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Abstract
We present a 3D hybrid method which combines the finite element method
(FEM) and the spectral boundary integral method (SBIM) to model nonlinear
problems in unbounded domains. The flexibility of FEM is used to model the
complex, heterogeneous, and nonlinear part— such as the dynamic rupture
along a fault with near fault plasticity—and the high accuracy and computa-
tional efficiency of SBIM is used to simulate the exterior half spaces perfectly
truncating all incident waves. The exact truncation allows us to greatly reduce
the domain of spatial discretization compared to a traditional FEM approach,
leading to considerable savings in computational time and memory require-
ments. The coupling of FEM and SBIM is achieved by the exchange of traction
and displacement boundary conditions at the computationally defined bound-
ary. The method is suited to implementation on massively parallel computers.
We validate the developed method by means of a benchmark problem. Three
more complex examples with a low velocity fault zone, low velocity off-fault
inclusion, and interaction of multiple faults, respectively, demonstrate the capa-
bility of the hybrid scheme in solving problems of very large sizes. Finally, we
discuss potential applications of the hybrid method for problems in geophysics
and engineering.
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1 INTRODUCTION

Earthquakes are a prime example of complex natural processes with far-from-equilibrium nonlinear dynamics at mul-
tiple scales. The lack of quantitative data on timescales capturing multiple large earthquake cycles is a fundamental
impediment for progress in the field. Physics-based simulations provide the only path for overcoming the lack of data
and elucidating the multi-scale dynamics and spatio-temporal patterns that extend the knowledge beyond sporadic case
studies and regional statistical laws.
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The multiscale nature of the earthquake phenomena is manifested as follows. Spatially, a moderate-size earthquake
typically propagates over tens of kilometers. However, the physical processes governing the rupture propagation operates
within a narrow region at the rupture tip, called the process zone, which may not exceed a few millimeters in size if realistic
laboratory-based friction parameters are used.1 Temporally, an earthquake event, where rapid slip occurs, only lasts for
few to tens of seconds. However, the time span between successive large earthquakes may be tens to hundreds of years.2
Thus, there exists approximately a decade of spatial and temporal scales that must be resolved in a target physics-based
simulation of earthquakes and aseismic slip. This necessitates innovation in modeling both the fast dynamic rupture with
extreme localization and the slow quasi-static slip, during the interseismic period, that exhibits gradual variations. This is
a fundamental challenge in earthquake source physics which has been a focus of computational earthquake mechanics
over the past four decades.

Historically, numerical methods for simulating earthquakes and aseismic slip may be classified broadly into two cat-
egories: boundary-based methods and domain-based methods. The boundary integral formulation enables reducing the
spatial dimension of the problem by one, by invoking the representation theorem of linear elastodynamics, transforming
2D problems into 1D and 3D problems into 2D.3,4 The spectral formulation of the boundary integral equations has been
transformative in seismic applications (e.g., Lapusta et al.2 and references therein). For example, Lapusta et al.2 derived
accurate adaptive time-stepping algorithms and truncation of convolution integrals that enabled, for the first time, the
consistent elastodynamic simulation of a long sequence of events combining rapid slip during earthquake ruptures and
slow deformation during the interseismic periods. Nonetheless, the method is limited to homogeneous linear elastic bulk.
While the method may be applied, in principle, to heterogeneous linear elastic materials, the lack of a closed form repre-
sentation of the Green’s function either inhibits the method from providing a well-defined solution to many problems of
interest or makes it less computationally attractive. Furthermore, the superior performance of the spectral approach and
its computational efficiency is only possible for planar interfaces. This precludes the representation of non-planar faults
or direct incorporation of fault zone complexity (e.g., damage, and shear bands).

On the other hand, numerical methods based on bulk discretization such as the finite difference (FD) and finite
element methods have been used in simulating earthquake ruptures since mid-1970s and early 1980s with the pioneer-
ing works of Boore et al.,5 Andrews,6 Das and Aki,7 Archuleta and Day,8 Day,9 Virieux and Madariaga,10 and others.
These methods are more flexible than the boundary integral approaches in handling heterogeneities, nonlinearities, and
fault geometry complexities (see Figure 1A,B). In recent years, highly accurate formulations were introduced, includ-
ing the spectral finite element,11-15 the discontinuous Galerkin method,16-20 and higher-order FD schemes.21-23 A main
computational challenge of these methods is the need to discretize the whole bulk, which increases the computational
demand by at least one order of magnitude compared to the boundary integral formulation. Furthermore, the computa-
tional domain must be truncated at a sufficient distance from the fault surface such that it would not affect the physical
solution. While domain truncation has been achieved by the introduction of several widely-used absorbing boundary
conditions such as boundary viscous damping,24 perfectly matching layers,25 and infinite elements,26 these methods have
limitations. Specifically, in all these methods, artificial reflections exist to varying degrees and the absorbing surfaces
must be taken sufficiently far from the fault surface to ensure solution accuracy. Moreover, attempts to perform cycle
simulations using these volume-based methods are rare and have been restricted mainly to the quasi-dynamic limit.27

This is partially due to the high spatial discretization cost and the lack of a systematic approach to handle both dynamic
and quasi-dynamic calculations in the same framework which is required for simulating both earthquake ruptures and
interseismic slow deformations. Another challenge in these methods is defining fault loading. Currently, this is done by
applying displacement-controlled loading at the far boundaries of the simulation box. This, however, makes the fault
stressing rate dependent on where the domain is truncated. This problem is solved approximately in the SBI formulation
by loading the fault directly through back-slip.

