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A B S T R A C T

A new automated image analysis system that analyses individual coal particles to predict daughter char mor-
phology is presented. 12 different coals were milled to 75–106 µm, segmented from large mosaic images and the
proportions of the different petrographic features were obtained from reflectance histograms via an automated
Matlab system. Each sample was then analysed on a particle by particle basis, and daughter char morphologies
were automatically predicted using a decision tree-based system built into the program. Predicted morphologies
were then compared to ‘real’ char intermediates generated at 1300 °C in a drop-tube furnace (DTF). For the
majority of the samples, automated coal particle characterisation and char morphology prediction differed from
manually obtained results by a maximum of 9%. This automated system is a step towards eliminating the in-
herent variability and repeatability issues of manually operated systems in both coal and char analysis. By
analysing large numbers of coal particles, the char morphology prediction could potentially be used as a more
accurate and reliable method of predicting fuel performance for power generators.

1. Introduction

Despite a general decline in demand (mainly across Europe) over
the last decade, coal is still used extensively to meet over a quarter of
global power generation demands [1] and a key energy source for ra-
pidly urbanizing and industrializing economies. As such, coal will re-
main a major baseline contributor to power generation for the fore-
seeable future during the transition of the energy mix towards more low
carbon energy sources [2]. In optimising coal combustion for power
generation and emission targets, generators increasingly need to un-
derstand the consequences of fuel choice to maximise the return on
shipments, meet stringent NOx and SOx limits [3,4], and minimise shut
down time for fouling and slagging maintenance, whilst maximising the
potential for ash sales [5]. Thus, the ability to predict how the com-
bustion performance of coals that are available on the market is valu-
able information to power generator, particularly coals with little
documented burnout history.
The prediction of coal combustion performance has been attempted

via several approaches over the years. Laboratory techniques include
the use of characterisation techniques of physical properties such as
volatile matter [6] and ash content [5], fuel ratio [6], particle size
distribution [6,7] and intrinsic reactivity of char intermediates [8,6].
Visual petrographic methods of predicting coal combustion

performance include rank [11], vitrinite reflectance [12], full maceral
reflectance [9,10], maceral content [11], and maceral microlithotypes
[12]. Currently, there is no technique for collating all these parameters
together into a single predictive technique. This is most likely due to the
heterogenous structure of coal, the complexity of maceral reactivity and
performance dependence on coal origin and combustion process vari-
ables and conditions [9,10].
The ability to accurately predict the char morphology distribution

for a given coal would be of particular use during the fuel selection
process and when making coal burnout predictions, as the general rate
of the combustion reaction is determined by the structure of these
‘daughter’ particles [10,13]. It is generally agreed that the rate of char
oxidation is dependent on the heat transfer and the diffusion of reactant
gases through 1) the char surface and 2) the char pore structures to
permit the chemisorption of these gases and desorption of combustion
products [12,14,15].The performance of a particular coal in a furnace
will therefore depend on how it reacts during pyrolysis and combustion.
Three fundamental chars characteristics have been taken as key

differentiators: porosity, pore structure and wall thickness [6,16]. Chars
have subsequently classified as either thin walled ‘tenui-‘, thick walled
‘crassi-’ or solid/fused type structures [12,17], the assumption that thin
chars will burn out more rapidly than thick chars has been applied to
several char combustion modelling systems [14,15]. These char
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morphologies are dependent on the original coal’s characteristics, such
as maceral type, rank, particle size, mineral matter and on process
variables such as formation temperature, heating velocity, gaseous at-
mosphere and residence time [12,14,18,19]. Generally, the more re-
active liptinite and vitrinite macerals will produce thinner combustion
intermediates that burn more efficiently than those derived from in-
ertinite [20–23]. Rank affects the reactivity of the maceral groups, with
increasing reflectance corresponding to a decrease in reactivity.[9].
Many of these original coal characteristics, such as rank, maceral con-
tent, %Unreactives and particle size/shape are measurable using rapid
and automatable image analysis (IA) techniques [24–27], yet there is
no automated image-based predictive method. This is possibly due to
hardware and software limitations, the complexity of coal structure,
requiring a trained petrographer, and the effects of origin on the pyr-
olysis behaviour of coal [7,9,28,29].
The potential of IA as a characterisation tool has advanced rapidly

