When the atoms
are continuously dressed by an RF field, the microwave
field induces transitions between the dressed states de-
fined by Eq. (18), which can be obtained by expressing
the interaction ĤMW in the dressed basis. Explicitly, this
calculation corresponds to finding [24]

ˆ̄Hσ
MW = Û†y (θF+1, θF )Û†z (t)Ĥσ

MWÛz(t)Ûy(θF+1, θF ),
(21)

where Ĥσ
MW is the contribution of the field component

with polarization σ to the MW interaction Eq. (10),
and the rotations are defined for each of the hyperfine
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manifolds. After some algebraic manipulation (see Ap- pendix B), the matrix elements of the MW coupling are
given in the dressed basis by

〈F + 1, m̄′| ˆ̄Hσ
MW |F, m̄〉 = ησµBgJ

√
2I(I + 1)

2I + 1

1∑
`=−1

Bσ,`MW(t)

×
F∑

m=−F
eiωRFt(2m+`)) × dF+1

m̄′,m+`(−θ
F+1)dFm,m̄(θF )

×(−1)(F+1−m−`)
(

F + 1 1 F
−(m+ `) ` m

)
, (22)

where η+1 = −1/
√

2, η−1 = 1/
√

2, η0 = 1, and with
the standard notation for the 3-j Wigner coefficients. We

also use the Wigner d-matrix defined in Eq. (19), and the
definition

B`,σMW(t) =

(
BMW,σ

(
1 + σ`

2

)
+B∗MW,σ

(
1− σ`

2

))
e−iσ`ωMWt+(1−|σ|)δ`,0

(
BMW,σe

−iωMWt +B∗MW,σe
iωMWt

)
. (23)

Due to the transformation to the (counter) rotating
frame(s), a single frequency microwave field will appear
modulated, which gives rise to fictitious sidebands. Ac-
cording to Eq. (22) the MW driving between dressed
states causes coupling terms with angular frequencies
equal to ωMW plus multiples of the RF dressing fre-
quency, nωRF. This lets us split the interaction into con-
tributions from each MW polarization (σ) at different
frequencies in the form [24]

ˆ̄HMW =
∑
n,σ

ˆ̄Hσ,n
MWe

−i(ωMW+nωRF)t + ˆ̄Hσ,n†
MW ei(ωMW+nωRF)t,

(24)
with n ∈ [−2I, 2I], σ ∈ [−1, 1] and the matrix elements
defined by Eqs. (22,23).

The coefficients B`,σMW defined in Eq. (23) lead to several
relations between the matrix elements that depend on the
polarization of the MW field but not on the RF dress-
ing configuration. They give rise to a structure that re-
produces the bare microwave spectrum. The π-polarised
component of the MW field enables coupling at even side-
bands, i.e. for oscillatory terms of MW frequency plus
even multiples of ωRF. Similarly, the σ±-polarised com-
ponents enable coupling at the MW frequency plus odd
multiples of ωRF, but not for the respective extremal
ωMW ± (2F + 1)ωRF. (Note that an apparent positive
sideband allows for red-detuned driving in the laboratory
frame.)

In general, the coupling between dressed states de-
pends on the RF dressing configuration via the Wigner
d-matrices. However, in agreement with symmetry con-
siderations and conservation of the angular momentum
of the atom plus radiation system, the matrix elements

of each contribution to Eq. (24) satisfy the relation:

〈F + 1, m̄′| ˆ̄Hσ,n
MW |F, m̄〉 =

BMW,σ

BMW,−σ
(−1)σ+m̄′−m̄−1

×〈F + 1,−m̄′| ˆ̄H−σ,−nMW |F,−m̄〉 .
(25)

The MW couplings in the RF dressing configuration
must meet the resonance conditions

ωMW + nωRF = ωhfs + m̄ΩFRF + m̄′ΩF+1
RF , (26)

with n ∈ [−2(F + 1)−1, 2F + 1] and m̄, m̄′ ∈ Z and ΩFRF
defined in Eq. (17). On the left hand side of Eq. (26) we
have the oscillating frequency of the MW field observed
in the dressed frame of reference, while on the right hand
side we have written the quasi-energy difference between
pairs of dressed states {|Fm̄〉, |F + 1, m̄′〉}.

In Figure 2 we depict schematically the MW spectrum
of resonantly RF-dressed 87Rb, considering as the ini-
tial state each one of the dressed sub-levels of the lower
hyperfine manifold F = 1, and the three possible MW
polarizations. In this case, there are 105 potential tran-
sition frequencies corresponding to 3 × 5 = 15 different
pairs of states in the lower and upper hyperfine manifolds,
coupled by terms oscillating at the 7 different frequencies
ωMW + nωRF with n ∈ −3, 3. Resonant frequencies are
given by Eq. (26) and the MW couplings are calculated
with Eq. (22), considering resonant RF-dressing and ne-
glecting the difference between gyromagnetic factors. An
explicit form of the couplings for 87Rb is presented in ex-
tended form in Appendix C.

Groups of resonant transitions between RF-dressed
states can be labelled by the integer multiplier n of the
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Figure 2. Resonant frequencies and MW couplings between
resonantly RF-dressed states of 87Rb calculated using Eq. (22)
(see Appendix C). Resonances cluster around integer mul-
tiples of the RF frequency. The clusters can be associated
with spherical polarization components of the microwave field
(red σ−, blue σ+ and black π). The microwave couplings

Ωσ are scaled to units of 1
16

√
3
2
|ησ|µBgJBMW,σ/~. The hori-

zontal axis indicates the microwave detuning from the zero
field hyperfine splitting in units of the RF frequency. In
this case, the dressing field is linearly polarized and orthog-
onal to the static field. Its amplitude is BRF = 0.2BDC and
the angular frequency is resonant with the Zeeman splitting
ωRF = µB|gF |BDC/~, neglecting the difference between gyro-
magnetic factors. The σ± polarizations of the MW field are
defined with phases φx = 0 and φy = ∓π/2 and Bx = By > 0.

RF angular frequency in the resonant condition Eq. (26).
As a consequence of the conservation of angular momen-
tum (see Eq. (B11) in Appendix C), transitions in the
even and odd groups are induced by π- and σ±-polarised
MW radiation, which is reminiscent of the MW transi-
tions of bare atoms.

The analysis presented above applies to the electronic
ground state of alkali-metal atoms and alkali-metal-like
ions [31], with the total number of possible transitions
and groups defined by the nuclear total spin (and then
the ranges of m̄, m̄′ and n in Eq. (26)). For instance, the
MW spectrum of the RF-dressed bosonic species 87Rb,
39K, 23Na and 7Li, present the same number of reso-
nances since the ground state of all of them is split in
the manifold F = 2 and F = 1, though the resonant
frequencies are determined by their fine and hyperfine
constants.

