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Keywords: Metal Additive Manufacturing (AM) processes, such as selective laser melting (SLM), enable the
Additive manufacture fabrication of arbitrary 3D-structures with unprecedented degrees of freedom. Research is ra-
Aluminium alloys pidly progressing in this field, with promising results opening up a range of possible applica-
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tions across both scientific and industrial sectors. Many sectors are now benefiting from fab-
ricating complex structures using AM technologies to achieve the objectives of light-weighting,
increased functionality, and part number reduction, among others. AM also lends potential in
fulfilling demands for reducing the cost and design-to-manufacture time. Aluminium alloys are
of the main material systems receiving attention in SLM research, being favoured in many high-
value applications. However, processing them is challenging due to the difficulties associated
with laser-melting aluminium where parts suffer various defects. A number of studies in recent
years have developed approaches to remedy them and reported successful SLM of various Al-
alloys and have gone on to explore its potential application in advanced componentry. This
paper reports on recent advancements in this area and highlights some key topics requiring
attention for further progression. It aims to develop a comprehensive understanding of the
interrelation between the various aspects of the subject, as this is essential to demonstrate
credibility for industrial needs.

Metal additive manufacturing technologies are developing at a rapid pace to cope with the current industrial needs to utilise the
unmatched capabilities that these technologies have to offer. The acceleration in the amount of research undertaken worldwide in
this field is remarkable. This review presents the reader with an overview of the metal additive manufacturing technologies that are
now commercially-available and receiving attention from researchers and industrialists. The core of the article focusses on the recent
advances in processing aluminium alloys using the powder-bed fusion technique selective laser melting, shedding the light on the
various aspects of research involved and the challenges that face its uptake by the industry. The number of Al alloys that are now
processable by selective laser melting with high fidelity is quite limited. Nevertheless, ongoing studies that aim to widen this range
are increasing and the various types of defects and the methods devised to detect or remedy them are presented. Furthermore, the
research carried out to characterise the defect-free fully dense parts fabricated by SLM is reviewed. This covers the metallurgy of the
materials produced and the mechanical properties of the parts. The last section of this article provides an outlook to highlight the
issues that require being addressed in the near future to achieve the utmost efficiency and effectiveness of the state-of-the-art
technology.
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1. Introduction to additive manufacturing technologies

Additive Manufacturing (AM) processes are sometimes termed Layered Manufacturing in reference to the nature of the process,
where a part is fabricated layer-by-layer from three-dimensional (3D) data. Industry is now benefiting from fabricating geometrically-
complex structures using a range of available AM technologies. These processes have the potential to fulfil demands for reducing design-
to-manufacture time through replacing a series of production processes by a single-step process (followed by a finishing step, as per the
ASTM standard “Removal of the support structure and cleaning may be necessary; however, in this context not considered as a separate process
step” [1]). This also realises the aim of manufacturers in shortening supply chains and lead times. Some AM techniques provide the
advantage of potential savings on raw materials since it uses only the material needed to fabricate the part of interest, i.e. waste is
minimized. It promotes the possibility of producing cost-effective customized products and hybrid materials, achieving properties
otherwise unachievable [3]. As the credibility of AM increases, its impact is expected to affect businesses globally where AM parts are
already widely used in various fields. Despite its advantages, it cannot be generalized that it would be suitable and/or feasible for
businesses regardless of their needs and sizes without considering the complexity, customization, and production volume [4].

Depending on the specific AM approach to be investigated, there are distinct tiered advantages that, particularly, designers can
exploit through either the evolutionary design of existing products, or revolutionary approaches, which impart functionality not
achievable with conventional manufacturing techniques. With design freedom being the primary rationale for AM implementation, AM
offers the capability to drastically improve the efficiency and functionality of existing designs, and the ability to incorporate complexity
that is broadly insensitive to cost [5]. This includes the ability to offer design features not achievable conventionally, such as: em-
bedding complex internal structures or channels into designs [6] (such as lattices [7]); enabling light-weighting through topology
optimisation [8] and ultimately, the production of multimaterial, multifunctional devices [9]. Another advantage is combining com-
ponents within assemblies; enabling reduction in the dependency on mechanical fixtures and additional production operations.

The focus of this review article is on selective laser melting, which is one of the metal AM techniques. Metallic AM systems can be
classed as: (a) powder-bed fusion, (b) direct energy deposition (DED), and (c) droplet-on-demand systems. Powder-bed fusion (PBF)
[1] technologies, such as selective laser melting (SLM) and electron beam melting (EBM), are currently receiving significant attention
from both the academic and industrial sectors. These are processes with which complex structures can be fabricated from loose metal
powder adopting the powder-bed approach for raw material feed. SLM and EBM are used to fabricate parts with unmatched degrees
of freedom from loose powder through full melting [10] and metallurgical joining of individual scan tracks. The levels of achievable
complexity are significant; examples include - but are not limited to — complex light-weighting structures (lattice structures either
strut- or triply periodic minimal surface TPMS-based) [11] and functionally-graded materials [12]. The parts fabricated by SLM and
EBM currently have applications in numerous industrial sectors, such as biomedical (e.g. implants, dental crowns, and tissue en-
gineering scaffolds), aerospace, automotive, nuclear, chemical, and petrochemical [13].

The principle operational sequence in EBM and SLM are similar, where a high energy source is used to melt the pre-laid material
selectively. In EBM a high-power electron beam is deployed as the heat source, rather than the laser beam used in SLM. EBM is
conducted under high vacuum environments at high temperatures [14], whereas SLM tends to operate in a process chamber flushed
with an inert gas at room temperature. Processing under high vacuum means that the process has a cleaner environment and EBM
tends to offer advantages in the processing of reactive materials [15].

Direct energy deposition processes use a high energy heat source to melt a feedstock material, either in powder or wire form, as it
is being deposited. Similar to the PBF techniques, in DED a 3D part is made from rapidly-solidifying tracks. DED systems can only
fabricate near-net-shape parts from scratch on flat substrates or add features to existing parts [16-18]. DED facilitates in-situ alloying
of various alloys and composites [19] and modifying the chemical composition of an alloy “on-demand” during processing [20]. They
are preferred for the production of functionally-graded materials with controlled microstructures, as they have the capability of
depositing more than one material in one part. This, however, poses difficulties when recycling the mixed materials. This is a lot more
challenging when using PBF, for reasons that will be discussed in Section 4. SLM, however, produces a more homogenous micro-
structure with smoother surfaces [20].

In the PBF systems, the heat source is moveable in the XY plane whereas the substrate is responsible for motion in the Z-axis. DED
systems, in contrast, offer the flexibility to move the deposition head, the substrate, or both simultaneously, with the capability of
using robotic arms to extend the degrees of motion to 5 axes.

PBF systems are generally considered as single material per layer AM systems. Other AM approaches to producing metallic parts
from multiple materials, concurrently, with high levels of accuracy include droplet-on-demand (DOD) technologies. DOD of pure
metals is constrained to low temperature metals because metals solidify at room temperature making them hard to process in this
fashion. They promise low wastage as they dispense minute amounts of materials [21]. A typical DOD system consists of a molten
metal reservoir and a type of actuation to force the metal out of a nozzle in the form of droplets, such as pneumatic actuators [22],
piezo-electric actuators [23], and electromagnetic actuators [24]. Another DOD approach that deposits patterns from micron-sized
droplets is Laser Induced Forward Transfer (LIFT) [25], which can process a range of materials including Cr, Au, Ni, W, and Al [26].
However, SLM is the predominant industrially deployed process and is thus the subject of this review.

2. Selective laser melting (SLM)
The basic components of an SLM system are schematically presented in Fig. 1. The process involves a series of steps including

powder deposition and laser scanning [16]. It is conducted within an inert controlled-atmosphere chamber of choice to avoid oxi-
dation during processing, i.e. melting and solidification [15].
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Fig. 1. Simplified schematic presentation of a powder-bed fusion system (selective laser melting).

The SLM operational sequence can be broken down into the following main steps:

I. A 3D computer-aided-design (CAD) model is converted into (normally) an STL file.
II. It is orientated to the optimum build orientation (depending on the height in the Z-axis, the surface finish, and minimisation of
the support structures).
III. The support structures are generated, including all the iterations for minimal supports
IV. The file is sliced into layers of equal thickness and transferred to the machine.
V. A build-plate is usually heated to aid in heat dissipation by lowering the thermal gradient [27] to avoid part curling due to non-
uniform thermal expansion [28].
VL. A layer of powder of a predefined thickness is spread onto the build-plate.
VIL A focused laser beam is fired onto the layer, moving in the x-y plane to selectively scan and melt the regions of interest.
VIII. The build-plate is then lowered a distance equal to the layer thickness to allow for the deposition of another layer.

Repeating the sequence from VI to VIII fabricates the part layer-by-layer. The time consumed for a build is divided into primary
and auxiliary times. The former is that needed to scan the powder, which is process-parameter-dependent, whereas the latter is that
required for build-plate lowering and powder deposition [29,30], which is more commonly referred to as “recoating”.

2.1. Points of focus in SLM

In principle, the SLM process appears relatively straightforward. However, there are many aspects which require attention in
order to manufacture parts of sufficient structural integrity to enable industrial adoption. These aspects, namely: (i) process-, (ii)
design-, and (iii) material-related, will be discussed in the following section.

2.1.1. Process-related

The SLM process can be divided into the three distinct stages shown in Fig. 2. A part is made up of a stack of layers overlapping
vertically, i.e. along the build direction; each layer is composed of a stack of individual scan tracks overlapping horizontally. These
are the primary building blocks of SLM parts; their formation and overlap are governed by a set of process parameters. The number of
these parameters is ambiguous [31]; the most influential ones can be found in Fig. 3.

“Material Qualification and Certification Research” [30,33] is essential for a material to be declared as processable by SLM. This is

1. Laser scanning of the powder to create 2. Overlap of individual scan tracks 3. Overlap of individual layers vertically
an individual scan track horizontally into an individual layer into a 3D bulk structure

.

> 4
w

Fig. 2. Schematic presentation showing the operational sequence in SLM demonstrating the overlap of the scan tracks building up a part additively.
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Fig. 3. The most influential process parameters affecting the quality of a part processed by SLM [32].

the practise of conducting parametric studies to optimize the parameters to produce defect-free, fully-dense parts. An inapt com-
bination of parameters leads to defect formation [34,35]. Optimized parameters vary from one machine to another and between
materials. The parameters given most attention in the literature are the laser beam and its properties, in terms of, laser power and
spot size, hatch spacing, scan speed (defined by the point distance and exposure time), layer thickness, and scan strategy. These
parameters are illustrated in Fig. 4.