in recent years with the development of camera technology, computer
processing power and IA software capabilities. Mineral Liberation
Analysis (MLA Computer Controlled Scanning Electron Microscopy
(CCSEM)) [30,31] is a well-established technique for imaging and
characterising mineral content. Maceral detection using SEM is difficult
owing to the similarity of maceral backscatter signals [32]. However,
recently mineral detection combined with semi-automated maceral
classification has been undertaken using traditional microscopy [33].
Furthermore, IA is already being used to characterise the coking po-
tential of coal on a particle by particle basis [33,34]. With recent ad-
vances in IA, where process variables are assumed to be constant, au-
tomated coal characterisation and daughter char morphology
prediction should be possible. An automated IA method would present
several advantages over manual and semi-automated techniques. Point
counting manual petrographic analysis has remained popular due to the
reliability and precision that results from a well-standardised method
[35–37] albeit labour and time intensive, with substantial allowable %
error [38].
Semi-automated histogram analysis can reduce time requirements

but it still relies on a skilled petrographer to ascertain maceral thresh-
olds and verify the results [39]. A fully automated coal characterisation
technique has the potential to be a more repeatable and faster analy-
tical process [33].
This study describes the implementation of a new automated image

analysis system using Matlab to accurately characterise individual coal
particles and predict their daughter char morphology. The automated
coal data was first compared to manual petrographic analysis to ensure
parity and then the automated data was used to predict char types. The
predicted morphology datasets were then compared to an actual set of
chars generated using a drop-tube furnace at 1300 °C, 200ms and 1%
oxygen.

2. Methodology

2.1. Coal sample maceral and rank characterisation

To test the versatility of the predictive method, eleven different

coals and one coke with a wide variation in composition and reflectance
were chosen and included samples from Colombia, Czech Republic,
Russia, Indonesia, South Africa, Wales, Vietnam and a Chinese coke.
The coke was used to increase the reflectance range of the suite of
samples to well beyond the normal values for combustion coals in order
to test the scope of the prediction system. The coal samples were first
milled using a Humbolt vibratory disc mill and then dry sieved into
75–106 μm range using an Alpine Jet Sieve. Blocks of each of the coal
samples were prepared using a mixture of powdered ‘Simplex Rapid’
polyester resin and the coal fuel in a 1:1 ratio w/w and ground flat
using Silicon carbide paper (800/1200/2400) and polished using a
colloidal silica solution (Struers, OP-S, 0.04 µm) on a Struers Rotopol
Automated Polishing System.

2.2. Manual maceral and automated rank analysis

Manual maceral analysis was conducted on a Leitz Ortholux II POL-
BK microscope as per British Standard 6127:3 [35] to determine the
Liptinite, Vitrinite and Inertinite content of each coal. Inertinite mac-
erals were sub-divided into semi-fusinite and fusinite – representing the
main inertinite sub-macerals. Automated rank analysis was conducted
on a Zeiss Imager M1 microscope using an 8 bit imaging Zeiss AxioCam
of the blocks.

2.3. Thermogravimetric analysis of the coals

Thermogravimetric Analysis (TGA) was used to analyse thermal
composition of the samples and provide accurate carbon contents of
each mix. Thermal profiles were produced using TA Instruments Q500
TGA (New Castle, DE, USA). TGA tests used 10–15mg of the milled
sample. The method used was based on a slow pyrolysis method [40].
The sample was heated in a furnace at 5 °C.min−1 in 100ml.min−1 of
Nitrogen from atmospheric temperature to 900 °C, after which the gas
was switched to air at 100ml.min−1. The composition of the samples is
given by moisture, dry volatile, fixed carbon, and ash content [41].

2.4. Char sample preparation

1 g of each 75–106 µm sample was pyrolysed in a vertical drop-tube
furnace (DTF) (Severn Thermal Solutions, R765A) operating at 1300 °C,
with a 200ms residence time, and air flow set to 1% oxygen [7,9,14].
After collection, the char samples were prepared in blocks using a liquid
resin (EPOFIX, Struers Ltd.) and vacuum infused for 30 mins before
being left to cure for 24 h.

2.5. Mosaic image capture

For the development of the automated IA system, large mosaics of
the coal and corresponding the daughter char samples were obtained
using a Zeiss Image M1 microscope with a 50x oil immersion objective
(and an internal 10x lens) providing a total of 500x magnification. The
Zeiss automated stage was used to generate a 30× 30 mosaic, re-
presenting a total area of 4.75mm×3.6mm.