Both bulk and boundary approaches have their merits and limitations. The limitations are evident in 3D FE simu-
lations where computational complexity grows like the inverse of the element size to the fourth power* rendering high
resolution models a computational bottleneck. To that end, this article proposes a new hybrid numerical scheme, for the
full three-dimensional elastodynamic problem, that combines the 3D FE method and the 2D SBI method to efficiently
model fault zone nonlinearities and heterogeneities with high resolution while capturing large-scale elastodynamic inter-
actions in the bulk. The main idea of the method is to enclose the heterogeneities in a virtual strip that is introduced for
computational purposes only (see Figure 1C). This strip is discretized using a volume-based numerical method, chosen

*For linear 3D FE simulations, the computational complexity is proportional to the number of elements and time steps (N1 × N2 × N3 × Nt). Given
that Ni ∝ Δx−1 and Nt ∝ Δt−1, Δt ∝ Δx, the computational complexity is O(Δx−4).
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(B) (C)(A)

F I G U R E 1 Schematic representation of the physical problem (A), it is representation using a domain-based method such as FE (B),
and using the hybrid method (C). The hybrid method couples a domain-based method with a boundary-based method, through the
communication of nodal traction 𝝉

SBI, displacement u, and velocity u̇ at the boundaries of the virtual strip, S±

here to be the finite element method due to its popularity and flexibility in handling complex geometry and arbitrary
bulk heterogeneities. The top and the bottom boundaries of the virtual strip are handled using the independent SBI
formulation4 with matching discretization. The coupling between the two methods is achieved through enforcing conti-
nuity of displacement and traction at the virtual boundaries. The current work extends recent work by the authors and
their groups over the past few years which first developed the hybrid scheme for the 2D dynamic anti-plane problem com-
bining finite difference and spectral boundary integral methods,28 and the 2D dynamic in-plane problem using the finite
element method for bulk discretization in the hybrid scheme.29 Prior work has demonstrated the accuracy and computa-
tional efficiency of the coupled approach and its potential for modeling dynamic ruptures with high resolution fault zone
physics30 as well as extension to the quasi-dynamic limit and cycle simulations.31 The current extension to the full three
dimensional case represents the culmination of these efforts.

The remainder of this article is organized as follows. In Section 2, we describe the physical model (Section 2.1), and
the numerical methods to solve it, which includes the finite-element method (Section 2.2), the spectral boundary integral
method (Section 2.3), and their coupling—the hybrid method (Section 2.4). In Section 3, we validate the hybrid method
using the benchmark problem TPV332 of the Southern California Earthquake Center. Next, we demonstrate the capa-
bilities of the new hybrid method on more complex problems. We consider a low velocity fault zone in Section 4, a low
velocity inclusion at a distance from the fault in Section 5, and interacting faults in Section 6. Finally, we discuss the
advantages of the hybrid method in terms of computational cost in Section 7 and draw conclusions in Section 8.

2 METHOD

2.1 Physical model

We solve the fully dynamic three-dimensional problem of a rupture propagating along a fault embedded in an elastic
solid. The conservation of linear momentum within the elastic domain Ω is given by

𝜌üi −
𝜕𝜎ij

𝜕xj
− bi = 0 in Ω (1)

where 𝜌 is the material density, ui the displacement vector, with the “dot” being the derivative with respect to time t,
𝜎ij the Cauchy stress tensor, xj the coordinate vector, and bi are body forces. Here, for simplicity we assume that bi are
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time independent and satisfy the balance equation for initial stresses. Therefore, incremental stresses, which we consider
here, satisfy the equation of motion with bi = 0. Dirichlet boundary conditions are applied on Su and Neumann boundary
conditions are applied on ST

ui = ūi on Su (2)
𝜎ijnj = 𝜏 i on S𝜏 , (3)

where ni is the normal vector to the surface S𝜏 . Initially, the domain is assumed to be in equilibrium, and, hence, the
initial conditions are given by ui(0) = u0

i and u̇i(0) = 0. We assume linear elastic material behavior:

𝜎ij = 𝜆 𝛿ij𝜀kk + 2𝜇 𝜀ij (4)

with the infinitesimal strain tensor 𝜀ij = (𝜕ui∕𝜕xj + 𝜕uj∕𝜕xi)∕2 and the Lamé parameters 𝜆, 𝜇 describing the elastic
properties of the material.

The fault transmits stresses from one half-space to the other through interface tractions. We focus on tangential (fric-
tion) interaction and impose non-penetration/non-opening conditions to the normal component of the fault surfaces S±

f .
The local slip vector, which corresponds to the tangential fault opening vector, is given by

𝛿i = Rij(u+
j − u−

j ) on S±
f , (5)

where Rij is the global-to-local rotation matrix and + and − indicate the upper and lower fault sides, respectively. Local
slip 𝛿 is the amplitude of 𝛿i. The fault is governed by a stick-slip behavior that is described by two states. A sticking section
of the fault is described by:

�̇� = 0 and 𝜏 < 𝜏s (6)

where �̇� is slip rate, 𝜏 the amplitude of the fault shear traction vector and 𝜏s the fault strength. A sliding fault section is
described by:

�̇� > 0 and 𝜏 = 𝜏s. (7)

A constitutive law is applied to model the fault strength evolution. For simplicity, we apply a linear slip-weakening
friction law,33 which is given by:

𝜇(𝛿) =

{
𝜇s − (𝜇s − 𝜇k) 𝛿∕𝛿c for 𝛿 < 𝛿c

𝜇k for 𝛿 ≥ 𝛿c
(8)

where 𝜇s and 𝜇k are the static and kinetic friction coefficient, respectively, and 𝛿c is the characteristic slip length to reach
residual strength. The fault strength is then given by 𝜏s = 𝜎n𝜇(𝛿), where 𝜎n is the normal stress. Other friction laws, such
as rate-and-state friction,34,35 could also be applied in a similar framework, as shown by Kaneko et al.15 These laws would
be suitable for modeling seismic and aseismic periods since they automatically account for strength recovery in the stick
phase.

2.2 Finite element method (FEM)

The finite element method is based on a variational formulation of the governing equation and applies a discretization
based on shape functions to find an approximate solution to the physical problem presented in Section 2.1. A detailed
description can be found in standard textbooks.36 The FEM approach transforms the strong form, that is, the governing
Equation (1), to the weak form by multiplying it with the test functions û(x), integrating it over the domain, and applying
Green’s identity, which results in:

∫Ω
𝜌üi ûi dΩ + ∫Ω

𝜎ij
𝜕 ûi

𝜕xj
dΩ − ∫S𝜏

𝜏 i ûi dS − ∫Sf

𝜏i ûi dS = 0. (9)
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Test functions are chosen smooth enough, such that all steps are well defined and vanish on the Dirichlet boundary.
By choosing suitable interpolation functions, NI(xJ) = 𝛿IJ , and test function û(x) =

∑
I NI(x)uI(t), where the subscript I

represent the node index, uI(t) becomes the nodal displacements. Using this standard FE approach, the weak form can
be expressed as the following matrix equation

Mü + Ku − f − B𝝉 = 0 (10)

where ü denotes the second time derivative of the displacement vector, M and K are the mass and stiffness matrix, respec-
tively, B is a fault rotation-area matrix, 𝝉 is the fault traction vector, and f is the force vector from Neumann boundary
conditions.