The laser power controls the amount of energy delivered to the irradiated material. Highly-reflective materials (such as Al alloys
[32]) require high power to completely melt [29], otherwise partial melting will lead to incomplete filling of the melt pool space
upon solidification, thus introducing defects. In addition to its role in the melting efficiency, the laser power governs the size and
continuity of a scan track [35], affecting the structural integrity of the parts.

The hatch spacing should provide an amount of overlap between adjacent tracks for the part to be built through their me-
tallurgical bonding [36]. Too much overlap increases the fabrication time by increasing the primary time. Large hatch spacings
impose limitations on the maximum layer thickness [37], i.e. increasing the auxiliary time and gaps start to form due to the lack of
intra-layer bonding [32]. Similar to the laser power, the scan speed controls the melting and solidification rates. The slower the
speed, the longer the irradiated spot is maintained in a molten state, taking longer to solidify and affecting the microstructure as well
as controlling the track size.

The layer thickness should be large enough for the part to be manufactured cumulatively. However, larger thicknesses introduce
defects [38], such as balling, an inability to adhere to the dimensional accuracy and tolerance, as well as incomplete melting, thus
depressing the structural integrity and properties of the part [39].

The scan pattern defines the laser path within a layer; examples of common patterns are unidirectional, meander, and check-
erboard [40] (Fig. 4b—d). The scan strategy defines the difference in scan patterns between layers (Fig. 4e), e.g. rotating the or-
ientation between layers by a set angle or scanning a layer multiple times. Patterns and strategies are often used to minimise defects
and control the microstructure.

One of the metrics commonly used to optimize process parameters is that of energy density. This is calculated based on a linear,
areal, or a volumetric approach with the volumetric being the most commonly used in the literature. The linear energy density (ED,
J/mm) is calculated using the formula:

Hatch spacing

Fig. 4. The geometrical parameters in the SLM process are shown in (a). Examples for the different scan patterns (b) meander, (c) uni-directional,
and (d) checkerboard. A schematic presentation for rotating the scan orientation per layer is in (e).



N.T. Aboulkhair, et al. Progress in Materials Science 106 (2019) 100578

Ep =L
v

where P is the laser power (W) and v is the scan speed (mm/s). The areal energy density (ED,, J /mm?) further incorporates the hatch
spacing (h, mm) in the formula, as follows:

ED, = £
v h

The most commonly used form of energy density in the literature is the volumetric energy density (ED,, J/mm?®), which is
calculated as follows:

P

ED, =
""voht

Where t is the layer thickness (mm). As evident in the formula, the same energy density can be achieved using various combi-
nations of parameters. Some studies in the literature use the laser beam diameter instead of the hatch spacing in this formula [31]. An
experimental approach for SLM cooling rates determination proved that the energy density formula is indeed not accurate to reflect
the process [41]. Thomas et al. [42] used normalised process diagrams instead of using the energy density values to map the
evolution of defects and microstructure of a material with the process parameters. Their formula for normalised ED (ED*) considers
both the process parameters and the material properties:

ED*:( AP )* L *(i)
2vitr 0.670C, (T, — Tp) h*

where A is the material’s absorptivity, r is the laser beam radius, p is the material’s density, C, is its specific heat capacity, T,, is the
melting point, T is the initial temperature of the powder-bed, and h* is the dimensionless hatch spacing derived from (h/r). One of the
limitations in this formula is the lack of data on the absorptivity of powder materials, which forces researchers to use absorptivity
values from the literature, normally measured for polished clean metal plates or rough oxidised surfaces. The absorptivity of a
material changes with the process parameters employed during SLM [43]. Matthews et al. [44] investigated the correlation between
the process parameters (speed and power) and the absorptivity within the melt pool. The absorptivity of Al was slightly higher than
the values in the literature, possibly due to the material’s reactivity and the presence of oxides in the melt pools. Furthermore, there
was a steep increase in effective absorptivity with the scan speed at high laser powers (> 200 W).

Despite the extensive amount of research optimising the process parameters based mainly on the energy density, it is clear that
none of these formulae can reflect the effective energy delivered to the material during processing. For example, these formulas do
not consider the scan patterns and hatch styles, the gas flow rate and direction within the process chamber, the scan offset at the
corners and boundaries, and the number of times a layer is scanned, if multiple scans are applied. Also, given that each parameter
affects the quality of the individual scan tracks, or the bulk structure in general, in its own way, it is difficult to relate the quality of
the part to the energy density. Bertoli et al. [31] reported variations in the widths and heights of single tracks fabricated using a range
of combinations of speed and powder despite preserving the same energy density. This was further supported by Prashanth et al. [45]
who provided experimental evidence for the lack of reliability of using the energy density as a design parameter in SLM by fabricating
samples using a range of various laser powers and scan speeds, maintaining the same energy density, showing the different levels of
density and mechanical properties produced at each combination of parameters. Bertoli et al. [31] also asserted that the volumetric
energy density is a thermodynamic quantity, which is unable to capture the physical phenomena taking place during the process
(Marangoni flow, recoil pressure, hydrodynamic instabilities, ..., etc.). These factors control the shape of each track and therefore not
being captured in the energy density formula retracts from its reliability.

2.1.2. Design-related

In order to fully exploit the design freedoms available in AM, automated design tools are required to assist the designer in creating
efficient structures. Fundamentally, this requires a design process involving simulation within an optimisation loop. The families of
optimisation techniques employed in engineering applications (in increasing complexity) include: size, shape, and topology opti-
misation.

Topology optimisation (TO) enables the generation of complex structures not intuitive to the designer. TO defines a process to
obtain the most efficient distribution of material within a prescribed volume to maximise a functional performance subject to given
constraints, such as the example in Fig. 5. It is prevalent in many physical disciplines, including but not limited to structural, thermal,
fluids, acoustics, and electromagnetics [46]. Topology optimisation is a feature of simulation-based design and therefore funda-
mentally requires the ability to model the governing physics in the underlying application. In theory, solutions from TO are readily
manufacturable by SLM. In practice, a variety of further design iterations are required, such as surface smoothing and re-modelling
[46-50], post-analysis, and subsequent re-designs which may be needed to account for manufacturing constraints [51,52]. This
remains a laborious manual operation, and at present no techniques have been reported to fully automate this procedure. A good
overview of the techniques used in TO algorithms can be found in [46].

SLM enables the incorporation of multi-scale hierarchical structures within a part, by the inclusion of lattice structures (examples
are presented in Fig. 6) and potentially controlling the microstructure to the advantage of design [54]. A lattice structure consists of a
tessellation of a unit cell throughout a specific volume within a part. Lattices are generally difficult to construct using standard
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Fig. 5. A demonstration for light-weighting achievable through topology optimisation where a model for the original part to be manufactured by
conventional methods is show in (a) and the optimised model to be fabricated by SLM is shown in (b) [53].

available CAD packages and is usually undertaken with dedicated design packages such as Materialise 3-matic [55] and Autodesk
Netfabb [56].

The desire to use lattice structures is driven by two motivators: (1) their wide range of applications, including structural light-
weighting [12,57-61], impact protection [62,63], thermal management [64], bone implants [65-68], and vibration damping
[69-72], (2) the prospect of achieving effective material properties (density, Young’s modulus, strength, and thermal conductivity)
superior to conventional solids [73]. Significant effort has been directed at determining the density-property relationships required to
enable the design of lattice structures with pre-defined performance [12,57,58,67,74-78].

Manufacturing constraints are still resident in SLM, although to a lesser degree compared to traditional manufacturing techniques.
These do not necessarily restrict the design but must be considered at some point in the design process [52]. Design for Additive
Manufacturing (DFAM) [79-81] is the conscious effort to optimise a multi-variate objective problem (cost, part quality, design
performance, production time) whilst accounting for the manufacturing constraints inherent within SLM. These must also consider
manufacturing operations downstream, including post-processing, part qualification, and final assembly. Additionally, the designer
must specifically have knowledge of the target SLM system and material because designs remain sensitive to their process-ability.

One of the most pertinent issues with design for SLM is the requirement for sacrificial support material to provide mechanical fixturing for
the part as it is being built. They are required for large overhang regions — downward facing surfaces or unconnected regions [82]. Critically,
they also provide the predominant mitigation strategy against part distortion during manufacture due to the effects of residual stresses caused
by the large temperature gradients encountered in the process. This requirement places restrictions on the inclusion and placement of features
such as holes and internal channels in design for SLM. Support structures also increase the costs of manufacture due to:

e The manual pre-processing time required for adding supports to design

e The additional time to manufacture support structures

® Post-processing: support removal and surface polishing to remove artefacts

e Irrecoverable material waste from an SLM viewpoint but it can be scrapped and re-melted for other uses

Ideally parts should be adjusted to become self-supporting [82-85]. However, optimising solely towards reducing the use of
support structures can impose undesirable penalties on the part’s functional performance [86]. Therefore, careful consideration
should be taken by the designer to balance the cost of support material and the overall implications on the design.

Designs must also consider the implications of the orientation of the part in the machine as this may affect factors, such as the
production time, the support structure requirements, residual stresses, surface roughness, microstructure, and the effects of build
anisotropy.

In summary, exploiting the freedoms available in SLM remains a challenging endeavour for the designer, who must at some point
account for the various manufacturing constraints. Future research on incorporating SLM manufacturing constraints will help reduce

Double Gyroid BCCZ

Fig. 6. A double gyroid lattice (TMPS) and a BCCZ lattice (strut-based) fabricated using a Realizer SLM-50 in the Centre for Additive Manufacturing
at the University of Nottingham.
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the manual intervention required by the designer to minimise the support structure requirements and choose the best orientation to
improve part quality and minimise the effects of residual stress. The ability to utilise multi-scale topology optimisation will enable
future designs to exploit the multi-scale capabilities of AM to both improve performance and potentially offer multi-functional
capability to designs.

2.1.3. Material-related

SLM utilises powder feedstock. To date, the feedstock has mostly been alloys that are commercially-available in powder form and the
materials currently known to be reliably processable by SLM are still somewhat limited. For industrial relevance, the focus has mainly
been on aluminium alloys [32,86-89], nickel alloys [90-93], steels [35,94-96], and titanium alloys [11,97-99] with some cobalt alloys
[100-103], copper alloys [104], magnesium alloys [105], and pure metals receiving some attention [106-110], among others.