Fig. 1. ICCP morphologies moving from the thinnest walled to thickest walled chars.
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3. Char morphology predictive system

Based on the assumption that thinner chars (that have proportion-
ally more carbon material near the particle perimeter) burn faster than

thicker chars [42], the morphologies can be ranked generally from
fastest to slowest as shown in Fig. 1. For char morphology prediction, a
decision based system (Fig. 2) was devised using the maceral dis-
tribution, rank, individual pixel greyscale values and the %Unreactives

Fig. 2. Char morphology prediction decision tree.
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of each coal particle image to predict the different char morphologies as
described in the International Committee for Coal and Organic Pet-
rology (ICCP) Char Atlas [17], which was implemented in Matlab as a
decision tree.

3.1. Maceral content

The predictive system classified each coal particle into high
(> 75%), medium (> 50%), low (>5%) and very low (0–5%) in-
ertinite content categories due to the general trend of high inertinite
content particles generally producing thicker and slower burning char
morphologies, with the prevalence of faster burning morphologies in-
creasing as inertinite content decreases [43].

3.2. Rank

Vitrinite is the maceral most influenced by changes in vitrinite re-
flectance (also referred to as rank) [44] and produces a variety of dif-
ferent char morphologies during pyrolysis [45]. Lower rank vitrinite
generally produces more networked chars than higher ranked coals
[46], with very high rank vitrinite showing little reactivity at all. Net-
work-type chars were predicted for lower reflectance coal particles, and
sphere-type morphologies predicted for higher reflectance vitrinite.

3.3. Percentage unreactives

The final morphology predictions were also dependant on the
amount of unreactive material (%Unreactives) in the coal [10,16]. %
Unreactives accounts for high reflectance macerals which have been
shown to be lower in reactivity and produce slow burning char [13]. It
has been previously shown that the %Unreactives parameter can be
used to predict thickness of daughter chars for bituminous coal and the
lower the %Unreactives the thinner the char type produced [32]. Whilst
the %Unreactives parameter links to burnout, it is not sufficient (as a
single number) to predict char morphology outright. However, char
wall thickness can be related to this value [20], it provides a useful
criterion for differentiating between thick and thin morphology

predictions when combined with rank and quantities of inertinite.

4. Image analysis techniques

An outline of the automated IA process is shown in Fig. 3. After
microscope mosaic capture, the image segmentation was a semi-auto-
mated process using Matlab with an operator ensuring that the
thresholds had been correctly determined after segmentation. The coal
maceral thresholding, particle separation, analysis and char mor-
phology prediction was a continuous automated process and was im-
plemented using Matlab 2018a+ image processing toolbox add-on.

4.1. Semi-automated image segmentation

After initial image capture, the first step in the IA process was the
accurate segmentation of the particles from the background resin.
Attempts to remove the resin by traditional thresholding processes or
traditional edge detection (ie. Canny edge detection [47]) can prove
difficult due to the overlap of resin grayscale values with that of the
coal particles, particularly those corresponding to liptinite and sub-
surface blemishes, either standalone or attributed to partly exposed
polished particles.
The segmentation process itself was twofold. A variant of the Lazy

Snapping Algorithm [48] was first used to separate foreground and
background values into distinct areas using a K-means method [49],
which removes background pixels as well as removing sub-surface and
unfocused areas from around exposed particles (Fig. 4).
The Lazy Snapping method also segmented any background resin

that was present within the particle boundaries. To remove this residual
resin, a K-means clustering method which clusters pixels based on their
intensity and neighbouring associations was used to determine the resin
greyscale threshold (Fig. 5). 20 clusters proved effective enough to
remove residual resin and leave liptinite mostly untouched. The binary
mask generated was then overlaid on the original, unaltered mosaic, to
generate a masked segmented image.

4.2. Automated particle separation & clean up

To separate touching and overlapping coal particles were the binary
sample mask was subjected to a Watershed Transformation [50]
(Fig. 6). The watershed transform finds “watershed ridge lines” in an
image by treating it as a surface where light pixels represent high ele-
vations and dark pixels represent low elevations. For a binary image
such as the coal mosaic mask, a distance transform function [51] gen-
erated the topography in the image and any minima within the image
would constitute the most likely area where two particles are touching.
Whilst this method is generally successful with most touching particles,
it does not work well where long edges are touching or where there was
no obvious catchment basin. These were removed by a particle size
filter and from the predictive process along with any small blemishes
also liberated by the separation function.

Fig. 3. Process flow for image analysis characterisation and prediction tech-
nique.