We apply an explicit central-difference time integration formulation with a predictor-corrector formulation. The
step-by-step procedure follows:

u̇pred
t+1 = u̇t + Δt üt (11)

ut+1 = ut + Δt u̇pred
t+1 (12)

Δü = (−Kut+1 + f + B𝝉 t+1)M−1 − üt (13)

u̇t+1 = u̇pred
t+1 + 1

2
Δt Δü (14)

t = t + Δt (15)

where the subscript indicates the time step and Δt is the current incremental time step, which is required to satisfy the
Courant–Friedrichs–Lewy (CFL) condition.37 We apply a lumped mass matrix, which simplifies the computation of the
inverse mass matrix and reduces computational cost of the time-integration scheme. The fault rotation matrix is scaled
by the fault-surface area associated with each fault-split-node and thus transforms the fault traction vector 𝝉 to a nodal
force vector.

The fault traction vector 𝝉 t+1 in Equation (13) is computed by a forward Lagrange multiplier method,38 which
uses a prediction procedure to pre-compute the slip rate for the next time step. A similar approach was applied in
spectral-element simulations.15 We denote a fault discontinuity as [|A|] = (A+ − A−) where superscript + and − indicate
the upper and lower fault sides, respectively. The predicted slip rate during the next time step if no fault tractions were
applied is given by

[|u̇t+3∕2|] = [|u̇pred
t+1 − Δt

2
üt − Δt M−1 (Kut+1 − f) |]. (16)

We use the slip-rate predictor [|u̇t+3∕2|] because the no-slip-rate condition [|u̇t+3∕2|] = 0 will ensure that the interface
remains stuck and hence [|ut+2|] = [|ut+1|]. Using Equation 16, we can compute the traction required to maintain slip
and impose stick condition on the fault by

�̃� t+1 = 1
2

Z[|u̇t+3∕2|], (17)

where Z is the fault impedance matrix given by Z−1 = Δt
((

M+) −1B+ + (M−) −1B−) ∕2 and the following fault traction
balance was applied 𝝉 = −𝝉+ = 𝝉

−. The actual fault traction is computed by applying the stick-slip conditions given by
Equations (6) and (7):

𝜏t+1 =

{
𝜏 t+1 if 𝜏 t+1 < 𝜏s

t+1 (stick)
𝜏s

t+1 otherwise (slip)
(18)

where 𝜏t+1 and 𝜏 t+1 are individual entries in 𝝉 t+1 and �̃� t+1, respectively, and 𝜏s
t+1 is the fault strength at each split-node

(node indicator is omitted for simplicity) and is governed by Equation (8).
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2.3 Spectral boundary integral method (SBIM)

Boundary integral methods have the advantage of modeling the wave propagation problem in the entire domain Ω by
using a spatio-temporal integral relationship between the displacements and the tractions along the boundary of the
domain 𝜕Ω. The advantage lies in reduced computational cost and increased accuracy with respect to a finite-element or
finite-difference method. For these reasons, boundary integral methods have been used extensively since the mid-1980s
to study crack propagation problems.3,39-48

Consider the displacements and tractions at the boundary of an semi-infinite half space with the boundary lying on
the e1, e3 plane and the domain being infinite in the e2 direction. Following the process described in Geubelle and Rice,4
the elastodynamic response of a 3D elastic half space is given by

𝜏SBI
i (x1, x3, t) = 𝜏∞i (x1, x3, t) − 𝜂ij

𝜇

cs
u̇j(x1, x3, t) + si(x1, x3, t), (19)

where 𝜂ij is a diagonal matrix with 𝜂11 = 𝜂33 = 1 and 𝜂22 = cs∕cp. cp and cs are the longitudinal and shear wave speeds of
the material, respectively. Equation (19) states that the traction at the surface of the half space, 𝜏SBI

i , equals the far field
traction, 𝜏∞i , plus a “radiation damping” term, 𝜂ij

𝜇

cs
u̇±

j , and a spatio-temporal integral term si. In this formulation, the
elastodynamic response is separated between local and nonlocal contributions. si represents the nonlocal elastodynamic
long-range interaction between different parts of the surface, and the local effect 𝜂ij

𝜇

cs
u̇j represents wave radiation from

the surface.
We use the spectral approach49 for computing si, which involves a Fourier transform in space and a convolutions

in time, where the displacement history is convolved with the elastodynamic kernels H. The Fourier representation of
displacements and long-range interaction term is defined as follows:

[u±
j (x1, x3, t), sj(x1, x3, t)] = [û±

j (t; k,m), ŝj(t; k,m)] exp (i(kx1 + mx3)) , (20)

where the wave number vector is q = (k,m).
The spatio-temporal integral term in the Fourier space becomes:

⎧⎪⎨⎪⎩
ŝ±1 (t; k,m)
ŝ±2 (t; k,m)
ŝ±3 (t; k,m)

⎫⎪⎬⎪⎭ = −i𝜇±(2 − 𝜂±)
⎛⎜⎜⎜⎝
0 −k 0
k 0 m
0 −m 0

⎞⎟⎟⎟⎠
⎧⎪⎨⎪⎩

û±
1 (t; k,m)

û±
2 (t; k,m)

û±
3 (t; k,m)

⎫⎪⎬⎪⎭ (21)

− 𝜇±|q|∫ t

0

⎡⎢⎢⎢⎣i
H12(|q|c±s t′)|q|

⎛⎜⎜⎜⎝
0 −k 0
k 0 m
0 −m 0

⎞⎟⎟⎟⎠ ± H22(|q|c±s t′)
⎛⎜⎜⎜⎝
0 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎠ (22)