Further, the attention has been largely restricted to alloys already serving in industrial applications. An understanding of the basis
for material selection when it comes to manufacturing by SLM is still missing. For instance, most of the alloys that are currently
undergoing investigation for process-ability by SLM have originally been designed and tailored to suit other manufacturing routes,
such as casting.

Currently, the indicators researchers use to assess the process-ability of an alloy by SLM are cast-ability and weld-ability, due to
the similarities in the processing conditions. However, there are also significant differences between these processes, for example, the
solidification rates associated with SLM are much steeper than those associated with casting. The form of the starting material varies
between SLM and welding, as the former uses metal powders instead of bulk or wires that have differing laser absorption behaviours.
Furthermore, the repetitive melting and solidification experienced in the material during re-scanning/re-melting in SLM are sig-
nificantly different to the experiences the same material would face during laser welding. Therefore, it is critical to establish a
comprehensive understanding of the particular process needs in order to develop new alloy systems that are well-suited for the
process in terms of the desirable physical and chemical properties for processing whilst fulfilling the application requirements.

Martin et al. [111] presented research using the well-known CALPHAD method (Thermo-Calc software [112]) to engineer alloys
with controlled solidification. Their approach was to define nano-particles of lattice-matched elements that can electrostatically
adhere to pre-alloyed powders to control the material’s solidification during processing. Computational methods for alloy design are
developing rapidly and proving very beneficial in designing new materials [113]. Another more recent computational method (The
Material Project [114] was described in [114], which utilises high-throughput computation to reveal the properties of inorganic
materials. It is expected that computational methods will be increasingly used to develop new alloy systems for AM processes in the
future. Further discussion of alloy design for SLM can be found in Section 4.

2.2. Inside a selectively laser melted part

During SLM, the irradiated powder melts, creating dynamic melt pools. The stability of these melt pools are affected by the
process parameters [104,115] where the laser power and scan speed affect the width and depth of a melt pool, whereas the track’s
length is governed by the laser power and material’s absorptivity [35].

Upon laser irradiation, several phenomena take place, including laser absorption and scattering, heat transfer, phase transformation,
chemical reactions, fluid dynamics, and evaporation and emission of material [104]. Solidification of a metal is controlled by its ability
to conduct the latent heat away from the solid/liquid interface [116]. When the laser beam impinges on the target material, the
material’s reflectivity and conductivity dictate the amounts of energy that will be reflected and transmitted. As the energy is transmitted
into the material, it’s intensity decays, with the rate of decay being governed by the material’s absorption coefficient [117].

When a laser beam is directed at a block of metal, depending on the melting mode (conduction or keyhole) a cavity can be created
by ablation and plasma formation, which is surrounded by the molten material [118]. The molten material applies forces on the
cavity, driven by the surface tension and hydrostatic pressures. As the laser beam proceeds on its assigned path, the material flows
into the cavity and solidifies in the characteristic chevron pattern in Fig. 7(a). The cross-sectional view of a scan track is shown in
Fig. 7(b). At high scan speeds, fast solidification can occur without completely filling the cavity, leaving a void. A 3D bulk structure is
formed during SLM through the overlap and metallurgical bonding of these melt pools.

A material processed by SLM experiences cooling rates of ~10°-10°K/s [119], solidifying in microstructures that are char-
acteristically different from those achieved via conventional processing with lower cooling rates. The main difference between SLM
materials and those conventionally-processed is in the scale of the grain structure. Conventional processing typically yields coarse
microstructures, whereas SLM produces substantially finer microstructures [120]; however, this will also depend on the material
being processed, based on the response of its constituent elements to laser irradiation.

The mechanical properties of SLM parts can be investigated from two perspectives. The first is the structural integrity where SLM
parts can suffer from high residual stresses [121], pores [32], cracks [122], inclusions (e.g. entrapped laser spatter) [123], and
surface irregularities [123], among others defects. The presence of such defects can significantly worsen the mechanical performance
and a combination of material qualification and post-processing treatments are often needed to remedy such defects, enabling the
production of fully-dense defect-free parts.

The second perspective is the metallurgy where the finer microstructures developed in SLM materials can enhance certain me-
chanical properties for various materials systems [124]. SLM parts can also exhibit anisotropic mechanical behaviour, based on the
build orientation and scan strategy used [119]. These aspects will be discussed in the following sections, with a focus on Al alloys.
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Fig. 7. (a) Characteristic chevron pattern on top of an AlSi10Mg single track processed by SLM on an LM6 as-cast substrate and (b) cross-sectional
view of a single melt pool showing evidence of keyhole-mode melting (own work).

3. Aluminium alloys and SLM opportunities

Al alloys are used in a wide range of industries. They offer a good compromise between strength and density, in addition to being
relatively inexpensive; positioning themselves to be used in applications where performance and light-weighting are needed con-
currently. The family of Al alloys can be classified according to the form and main alloying element, as shown in the map in Fig. 8.

AM Al parts are now being used in consumer, aerospace, and automotive products [129]. SLM can fabricate bulk and open-cell
structures. Porous or cellular Al is a light-weight metal with good deformability, hence, it is a strong candidate for crumple zones in
automobiles [130]. SLM of Al is also beneficial for hard-to-machine or form Al alloys. For instance, the AA-6xxx series contains a
large amount of hard intermetallics that make forming it challenging [131].

Another advantage for SLM processing Al (cast alloys, especially) is the microstructural enhancement. Cast alloys are traditionally
strengthened through refining their microstructures during casting by adding chemical modifiers. The high cooling rates associated
with SLM lead to microstructural refinement during manufacture [132] without altering the chemical composition - this will be
further reviewed in Section 6. As such, SLM processing of castable Al alloys can fulfil the demand for the fabrication of complex
structures with refined microstructures.

4. Selective laser melting of aluminium alloys

Al alloys are regarded as challenging when it comes to processing by SLM. Al powders are inherently light-weight, have high
reflectivity, high thermal conductivity, and low laser absorptivity in the range of wavelengths (1.06 um [133]) of the fibre lasers
(continuous or modulated) conventionally used in SLM. For detailed descriptions of these challenges, the reader is referred to [134].
The alloys that have returned promising results in terms of process-ability by SLM are generally the cast alloys [88], with AlSi10Mg
receiving most attention followed by AlSi12. This is owing to their good cast-ability, alongside low shrinkage due to the large fraction
of Al-Si eutectic. Although the Al-Si alloys are beneficial, their tensile strength is modest and their ductility is low (~4%).

Al alloys widely used in the aerospace and automotive industries include the high strength 2xxx, 5xxx, 6xxx, and 7xxx series,
which also offer higher ductility. However, these are still struggling to find their way to being declared as successfully processable by
SLM. Given the steep cooling rates associated with the process, these alloys tend to micro-crack during SLM processing, resulting in
parts with poor structural integrity [135].

4.1. The feedstock

4.1.1. Pre-alloyed powders

The use of traditional pre-alloyed powder has received most attention from researchers using SLM to process Al; possibly because
they are readily available for other manufacturing processes. Further, most of the ongoing research has the objective of using SLM to
fabricate a part that is currently being conventionally-made without changing the material. Examples of the commercially-available
alloy powders that have been processed by SLM are presented in Table 1. This table also classifies the points of focus for each listed
alloy. The amount of work undertaken on AlSi10Mg and AlSil12 massively surpasses that for all other alloys. This is driven by the
success in processing these alloys as well as their common use in various industrial sectors.

The development of new bespoke alloys tailored for SLM is also of significant current interest. The Airbus group developed a new
Al-Mg-Sc alloy (SCALMALLOY®RP) specifically designed for AM. It is characterized by high corrosion resistance, high specific
strength, and exceptional fatigue and toughness properties [136]. The addition of Sc and Zr to the Al-Mg alloy to develop new
compositions, such as Addalloy™ [137], refined the microstructure and strengthened the material [138]. Further, Sc improved the
weld-ability, reducing the chance of hot cracking [139].

Powder specifications for SLM are considered from the process requirements [200]. The powder should have a spherical mor-
phology to cope with the need for successive deposition of uniform powder layers. This morphology is essential to enhance the flow-
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Table 1
List of conventional Al alloys processed by SLM in the literature with the corresponding references for each point of focus.
Al Alloy Parametric studies  Defects & Metallurgy Mechanical performance
remedies
AA-2024 [140]
AA 2219 [115] [141]
AA 2618 [115] [142,143] [143]
AA-4047 [144] [144]
AA-6061 [145] [146] [146-150]
AA-7075 [122] [122,149] [122,149,150]
AlSi7Mg, A356, A357 [151] [152] [148,151,153,154] [151,152]
AlSi10Mg [32,34,87,155] [28,156-161] [38,40,120,124,162-169]  [12,38,87,120,123,124,162,163,165-167,169-174]
AlSi12 [175,176] [177] [175,176,178-180] [176,178-186]
AlSi20 [187]
AlSi50 [188]
Al-208i-5Fe-3Cu [189]
Al-Zn-Mg-Cu [190] [190]
Al-Cu-Mg [191] [191] [191]
AlgsNdgNisCo, [192] [192]
ScalmalloyRP, Sc- and Zr- [138,139,193-195] [193-195] [137,139,193-199] [138,139,193-199]

modified alloys

ability and packing density [201,202]. Gas phases in the starting powder considerably suppress densification [203,204]. These can be
either on the surface from moisture that contributes to hydrogen porosity formation [159] or internal gas pores that are entrapped
during the powder production process. Pre-heating the powder before processing to improve its absorptivity [205] is also re-
commended.

The metal powders used in SLM are either gas- or plasma-atomised with the former being more common [206]. Powders from the
same alloy can also have dissimilar morphological properties based on the producer of the powders, as demonstrated in Fig. 9. It can
be seen that powder A is irregularly shaped with more elongated particles whereas powder B is spherical. Using the same process
parameters, relative densities of parts from A and B were 97.74% and 99.62%, respectively [207], demonstrating the importance of
optimising the morphology of the powder prior to processing. However, it is also worth noting that the density of parts from powder
A was also improved by altering the parameters, i.e. using more energy.

The National Institute of Standards and Technology (NIST) has developed a series of reports on materials standards for AM with
the ASTM and ISO committees [206]. Standardized AM powder properties along with standardized methods of testing and evaluation
should minimize the variability of produced parts.