Fig. 4. Lazy Snapping segmentation of coal particles.
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4.3. Automated maceral thresholding

The maceral thresholds were obtained using the greyscale histogram
of the segmented mosaic. Firstly, the liptinite threshold was determined
by the presence of any minima in the greyscale region below the vi-
trinite peak. The minima was calculated using a triangle threshold
method [52] which computes the maximum distance between the his-
togram plot and a line from 0 to the vitrinite peak value.
It is thought that the threshold between vitrinite and inertinite lies

within the semi-fusinite group, a maceral intermediate with properties
between inertinite and vitrinite [53]. Depending on the rank of the
sample, the peaks for vitrinite and semi-fusinite can be well separated
or lie partially or directly over each other and the automated classifi-
cation system determined the inertinite threshold depending on the
shape of the reflectance histogram as follows;

1) ‘No Overlap’ – The histogram plot is bimodal (i.e. there is a sig-
nificant reflectance difference between vitrinite and semi-fusinite)
then a value corresponding to 30% of the semi-fusinite peak height
was found to match the manually obtained data closest.

2) ‘Partial Overlap’ – There is some peak overlap but there remains a
distinct transition point from vitrinite to inertinite, the threshold
was set as half-way between the peaks due to increased overlap of
higher reflectance vitrinite with semi-fusinite.

3) ‘Complete overlap’ – If the vitrinite peak almost or completely
conceals the semi-fusinite peak then a value corresponding to 28%
of the vitrinite peak height was found to correlate with manual
maceral data.

A graphical representation of the different histogram profiles and
threshold locations is shown in Supplementary Figs. S1–4.

Fig. 5. Clustering segmentation of residual background resin. A) Lazy snapping segmentation result with residual resin and B) Clustering result showing with residual
resin removed.

Fig. 6. Touching particle separation via distance transform and watershed transformations.
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4.4. Automated particle analysis and char morphology prediction

During the predictive process, each segmented and separated par-
ticle was automatically uploaded and analysed in a loop using Matlab to
determine peak vitrinite position and maceral composition from the
particle histogram, the position of the maceral components and the
percentage of pixels that fall above the reactive threshold (set by %
Unreactives) [10]. These values were then fed into the prediction de-
cision tree model (Fig. 2), which was trained using Mathwork’s Clas-
sification Learner using an initial dataset of manually compiled input
values for the criteria outlined in 3.1–3.3 and their corresponding char
morphology outputs.

5. Results & discussion

5.1. Proximate analysis

The proximate analysis data and vitrinite reflectance data for the 12
samples is presented in Supplemental Table 1. The vitrinite reflectance
(for the coals) shows a wide range of values from La Loma at 0.51%
through to the Vietnamese anthracite at 2.99%. The Chinese coke has a
typical reflectance value around 7%. Clearly the proximate contents
(particularly the fuel ratio) correlate with these vitrinite reflectance
values but this has been described earlier [54].

5.2. Manual vs predicted maceral analysis

Supplementary Table 2 shows a good correlation between the au-
tomated and predicted maceral distributions was observed with 9 of the
11 coal samples differing by<5%, and all 11 differing by<10%. From
ISO standards for petrographic analysis, these results would be con-
sidered to be comparable [38,55]. Image analysis can now provide a
rapid and repeatable alternative to traditional maceral analysis to
provide more reliable and comparable information. With the exception
of the very high reflectance (%Ro=2.46) Welsh sample 1 and the
Chinese coke material, the automated thresholding method proved to
be an effective tool to threshold a wide variety of coal samples into their
major maceral constituents. Given that allowable operator-based
manual point counting results between users for a maceral determined
to be 50% of the sample, can fall between 43% and 57%, a variance of
5% from manually determined data using this method is well within the
acceptable boundary of error [38]. In the case of the Welsh coal, the
very high vitrinite reflectance resulted in a significant overlap of the
vitrinite and semi-fusinite peaks, which is a limitation to a greyscale
based automated thresholding. In this case, a trained operator would be

required to distinguish between the semi-fusinite and vitrinite by way
of morphological differences.
Whilst constituting the smallest percentage of the coal matrix, the

classification of the liptinite maceral illustrated the largest relative
discrepancy between manual and automated results. For the Indonesian
and Klein Kopje samples, the predicted value was lower than the
manual value, due to the variation in over segmentation during the K-
mean clustering step, where too much liptinite is being removed along
with residual background resin. There are many ways around this
problem including colour imaging with fluorescence lighting [56],
morphology manipulation [57] and air objectives [33]. However, as
liptinite does not form a critical component in this predictive system
and so it was of little consequence to the char morphology prediction
processes. The characterisation system was unable to characterise the
Chinese coke sample, not least because of the position of the reflectance
peaks and absence of macerals. A separate characterisation system
would be required to accurately characterise coke material with a dif-
ferent light setting and polarised optical filters.