III. MICROWAVE SPECTROSCOPY OF
RF-DRESSED RUBIDIUM-87

A typical experimental sequence describing the general
outline for all three experimental scenarios presented in
this section is shown in Fig. 3, with the eigenenergies of
the 87Rb hyperfine sub-levels at different stages of the
sequence. We first examine the MW spectrum of freely
falling clouds prepared selectively in one of the three
dressed states of the F = 1 manifold (Section IIIA).
In a second experiment (Section III B), the spectrum
is obtained for 87Rb atoms in the dressed |1,−1〉 state
trapped in an optical potential, with particular focus on
the group of transitions corresponding to n = 1, as de-
fined in Eq. (26). The third experimental configuration
studies the MW spectrum of atoms confined in an RF-
dressed shell trap (Section III C), where effects of the in-
homogeneity of the field distribution play an important
role. The experimental details for the different dress-
ing configurations are presented in the following sections
IIIA–III C, including analysis and discussion of the ob-
served spectroscopic measurements.
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Figure 3. Scheme of a generic experimental sequence. First
the sample is prepared in the bare state basis, defined by
Ĥ0. Then an RF-field is switched on and the atoms are adi-
abatically dressed. At this stage the total Hamiltonian is
Ĥ = Ĥ0 + ĤRF. Afterwards, a MW-field is switched on for
a short time which couples the two hyperfine manifolds via
Ĥ = Ĥ0 + ĤRF + ĤMW. Finally, we measure the different
sub-level populations.

A. Free-falling atoms in homogeneous fields

Using free-falling ensembles of 87Rb atoms released
from a magneto-optical trap (MOT) allows us to apply
nearly homogeneous magnetic fields to otherwise unaf-
fected atoms. By preparing pure dressed states and using
a dispersive detection method to obtain state-dependent
signals [32] we are able to attribute spectroscopic fea-
tures to individual transitions. The state preparation
sequence, shown in Fig. 4, is performed after optical mo-
lasses cooling and optical hyperfine pumping with ini-
tial atomic population in all five Zeeman sub-levels of
F = 2. We apply a MW π-pulse in a weak, homoge-
neous magnetic field (≈ 1 G) by driving coherent Rabi
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𝐹 = 2

𝐹 = 1

−2 −1 0 1 2
𝑚

𝐸

(a)
State Selection
with MW π pulse

−2 −1 0 1 2
𝑚

(b)
State Cleaning

−2 −1 0 1 2
𝑚

(c)
RF Dressing and
Adiabatic Tuning𝐸 𝐸

Figure 4. Preparation sequence for a pure dressed state
|F = 1, m̄〉, with m̄ = 1 for the specific example shown. After
an initial optical pumping stage, we start with atom popula-
tion in F = 2. We apply a MW π-pulse from |2,m〉 → |1,m〉
to selectively populate only one of the F = 1 levels (a), before
removing all atoms from the F = 2 manifold with a resonant
laser beam (b). Finally, we apply the dressing RF field and
adiabatically tune the Larmor precession frequency into res-
onance by ramping the static field (c).

cycles on one of the bare π-transitions. These transi-
tions are non-degenerate due to the opposite sign of the
g-factors in the two hyperfine states and thus frequency
selective. This allows us to populate a single Zeeman sub-
level in the F = 1 manifold, i.e. only one of the states
|F = 1,m = ±1, 0〉, see the example in Fig. 4a. For each
of the three π-transitions, we adjust the pulse duration to
maximise population in the target state. Subsequently,
the population in the F = 2 manifold is removed by shin-
ing a resonant laser beam tuned to the F = 2→ F ′ = 3
transition of the D2-line (Fig. 4b). Multiple photon scat-
tering on this closed transition accelerates atoms away
from the observed volume. Finally, the remaining atoms
in the pure bare state are adiabatically dressed by ramp-
ing up the RF-field amplitude and tuning the atomic Lar-
mor frequency near resonance using the static field am-
plitude, see Fig. 4c. For this set of experiments, we work
in the weak field regime using a dressing field amplitude
of BRF ≈ 10 mG at a frequency of ωRF = 2π × 180 kHz,
resonant for a static field of BDC ≈ 257 mG. The fi-
nal dressed state is typically populated by nm ≈ 3× 107

atoms.

The spectroscopy is performed by first applying a weak
MW pulse, typically a few ms long, which may couple
the prepared initial dressed state in the F = 1 manifold
to one of the five dressed states in the F = 2 mani-
fold, depending on the frequency of the MW pulse. The
atomic response is then recorded by observing the AC-
modulated linear birefringence of the ensemble, which
we can measure separately for both hyperfine states us-
ing two laser beams and a balanced polarimeter [32]. An
ensemble of atoms in a (bare) Zeeman state |F,m〉 will ex-
hibit a linear birefringence S proportional to atom num-
ber nm. The birefringence depends quadratically on the
magnetic quantum number m and may change sign ac-
cording to S ∝ nm(F (F + 1)− 3m2). Adiabatic dressing
of the atoms modulates the linear birefringence of the
ensemble, and depending on laser detuning and experi-

mental geometry, we can detect a signal

S2 ∝ nm̄(F (F + 1)− 3m̄2) (27)

at the second harmonic of the dressing frequency, where
sign and amplitude now depend on the adiabatic quan-
tum number m̄.

Depending on the polarization of the MW field, we
observe up to seven main groups of dressed hyperfine
transitions. As can be seen in Fig. 5, each group is cen-
tred around one of the bare hyperfine transition frequen-
cies, which are separated by the dressing frequency of
ωRF = 2π × 180 kHz. The appearance of the groups
depends on the polarization of the MW field and re-
sembles the bare scenario, with three groups emerg-
ing for π-polarization (i.e. BMW aligned with the static
field BDC), and four groups for linear σ-polarization (i.e.
BMW orthogonal to BDC). The frequencies of individual
transitions are in good agreement with the theoretical
prediction from Eq. (26). The individual peak heights
and widths of the experimental data are not a direct
reflection of the transitions’ coupling strengths due to
their dependence on various experimental settings. The
widths of these lines are determined by a combination
of MW power broadening, residual field inhomogeneities
and magnetic field noise. The experimental data shows
some transitions that are predicted to vanish according
to the approximation g1 = −g2 that was used to pro-
duce the theoretical spectrum shown in Fig. 2. These
transitions are observable because the small difference in
the magnitude of the Landé factors g1 and g2 and de-
tuning(s) from RF resonances lead to non-zero coupling
coefficients, see Eq. (22).

In our experiment, the population signals from the dif-
ferent F = 2 levels scale relative to each other by a factor
given by Eq. (27). The peak heights are not directly in-
dicative of the transition strengths as the MW pulse of
fixed duration (0.4 ms) induces Rabi cycles of differing
frequencies for each transition and results in a different
population fraction in F = 2 depending on the number
of Rabi cycles on each transition. The data for the three
initial states differ in strength due to variations in the
experimental state preparation efficiency, and the π- and
σ- polarization data sets may be subject to variations in
external experimental conditions as these were taken at
different times.