4.1.2. In-situ alloying

In-situ alloying is a promising route to produce novel alloy compositions for both SLM process-ability and the properties of the
parts. Coating Al alloys or mixing with elements that would enhance their absorptivity or surface tension, for instance, could be a
means for better material process-ability. Depositing Cu on Al particles yields particles with intermediate absorptivity and reflectance
compared to the original elements [208].

In-situ alloying has the potential to reshape the perception of the SLM process as it could dramatically expand the material palette
for the technology. For example, the ability to in-situ alloy elemental powders offers the flexibility of having a stock of elemental
powder “ingredients” and “cooking” the target alloy recipe through a design compromise between the process requirements and the
properties necessary for the part in application. In order to validate this concept, researchers are currently investigating the

Irregular particles

»

i
A

Elongated particles Satellites

Fig. 9. Variation in morphology of AlSi10Mg powder based on the supplier: powder (A) from supplier 1 and powder (B) from supplier 2 [207].
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production of compositions similar to the commercially-available alloys via in-situ alloying of the elemental powders making up the
alloy’s composition. Kang et al. [178] produced the hyper-eutectic alloy AlSi50 from pure Al and pure Si powders using a tumbling
mixer; the content of each phase was affected by the process parameters.

One of the challenges in designing alloys this way is understanding how different the materials respond to laser irradiation during
processing — individually and combined with others — as this is essential to enable the prediction of the properties and behaviour of
the resultant material. Grigoriev et al. [2] processed Ti, Al, and Nb mixed in a turbula mixer to produce Ti,AINb parts with a
somewhat homogeneous elemental distribution; however some non-fully-molten Nb particles were also distributed in an in-
homogeneous manner. This inhomogeneity could be attributed to the high melting point of Nb (2469 °C) compared to that of Ti
(1668 °C) and Al (660 °C), where Nb segregates will need higher energy density to melt. However, this highlights one of the chal-
lenges with such an alloying approach within SLM as using a higher ED can encourage the evaporation of some of the other elements
leading to the entrapment of gas bubbles in the parts, thus depressing their structural quality. Elements’ evaporation also means that
the final composition will deviate from the target composition in the original design of the alloy. Furthermore, loss of elements can
occur via reduction reactions as was reported in the case of SLM of an Al,03/AlSi10Mg [209]. Therefore, this area of the research
requires more considered investigation to optimize both material and process parameters to reach a suitable compromise.

Another advantage for in-situ alloying is the possibility of tweaking the composition of a commercially-available alloy by adding
certain additives motivated by various driving forces. Bartkowiak et al. [210] refined the microstructure of Al by adding traces of Zn
and Cu. Xi et al. [180] eliminated the crystallographic texture in AlSi12 by adding TiB, particles. Kang et al. [183] used a tumbling
mixer to produce AlSi18 from AlSil12 and pure Si powders. Wang et al. [211] used a drum hoop mixer to produce a range of Al-xCu
alloys in-situ, starting with Al4.5Cu and adding increments of Cu, increasing the materials compressive strength at the expense of its
ductility. They observed segregations of Cu particles, which was not the case when the same composition was processed from pre-
alloyed powder [41]. Sistiaga et al. [122] modified the composition of AA-7075 by adding traces of Si; successfully reducing cracking.
Similarly, Martin et al. [111] added nano-sized Zr nucleants to AA-7075 and AA-6061 to control the solidification process and
prevent micro-cracking. Following the same approach, Zhou et al. [199] added 1% Sc and Zr to an Al-Zn-Mg alloy to eliminate
cracking.

SLM has also been used for the in-situ production of reinforced Al-based metal matrix composites (MMC) [212,213] with re-
inforcements distributed in the material in a way that produces properties surpassing the conventionally-processed composites
[214-219]. Gu et al. [215,216] produced novel Al-based composites from AlSi10Mg and SiC with multiple reinforcements, yielding
enhanced mechanical properties. Zhao et al. [169] showed that three types of reinforcements form in SiC/AlSi10Mg composites,
namely, unmelted SiC, Al4SiC4, and the eutectic Si phase. As a result, spatial variation in the mechanical properties was observed.
TiC reinforced Al-Si-Mg based nano-composite has been in-situ alloyed from mechanically-alloyed AlSi10Mg and TiC [218]. In an-
other study, Gu et al. [219] fabricated a TiC reinforced composite from mechanically-alloyed Ti, Al, and graphite. More recently, Ma
et al. [220] produced a diamond/AlSil12 composite characterisation by high performance and a good bond between the matrix and
the reinforcing material. However, producing fully dense parts is still challenging and require more research efforts. These present
SLM as a promising route to tailor the parts’ properties at the microstructure level by producing specific custom metallurgies from the
same constituent materials.

Wang et al. [221] added Carbon Nano Tubes (CNT) to AlSi10Mg via ball milling and processed the composite by SLM. However, it
was not possible to identify the presence of Al carbides in the material using x-ray diffraction, which led to the assumption that the
laser energy destroyed the CNT’s distinct structure and that the carbon evaporated. The authors then claimed that the material
showed higher hardness and strength due to the effect of carbon atoms from the decomposed CNT; however, no evidence of the
decomposition of CNT into C was provided.

From a different perspective, Vora et al. [222] produced AlSil12 parts via in-situ alloying through mixing the elemental powders in
a mixing drum with ceramic balls to minimize agglomeration or preferential segregation. Comparing the process-ability of the blend
and the pre-alloyed powder, the former experienced less residual stress during processing (combined with a higher build-plate
temperature) enabling the building of some anchorless structures, e.g. overhangs, which are difficult to achieve in SLM without the
use of support structures.

Research regarding in-situ alloying for SLM is still ongoing and can be considered to be at an early stage compared to the work
undertaken on pre-alloyed materials. Despite the promising potential in this research area, it still faces numerous hurdles until it
reaches maturity. For example, there is the inhomogeneity or segregation of elements that can be introduced in the parts. This is a
critical matter because segregation of elements means that in any one produced part there will be regions that belong to different
points in the material system’s phase diagram. This suggests that the part will incorporate regions that will respond to post-processing
heat treatments differently, in addition to performing differently under mechanical loading.

4.1.3. Powder recycling

One of the appealing aspects of SLM is that it is resource-efficient, in particular most unfused powder after a build can be recycled.
This minimises the waste material and consequently reduces costs. This is vital for the long-term sustainability and economic viability
of the process. Although there are claims that in theory SLM offers 100% material utilisation, this is in reality an overstatement since
there is waste in the form of the sieved powder. A more realistic material efficiency of 95% has been reported [223]. However,
understanding the effect of laser processing on recycled metal powder and its influence on the microstructural and mechanical
properties of the final parts is of utmost importance.

After an SLM process is completed, two types of powder remain in the powder-bed. The first type is composed of powder affected
by the build process and includes powder that was partially-melted or heated during the process but was not fused in the fabricated
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part; this can in turn be divided into the laser spatter and the condensate (from vaporised powder). Laser spatter is material ejected
from the melt pool and is characterised by rougher surfaces that can sometimes be significantly larger than the fresh powder [157]
(see Section 5 for more details on laser spatter). The condensate is the gaseous condensate from the processed powder, which is
sufficiently small that it is carried away from the powder-bed by the argon flowing in the process chamber. This process-affected
powder (spatter and condensate) should ideally be removed, for the reasons explained in Section 5.

The second type of powder recovered after a build is that which has not been laser-irradiated and hence, supposedly, was not
affected by the process despite the probability of them being coated by the generated condensate, which could affect the laser
absorption, flowability, etc... This second type of powder and fresh powder share similar morphologies, with relatively smooth
surfaces. Therefore, this powder is suitable for reuse for other SLM builds by sieving. The distinction between the sieved and reused
powder and the fresh powder can be seen in Fig. 10. The microstructure of the sieved reused powder is also similar to the fresh
powder. The laser spatter on the other hand shows a coarser microstructure due to the slower solidification of the molten spatter
[157].

The similarity between the fresh powder and sieved recycled powder suggests the possibility of producing parts from the latter
with comparable microstructural and mechanical properties to those from the former. A comprehensive study on this matter was
published by Maamoun et al. [224], detailing the similar microstructure and mechanical properties of parts fabricated using either
AlSi10Mg virgin or recycled powder. This was also supported by the work of Asgrai et al. [132] for AlSi10Mg used once, i.e. recycled
one time only. In other work and for other materials, it has been shown that Stainless steel 17-4 PH [225], 316L stainless steel [226],
and IN718 [223] powder can be re-used up to 11, 12, and 14 times, respectively, without deterioration in the properties of built parts.
The number of times Al alloys can be successfully recycled is still to be fully determined.

Powder recycling is traditionally carried out by collecting the leftover powder from each build and sieving to remove powder
agglomerates and spatter. The sieved powder is then returned to the system for use in further builds. However, the powder is exposed
to air during handling and hence the formation of surface moisture and oxides is possible [226,227]. The surface moisture can be
counteracted by drying the powder prior to processing and the use of a low power scan per layer before the full power scan also helps
alleviate the effect of moisture via in-situ drying [159]. The surface oxides, on the other hand, can then break into the melt pools and
become trapped as hard oxides in the final parts.

The particle size distribution of the powder changes slightly with reuse in that the fraction of smaller particles is reduced [226]
and larger particles increased [228]. This indicates that there must be a threshold for the number of times metal powders can be
recycled without negatively influencing the quality of the produced parts or a strategy to unify the properties of the recycled and
virgin powders. Recently, a method and apparatus were patented by O'Neill [229] to de-oxidize residual metal powder from AM so
that it could go back into the system with properties close to the virgin powder. This apparatus includes a conveyor to transfer the
leftover powder to a reducing chamber filled with hydrogen gas or a reducing liquid to recondition the powder through removing the
oxides. The process can be accelerated by heating the reducing chamber. The reconditioned powder is either stored in controlled-
atmosphere containers or conveyed back to the SLM machine. Alternatively, some SLM systems are equipped with automatic sieving
stations so that the cycle is a closed-loop with minimal environmental exposure.