±
H11(|q|c±s t′)

q2

⎛⎜⎜⎜⎝
k2 0 km
0 0 0

km 0 m2

⎞⎟⎟⎟⎠ ±
H33(|q|c±s t′)

q2

⎛⎜⎜⎜⎝
m2 0 −km
0 0 0

−km 0 k2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (23)

×
⎧⎪⎨⎪⎩

û±
1 (t − t′; k,m)

û±
2 (t − t′; k,m)

û±
3 (t − t′; k,m)

⎫⎪⎬⎪⎭ |q|c
±
s dt′, (24)

where |q| =√k2 + m2 and 𝜂 = cp∕cs. The in-plane convolution kernels are defined by the following inverse Laplace
transforms:

H11(t) = 𝔏−1

[
p̃2
√

p̃2 + 𝜂2√
p̃2 + 𝜂2

√
p̃2 + 1 − 𝜂

− p̃

]
,
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ALBERTINI et al. 6911

H12(t) = 𝔏−1

[
−𝜂p̃2√

p̃2 + 𝜂2
√

p̃2 + 1 − 𝜂
+ 𝜂

]
,

H22(t) = 𝔏−1

[
𝜂p̃2
√

p̃2 + 1√
p̃2 + 𝜂2

√
p̃2 + 1 − 𝜂

− 𝜂p̃

]
, (25)

where p̃ = p∕|q|cs is the non-dimensional Laplace transform variable. The inverse Laplace transform is

H(t) = 𝔏−1[h(p̃)] = 1
2𝜋i∫

𝛾+i∞

𝛾−i∞
exp(p̃t)h(p̃)dp̃, (26)

which can be evaluated numerically, for example, using the approach by de Hoog et al.50 On the other hand, the
out-of-plane convolution kernel has a closed form solution

H33(t) = J1(t)∕t, (27)

where J1(t) is the Bessel function.
In a classical SBIM, Equation (19) is integrated in time explicitly by first solving for u̇ and then computing the displace-

ment at the next time step ui(t + Δt) = ui(t) + Δt u̇i(t). The time step is required to satisfy the following CFL condition:49

Δt < 0.35Δx∕cs.

2.4 Hybrid FEM-SBIM method

The hybrid method consists in coupling the FEM and the SBIM at the boundaries S±, where the FE-domain is trun-
cated (see Figure 1C). However, instead of FEM, one could use any other domain-based method. In the hybrid method,
all nonlinear behavior, such as multi-physics processes, fault roughness, diffuse damage, material nonlinearities, and
local heterogeneity need to be confined within a virtual strip, which we introduce for computational purposes only (see
Figure 1). Beyond this strip, it is assumed that the material is homogeneous and linear-elastic. Thus, it may be modeled
as a top and bottom half spaces coupled to the strip. The width of the virtual strip depends on the problem being solved
and it can be adjusted to include all complexities and nonlinearities. At S±, which we refer to as the virtual boundary, we
apply an exact elastodynamic transparent boundary condition using the SBIM, which accounts for wave propagation in
the infinite half-space beyond the FE truncation. At each time step of a simulation, the two methods exchange traction
and displacements boundary conditions along the virtual boundaries.

Depending on the FE scheme, Neumann or Dirichlet boundary conditions might be more suitable for the virtual
boundary. For example, Dirichlet boundary conditions might result in a more stable algorithm. Here, we present the Neu-
mann approach (for the Dirichlet approach please refer to Ma et al.29). We impose continuity condition at the boundaries
S±, which results in the FE force f being equal to the SBI traction 𝜏SBI multiplied by a rotation-area matrix BSBI. For appro-
priate accuracy of the wave absorption algorithm, we use a staggered approach in which FEM and SBIM share nodes at
the virtual boundary (see Figure 1C). Thus, the continuity condition is enforced directly on nodal values, without relying
on interpolation. Therefore, the spatial discretization at S± must be a regular quadrangular grid and each FE-node on S±

has a corresponding SBI-node at the exact same location.
Because of continuity at S±, displacement, velocity, and traction of SBIM and FEM must coincide. Therefore, the

coupling needs to involve the SBI Equation (19), which relates traction to the history of displacement and current velocity,
and the FE weak form Equation (10), which relates displacement and applied force to acceleration.

The Neumann approach consists in solving the SBI relation, Equation (19), by using the displacement and velocity
computed from the FEM. The resulting traction represents the response of the truncated half space and is then applied
as a Neumann boundary condition in the FEM. A time step of the hybrid method is computed as follows:

1. FE predict velocity Equation (11) and compute explicit time integration Equation (12).
2. Copy ut+1 and u̇pred

t+1 from FE to SBI.
3. SBI compute response of half space, 𝜏SBI, for given displacement history u(x1, x3, t) and current velocity prediction u̇pred

t+1
Equation (19).

4. Apply SBI interface traction as Neumann boundary condition in FE: f = BSBI
𝝉

SBI.
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6912 ALBERTINI et al.

5. FE compute friction traction 𝝉t+1 using Equation (18).
6. FE compute acceleration increment Equation (13).
7. FE correct velocity Equation (14).

Given the periodicity of the SBI-formulation, the side faces of the virtual strip are also subjected to periodic boundary
conditions: ui(0, x2, x3) = ui(L1, x2, x3) and ui(x1, x2, 0) = ui(x1, x2,L3). Further, the time step of the hybrid scheme needs to
satisfy the CFL condition of both FEM and SBIM and the time step must be the same.

Note that in the suggested hybrid scheme, the SBI evaluation of the time integration of the convolution term and the
radiation damping term are computed using the predicted velocity (without correction). This approach is stable because
it corresponds to the SBI integration scheme, where the velocity used for the time integration depends on the previous
time step only, see Section 2.3.

Alternative coupling methods, for example, Lagrange multiplier, could also be applied. However, as we will show in
Section 3, the simple staggered approach proposed here provides excellent accuracy and is optimal in terms of computa-
tional efficiency. Further, in the finite-element domain, we apply 8-node linear hexagonal elements in a regular mesh in
all presented problems.