The set of transitions corresponding to the group of
resonances in the vicinity of ωhfs + 3 × ωRF is shown in
Fig. 6a. As before, atoms prepared in each of the initial
three states give rise to five resonant transitions sepa-
rated in frequency by the RF Rabi frequency (≈ 10 kHz).
The strength of the signal reflects not only the MW tran-
sition strength, but also carries a signature of the popu-
lated target state in F = 2 according to Eq. (27), which
explains why signals from transitions to |F = 2,m = ±2〉
are negative in sign. This spectrum was acquired with
low MW power in order to significantly reduce the ef-
fect of power broadening on the transition peaks. The
width of the spectral lines in this case is a consequence
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Figure 5. Experimental MW spectrum for RF dressed 87Rb
showing the seven main spectral groups, corresponding to the
bare hyperfine transitions. Each panel shows results for atoms
prepared in one of the pure, initially bare states |F = 1, m̄ =
±1, 0〉, adiabatically dressed by a near resonant RF field with
Rabi frequency ΩRF ≈ 2π × 10 kHz. The spectrum shows all
transitions to F = 2 for linear MW polarization both parallel
(π) and orthogonal (σ) to the static field, with a resolution of
1 kHz. The σ data set is taken with all fields (DC, RF, MW)
pairwise orthogonal. The groups are separated by ωRF =
2π × 180 kHz, each showing transitions to the five dressed
states of the F = 2 manifold, where the outer transitions
to dressed states |2, m̄ = ±2〉 can be identified by negative
signals. This data set confirms level assignments and expected
frequencies as given by Eq. (26), compare to Fig. 2.

of homogeneous broadening due to field noise and inho-
mogeneous broadening due to magnetic field gradients for
all but the three sharpest peaks. The sharp resonances
in each group, shown in Fig. 6b, correspond to the transi-
tions |1,−1〉 → |2, 1〉, |1, 0〉 → |2, 0〉 and |1, 1〉 → |2,−1〉.
These transitions are least affected by the fields, because
states in each pair experience (almost) equal magnetic
shifts due to near identical factors gFmF for the involved
states. A small frequency splitting between these transi-
tions remains due to the marginal difference in magnitude
of the gF factors. As a result, these lines are coherently
driven, with theoretical line shapes of the form

A ∝ Ω2

Ω2 + (∆−∆c)2
sin2

√
Ω2 + (∆−∆c)2t

2
(28)

where A is the F = 2 signal amplitude, Ω is the MW
Rabi frequency, ∆c is the centre frequency, t is the pulse
duration of 5 ms and ∆ = ωMW − ωhfs [41].

In principle, the Rabi frequencies extracted from the
least squares fit using Eq. (28) should allow for a compar-
ison with the theory. Under the approximation g1 = −g2,
the theoretically predicted ratio of resonant coupling
strengths is 1 : −

√
3 : 1 for the pairs with m̄ = ∓1, 0,±1,
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Figure 6. Experimental σ-polarized MW spectra of RF
dressed 87Rb atoms showing the group of 15 transitions
around 3 × ωRF = 2π × 540 kHz detuning. The magnetic
MW, RF and static fields are pairwise orthogonal. The pan-
els in (a) show spectra for atoms are prepared in different
sub-levels |F = 1,m = −1, 0, 1〉, adiabatically dressed under
the same conditions as in Fig. 5 before shining a low power
MW spectroscopy pulse of 5 ms duration and detecting atomic
population in F = 2. The slight negative offset from zero sig-
nal for states m = ±1 is due to imperfect state preparation.
The three sharpest peaks from (a) have a resolution of 0.1 kHz
and are shown in (b) where blue, black and red crosses corre-
spond to transitions from |F = 1,m = −1, 0, 1〉 respectively.
The solid lines model the data assuming only coherent driv-
ing. The small frequency shifts between the central peaks
result from unequal magnitudes of the two gF factors. For
more details on these peaks, see the main text.

respectively, see outer groups in Fig. 2. These ratios are
qualitatively reflected by the experimental data. How-
ever, experimental uncertainties in the relative popula-
tions of the initial states as well as in the signal scale pro-
hibit an accurate determination from just the line shapes.

B. 87Rb in an optical dipole trap

In the second set of experiments we confine the atoms
in a crossed-beam optical dipole trap, which allows us
to work at high field strengths and address all dressed
states in a trapped scenario. The preparation sequence
begins by loading an atom cloud from a MOT into a
magnetic quadrupole trap, where it is compressed and
evaporatively cooled. This is followed by further com-
pression and evaporation in the crossed-beam dipole trap
(λ = 1064 nm, P=1.8 W , final axial and radial trap-
ping frequencies ωz/2π ≈ 180Hz and ωρ/2π ≈ 30Hz).
This yields a fully polarized sample of approximately
3 × 105 atoms at 50 nK in the bare state |1,−1〉. At
this stage, a vertical bias field BDCez is ramped from
zero up to |gF |µBBDC ≈ 1.4 ~ωRF, where ωRF is the RF
frequency of the dressing field that will be applied. We
then switch on an RF-dressing field of frequency ωRF,
which is linearly polarised along ex, and subsequently
dress the cloud by adiabatically ramping down BDC until
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Figure 7. Schematic of the experimental setup with atoms
in an optical dipole trap. BRF is generated from a pair of
Helmholtz coils (in red, and labelled RF coils in the draw-
ing) tuned with a resonant circuit, and points along the x-
direction. BDC is generated from another set of coils (in black,
and labelled “DC coils”) that point along the z-direction. A
MW dipole antenna produces a field approximately polarised
in the x-y plane. See the text for further details.

a near-resonant condition |gF |µBBDC ≈ ~ωRF is reached
in ∆t = 200 ms. The spectroscopy is performed by shin-
ing a microwave pulse of duration ∆tMW = 0.7ms, fol-
lowed by a short free-expansion of typically 5 ms, right
after all AC fields are switched off. This is followed by ab-
sorption imaging adapted for simultaneous recording of
the atoms transferred to the F = 2 manifold and atoms
remaining in the F = 1 manifold.

The RF-fields are produced by a pair of Helmholtz coils
such that the generated magnetic field points along ex.
We generate the MW field with a tuned dipole antenna
placed in the x-y plane, forming an angle of 45◦ with the
ex axis as we sketch in Fig. 7. The antenna was aligned to
produce a MW-field linearly polarized in the x-y plane, at
45◦ from the x-axis and orthogonal to BDC . The finite
amplitude of the even groups in the MW spectroscopy
results (Fig. 8) suggest that the MW-field polarization is
not exactly orthogonal to BDC because of reflections from
neighbouring metallic surfaces. The duration of the MW
radiation pulse ∆tMW was chosen to be much shorter
than a π/2 pulse for the strongest transition. This al-
lows direct comparison with the theoretical predictions
for weak MW-fields from Section II B.