4.2. The processing environment

The process chamber in an SLM machine is purged with an inert gas so that the process is conducted in an inert environment,
where the oxygen level is kept below 0.2%. This is crucial for processing Al alloys given their high susceptibility to oxidation
[16,176,230,231]. Oxygen within the process chamber stimulates the formation of oxide layers on top of the processed material that
are then broken and embedded in the final parts as defects, being exacerbated by the high temperature within the melt pool with high
potential to attracting oxygen. These oxides can also promote porosity formation. The type of inert gas used to flush the chamber is
flexible, where argon is the most commonly used purging gas [32,87] but nitrogen and helium have also been used [176]. The type of
inert atmosphere has been reported to have little effect on densification of AlSil2, however, helium has been shown to induce
brittleness under tensile loading [176]. Helium was also not favoured for some other alloys [232].

The gas flow rate within the chamber influences the quality of fabricated parts through affecting the individual tracks’ heights and
denudation levels [233]. It controls the amount of condensate and spatter removed during processing [234]. The amount of spatter
produced is controlled by the laser power and spot size [33], among other factors. Inefficient removal of the spatter might lead to its
entrapment as inclusions [123] given that their structure and chemical composition is different from the original powder [157].

4.3. The materials and their qualification

Prior to starting the experimental aspect of material qualification for a new material, the authors believe that it is useful to use
simulation models to determine the processing space, such as the D-optimal [235] and response surface [87] methods in the Design of
Experiments approach. It is also important to understand a material’s thermal behaviour during SLM, as this will aid in predicting the
microstructures to be produced alongside the mechanical properties of the parts. Furthermore, this is essential for research on
developing alloys for SLM. Investigating this experimentally is difficult, which also points to the use of computational modelling.

The experimental approaches [34] to material qualification have received more attention than the theoretical. Although they are
quite costly and time-consuming, their relative ease could be the reason behind their extensive adoption. The complex nature of the
process, with some regions being re-melted more than once, requires thorough understanding before the prediction models can be
trusted to accurately represent the stages the material goes through during laser irradiation and material melting and solidification.
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Fig. 10. The spherical and smooth morphology of fresh AlSi10Mg powder presented in (a) and (b) with the corresponding internal microstructure in
(c) and (d) seen to be fine equiaxed. The laser spatter significantly larger with a rougher surface is shown in (e) and (f) with the coarser dendritic
microstructure in (g) and (h). The similarity between the recycled powder and the fresh powder is displayed in (i-1) [132].

Models should consider several phenomenon taking place in the melt pool, such as material shrinkage (due to the escape of gases
trapped in the powder), evaporation (due to exceeding the boiling point of the metal), and material removal via the gas flow within
the chamber [236]. Numerical simulation models have been developed [34,236] utilizing data from single tracks experiments. These
can predict (1) the temperature distribution in a melt pool and its variation with speed and power and (2) suitable combinations of
parameters to produce dense parts. For the work on modelling the SLM process, readers are referred to the review in [129].
Various experimental approaches have been proposed in the literature to define the best set of process parameters for the pro-
duction of fully-dense parts. One of the common approaches is to build cubic samples, using a range of energy densities, and then
quantify the defects, such as pores. By quantitatively tracking the evolution of porosity versus the energy density, the optimum
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combination of parameters can be determined, such as in the work by Wang et al. [108]. The drawback to this approach is that the
operator is left with infinite possibilities for the combinations of parameters to be examined. This makes the process exhaustive and
infeasible, since the best combination can be easily missed out. Furthermore, there is the limitation on using the volumetric energy
density as a sole design parameter, as discussed in Section 2.

Wei et al. [237] and Aboulkhair [36] conducted material qualification through producing single tracks with various speeds and
powers, then individual layers, eventually progressing to cubic samples (bulk components). The scan tracks were analysed by: (I)
evaluating the presence of irregularities and distortions along their lengths, i.e. defining zones of continuity and (II) determining the
geometrical features of each melt pool. This analysis narrows down the process window for the power and speed. It is also used to
define the layer thickness and hatch spacing through the shape of the melt pool [101]. Although the layer thickness is usually pre-
defined, inclined platforms can be used for investigating its influence alongside the other process parameters (power and speed)
[100,101]. The best combination of speed and power are then used to create individual layers varying the hatch spacing to ascertain
the one that ensures the construction of a consolidated defect-free layer [37]. Single layers and walls are also used to optimize surface
roughness and to investigate the presence of brittle or hard oxidation on the surface [210]. The overlap can either be in the horizontal
or vertical planes to create a layer [37,238] or a thin wall [115], respectively.

There are some requirements that need to be fulfilled in single tracks and layers: (1) continuity, (2) each layer must lightly
penetrate the previous layer, (3) each layer has to be high enough to build up the part cumulatively, and (4) the connection angle
with the previous layer should be close to 90° [203]. Bonding of a layer to another is controlled by wettability, i.e. molten powders
spreading instead of balling [200,205]. A good bond between two layers minimizes the formation of cracks or pores.

In the final stage of process parameter(s)-definition, cubic samples with minimal porosity can be fabricated by fine-tuning the para-
meters and it is at this stage where the effect of deploying various scan strategies is investigated. This bottom-up approach saves time
expended with starting straightaway with cubic samples, enabling a wider range of potential parameters to be investigated. The time
expended building cubic samples and analysing them is much greater than that needed to construct and analyse single track, walls, or layers.

The alloys AlSi10Mg and AA-6061 were two of the first Al alloys to receive attention in SLM processing [239]. However, they
were initially found to be difficult to process for various reasons. The difficulties in the case of AA-6061 were related to the formation
of thin oxide layers that promoted porosity formation [145] and solidification cracking [111]. The challenge with AlSi10Mg was
excessive porosity and the need for high energy densities [29].

When processing Al alloys, it is advised to use slower scan speeds [32,34,87] with high laser powers [105] for better densification.
Because of their high reflectivity and thermal conductivity [32], Al alloys require a high laser power [105] to broaden the processing
window [35]. The laser power and scan speed are claimed to be the most influential parameters [240]. The use of high laser power
(up to 1KW) has been shown to increase the usable speed range [29]. The relative density of the parts is then inversely related to the
scan speed and is demonstrated by the results collated in Table 2 and an example can be seen in Fig. 11.

Slower scan speeds mean higher temperature within the melt pool and hence lower viscosity, enabling the liquid to spread, thus
improving bonding [34]. The slower the speed, the more molten material there is thus producing deeper and wider melt pools
[101,202,243]. Thus the size of a track (depth and width) is inversely proportional to the scan speed [38]. Another issue is that at high
scan speeds, balling is promoted [32] causing porosity [204] and surface defects. A scan speed range has been defined for AlSi10Mg
below which irregularities were observed and above which insufficient melting and lack of fusion between layers occurred [155,203].

The mode of melting during SLM is controlled by the balance between the material’s conductivity and reflectivity [244].
Aboulkhair et al. [38] concluded that the dominant mechanism for AlISi10Mg was keyhole-mode melting (see Fig. 7(b)) for the
parameters investigated in their study. Qi et al. [135] observed a correlation between the scan speed and the melting mode for AA-
7050. At slow scan speeds, the keyhole mode dominated, with the melt pools having a conical shape. As the speed increased
significantly, a shift to conduction mode occurred resulting in a semi-circular melt pool. Intermediate speeds resulted in a mix of both
melt pool shapes, indicating a transition phase from one mode to the other. This should be taken into account when selecting the
layer thickness and hatch spacing employed during processing.

All the above-mentioned experimental approaches have proven successful for material qualification. The main difference from
one approach to another is the time and effort consumed to optimize the parameters for an alloy.

One of the main hindrances to efficient material qualification for SLM is that the results are not yet transferrable between
machines. Therefore, every manufacturer has to develop their own sets of parameters for each material, as demonstrated in Table 2
for AISi10Mg. The comparison between the listed studies shows how different the parameters are from one machine-make to another
to achieve roughly similar relative density. Even for the studies that use the same machine manufacturer, some discrepancy can be
seen which could also be attributed to the properties of the raw material, assuming that machines (of the same model) from the same
manufacturer behave similarly. The theoretical approach to narrow down the parameters window is capable of reducing the amount
of experimental work needed to define the optimised parameter set. Therefore, their use can help reduce the effort and expense
incurred by manufacturers in optimising process parameters.

As discussed previously, there is no direct correlation between the energy density values and the quality of the produced part and
it is clear that simply using energy density in its current form is not able to fully represent the SLM process. For example, ED does not
take into account the scan strategy and scan pattern and constitutes the layer thickness rather than the actual depth of penetration of
the laser energy. It also does not reflect the spot size of the laser beam used, which affects the amount of energy delivered to the
material; for example: a 100 W laser power using a spot size of 25 pm in a Realizer SLM-50™ will not deliver the same energy as the
100 W from the 70 um spot size in a Renishaw AM250™. The energy density formula fails to reflect this. Furthermore, the same
energy density can be achieved using diverse laser power and speed combinations. Given how each parameter affects the quality of
the part distinctively, the energy density as a material qualification quantity for SLM can therefore be misleading.
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Table 2
Examples for the outcome from some material qualification studies on a range of Al alloys listing the optimized process parameters (P: laser power,
v: scan speed, h: hatch spacing, and t: layer thickness).

Alloy Machine used Investigated range’ Optimised values Energy Relative Ref.
density (J/ density (%)
P (W) v (mm/s) h (mm) t(mm) P(W) v(mm/s) h(mm) t(mm) mm®

AlSi10Mg Realizer SLM-50 100 250-1000 0.05-0.25 0.04 100 500 0.050 0.04 100 99.8 [32]
Concept Laser M2  100-200  700-2000 0.075-0.12 0.05 175 1025 0.098 0.05 34 99.7 [87]1
Concept Laser M1~ — - - - 200 1400 0.105 0.03 45 99.4 [40]
Renishaw AM250 - - - - 200 570 0.130 0.025 108 99.9 [124]
Trumpf - - - - 250 500 0.15 0.05 67 > 99 [172]
TrumaForm LF130
SLM-250 HL - - - - 350 1140 0.17 0.05 36 N/A [165]
Custom-made 300-1000 500-4500 0.15-0.3 0.05 1000 2200 0.15 0.05 61 99.5 [29]
AlSi12 Realizer SLM-100 100 100-600  0.1-0.20 0.05 100 150 0.150 0.05 89 89.5 [145]
Custom-made 100-200  70-200 0.1-0.5 0.2-1 200 120 0.1 0.2 67 77 [175]
Realizer SLM-100 200 375-2000 0.15 0.05 200 500 0.15 0.05 53 98 [176]
AlSi12Mg N/A - - - - 350 921 0.19 0.05 40 99.86 [241]
AlSi20 SLM-250 HL - - - - 320 1455 0.11 0.05 40 N/A [187]
A356" EOSINT M280 200-370  400-3000 0.08-0.18 0.03 250 1400 0.1 0.03 60 99.8 [242]
A357 EOSINT M280 100-370  500-5000 0.1 0.03 300 2000 0.1 0.03 50 99.7 [151]
Al-Cu-Mg® Custom-made 200 83-333 0.07-0.13  0.04 200 83 0.07 0.04 860 99.8 [191]
AA-2219  Realizer SLM-50 70-100 N/A" 0.05-0.17  0.03 N/A  N/A N/A 0.03 235 97.5 [115]
AA-2618  Realizer SLM-50 70-100 N/A** 0.05-0.13  0.03 N/A  N/A N/A 0.03 235 >99.5 [115]
AA-6061  Realizer SLM-100  50-100 50-1000 0.05-0.30  0.05 100 150 0.150 0.05 89 88.7 [145]

T The (-) means that a parametric study was not presented in this work.