The hybrid scheme is conceptually simple. However, the challenges lie in the implementation within a distributed
memory parallelism framework, where the FEM mesh is scattered to different processes. Here, we couple an open-source
FEM library, akantu51 with an in-house, open-source SBIM library called uguca.52 In order to avoid any changes of the
FEM code we implemented a new class in our SBIM code, which creates the interface between the distributed FEM mesh
and the non-distributed SBIM mesh. In this way, one can easily implement the hybrid method with any FEM library.

3 BENCHMARK PROBLEM TPV3: EARTHQUAKE RUPTURE IN
UNBOUNDED HOMOGENEOUS DOMAIN

3.1 Setup

We verify the hybrid method with the benchmark problem TPV3 from the SCEC Dynamic Rupture Validation exercises
(https://strike.scec.org/cvws/). The problem considers a planar fault, governed by linear slip-weakening friction, embed-
ded in a homogeneous linear elastic bulk (see Figure 2A). The elastic bulk has a density of 𝜌 = 2670 kg/m3, pressure
wave speed cp = 6000 m/s, and shear wave speed cs = 3464 m/s. The friction properties are uniform and characterized by
𝜇s = 0.677, 𝜇k = 0.525, and dc = 0.4 m. A uniform background shear, 𝜏0 = 70 MPa, and normal stress, 𝜎0 = 120 MPa, are
applied. The rupture is nucleated at the center of the fault over a square patch of size a2 by instantaneously increasing the
shear stress to a value higher than the static friction. After nucleation, the rupture quickly propagates across the entire
fault. The fault is bounded by a locked region (depicted in dark gray in Figure 2) where the rupture cannot propagate due
to high fault strength.

Note that this problem does not present any off-fault non-linearities and the fault is planar. Hence, the hybrid method
is not required for this particular problem, which could be solved solely by the SBIM. However, we use this problem to
verify the hybrid method by comparing the results with the reference solution of the SBIM. Additional examples, which
do include non-linearities that require the hybrid method, will be presented in the following sections.

Additionally, in this example (as well as in Sections 4 and 5) the fault (i.e., the 13 plane) represents a symmetry plane.
The implications of this are twofold: (i) the normal stress on the fault remains constant throughout the simulation and
so do the peak and residual friction strengths (ii) there is no need of explicitly modeling the bottom half space of the
simulation domain (i.e., x2 < 0)), which is taken into account for when applying the frictional traction on the fault by
enforcing [|u2|] = 0 and 𝜎22 = const. Note that, by applying the hybrid method, we model the entire top (i.e., x2 > 0) half
space. However, there are two additional symmetry planes: the 12 plane and the 23 plane. Thus, the FE computational
domain could be further reduced by using the appropriate boundary conditions.

3.2 Results

We present the results of the hybrid method with a virtual strip width L2 = 4Δx (see Figure 2B) and compare it with
the reference solution. For both methods we use the same spatial discretization with Δx = 50 m. Rupture front position
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ALBERTINI et al. 6913

(see Figure 3A), and stress and slip time history at four stations (see Figure 3B) show excellent agreement between the
hybrid method and the SBIM. Slight offset in rupture arrival times (see Station C and D in Figure 3B), are caused by
minor differences in spatial discretization of the nucleation patch and locked region between SBI and Hybrid method.
Figure 4 shows the velocity field on one quadrant of the virtual strip. The rupture front is characterized by an abrupt
change from peak to residual strength. The excellent agreement with the reference solution (Figure 3) demonstrates that
the elastodynamic boundary condition enforced on the planes S± does not cause any artificial wave reflection even though
the virtual strip is extremely thin.

We perform a mesh convergence study of the hybrid method. First, we compute the 𝓁2 norm error on the displacement
u and on shear stress 𝜎12 and 𝜎13 at a given time t = 3 s. The 𝓁2 norm error of u is defined as

‖‖‖ui(x) − uref
i (x)‖‖‖2

=

√√√√∫Ω

3∑
i=1

(
ui(x) − uref

i (x)
)2

dΩ (28)

The reference solution, uref
i , is solved using the hybrid method with a very fine mesh (Δx = 25 m). The results show

that the error converges with order between 1 and 2, depending on Δx and on the considered field (see Figure 5A). The
𝓁2 norm error of 𝜎ij is computed analog to Equation (28) but without the sum over dimensions i. The hybrid method
combines linear finite elements with a higher precision spectral boundary method. Therefore, the convergence rate of the
hybrid method corresponds to the rate of the least accurate of the methods it combines, that is, the linear finite element

(A) (B)

F I G U R E 2 Setup of benchmark problem TPV3. (A) Earthquake rupture in unbounded domain with nucleation over square region of
size a = 3 km and fault regions of size Lrpt

1 = 30 km and Lrpt
3 = 15 km, while L1∕Lrpt

1 = L3∕Lrpt
3 = 1.5. (B) Hybrid setup: FE domain with SBI

as elastodynamic boundary condition

(A) (B)

F I G U R E 3 Benchmark problem TPV3 solved using hybrid method (multicolor lines) and using the SBIM (dashed black lines) with
Δx = 50 m (2.4M FE-Degrees-Of-Freedom (DOF) and 1.2M SBI-DOF). (A) Contour of rupture front position each 0.5 s. (B) Fault shear stress,
𝜎12, and slip rate, u̇1, at three stations A, B, C, and D with position shown in (A)
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6914 ALBERTINI et al.

F I G U R E 4 Benchmark problem TPV3 solved using hybrid method. Velocity magnitude field, v, at t = 3.4 s. For better visualization we
applied a much thicker virtual strip, that is, L2 = 10 km instead of L2 = 0.2 km as applied for simulations shown in Figure 3. Here, only 1/4
of the virtual strip is shown, following the symmetry axes

(B)(A)

F I G U R E 5 Mesh convergence study on benchmark problem TPV3 solved with hybrid method (A) 𝓁2 error of displacement u and
shear stress 𝜎12 and 𝜎13 as function of mesh size Δx computed over the entire fault at t = 3 s. (B) Absolute error of displacement u1 as
function of time at station C

method. Hence, the hybrid method does not loose any accuracy compared to a fully FE model. Here, since we are using
linear interpolation functions in our FEM, one would expect order 2 convergence. However, in our problem the solution
has geometric structures such as the shape of the propagating rupture front and the process zone size which evolve in
time. Finer meshes represent these geometric structures and their temporal evolution more accurately and approach
convergence order 2, while coarser meshes have lower order of convergence.