As in the case of the free-falling atoms (Section IIIA),
when the atoms are dressed and trapped in a crossed
dipole potential, we observe seven groups of five transi-
tions (for the initial state |1,−1〉) with variable couplings
that depend on the configuration of the magnetic fields.
Fig. 8 shows the full measured spectrum starting with
a cloud prepared in the dressed state |1,−1〉 together
with the theoretical prediction from Eqs. (22) and (26).
The measured spectrum is for the field configuration de-
scribed above. In this case, the MW antenna is oriented
such that it produces a MW field that lies in the plane
of the RF-field, mostly orthogonal to the static magnetic
field. As a result of this MW-polarization, when we scan
the MW frequency, the number of atoms transferred to
the upper hyperfine manifold for the even groups is signif-
icantly smaller compared to the number of atoms trans-
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Figure 8. Full MW spectrum of RF-dressed 87Rb in an optical
dipole trap. The dots correspond to experimental data and
the lines shown numerical calculations. The initial sample is
prepared in the dressed |1,−1〉. See text for details.

ferred for the odd groups.
The vertical scale of Fig. 8 shows the fraction of atoms

transferred to the upper states starting from F = 1. This
is calculated from a separate measurement of the total
atom number in the sample, with ωRF/2π = 2.27MHz.
Quantitative agreement between the experimental results
and the theoretical values is limited by other experimen-
tal factors not considered in this analysis: e.g. atomic
losses, and drifts in the RF amplitude or in the homo-
geneous magnetic fields. Nevertheless, there is a good
agreement between the theoretical predictions of the
transition frequencies in Eqs. (22) and (26) with our ex-
perimental results. In particular, the peaks correspond-
ing to the π-polarised component of the MW field are well
reproduced by our theory, with qualitative agreement for
the the circularly polarized components.

These findings motivate the use of MW spectroscopy
as a tool to determine the field configuration driving
the atomic cloud. In order to test this idea, we took
a spectrum of the group of resonances in the vicin-
ity of ωhfs + ωRF using ωRF/2π = 2.26341MHz and
∆tMW = 0.7ms. Scanning the microwave frequency,
we directly determine the transition probability by mea-
suring the population of both hyperfine manifolds after
the MW pulse. Calculating the numerically exact atomic
time-evolution [42], we adjust the components of all ap-
plied fields to get the best fit to the experimental results.
We also adjust all three components of the static field
since the Earth’s magnetic field adds components in the
x-y plane in our set-up. We fit the x and y components
of the microwave field because they produce significant
couplings in the range of frequencies tested. The RF
antennas are oriented to produce a RF field linearly po-
larised in the x direction. The Table I shows the value of
the parameters adjusted and Fig. 9 shows a comparison of
the experimental data with the fit. This procedure yields
a measurement of the MW field amplitude BMW,x with a
precision of approximately 10−2 and the error on BRF,x
is of order 10−3. These errors depend on the knowledge
of the DC-magnetic fields and the precision of the tran-
sition frequency measurement, which becomes worse for
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Figure 9. MW spectra for the +ωRF group of MW transitions with RF-dressed 87Rb. The initial state is the dressed |1,−1〉.
Black solid curves represent a numerical fit of the transition probability to the data displayed in several solid colour curves,
showcasing transitions spaced by ΩRF. In particular, they correspond to the following dressed states in F = 2 : |2,−2〉 (red),
|2,−1〉 (green), |2, 0〉 (blue), |2, 1〉 (magenta) and |2, 2〉 (turquoise). See text and Table I for details.

broader and more noisy line-shapes.

Field component Fitted value

BMW,x 2.01± 0.07 mG
BMW,y 1.33± 0.08 mG
BRF,x 1.114± 0.001 G
BDC,x 0.21± 0.02 G
BDC,y 0.25± 0.02 G
BDC,z 3.162± 0.008 G

Table I. Values of the components of AC and DC magnetic
fields obtained from a a fit to the data in Fig. 9

C. 87Rb in an RF-dressed shell trap

We produce an RF-dressed shell trap [14, 43] by mod-
ifying the current in the DC coils of Fig. 7 so that it is
now in an anti-Helmholtz configuration as in Fig. 10. We
apply an RF field as before. When such an RF-dressed
shell trap and a dipole trap are spatially matched through
the resonant condition |gF |µBBDC = ~ωrf, then the atom
cloud in the dipole trap can be transferred to the shell
trap by ramping up a quadrupole magnetic gradient and
slowly (∆t = 0.5 s) ramping down to zero the power of
the dipole beams (see Fig. 10). With this method, atoms
can be loaded in the dressed |1,−1〉 state adiabatically,
with non-measurable atom loss or heating. The shell trap
potential can be written as [44]

V|F,m̄〉 (r) = s

(
I +

1

2

)
~ωhfs

2
+sm̄~

√
δ2
F + Ω2

RF (r)+Mgz,

(29)
with g the gravitational acceleration,M the atomic mass
of 87Rb, and the detuning δF = ΩFL (r) − ωF (with
|~ΩFL (r)| = |gF |µB |BDC(r)|, where ΩL(r) is the Larmor
frequency) and ΩRF(r) is the spatially dependent Rabi
coupling [15]. The parameter s in Eq. (29) is given by
s = gF /|gF | so that s = 1 for F = 2 and s = −1 for
F = 1.

Trappable states are those where gF m̄ > 0. As we
present in Fig. 11, this leads to state dependent traps,

not only with regards to the RF-polarization coupling
gF -dependence, but also on the quadrupole-field induced
m̄-dependent force. Concretely, in Fig. 11a we show the
trapping potentials for the three trappable states |1,−1〉,
|2, 1〉, |2, 2〉. One can readily see that the traps have dif-
ferent curvatures and minima. In addition, in Fig. 11
we show the differences in energy ∆E1 = V|1,−1〉 − V|2,1〉
and ∆E2 = V|1,−1〉 − V|2,2〉 + Ω0, which serve as an illus-
tration of the inhomogeneous broadening related to the
mismatch of the traps that a cloud of size ∆z would ex-
perience if such transitions were driven (with Ω0 as the
Rabi frequency at the centre of the shell trap). One ob-
serves that, at the trap position z0 of V|1,−1〉 (the initial
state), the curve ∆E1 is sloped, which is a direct result
of the different gF factors. One can also see how the
parabola-shaped curve ∆E2 is, firstly, not centred at z0

(this is, again, due to the different gF factor); and, sec-
ondly, shows a larger curvature as |z| diverges from the
trap centre (this is a result of the different m̄).

In the RF-dressed shell trap we observe the same MW
spectrum structure found in Fig. 8. In this case, the trap
geometry, its spatial location and the trapping frequen-
cies are directly determined by the resonant condition of
the RF-field and the DC magnetic quadrupole field, al-
though the gravitational sag may become non-negligible.