* Also known as AlSi7Mg0.3.

§ Chemical composition close to AA-2024.

** Ranges of exposure times and point distances were reported instead of scan speeds.

Scan Strategy
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Fig. 11. The effect of changing the scan speed and scan strategy on porosity developed in AlSi10Mg [32]. The strategies used were overlap (scanning
each layer twice with the second scan melting the overlap between each two adjacent melt pools), Pre-sinter (scanning each layer twice with the first
scan at reduced power), X&Y 2HS (scanning each layer twice, rotating 90° between scans and changing the hatch spacing per scan), Alternating
(rotating the scan direction by 90° every layer), and 2X (scanning each layer twice).
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Overall, the Al-Si cast alloys are easier to process, compared to the wrought Al alloys, as the main contributor to depressing their
relative densities is porosity. The high strength Al alloys, on the other hand, suffer from both porosity and cracking. Optimising the
process parameters to minimise porosity has proven feasible. However, to avoid micro-cracking other approaches need to be adopted.
These are discussed in Section 5. It is worth noting, however, that for higher strength capabilities (in comparison to the cast alloys),
ScalmalloyRP was successfully processed defect-free with 99.9% relative density [245].

As a process parameter, scan strategy has been mostly used to control the material’s crystallographic texture [40], the residual
stresses in the material [246], or cracking [90]. Thijs et al. [40] showed the use of variable scan patterns to control crystallographic
texture. Aboulkhair et al. [32] investigated the effect of the scan strategy on porosity formation. They [32] started by building parts
with the simplest scan strategy, i.e. the unidirectional scans, and tested a range of scan strategies, tracing the evolution of porosity
formation in terms of quantity and type to define the best suitable scan strategy for the investigated alloy (see Fig. 11). This in-
vestigation concluded that the scan strategy not only controls the crystallographic texture and residual stresses in the material but
also has an effect on porosity, both quantitatively and qualitatively.

5. Defects in SLM of Al alloys
5.1. Types of defect

5.1.1. Porosity

One of the most common defects in SLM parts in general, irrespective of the material, is porosity. Most material qualification studies start
with the objective of minimising porosity in the fabricated parts. SLM Al samples suffer from extensive porosity, which Buchbinder et al.
[29] attributed to the material’s low laser absorptivity in the SLM wave-length range, which affects the melt efficiency during processing.

Two types of pore, based on their distinctive shapes and formation mechanisms (see Fig. 12) were categorised by [32]. The first
type has a spherical morphology with a small size (up to tens of microns [152]) — these are referred to as metallurgical pores and,
further, Weingarten et al. [159] denoted them as gas pores or hydrogen porosity in reference to their formation mechanism. Their
formation is attributed to the presence of moisture on the surfaces of the starting powder as well as the readily-entrapped hydrogen.

The second type of pore has an irregular morphology and is larger in size (hundreds of microns [152]), typically spanning across
several layers. Maskery et al. [156] visualised these pores in 3D and observed a geometric anisotropy, with a flat disc-like shape. They
are referred to as keyhole or “lack-of-fusion” pores and can be found to enclose non-molten powder. The presence of non-molten
powder might not be observed due to smearing or removal whist polishing when using common metallographic techniques. Some of
this type of pore have also been attributed to the presence of oxides in the sample that form during melting and solidification [170].

The type of pore has been reported to be dependent on the scan speed employed during processing [32], as shown in Fig. 12. The faster
the scan speed, the more keyhole pores are formed, as this is associated with melt pool instabilities and incomplete melting and filling of
the melt pool area. Metallurgical pores, on the other hand, increase as the scan speed is reduced due to the higher amount of energy
induced in the melt pool. These observations are only valid within the range of scan speeds investigated in the study (250-1000 mm/s).
Weingarten et al. [159] investigated the use of scan speeds below 250 mm/s and reported that the metallurgical pores start to decrease
again beyond a critical speed lower limit. However, their results from speeds exceeding 250 mm/s support the findings in [32].

This distinction between the type of pore and how they are controlled by the scan speed shows that although most of the process
parameters have a quantitative influence on porosity formation, i.e. they have an effect on the amount of pores produced in the part,
the scan speed controls porosity in a qualitative way additionally [32].

5.1.2. Cracking

High strength Al alloys suffer from extensive cracking when processed by SLM due to the steep cooling curves associated with the
process, i.e. the melting and solidification dynamics. This has been evidenced by Sistiaga et al. [122] and Martin et al. [111] in AA-
7075 and Qi et al. [135] in AA-7050. The AA-7075 alloy is sensitive to hot cracking during fast solidification, hence its poor
weldability [125]. In addition, the presence of pores can potentially promote cracking due to the notch effect [125].

Metallurgical pores Keyhole pores 1000 1im
& e | [ [ S T
N % r’ oL L

{
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Fig. 12. The change of pore type formed during processing with the scan speed. Metallurgical pores form at (a) the slowest scan speed and as the
scan speed increases gradually in (b, ¢, and d) the amount of metallurgical pores decrease and keyhole pores are promoted [32].
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Fig. 13. Hot cracks formed in SLM AA-7075 along the build direction [125].

Martin et al. [111] reported cracks forming in AA-6061 parallel to the build direction, a similar observation to Kaufmann et al.
[125] for AA-7075 (Fig. 13). Cracks in AA-2024 [191] increased with scan speed, which was thought to be due to the presence of Cu
and Mg widening the material’s solidification range.

During the solidification of high strength Al alloys, columnar grains grow in the direction of the thermal gradient, leaving inter-
dendritic liquid at the interface, which coupled with shrinkage, lead to the formation of cracks (Fig. 23). Therefore, the melting mode
can be correlated to their formation.

Solidification cracks form and grow along the grain boundaries during the last stage of solidification due to shrinkage and thermal
stresses coupled with lack of liquid filling. Keyhole mode melting results in small grains with a higher degree of misorientations
compared to the conduction mode, thus cracking is more evident in case of the latter [135]. Also, the formation of residual stresses
exceeding the material’s yield strength during solidification promotes the progression of cracks along that direction.

5.1.3. Laser spatter

Laser spatter is created in the form of small droplets of material expelled from the melt pool, oxidising in-flight [157] with the
spatter then landing onto the powder-bed. Spatter is classed as a defect; if it lands in the area where a part is being fabricated, it can
get trapped as a contaminant that does not completely melt during re-melting while processing the following layers. An example of a
laser spatter particle that was trapped and not re-melted during processing AlSi10Mg is shown in Fig. 14. This was observed on the
fracture surface of a sample that failed under cyclic loading.

The region onto which the spatter is expected to land is dependent on the process parameters, i.e. the spatter ejection path change
with the parameters employed during laser scanning [247]. Laser spatter landing on the powder-bed can also worsen the surface
roughness and promote porosity formation.

The reason behind spatter formation has long been believed to be the vapour recoil pressure and splashing within the melt pool.
This analogy is borrowed from the welding literature. However, Ly et al. [248] recently published results indicating that this me-
chanism only counts for approximately 15% of the spatter forming in SLM. The remaining spatter was attributed to vapour-driven
entrainment of micro-particles by the surrounding gas flow.

Hard particle embedded in

the sample

Mgt 2

Fig. 14. Laser spatter particle embedded as a defect in AISi10Mg samples as seen on the fracture surface of a fatigue sample. The energy dispersive
spectroscopy maps show that this particle is rich in Si, Mg, and O typical of laser spatter [123].
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Kaufmann et al. [125] reported loss in Zn of 1.6% when processing AA-7075 due to vaporisation of the element driven by the
difference in evaporation temperatures between Zn and Al and Aboulkhair et al. [32] observed loss in Si and Mg in AlSi10Mg samples
where the laser spatter was correspondingly rich in Si and Mg. According to Simonelli et al. [157], AlSi10Mg laser spatter has a
spherical morphology with a size that is much larger than the fresh powder and it also has a textured or rough surface, with patches of
surface oxides primarily rich in Mg. Selective oxidation reactions take place on the surface of the laser spatter, thus explaining the
favouring of Mg oxides; Mg being a volatile element with strong affinity to oxygen.

The formation of laser spatter is usually accompanied with the loss of elements in the bulk sample, i.e. an alteration in the
chemical composition of the produced sample when compared to the starting powder which can lead to microstructural changes upon
solidification. In addition, there will be uncertainty in the level of adherence to the required composition in the fabricated parts,
potentially affecting the mechanical properties of the parts, as well as their response to post-processing heat treatments. Martin et al.
[111] advised adding traces of the elements that are susceptible to evaporation to account for this phenomenon in advance.

5.1.4. Surface defects

Various types of surface defects can form in SLM parts. Surface open pores and poor surface finish are quite common. The surface
roughness of SLM parts is nearly 4-5 times that of the machined surfaces [249]. The high surface roughness is mostly due to the
balling phenomenon and the presence of satellites, which together result in producing parts with a wide range of surface irregula-
rities. Both features are shown in Fig. 15.

Balling is scan speed dependent; the higher the scan speed the more balling features are observed [32,161]. As can be seen in Fig. 15,
a ball has the same microstructure as the rest of the built material whereas, conversely, satellites have a microstructure similar to the
fresh powder. Satellites pose less probability of affecting the build process due to their relatively small sizes, whereas balls, with their
significant sizes, can hinder the success of a build. Excessive balling will prevent the deposition of uniform layers of powder and so
failure can occur. Furthermore, the irregular surface might include gaps and trapped powder, which promote porosity [250].