Second, since we are dealing with a dynamic problem, we show the temporal evolution of the absolute error on
the displacement u1 at station C (see Figure 5B). The error is initially zero because neither elastic waves nor rup-
ture have reached the station yet. At t ≈ 1.8 s, the rupture reaches the station (see also Figure 3B) and hence the
error increases rapidly. It then remains approximately constant while the fault continues to slide until reflected waves
from the boundary between rupture region and locked region (not the virtual boundary) reach the station. At this
point, we notice a temporary drop in the error before it increases again to the same level of error observed before.
Overall, we find that the error remains mostly constant over the duration of the simulation and decreases with mesh
refinement.

Even though this benchmark problem is linear elastic and does not necessitate the use of the hybrid method, it
illustrates its capability of efficiently and accurately truncating elastic waves in the vicinity of the fault with no artifi-
cial reflections from the virtual boundaries, S±, which were only two elements away from the fault. In more complex
scenarios, this virtual strip might need to be larger in order to fully describe the source of non-linearities or hetero-
geneity. Nevertheless, this efficient near-field truncation algorithm enables us to decrease the domain of finite-element
discretization, compared to a fully FEM model, and apply a volumetric mesh only in a narrow strip around the fault,
which results in considerable savings in terms of both computational time and memory, as we will discuss further in
Section 7.

 10970207, 2021, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6816 by T
est, W

iley O
nline L

ibrary on [10/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ALBERTINI et al. 6915

4 EARTHQUAKE RUPTURE WITH LVFZ: PULSE-LIKE BEHAVIOR

4.1 Setup

The previous example was a benchmark problem and could have been solved by a boundary-element approach without
any discretization of the bulk. Hence, the hybrid method was not required. In the following, we will consider more com-
plex problems, which require volumetric discretization. First, we consider a slip-weakening fault with a low velocity fault
zone (LVFZ). LVFZ are found in most mature faults, where the near fault rock is considerably damaged and, as a con-
sequence, has a reduced wave speed ranging from 20% to 60% with respect to the host rock.53-57 In 2D setups, when the
reduction is high enough, the rupture behaves like a pulse. The results presented here will confirm this behavior on a 3D
setup.

We consider a velocity reduction of 20% with respect to the surrounding host rock, which has the same elastic prop-
erties as in Section 3. The fault geometry is given in Figure 6, and is governed by linear slip-weakening friction with
𝜇s = 0.677, 𝜇k = 0.564, and dc = 0.2 m. The fault is subjected by a uniform background shear 𝜏0 = 27.5 MPa and normal
𝜎0 = 44 MPa stress. We nucleate the fault rupture over a square region of size a2 by instantaneously applying a loading
traction of 31 MPa, which locally exceeds the peak friction strength.

4.2 Results

As a result of the nucleation procedure, the rupture front quickly propagates radially and eventually spans the entire fault
(see Figure 7). When a dynamic rupture propagates, it radiates elastic waves, which are then reflected at the boundary of
the LVFZ.57 Depending on the incident angle, the reflected wave can have an inverted polarization and cause unloading
of the fault and generate a slip pulse. This effect is also observed in our 3D simulations and is shown in Figure 7B,
station C, and in Figure 9. The reflected wave causes the rupture to split into a pulse-like rupture, followed by a crack-like
rupture. Reflected waves also cause perturbation of the rupture front, which is not circular anymore (see Figure 7A at
x1 ≈ ±25 km).

Since this problem cannot be solved with the SBI method, we validate the results of the hybrid method by varying
the width of the virtual strip, L2. The solution is independent on the location of the elastodynamic boundary condition
(see Figure 7), which can be placed at or beyond the boundary between the stiff and compliant regions, L2 ≥ LFZ. When
computing the error between solutions with different L2, minor differences become visible (see Figure 8).

The rapid acceleration and deceleration of a slip pulse are a source of high frequencies (see Figure 7B station C) and
cause oscillations in slip velocity, trailing the rupture front (see Figure 9). These oscillations do not affect the rupture

(B)

(C)

(A)

F I G U R E 6 Setup of example earthquake rupture in unbounded domain with LVFZ. (A) Fault plane geometry and nucleation patch
are analogous to the previous example but with a larger size: Lrpt

1 = 60 km, Lrpt
3 = 30 km, and a = 3.2 km. The fault zone region surrounding

the fault is more compliant and presents a thickness of LFZ = 1.6 km. (B) Hybrid setup: FE virtual strip with L2 = 2 km and with SBI as
elastodynamic boundary condition
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6916 ALBERTINI et al.

(A) (B)

F I G U R E 7 LVFZ setup solved using hybrid method with Δx = 100 m (12M-18M FE-DOF and 1.2M SBI-DOF). (A) Contour of rupture
front position each 0.5 s. (B) Fault shear stress, 𝜎12, and slip rate, [|u̇1|] at three stations A, B, and C with position shown in (A). At station C
the rupture has split into a slip-pulse followed by a crack-like rupture. Two solutions with different L2 are shown (see Figure 8 for
quantitative comparison)

(A) (B) (C)

F I G U R E 8 Error of hybrid method with Δx = 100 m and different virtual strip widths L2 using LVFZ setup. Normalized error,
𝜖a = |a(x) − aref (x)|∕ ‖‖aref (x)‖‖∞ is computed on the displacement field at stations A, B, and C (defined in Figure 7). The error is computed on
u1 and 𝜎12. The reference solutions is a simulation with L2 = LFZ = 1.6 km (i.e., the virtual boundary corresponds to the boundary between
stiff and compliant material). Increasing error with L2 is expected since accuracy of SBI is superior than FE

(A) (B)

F I G U R E 9 Pulse like rupture induced by LVFZ. (A) Space-time diagram of slip rate [|u̇1|] along the symmetry axis x3 = 0 km. At
t ≈ 5 s, the rupture splits into a slip-pulse, followed by a crack-like rupture. (B) Slip rate [|u̇1|] at t = 8 s shows the spatial extent of the
pulse-like and crack-like rupture
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ALBERTINI et al. 6917

propagation and could be decreased by using regularized friction laws58 or numerical damping, which are not used
here.