VDressed

x

z y
 DC coils

R
F coils

MW 
antenna

BRF

BDC

Figure 10. Schematic of the experimental setup with atoms
in an RF-shell. The RF-field is generated as in Fig. 7. The
MW-field set-up is also the same, with a different tilt of the
antenna. Atoms are trapped by a quadrupole magnetic field,
instead of the optical field from Sec. III B. This field is gener-
ated by a pair of anti-Helmholtz coils (in black, and labelled
“DC coils”) that are aligned in the z-direction.
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Figure 11. (a) Dressed potentials V|1,−1〉 (blue), V|2,1〉 (red)
and V|2,2〉 − Ω0 (dashed black) as calculated from Eq. (29).
(b) Energy differences ∆E1 = V|1,−1〉 − V|2,1〉 (blue) and
∆E2 = V|1,−1〉 − V|2,2〉 + Ω0 (red). The black dashed line la-
belled z0 indicates the trap position of the initial state |1,−1〉.
We consider a quadrupole gradient α = 100G/cm, radio-
frequency ωRF/2π = 2.25891MHz and a linearly polarised
RF-field with BRF = 0.2G.

This results in state-dependent traps for any pair of ini-
tial and final states, which are in general different for
different (trappable) states, as we showed in Fig. 11. As
a consequence, the transition line-width may increase in
the magnetic trap (compared to the optical trap) and the
transferred atoms will experience higher heating rates as
they are coupled via MW radiation if the traps of the
initial and final states lie in different positions. More-
over, any homogeneous magnetic DC field simply trans-
lates the quadrupole in space and thus does not shift
transition frequencies. This is a consequence of the fact
that the trap position is fundamentally determined by
the resonant condition of the quadrupole field with the
RF-dressing frequency: i.e. |gF |µBαz = ~ωRF, where α
is the quadrupole field gradient. In Fig. 12, we show ex-
perimental measurements of the three central pairs of
transitions (∆tMW = 2.5ms) from |1,−1〉 to |2, 0〉, |2, 1〉
and |2, 2〉 for an adiabatic magnetic potential with Rabi
frequency ΩRF/2π ≈ 423±2 kHz (in ex), quadrupole gra-
dient α = 45G/cm and ωRF/2π = 2.22MHz. We have
fitted simple Lorentzian curves to the spectral data after
1ms hold time (blue). We have furthermore measured
the peak optical density after 95ms hold time for each of
the transitions and we observe how the transitions from
|1,−1〉 at ωhfs + (nωRF − ΩRF) lead to the non-trapped
state |2, 0〉, at ωhfs + nωRF to |2, 1〉 with 100ms lifetime

1ms Hold 95ms Hold

Figure 12. The solid blue lines show Lorentzian curves fit-
ted to the MW spectral measurements in F=2 (black dots)
from the initial |1,−1〉 state. Red diamonds indicate the mea-
sured peak optical density at each of the resonant frequencies
95ms after the transfer. The horizontal axis shows the de-
tuning of the microwave frequency δMW from the hyperfine
frequency ωhf/2π. The quadrupole gradient is 45G/cm, the
RF-frequency is ωRF = 2.22MHz and the RF-field Rabi fre-
quency is ΩRF/2π = 423± 2 kHz.

and at ωhf +(nωRF +ΩRF) to |2, 2〉 with a 60ms lifetime.
In both trapped states we observe significant heating due
to the mismatch of the traps, being higher in the |2, 2〉
case.

The line-widths are remarkably different for the three
pairs of transitions because of the different overlap be-
tween the initial and final adiabatic potentials. In this
experiment, the transition from |1,−1〉 to |2, 1〉 is nar-
rower (1.5 kHz) than the other two transitions to |2, 0〉
and |2, 2〉, which are broader and more noisy (20 kHz).

IV. CONCLUSIONS

In this work we presented a complete theoretical and
experimental study of the hyperfine spectrum of 87Rb
dressed by an RF field. The theoretical analysis of the
spectrum considers the regime of weak static and RF
dressing fields. In all three experimental situations dis-
cussed, the overall features of the spectrum are well de-
scribed by this analytic treatment. In particular, we
found the relative position of the resonant frequencies
and various selection rules associated with the polar-
ization of the microwave probing field. In the case of
free-falling atomic ensembles, the strengths of the ap-
plied fields are in the weak field regime and we iden-
tify all possible microwave transitions between pairs of
radio-frequency dressed states. In this case, using the
AC-modulated linear birefringence of the atomic ensem-
ble prepared in fully polarised atomic states allows us to
unambiguously assign quantum numbers and confirm the
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predicted value of the relative coupling strengths for all
observed resonances. In the cases of atomic ensembles
in the crossed-dipole and adiabatic shell traps, we used
relatively strong DC (∼ 3.1G) and RF fields (∼ 0.5G).
The number and distribution of allowed transitions re-
mains the same as in our first experiment. However,
the line-spacing is modified due to non-linear Zeeman
shifts, which we include when fitting the measured spec-
trum. Finally, in the case of the ensemble trapped in an
adiabatic shell, the nature of the RF-dressed adiabatic
potential leads to small spin-dependent discrepancies in
the size and curvature of the trapping potential. Even
though the spectrum remains unchanged, the lifetimes
and heating rates in the shell trap depend strongly on
the spin-states involved in the transition.

The study and experimental observation of the MW
spectroscopy in RF-dressed states is a first step towards
the characterisation and implementation of several quan-
tum optics and atom interferometry schemes, such as
the matter-wave interferometry in ring traps [22, 28] and
atomic-clocks [45]. The experimental situations tested in
this work have potential advantages for such applications.
For example, trapped atomic ensembles permit interfero-
metric sequences with long interrogation times, whereas
collisions in free-falling ensembles can be exploited to in-
crease the coherence time using spin self-rephasing [46].
In all cases, it should be possible to find optimal dress-
ing configurations that enable robust coherent manipu-
lations between dressed states. Also, the sensitivity of
the microwave spectrum to the polarization of the RF
and MW fields can be used for precise measurements.
Finally, applications similar to those discussed here are
currently being developed with a great variety of atomic
and solid-state alkali-like systems (e.g. alkali-metals [14],

alkali-metal-like ions [47] and NV centres [48]), where
similar spectral signatures can be observed and explained
using the theoretical framework we have presented.

The datasets generated for this paper are accessible at
10.17639/nott.7002 Nottingham Research Data Manage-
ment Repository [49].
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Appendix A: Matrix representation of the operator Ûy = exp(−iθF̂y) for total angular momentum F=1,2

For 87Rb, the RF-dressed states described in Sec. IIA become linear superpositions of the Zeeman split states as in
Eq. (18). The coefficients of such a superposition involve the Wigner d-matrix of Eq.(19). In the case of 87Rb these
are explicitly given by:

d1(θ1) =


cos(θ1)+1

2 − sin(θ1)√
2

1−cos(θ1)
2

sin(θ1)√
2

cos (θ1) − sin(θ1)√
2

1−cos(θ1)
2

sin(θ1)√
2

cos(θ1)+1
2

 (A1)

with F = 1, and

d2(θ2) =



(cos(θ2)+1)2

4
(cos(θ2)+1) sin(θ2)

2

√
3 sin(θ2)2

2
3
2

(1−cos(θ2)) sin(θ2)
2

(1−cos(θ2))2

4

− (cos(θ2)+1) sin(θ2)
2

2 cos(θ2)2+cos(θ2)−1
2

√
3 sin(2 θ2)

2
3
2

−2 cos(θ2)2+cos(θ2)+1
2

(1−cos(θ2)) sin(θ2)
2√

3 sin(θ2)2

2
3
2

−
√

3 sin(2 θ2)

2
3
2

3 cos(θ2)2−1
2

√
3 sin(2 θ2)

2
3
2

√
3 sin(θ2)2

2
3
2

− (1−cos(θ2)) sin(θ2)
2

−2 cos(θ2)2+cos(θ2)+1
2 −

√
3 sin(2 θ2)

2
3
2

2 cos(θ2)2+cos(θ2)−1
2

(cos(θ2)+1) sin(θ2)
2

(1−cos(θ2))2

4 − (1−cos(θ2)) sin(θ2)
2

√
3 sin(θ2)2

2
3
2

− (cos(θ2)+1) sin(θ2)
2

(cos(θ2)+1)2

4


(A2)
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with

θF =
π

2
− tan−1

(
BDC − ~ωRF/(µB |gF |)√

2BRF,sgngF

)
.