5.3. Manual vs automated char prediction

The char morphology prediction results are summarized in
Supplemental Tables 3 and 4. Table 3 shows a strong correlation be-
tween the manually analysed ‘real’ char and the predicted morpholo-
gies. However with certain specific char morphologies (most notably
the tenuisphere and crassinetworks), there was variation of up to 16%
between manual and predicted results. These observations indicate that
there are still factors that were not measured by image analysis dis-
cussed in Section 1.
Table 4 shows a simple version of the data in Table 3 where general

wall thickness is used to combine the 6 different morphologies i.e.
‘thin’, ‘thick’ and ‘solid’. In all 12 carbon samples the predictions are
within 8% of the manual data which is an excellent correlation between
predicted and measured values.
Generally, as rank increases, char reactivity decreases due to the

increasing prevalence of thicker and solid pyrolysis products (Fig. 7), a
trend that supports previous research [10–13]. The relationship is
strongest for the ‘solids’ grouping and higher reflectance samples,
whereas there is more variation observed for the lower reflectance
samples. This is entirely due to changes in maceral composition. Vi-
trinite reflectance can show trends between coals across a wide re-
flectance range but it is not sufficient as a parameter to predict char
morphology at low rank ranges. Maceral composition can vary widely
between two coals, even though the vitrinite reflectance is the same,
and therefore both coals would generate quite different char types. e.g

Fig. 7. Relationship between reflectance and general char morphology for ‘real’ chars generated in DTF.
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the Russian and Indonesian samples produced a relatively high pro-
portion of solid chars (~18%) despite their low rank. In terms of the
three general morphology groupings, the predicted distributions of
‘thin’, ‘thick’ and ‘solid’ char morphologies are very close to those from
those generated in the DTF with a maximal variance of 9% (Fig. 8a-c).
The largest discrepancies occurred in the lower reflectance coals,

particularly those from Colombia. La Loma, El Cerrejon, Calenturitas all
possess very similar proximate analysis, peak vitrinite values (42–45),
vitrinite contents (88%, 90% & 90% respectively), however their chars
generated in the DTF display very different distributions with La Loma
producing a high proportion of tenuinetworks (40%) and crassispheres
(26%), with El Cerrejon favouring tenui-(24%) and crassispheres (46%)
and Calenturitas devolatilising to crassispheres (45%) and an even
spread of networks. The prediction system accurately predicted the
proportion of crassispheres for all these coals via route 8 (Fig. 2),
however when it came to predicting char morphologies for those par-
ticles containing a high proportion of vitrinite (routes 15–20), there

were significant discrepancies between predicted and manual results for
tenuispheres, and networks. El Cerrejon for example, despite being very
low rank, produced a higher proportion of ‘Sphere’ type chars (~70%)
compared to the higher rank La Loma (~45%), contrary to previous
work discussed earlier that indicated network-type structures should
have been the preference. These variances can be attributed to natural
variance due to the presence of inertodetrinite which can influence char
morphology [58]. As the predictive system cannot currently account for
these differences, a disparity was observed between manual and pre-
dicted results for some morphologies. For the higher rank coals; Os-
trava, Zondag and Klein Kopje, the manual and predicted results were
close, with a maximal variance range of just 7%. These coals do not
tend to contain inertodetrinite and the % of inertinite is an accurate
parameter in the predictive logic tree. Despite the note variations in the
6 specific char classes, the overall proportions of predicted ‘thin’, ‘thick’
and ‘solid’ char morphologies remain very close to these ‘real’ chars.

Fig. 8. a-c – Comparison between manual and predicted data for a) thin, b) thick and c) solid chars.
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6. Conclusions and future work

A new image-based coal characterisation system to predict char
morphology has been devised and developed. The system can separate
coal particles and automatically segregate the particles into macerals
groups and measure other features such as the dispersion of macerals
within each particle. The predicted maceral composition vs actual
composition appeared to be within standard prescribed by ISO stan-
dard.
The system then uses the information gathered from individual coal

particles including reactivity (%Unreactives), inertinite content (with
positional data) and vitrinite reflectance to predict char type.
In addition to rapid fuel characterisation, this IA system can predict

the distribution of major char morphologies, matching closely with
actual chars generated using a drop-tube furnace. This data could be
used in the future by generators who are interested in predicting
combustion characteristics of unknown coals.
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