5 EARTHQUAKE RUPTURE IN A HETEROGENEOUS MEDIUM:
SUPERSHEAR TRANSITION

5.1 Setup

The second showcase example, presented in this section, is similar to the previous example but with the more compliant
material being the one at a distance from the fault. We consider a slip-weakening fault with an off-fault low velocity
zone. This case could occur when a fault ruptures and interacts with the LVFZ of a nearby mature fault.53,57 We use
the same geometry, friction and elastic properties, and nucleation procedure as in Section 4 but consider the fault to be
embedded in the reference material, while beyond a distance LFZ∕2 from the fault plane the material has a 20% velocity
reduction.

5.2 Results

Similar as in the LVFZ setup of Section 4, elastic waves are reflected at the boundary of the low velocity inclusion and
affect the shear stress at the interface. However, the reflected waves have the same polarity as the incident ones and,
hence, increase the shear stress in front of the propagating rupture front (see Figure 10B). This increasing shear stress
peak eventually causes the rupture to transition from subRayleigh to supershear velocities (see Figure 10A and Figure 11).
SubRayleigh propagation occurs when the rupture speed is lower than the Rayleigh wave speed, cR ≈ 0.9cs, and can be
observed at stations A and B in Figure 10. Supershear propagation, however, refers to ruptures propagating faster than cs
and their speed can approach the limiting speed, cp.59,60 In our simulations, supershear rupture occurs within the domain
surrounding station C in Figure 10A.

In this 3D simulation, we observe a supershear transition through the Burridge–Andrews mechanism,6,61 where a
shear stress peak in front of the existing crack nucleates the supershear rupture (see Figure 10B, station C and Figure 11).
In contrast to 2D setups,53,57 the extent of the supershear rupture is confined to a triangular shaped region, which sur-
rounds station C. Additionally, the transition occurs progressively: first at x3 = 0 km at t ≈ 7 s, then it expands towards
the ±e3 direction, and finally, at t ≈ 12 s it spans the entire seismogenic depth.

This example illustrates the ability of the hybrid method of successfully truncating the shear Mach front, radi-
ated from the supershear rupture, without artificial reflections. Hence, the virtual boundary S± can be as close as the
boundary between the stiff and the compliant materials. As in the previous problem, we validate the results of the
hybrid method by varying the width of the virtual strip, L2. The solution is found to be independent on L2, given that
L2 ≥ LFZ.

(A) (B)

F I G U R E 10 Off-fault low velocity zone setup solved using hybrid method with Δx = 100 m (12M FE-DOF and 1.2M SBI-DOF).
(A) Contour of rupture front position each 0.5 s. Widely spaced contour lines represent supershear propagation region. (B) Fault shear stress,
𝜎12, and slip rate, [|u̇1|] at three stations A, B, and C with position shown in (A)

 10970207, 2021, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6816 by T
est, W

iley O
nline L

ibrary on [10/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6918 ALBERTINI et al.

6 EARTHQUAKE RUPTURE WITH STEP- OVER FAULTS

6.1 Setup

Finally, we present an example of interaction between nearby faults, that is, two fracture planes side-by-side. We consider
a dilational step-over geometry with a system of two faults that overlap each other (see Figure 12). The dilational step-over
implies that the location of the secondary fault with respect to the primary one is such that the rupture propagation on the
primary fault will cause a temporary reduction in normal stress. The faults have uniform friction properties, 𝜇s = 0.677,
𝜇k = 0.373, and dc = 0.5 m, except on the top 1 km of the seismogenic zone, where a slip-strengthening condition is
imposed. At the bottom, that is, x3 < Lrpt

3 , we consider a no slip boundary condition and the nucleation is achieved by an
instantaneous reduction of the friction strength over a region of size a × Lrpt

3 to it is kinetic value. This setup is analogous
to a recent study by Bai and Ampuero.62 The elastic properties are the same as in Section 3. We choose a seismogenic
depth, Lrpt

3 = 10 km and uniform background shear 𝜏0 = 71.2 MPa and normal stress 𝜎0 = 150 MPa. Hence, the strength
ratio is S = (𝜇s𝜎0 − 𝜏0)∕(𝜏0 − 𝜇k𝜎0) = 1.75, and the condition for the rupture to jump from one fault to the adjacent one is
satisfied.62

(A) (B)

F I G U R E 11 Supershear transition induced by off-fault low velocity zone. (A) Space-time diagram of slip rate [|u̇1|] along the
symmetry axis x3 = 0 km. The rupture transitions to supershear at x1 ≈ 24 km. (B) Slip rate at t = 9.25 s shows the spatial extent of the
supershear rupture, just after the transition has initiated

(A)

(B)

(C)

F I G U R E 12 Setup of example earthquake rupture in unbounded domain with interacting parallel faults with step-over geometry.
(A) Setup geometry. Fault zone regions of rectangular size with Lrpt

1 = 40 km and Lrpt
3 = 10 km, with nucleation over a width a = 20 km and

the entire seismogenic depth, Lrpt
3 . To the left of the nucleation patch the extent of the primary fault is La

1 = 10 km. The two fault step-over
geometry is characterized by Loverlap = 20 km and Lstepover = 1 km, shown in (B). The faults are embedded in a homogeneous elastic medium.
(B,C) Hybrid setup: FE domain with SBI as elastodynamic boundary condition. The virtual strip width is L2 = 1.4 km
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ALBERTINI et al. 6919

Note that in this example there are no symmetries. In contrast to the previous examples where the fault plane repre-
sented a symmetry axis. As a result of the slip propagation on the primary fault, the normal stress on the secondary fault
is not constant. The change in normal stress can reduce or increase the friction strength on the secondary fault, depend-
ing on their relative position. Thus, it can hinder or promote the rupture to jump between faults. This class of problems
may require regularization of the friction law (Prakash-Clifton correction58,63,64) to account for the abrupt normal stress
change. However, we are not considering this here.