These expressions simplify in case of resonant RF dressing where θF = π/2.

Appendix B: Matrix elements of the MW coupling in the basis of RF-dressed states

In the lab frame of reference, the polar decomposition of the MW coupling has the form

ĤMW =
∑

σ∈+,−,0
Ĥσ

MW, (B1)

with

Ĥσ
MW = ησµBgJ

(
BMW,σe

−iωMWtĴσ +B∗MW,σe
iωMWtĴ−σ

)
, (B2)

where we used the definition η+1 = −1/
√

2, η−1 = 1/
√

2 and η0 = 1. Expressed as a sum of spherical angular
momentum operators, these components of the Hamiltonian can be written as

Ĥσ
MW = µBgJησ

∑
`∈+,−,0

B`,σMW(t)Ĵ`, (B3)

with

B`,σMW(t) =

(
BMW,σ

(
1 + σ`

2

)
+B∗MW,σ

(
1− σ`

2

))
e−iσ`ωMWt + (1− |σ|)δ`,0

(
BMW,σe

−iωMWt +B∗MW,σe
iωMWt

)
.

(B4)

ˆ̄Hσ
MW =

µBgJ
2

ησ
∑

`∈+,−,0

B`,σMW(t) ˆ̄J`, (B5)

with

ˆ̄J` = Û†y (θF+1, θF )Û†z (ωRFt)Ĵ`Ûz(ωRFt)Ûy(θF+1, θF ). (B6)

For concreteness, let’s consider an element that couples states in different hyperfine manifolds:

〈F + 1, m̄′| ˆ̄J` |F, m̄〉 =

F+1∑
m′=−F+1

F∑
m=−F

〈F + 1, m̄′| Û†y (θF+1)Û†z (ωRFt) |F + 1,m′〉

× 〈F + 1,m′| Ĵ` |F,m〉 〈F,m| Ûz(ωRFt)Ûy(θF ) |F, m̄〉 , (B7)

in which we have used the identity operator of each hyperfine manifold in the lab frame 1̂F =
∑
m |F,m〉 〈F,m|. Since

the time-dependent rotation operator is diagonal in this basis we obtain

〈F + 1, m̄′| ˆ̄J` |F, m̄〉 =

F+1∑
m′=−F+1

F∑
m=−F

〈F + 1, m̄′| Û†y (θF+1) |F + 1,m′〉 eim
′ωRFt

× 〈F + 1,m′| Ĵ` |F,m〉 eimωRFt 〈F,m| Ûy(θF ) |F, m̄〉 . (B8)

Now, using the the matrix representation of the rotation Ûy given by the Wigner d-matrix [50] and rearranging the
exponential factors we obtain:

〈F + 1, m̄′| ˆ̄J` |F, m̄〉 =

F+1∑
m′=−F+1

F∑
m=−F

dF+1
m̄′,m′(−θF+1)ei(m

′+m)ωRFtdFm,m̄(θF ) 〈F + 1,m′| Ĵ` |F,m〉 . (B9)
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Now we use the matrix elements of the electronic angular momentum operators, J`, defined in terms of 3-j symbols
[50] to obtain:

〈F + 1, m̄′| ˆ̄J` |F, m̄〉
√

2I(I + 1)

2I + 1

F+1∑
m′=−F+1

F∑
m=−F

dF+1
m̄′,m′(−θF+1)ei(m

′+m)ωRFtdFm,m̄(θF )(−1)(F+1−m′)

(
F + 1 1 F

−m′ ` m

)
(B10)

The 3j-symbols are different from zero if and only if −m′+ `+m = 0, which help us to reduce one of the sums in the
following way:

〈F + 1, m̄′| ˆ̄J` |F, m̄〉 =

√
2I(I + 1)

2I + 1

F∑
m=−F

dF+1
m̄′,m+`(−θF+1)ei(2m+`)ωRFtdFm,m̄(θF )(−1)(F+1−m−`)

(
F + 1 1 F

−(m+ `) ` m

)
.

(B11)
Putting this result together with Eq. (B5), we obtain

〈F + 1, m̄′| ˆ̄Hσ
MW |F, m̄〉 = ησµBgJ

√
2I(I + 1)

2I + 1

1∑
`=−1

Bσ,`MW(t)

×
F∑

m=−F
eiωRFt(2m+`)) × dF+1

m̄′,m+`(−θF+1)dFm,m̄(θF )

× (−1)(F+1−m−`)

(
F + 1 1 F

−(m+ `) ` m

)
, (B12)

as in Eq. (22).
We can also obtain explicit expressions for the couplings associated to each polar component of the microwave field

oscillating at different frequencies (ωMW + nωRF), following the factorisation of the coupling matrices in Eq. (24):

〈F + 1, m̄′| ˆ̄H
−,−(2m−1)
MW |F, m̄〉 =

µBgJBMW,−√
2

√
2I(I + 1)

2I + 1
dF+1
m̄′,m−1(−θF+1)dFm,m̄(θF )(−1)(F+m)

(
F + 1 1 F

−(m− 1) −1 m

)
,

〈F + 1, m̄′| ˆ̄H
+,−(2m+1)
MW |F, m̄〉 = −µBgJBMW,+√

2

√
2I(I + 1)

2I + 1
dF+1
m̄′,m+1(−θF+1)dFm,m̄(θF )(−1)(F−m)

(
F + 1 1 F

−(m+ 1) 1 m

)
,

〈F + 1, m̄′| ˆ̄H
0,−(2m)
MW |F, m̄〉 = µBgJBMW,0

√
2I(I + 1)

2I + 1
dF+1
m̄′,m(−θF+1)dFm,m̄(θF )(−1)(F+m−1)

(
F + 1 1 F

−m 0 m

)
, (B13)

with

BMW,0 =
BMW,ze

−iφz

2
,

BMW,± =
∓BMW,xe

−iφx + iBMW,ye
−iφy

2
√

2
.