5.1.5. Shape distortion

SLM parts suffer exaggerated amounts of thermally-induced residual stresses, driven by the fast cooling rates experienced in SLM
and can result in distortions in the shapes of the desired parts. As an SLM layer is scanned line-by-line, plastic compressive stresses
form at the beginning of each scan vector whereas plastic tensile stresses form towards the end; the latter having a lower magnitude
[28]. The distortion of an SLM part can occur during processing, in which case the build will fail, or during removal of the part from
the build-plate after the process.
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Fig. 15. (a) Balling and satellites on the surface of AlSi10Mg sample, (b) a cross-sectional view for balling on the surface of A1Si10Mg sample, and
(c) a cross-sectional view showing a satellite that landed on a single track of AlSi10Mg with the satellite showing a microstructure similar to the
fresh powder [38].
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Fig. 16. Flaking behaviour during SLM of pure Al [251].

One of the forms of distortion that occurs during processing is flaking due to the layer being processed not bonding to either its
preceding layer, the support structure, or the substrate, and thus peeling off as shown in Fig. 16. Flaking behaviour can be instigated
by building on a build plate of a dissimilar material [251]. Shrinkage during solidification is another form of shape distortion, which
causes lack of dimensional accuracy.

5.2. Methods of defects detection

Porosity in SLM samples can be quantified using cross-sectioning and microscopy [29,32,87], X-ray computed tomography CT
[156,252,253], the Archimedes method [145,176,254], or spatially resolved acoustic spectroscopy (SRAS), [255,256]. Of the first
three methods, the Archimedes method (with water or acetone) provides the most reliable results for medium-to-large samples,
especially for specimens of low porosity [257]. Cross-sectioning and microscopy rely on the analysis of one section (or a small
number) from the sample; however, the likelihood of this slice representing the whole sample is low. This is even more critical in the
case of samples with low pore fractions as the chances of missing slices with pores increases.

Cross sectioning and microscopy suffer two more shortcomings. Firstly, the accuracy of the quantitative measurement of the pore
fractions is easily affected by the thresholding algorithms used to process the micrographs [258-261]. Secondly, the protocol for
metallographic preparation of the cross-section can play a role in determining the detected level of porosity. Softer metals can
experience metallographic smearing, which closes small pores causing an underestimation of the total porosity. Also, trapped,
partially-sintered powder particles can be removed from large, keyhole, pores — see Fig. 17.

Despite its shortcomings, micrograph analysis is useful in assessing pore size, shape, and position, which is not obtained using the
Archimedes method. This information can be very useful during material qualification, as the types of pores and their locations can be
related to the process parameters [32,262,263], thus providing a guidance for parameters optimisation. X-ray CT is even more useful
in this respect, since the pores are characterised in 3D. Therefore, it has been used for pore analysis [156,245,253,262-264] and
correlating pore morphologies to mechanical failure mechanisms [265,266].

Besides being used for porosity evaluation, cross-sectioning, X-ray CT, and SRAS have also been used to investigate the presence of
cracks, especially their density and orientations [90,93,267]. Surface defects, on the other hand, do not require sophisticated tools for
detection. Visual inspection can be sufficient for features such as balling and shape distortion in the form of swelling or curling.
Contact [268] and non-contact profilers [250] as well as coherence scanning interferometers [269] can be used to characterise the
parts’ surfaces alongside microscopy [250,270].

(a) Trapped powder
in a void

Fig. 17. AlSi10Mg sample processed by SLM: (a) polished without removing the trapped powder, and (b) polished until the removal of the sintered
powders.
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5.3. Current approaches to minimise defects in SLM parts

Al alloys have been qualified in various research studies that produced near fully-dense parts (with relative densities surpassing
99.8%, as demonstrated in Table 2) after thorough process parameters optimizations. The approaches to achieve this result were
quite distinctive. Buchbinder et al. [29] recommended the use of high laser powers up to 1 KW to compensate for the material’s low
laser absorptivity. However, this is not convenient for systems that are not equipped with such high laser powers; the SLM system
used in that study being custom-made and therefore, this solution is limited to machines with such capability.

Aboulkhair et al. [32] tailored the scan strategy to minimise porosity without the need for high laser powers. The use of a “pre-
sinter” scan strategy, where every layer is scanned with a pre-melt scan at half the laser power needed for melt, significantly reduced
porosity, enabling the production of near fully-dense parts. This approach was further supported by Weingarten et al. [159]; ac-
cording to their study drying the powder before processing reduced porosity by 50% (in agreement with Yang et al. [152]) and the
use of a preliminary scan (with lower power) prior to the main scan acted as an in-process drying step reducing the moisture content
before irradiation with the main scan, reducing the pore fraction by 90%.

These studies reduced porosity during processing to produce near defect-free parts in the “as-SLM” state. Conversely, Tradowsky
et al. [166] adopted the approach of reducing porosity in post-processing by applying a hot isostatic pressing (HIP) treatment to the
SLM parts. Although their procedure “closed” the pores leading to a quantitatively lower porosity content, it is not recommended from
a structural point of view as a HIP treatment may close the pores whilst retaining weakness that is revealed as soon as the part is
subjected to high temperature or loading, leading to the parts’ failure. For instance, Cunningham et al. [271] observed that pores that
were closed during a HIP treatment not only reopened again once the material was heat-treated but they actually became larger
compared to their original sizes before HIP. Furthermore, HIP can cause surface oxidation due to high temperature and pressure.

Shot peening is another post-process remedy that has been shown to reduce porosity (close to the surface) through pores’
shrinkage and collapse [270]. Maskery et al. [156] investigated the effect of various heat treatments (annealing and precipitation
hardening (T6)) on porosity; concluding that heat treatment does not affect the number of pores in the material.

Cracks formation during SLM can be attributed to high residual stresses. Selecting the most suitable scan strategy for the material
and part to be produced is essential to reduce the amount of residual stresses introduced by the fast solidification rates associated with
the process [246]. Another benefit from the freedom offered by the variability in the scan strategy is the possibility of minimizing
cracking in weld-crack susceptible alloys by using fractal scan strategies [90]. A correlation between the scanned area and the amount of
defects formed has been observed for AA-2618; as the area becomes larger the cracking density increases, as demonstrated in Fig. 18
[272]. The fractal scan strategies effectively push the theory of the checkerboard scan strategy to smaller scales; the area to be scanned
is divided into much smaller regions that are scanned via a continuous laser path based on mathematical area-fill curves with a principal
scan vector length in the order of nearly 100 um, reducing the area over which residual stresses can build up. These scan strategies were
shown to affect the formation of cracks in a Ni superalloy, however their influence on Al alloys has not yet been investigated.

Another means to reduce or eliminate cracks is altering the composition of the crack-susceptible alloys. For example, changing the com-
position of the AA-7075 alloy by adding traces of Si has been shown to reduce cracking [122]. Martin et al. [111] presented a study on seeding
the main powder with nano-particles to promote heterogeneous new grain nucleation, controlling the resultant microstructure for high strength
Al alloys, an approach that successfully resulted in crack-free parts. This is similar to the idea behind the addition of Sc in designing Scal-
malloyRP, where Al;Sc particles form acting as sites for heterogeneous nucleation [139], among other new alloys designed more recently [198].

The use of preheated build-plates is generally considered to reduce the amount of residual stresses introduced in the material
through a less steep thermal gradient, therefore decreasing distortion in produced parts [28]. Prashanth et al. [192] significantly
reduced cracks in an AI85Nd8Ni5Co2 alloy by heating the build plate to 673 K during SLM processing. Kaufmann et al. [125]
attempted to reduce the cracking density via increasing the build-plate pre-heating temperature to 200 °C, but observed no significant
effect whereas hot isostatic pressing (HIP) successfully reduced cracks in Ni-based alloys [93]. However, this still bears the dis-
advantage explained in its use for porosity reduction; closing the cracks by HIP without eliminating them at the source poses the risk
of them acting as points of weaknesses once the material is subjected to high temperatures or severe loading conditions.

Post-processing techniques, such as mechanical machining, polishing, or blasting, to improve the parts’ surface roughness have all
been reported in the literature [123]. Mechanical polishing reduces the surface roughness to values that are comparable to machined
parts whereas the effect of electro-polishing was minor [249]. Although such treatments can lead to better mechanical performance,
this is not always feasible. For example, a key reason for implementing SLM is the ability to produce complex features with high
degrees of freedom; however, the post-machinability of these structures can be impossible to achieve.

Sample size
5 6 7 Cube edge
length (mm)
0.03 0.43 2.82 4.01 4.77 6.19 4.48 8.31 5.95 Porosity (%)

Fig. 18. The effect of sample size on porosity and cracking density forming in SLM AA-2618 [272].
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Fig. 19. SEM images showing the clear distinction between the microstructure of AlSi10Mg developed by (a) SLM and (b) casting. The arrows in (b)
point to (A) the Al-Si eutectic, (B) Si dispersed in the Al matrix, and (C) Fe-containing intermetallic phases [275].

6. The metallurgy of SLM Al alloys
6.1. Microstructures

The thermal history during SLM [239] controls the formation of the microstructure. The material is subjected to directional heat
transfer and high thermal gradients during processing. In addition, it is re-melted several times due to penetration of the laser beam
across layers and internal heat transfer. Solidification occurs at a very fast rate (103-108 K/s [273]) that increases with laser power
and scan speed [34] producing a fine microstructure [32] with metastable phases [274]. This fine microstructure is in demand as an
alternative to the coarse microstructures developed by conventional manufacturing [34,273]. A comparison between the micro-
structures developed by SLM and casting is presented in Fig. 19.

Considering the metallurgy of SLM Al-Si alloys, an example of the characteristic microstructure with the overlapping melt pools in
the vertical and horizontal directions is shown in the isometric collage in Fig. 20(a). Similar metallurgy has been reported for
AlSil0Mg [32], AlSil12 [119], AA-2024 [191], and AA-7050 [135].

The higher magnification scanning electron microscope (SEM) images in Fig. 20 (c) and (d) reveal the microstructure in the planes
parallel and perpendicular to the build direction, respectively. Along the build direction, a-Al solidifies with a columnar morphology
with continuous segregations of inter-dendritic Si at the boundaries [179]. Each melt pool is divided into three regions [32,40]; (i)
the melt pool core where the cells are finer with a more equiaxed structure, (ii) the melt pool boundary where the cells are coarser
and mostly elongated, and (iii) the heat affected zone (HAZ).