6.2 Results

Using the hybrid method, we can successfully reproduce the results of Bai and Ampuero62 (see Figure 13): after nucle-
ation, the rupture propagates over the primary fault with a nearly vertical front, then the rupture jumps to the secondary
fault and, as a consequence of the no-slip boundary condition beyond the depth Lrpt

3 , the rupture becomes a slip
pulse. The wave emitted by the primary rupture successfully nucleates a large rupture on the secondary fault in the
forward direction. This example illustrates the ability of the hybrid method to efficiently solve a large and complex
simulation and efficiently truncate all incident waves without any artificial reflections. To validate the results of the
hybrid method we vary the width of the virtual strip, L2, and find that also for this example L2 does not affect the
solution.

7 DISCUSSION

We used a SCEC benchmark problem to validate the hybrid method and then demonstrated its flexibility and superior
performance on more complex and heterogeneous problems. The proposed hybrid method takes its flexibility to deal with
nonlinearities or bulk heterogeneities from the FEM and its computational efficiency from the SBIM. In particular, since
the SBIM provides a perfect wave absorption algorithm there is no artificial wave reflection at the virtual boundary. Thus,

(C)

(A)

(B)

F I G U R E 13 Results of example earthquake rupture in unbounded domain with interacting parallel faults with dilational step-over
setup and spatial discretization Δx = 100 m (5M FE-DOF and 0.8M SBI-DOF). (A) Rupture front contour lines on primary fault, where
nucleation occurs over region −40 km < x1 < −20 km (not shown). (B) Rupture front contour lines on secondary fault. Rupture transitions
from primary to secondary fault. (C) Fault shear, 𝜎12, and normal, 𝜎22, stress and slip rate, [|u̇1|] at three stations A, B, and C with position on
the secondary fault shown in (B)
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6920 ALBERTINI et al.

one can reduce the width of the FEM domain arbitrarily close to the nonlinear or heterogeneous region, as long as the
constitutive relation of the bulk beyond the virtual strip can be assumed to be linear.

The computational savings of using the hybrid method—instead of a traditional FEM—can be assessed by considering
the complexity of both FEM and SBIM. The complexity of an explicit FEM time step is proportional to the number of
degrees of freedom of the FEM problem, that is, (N1N2N3), where Ni is the number of elements in the i-direction and we
assume a regular mesh of hexagonal elements. Similarly, the complexity of an SBIM time step scales with its number of
degrees of freedom (N1N3). We measured the computation time for a range of simulations with different discretizations
and domain sizes, which confirms the linear relationship between computational cost and the number of degrees of
freedom (see Figure 14). The computational saving of the hybrid method compared to a standard FEM lies in the reduction
of N2 due to the truncation of the FE domain. Moreover, the added overhead cost of the SBI as wave absorption algorithm
is in the same order of magnitude of only one layer of FE elements (see Figure 14B). Therefore, it is practically negligible.

For example, for a full FE simulation, L2 must be in the order of L1 to prevent artificial reflections at the domain
boundary. However, using the hybrid method the domain size can be truncated up to the extent of the nonlinear region
or the extent of the elastic heterogeneity, which are usually one to two orders of magnitude smaller than L1.53 Assuming
a regular spatial discretization, the domain truncation results in a reduction of N2 by one order of magnitude and so will
the computational cost. The savings may be even higher in other applications.

All our simulations were performed using distributed memory parallel computing with 48 threads and for the largest
simulations 96 threads. Therefore, in Figure 14, we report the computational time multiplied by the number of parallel
processes. However, the SBIM library that we are using also supports shared memory parallelism and it is designed to be
easily coupled to any FEM library written in C++. The only requirement is that the FEM mesh at the virtual boundary
S± is a regular grid, due to the spectral representation of the boundary integral equations.

These computational savings represent an important step towards feasible modeling of complex temporal and spa-
tial multi-scale 3D problems such as earthquake cycle simulations with near field heterogeneities, nonlinear material
behavior and plasticity, as well as a networks of interacting faults, including fault branches and non-planar fault geome-
try. The major challenge of earthquake cycle simulations is that they involve very long interseismic loading time (years)
while the dynamic rupture happens extremely rapidly (seconds). An advantage of the hybrid method is that the SBIM
is already capable of absorbing elastic waves in the dynamic as well as in the quasi-dynamic limit and these approaches
can be combined in a variable time stepping scheme, introduced by Lapusta et al.2 Such a temporal multi-scale simula-
tion couples a quasi-dynamic SBIM with an implicit FEM during the slow loading phase and, once the ruptures become
dynamic, it switches to a dynamic SBIM coupled with an explicit FEM—as considered in the current study. These variable
time-stepping hybrid method was introduced in a 2D antiplane framework31 and will be extended to 3D in future work.

Another advantage of the hybrid method is that it could be implemented with any volume based method. For example,
if the fault plane is not known a priori, one could use discretization techniques with embedded discontinuities, such as
the XFEM65 or the discontinuous Galerkin.19

(A) (B)

F I G U R E 14 Performance study of FEM and Hybrid method. (A) Computation time, t, of a FEM time step as function of width of the
virtual strip, that is, number of elements, N2. Scaling of computational time is shown for a range of frictional interface discretizations, N1N3.
The complexity of the FEM time step is linear in N2. (B) Computation time of the FEM time step, t, normalized by N2 (same data and
color-code as in (A)). The computation time of a SBIM time step, when computing the elastodynamic boundary condition for the virtual
strip, is equivalent to the computation time for one layer of FEM elements. Both, FEM and SBIM computation times are linear in N1N3
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8 CONCLUSION

We developed a three-dimensional hybrid method combining the finite-element method with the spectral
boundary-integral method. We validated the hybrid method using a benchmark problem and illustrated its potential for
solving complex earthquake propagation on various example problems including systems with near field heterogeneity
and multiple interacting faults. The hybrid method is suitable for cases where the spatial extent of near field nonlinearity
and heterogeneity is too large to be lumped into an effective fault constitutive law, but is still considerably smaller than
the domain of interest for the wave propagation. In these cases, the hybrid method allows for a reduction of computa-
tional cost by at least one order of magnitude with respect to a full finite-element implementation, while maintaining the
same level of accuracy. The high accuracy and computational efficiency of the hybrid method enable the investigation of
complex failure problems such as multi-physics fault zone problems.
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