Appendix C: Microwave coupling of RF dressed states of 87Rb

In the limit of weak static magnetic fields, the microwave couplings between RF-dressed states are given by Eq. (22),
which indicates that it is convenient to group the couplings between dressed states according to the polarization of
the MW field. Taking into account the difference between gyromagnetic factors of the two ground state hyperfine
manifolds we obtain the results presented below.

The RF-field is taken to be linearly polarised and perpendicular to the static field BDC. The value ∆m̄ given in the
table indicates, for 87Rb, the value of m̄ + m̄′ in Eq. (26), such that for nearly equal RF Rabi frequencies ΩFRF and
ΩF+1

RF , we see an indication of the location of five spectral components within one of the seven groups determined by the
index n in Eq. (26). Following Eq. (24), the superscripts of the label Ĥσ,n

MW indicate the corresponding polarization (σ)
and the shift of the angular frequency of oscillation of the coupling as observed in the dressed frame, i.e. ωMW +nωRF.
With this, the couplings with n > 0 (n < 0) lead to resonances red (blue) detuned with respect to the hyperfine
splitting.
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The tables below display the coupling between RF-dressed states normalised to the factor ~Ωσ =
1
16

√
3
2 |ησ|µBgJBMW,σ, for the π and σ− polar components of the MW field. The couplings associated with the

σ+ polarization can be obtained using relation Eq. (25).

π polarised MW field

−2 −1 0 1 2

𝐸

−2 −1 0 1 2

𝐸

𝑛 = 2
𝑛 = 0
𝑛 = −2

−2 −1 0 1 2

𝐸

−2 −1 0 1 2

𝐸

π polarized MW, 
𝜎± polarized RF

Dressed Couplings
| ۧ1, −1 → | ۧ2, ഥ𝑚

Dressed Couplings
| ۧ1,0 → | ۧ2, ഥ𝑚

Dressed Couplings
| ۧ1,1 → | ۧ2, ഥ𝑚

Field Orientations

𝐹 = 2

𝐹 = 1

𝑥

ഥ𝑚 ഥ𝑚 ഥ𝑚

𝐵RF

𝐵MW

𝑦

𝑧

𝐵DC

ħ(𝜔hfs

− 𝑛𝜔RF)

ħ(𝜔hfs

− 𝑛𝜔RF)

ħ(𝜔hfs

− 𝑛𝜔RF)

ħ𝜔hfs

𝐹 = 2

𝐹 = 1𝐹 = 1 𝐹 = 1

𝐹 = 2 𝐹 = 2

(c)(a)

(b) Bare State Diagram

𝑚

Figure 13. Field configuration with a π-polarized MW field and sketch of the associated couplings between RF-dressed states.
(a) In the lab frame we show the orientation of the DC and AC fields. (b) In the dressed frame we show all the couplings
oscillating at the frequency of the MW field ωMW. (c) Couplings between dressed states states |F = 1, m̄ = 0〉 ↔ |F = 2, m̄〉
oscillating at frequencies ωMW − 2ωRF (red), ωMW (black) and ωMW + ωRF (blue). In the approximation g1 = −g2, and on RF
resonance, some transitions are forbidden, as indicated by dashed lines. The colour code of the amplitude of the couplings is
the same as in Table II.

Coupled ∆m̄
Hπ,n=2

MW
~Ω0

Hπ,n=0
MW
~Ω0

Hπ,n=−2
MW
~Ω0

pair
|1, 1〉 ↔ |2,−2〉 -1 −

√
2(1− cos(θ1))(1 + cos(θ2)) sin(θ2) −2

√
2 sin (θ1) sin2 (θ2) −

√
2(1 + cos(θ1))(1− cos(θ2)) sin(θ2)

|1, 1〉 ↔ |2,−1〉 0 −
√

2(1− cos(θ1))(1− cos(θ2)− 2 cos2(θ2)) 2
√

2 sin (θ1) sin (2 θ2)
√

2(1 + cos(θ1))(1 + cos(θ2)− 2 cos2(θ2))

|1, 1〉 ↔ |2, 0〉 1
√

3(1− cos(θ1)) sin(2θ2) 4√
3

sin (θ1) (1− 3 cos2 (θ2)) −
√

3(1 + cos(θ1)) sin(2θ2)

|1, 1〉 ↔ |2, 1〉 2
√

2(1− cos(θ1))(1 + cos(θ2)− 2 cos2(θ2)) −2
√

2 sin (θ1) sin (2 θ2) −
√

2(1 + cos(θ1))(1− cos(θ2)− 2 cos2(θ2))

|1, 1〉 ↔ |2, 2〉 3
√

2(1− cos(θ1))(1− cos(θ2)) sin(θ2) −2
√

2 sin (θ1) sin (θ2)2
√

2(1 + cos(θ1))(1 + cos(θ2)) sin(θ2)

|1, 0〉 ↔ |2,−2〉 -2 2 sin(θ1)(1 + cos(θ2)) sin(θ2) 4cos (θ1) sin2 (θ2) −2 sin(θ1)(1− cos(θ2)) sin(θ2)

|1, 0〉 ↔ |2,−1〉 -1 2 sin(θ1)(1− cos(θ2)− 2 cos2(θ2)) −4cos (θ1) sin (2 θ2) 2 sin(θ1)(1 + cos(θ2)− 2 cos2(θ2))

|1, 0〉 ↔ |2, 0〉 0 −
√

6 sin (θ1) sin (2 θ2) −4
√

2
3 cos (θ1) (1− 3cos (θ2)2) −

√
6 sin (θ1) sin (2 θ2)

|1, 0〉 ↔ |2, 1〉 1 −2 sin(θ1)(1 + cos(θ2)− 2 cos2(θ2)) 4cos (θ1) sin (2 θ2) 2 sin(θ1)(1 + cos(θ2) + 2 cos2(θ2))

|1, 0〉 ↔ |2, 2〉 2 −2 sin(θ1)(1− cos(θ2)) sin(θ2) 4cos (θ1) sin2 (θ2) 2 sin(θ1)(1 + cos(θ2)) sin(θ2)

|1,−1〉 ↔ |2,−2〉 -3 −
√

2(1 + cos(θ1))(1 + cos(θ2)) sin(θ2) 2
√

2 sin (θ1) sin2 (θ2) −
√

2(1− cos(θ1))(1− cos(θ2)) sin(θ2)

|1,−1〉 ↔ |2,−1〉 -2 −
√

2(1 + cos(θ1))(1− cos(θ2)− 2 cos2(θ2)) −2
√

2 sin (θ1) sin (2 θ2)
√

2(1− cos(θ1))(1 + cos(θ2)− 2 cos2(θ2))

|1,−1〉 ↔ |2, 0〉 -1
√

3(1 + cos(θ1)) sin(2θ2) − 4√
3

sin (θ1) (1− 3cos2 (θ2)) −
√

3(1− cos(θ1))(sin(2θ2))

|1,−1〉 ↔ |2, 1〉 0
√

2(1 + cos(θ1))(1 + cos(θ2)− 2 cos2(θ2)) 2
√

2sin (θ1) sin (2 θ2) −
√

2(1− cos(θ1))(1− cos(θ2)− 2 cos2(θ2))

|1,−1〉 ↔ |2, 2〉 1
√

2(1 + cos(θ1))(1− cos(θ2)) sin(θ2) 2
√

2sin (θ1) sin (θ2)2
√

2(1− cos(θ1))(1 + cos(θ2)) sin(θ2)

Table II. Couplings between RF-dressed states induced by a π-polarised MW field. The colour of the text in the Hπ
MW /(~Ω0)

columns corresponds to the colours in Figure 13c, with red, black and blue for groups n = 2, 0,−2 respectively. The σ−
polarization is defined by taking φz = 0, BMW,z > 0 and BMW,x = BMW,y = 0.
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σ− polarised MW field

ħ(𝜔hfs

− 𝑛𝜔RF)

−2 −1 0 1 2

𝐸

−2 −1 0 1 2

𝐸

𝑛 = 3
𝑛 = 1
𝑛 = −1

ħ(𝜔hfs

− 𝑛𝜔RF)

−2 −1 0 1 2

𝐸

𝐹 = 2

𝐹 = 1𝐹 = 1 𝐹 = 1

𝐹 = 2 𝐹 = 2

(c)
Dressed Couplings
| ۧ1, −1 → | ۧ2, ഥ𝑚

Dressed Couplings
| ۧ1,0 → | ۧ2, ഥ𝑚

Dressed Couplings
| ۧ1,1 → | ۧ2, ഥ𝑚

Field Orientations

𝐹 = 2

𝐹 = 1

ħ𝜔hfs

−2 −1 0 1 2

𝐸

𝜎− polarized MW, 
𝜎± polarized RF

𝑥

(a)

𝐵RF𝐵MW

𝑦

𝑧

𝐵DC

ħ(𝜔hfs

− 𝑛𝜔RF)

(b) Bare State Diagram

ഥ𝑚 ഥ𝑚 ഥ𝑚𝑚

Figure 14. Field configuration with a σ−-polarized MW field and sketch of the associated couplings between RF-dressed states.
(a) In the lab frame we show the orientation of the DC and AC fields. (b) In the dressed frame we show all the couplings
oscillating at the frequency of the MW field ωMW + ωRF. (c) Couplings between dressed states states |F = 1, m̄ = 0〉 ↔
|F = 2, m̄〉 oscillating at frequencies ωMW − ωRF (red), ωMW+ωRF (black) and ωMW + 3ωRF (blue). In the approximation
g1 = −g2 and on RF resonance some transitions are forbidden, as indicated by dashed lines. The colour code of the amplitude
of the couplings is the same as in Table III.

Coupled ∆m̄
H̄−,n=3

MW
~Ω−1

H̄−,n=1
MW
~Ω−1

H̄−,n=−1
MW
~Ω−1

pairs
|1, 1〉 ↔ |2,−2〉 -1 (1− cos(θ1))(1 + cos(θ2))2 2 sin(θ1)(1 + cos(θ2)) sin(θ2) (1 + cos(θ1)) sin2(θ2)

|1, 1〉 ↔ |2,−1〉 0 2(1− cos(θ1))(1 + cos(θ2)) sin(θ2) 2 sin(θ1)(1− cos(θ2)− 2 cos2(θ2)) −(1 + cos(θ1)) sin(2θ2)

|1, 1〉 ↔ |2, 0〉 1
√

6(1− cos(θ1)) sin2(θ2) −
√

6 sin(θ1) sin(2θ2) −
√

2
3 (1 + cos(θ1))(1− 3 cos2(θ2))

|1, 1〉 ↔ |2, 1〉 2 2(1− cos(θ1))(1− cos(θ2)) sin(θ2) −2 sin(θ1)(1 + cos(θ2)− 2 cos2(θ2)) (1 + cos(θ1)) sin(2θ2)

|1, 1〉 ↔ |2, 2〉 3 (1− cos(θ1))(1− cos(θ2))2 −2 sin(θ1)(1− cos(θ2)) sin(θ2) (1 + cos(θ1)) sin2(θ2)

|1, 0〉 ↔ |2,−2〉 -2 −
√

2 sin(θ1)(1 + cos(θ2))2 −2
√

2 cos(θ1)(1 + cos(θ2)) sin(θ2)
√

2 sin(θ1) sin2(θ2)

|1, 0〉 ↔ |2,−1〉 -1 −2
√

2 sin(θ1)(1 + cos(θ2)) sin(θ2) −2
√

2 cos(θ1)(1− cos(θ2)− 2 cos2(θ2)) −
√

2 sin(θ1) sin2(2θ2)

|1, 0〉 ↔ |2, 0〉 0 −2
√

3 sin(θ1) sin2(θ2) 2
√

3 cos(θ1) sin(2θ2) −
√

4
3 sin(θ1)(1− 3 cos2(θ2))

|1, 0〉 ↔ |2, 1〉 1 −2
√

2 sin(θ1)(1− cos(θ2)) sin(θ2) 2
√

2 cos(θ1)(1 + cos(θ2)− 2 cos2(θ2))
√

2 sin(θ1) sin(2θ2)

|1, 0〉 ↔ |2, 2〉 2 −
√

2 sin(θ1)(1− cos(θ2))2 2
√

2 cos(θ1)(1− cos(θ2)) sin(θ2)
√

2 sin(θ1) sin2(θ2)

|1,−1〉 ↔ |2,−2〉 -3 (1 + cos(θ1))(1 + cos(θ2))2 −2 sin(θ1)(1 + cos(θ2)) sin(θ2) (1− cos(θ1)) sin2(θ2)

|1,−1〉 ↔ |2,−1〉 -2 2(1 + cos(θ1))(1 + cos(θ2)) sin(θ2) −2 sin(θ1)(1− cos(θ2)− 2 cos2(θ2)) − (1− cos(θ1)) sin(2θ2)

|1,−1〉 ↔ |2, 0〉 -1
√

6(1 + cos(θ1)) sin2(θ2)
√

6 sin(θ1) sin(2θ2) −
√

2
3 (1− cos(θ1))(1− 3 cos2(θ2))

|1,−1〉 ↔ |2, 1〉 0 2(1 + cos(θ1))(1− cos(θ2)) sin(θ2) 2 sin(θ1)(1 + cos(θ2)− 2 cos2(θ2)) (1− cos(θ1)) sin(2θ2)

|1,−1〉 ↔ |2, 2〉 1 (1 + cos(θ1))(1− cos(θ2))2 2 sin(θ1)(1− cos(θ2)) sin(θ2) (1− cos(θ1)) sin2(θ2)

Table III. Couplings between RF-dressed states induced by a σ−-polarised MW field. The colour of the text in theH−MW /(~Ω−1)
columns corresponds to those found in Figure 14c, with red, black and blue for groups n = 3, 1,−1 respectively. The σ−
polarization is defined by taking φx = 0, φy = π/2, BMW,z = 0 and BMW,x = BMW,y > 0.
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