The solidification mechanism in SLM AlSi10Mg and AlSil12 is cellular-dendritic. A cellular structure is stimulated when there is a
high velocity solidification front coupled with constitutional undercooling; both occurring in SLM. Prashanth et al. [179] explained
the melting and solidification of AlSi12 during SLM. During cooling down, the solidification front rejects Si into the liquid increasing
the Si content in the liquid. According to the Al-Si phase diagram [276] in Fig. 21, the solubility of Si in Al decreases as the
temperature drops, except under high cooling rates, which extend the solubility of Si in Al (the Si content in Al in SLM samples is
~7 wt% instead of the expected 1.6 wt% [273]). A similar observation was made for the extended solubility of Cu and Mg in Al in
AA-2024 [191]. Therefore, the formation of a cellular structure is promoted in which a-Al solidifies first leaving the residual Si to
segregate at the cellular boundaries, as shown in Fig. 20(c) and (d) and Fig. 22(d) and (e).

Qi et al. [135] reported distinction between the microstructures produced from keyhole and conduction modes of melting in that
the former contained more fine grains at the melt pool boundary compared to the latter. This is due to the melt pool’s high aspect
ratio which leads to increased re-melting of the boundaries. The columnar morphology at the melt pool boundary is driven by the
tendency of the solidifying material to grow in the direction of the thermal gradient [124], i.e. pointing towards the heat source.
These columnar or elongated Al cells are observed to be equiaxed when viewed from the plane perpendicular to the build direction.
Wu et al. [120] reported the length of the columnar cells to be up to hundreds of microns, with 20 um width, as demonstrated in the
electron backscatter diffraction (EBSD) pattern in Fig. 22(a—c). The higher magnification SEM images in Fig. 22(b) and (c) show sub-
cells in the order of 500 nm. This is in agreement with measurements reported in [36], where the coarser cells at the melt pool
boundary were in the range of ~650nm and the finer ones at the melt pool core were in the range of ~500 nm.

This inhomogeneous microstructure results from the liquid oscillations and temperature profile within a single melt pool, as
explained by Li et al. [273]. At the centre of the melt pool, the temperature (based on simulations) is 1439 °C, which is higher than the
material’s branching temperature. Moving further from the centre, the temperature decreases, with a large portion of the melt pool at
temperatures within the range between the branching (~1290 °C) and dissolution (~1080 °C) temperatures. This is the range where
an inhomogeneous microstructure of Al-rich and Si-rich phases co-existing is formed. Rapid cooling helps retain the Al-rich super-
saturated matrix as well as the Si-rich nano-sized particles. The fine microstructure alongside the solidification mechanism explained
earlier leads to the formation of parts with a good dispersion of all the alloying elements; as exemplars, this was reported for
AlSi10Mg [88] and AA-2024 [191].
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Fig. 20. Isometric views for the microstructure of SLM AlSi10Mg (a) as-built and (b) after heat-treatment, (c) elongated a-Al as seen on the XZ plane
in the as-built material, (d) equiaxed a-Al grains as seen on the XY plane in the as-built material, and (e) Si spheroids in the a-Al matrix after T6 heat
treatment [123].

Takata et al. [168] found the microstructure described above to be in agreement with the sequence suggested by the calculated
phase diagram for AlSi10Mg using Calphad. Furthermore, they reported a change in the microstructure of the material produced
depending on the size of the fabricated sample. Smaller samples, in the range of 0.1-0.3 mm, contained Si particles inside the
columnar Al grains, indicating precipitation of Si during SLM under these conditions. This can be explained by the efficiency of the
heat flow. In the case of the smaller samples, the melt pool is surrounded by un-molten powder which has lower thermal conductivity
compared to the solidified material surrounding the melt pool in the case of the larger samples. The lower thermal conductivity
reduces the heat flow efficiency, imposing a relatively low rate of solidification, hence, the prolonged durations at elevated tem-
peratures allow for the precipitation of Si in the columnar Al grains.

The elongated, or columnar, microstructure common in SLM Al-alloys has some downsides where, for example, it leads to ani-
sotropic mechanical properties (as discussed further in Section 8). Furthermore, in high strength alloys this columnar growth pro-
motes the creation of cracks during solidification (Fig. 23). Adding lattice-matched nano-particles to the powder before processing
can be used to control solidification and replace the elongated grains with fine equiaxed ones, as shown in Fig. 23.
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Fig. 22. The (a) EBSD image showing the grain structure of AlSi10Mg produced by SLM with columnar cells growing parallel to the build direction
and the microstructure in the dashed region in (a) is shown in (b) using a secondary electron detector and (c) using a backscatter electron detector
on a scanning electron microscope. A STEM image for the cells in the as-built SLM AlSi10Mg is shown in (d) with the corresponding Al-Si EDX map
in (e) [120].

6.2. Crystallographic texture

Although SLM does not involve any mechanical processing capable of imparting deformation texture, thermal gradients and extreme
cooling rates foster epitaxial growth of columnar grains in most Al alloys. This texture causes mechanical anisotropy (yield strength and
elongation at failure) and crack susceptibility. The origin of crystallographic texture in SLM Al components is derived from the directional
solidification within the melt pool. The melt pool shape and, in turn, the heat flow direction at the liquid/solid interface and solidification
rate, are however significantly affected by the choice of processing parameters and the thermo-physical properties of the material.
Therefore, the strength of the resulting grain texture varies significantly depending on the equipment and feedstock used [129].

During the early stages of melt pool solidification, the average grain growth direction is a function of the solidification front
direction (typically perpendicular to the melt pool boundary) and thermal gradients. Thermal gradients are predominantly opposite
to the build direction, or radial, depending on the melt pool width-to-depth ratio, as constitutional undercooling is hindered in most
Al alloys due to high thermal conductivity and solidification velocities [111]. These conditions create morphological grain texture,
with the longitudinal cross-section of SLM parts showing elongated grain structures developing from the melt pool boundaries. These
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Fig. 23. Adding lattice-matched nano-particles to high strength Al alloys to replace the elongated grains with equiaxed grains and avoid cracking.
The standard alloy powder is shown in (a) with (b) showing the powder after adding the nano-particles. The columnar growth in (c) is then replaced
by the equiaxed growth in (d). The outcome is that the columnar grains with the cracks in (e) are replaced with the equiaxed crack-free micro-
structure in (f) [111].

elongated grains are either aligned to the build direction or slanted towards the melt pool centre. Such morphological grain texture is
accompanied by a crystallographic texture in metals characterised by “easy growth” directions: this is the case for Al alloys, where
dendrites with <1 0 0> directions aligned to the solidification front stifle less optimally aligned grains (Fig. 24).

The coupling between morphological and crystallographic textures of the grain formed from the melt pool boundary has indeed
been confirmed by numerous researchers. Wu et al. [120] have shown that elongated grains (found near the melt pool boundaries of
SLM AlSi10Mg) consist of sub-cells of identical orientation. Thijs et al. [40] showed that this predominant grain orientation gives rise
to a <1 0 0> fibre texture component along the scan direction. Similar results are reported by Suryawanshi et al. [181] for AlSi12. On
the other hand, Takata et al. [130] and Zhang et al. [191] demonstrated how the elongated grain structure of AlSi10Mg and Al-Mg-Cu
has a dominant <1 0 0> texture along the build direction. Although not explicitly reported, these differences are attributed to var-
iations in the melt pool shape geometry and hence thermal gradients.

As the solidification of the melt pool proceeds, elongated grains either consume the remaining liquid [111,122] or refined
equiaxed grain structure forms [40,130]. Equiaxed grains, expected to originate in alloys with narrow solidification range from
surface nucleation [40], have no predominant crystallographic texture and are those desirable to minimise mechanical anisotropy.

Recent research has focused on strategies to obtain a more homogenous refined structure throughout the melt pool that would
cancel any crystallographic texture and reduce solidification cracking [111,122,139,278,279]. The addition of suitable hetero-
geneous elements that increase the density of nucleation sites in the melt pool and encourage columnar to equiaxed transition of the
grain structure have indeed proved effective in promoting a refined texture-free melt pool grain structures in a number of Al alloys,
including Al-Mg-Zr, AA-2xxx, AA-6061, and AA-7075.

The intensity of the crystallographic texture developed in SLM parts depends, additionally, on the way different individual melt
pools and tracks are combined. During partial re-melting of the neighbouring tracks, any refined equiaxed structure formed in the latter
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Fig. 24. Inverse pole figure orientation map showing predominant <1 0 0> orientation of the elongated grain structure along the build direction The
orientation map shows also refined grain structure at the sides and top of the melt with no distinct predominant orientation [130].

stage of the melt pool solidification can be reduced significantly at the expense of elongated textured grains [40]. Different texture
intensity might thus occur when the same alloy is processed when the fraction of textured grains in the part is affected by the amount of
partial re-melting of the neighbouring tracks and thus hatch spacing, layer thickness, and laser scan strategy used [40,135].

Inter- and intra-layer rotation of the scan strategy have also proved to be an effective way to reduce texture, as shown in recent
studies on AlSi10Mg [40,181] where melt pools formed by the moving laser source are elongated in shape, and rotating the scan
direction reduces the amount of re-melted material in comparison to uni/bi directional scan strategies and encourages retention of
the randomly-orientated equiaxed grain structures formed in the firstly solidified melt pool (Fig. 25).

7. Heat treating SLM Al alloys

Despite the increasing interest in SLM of Al alloys, thermal post-processing has mostly been limited to the application of tradi-
tional heat treatments to the SLM material. These traditional procedures have been specifically-tailored for the completely different
microstructures that are produced from conventional processing methods. In principle, the aim of any heat treatment procedure is to
modify the microstructure in order to alter the mechanical properties to suit its function in an application. Therefore, designing a heat
treatment procedure should take into account both the starting and resultant microstructures.

As established in the previous section, the microstructures produced by SLM are substantially different from those from conventional
processing, suggesting that their response to a particular heat treatment will be dissimilar to that of a conventionally-manufactured part.
Both AlSi12 and AlSi10Mg exhibit meta-stable cellular microstructures upon processing by SLM [119]. Prashanth and Eckert [119]
attributed the formation of these unique characteristic microstructures to (i) the high solidification rates associated with the process, (ii)
the near eutectic composition, and (iii) having a Si-Al equilibrium partition ratio less than one. The metastable cellular microstructure
leads to phase transformation by decomposition with heat treatment. As the SLM material is annealed, the fine low-angle grain
boundaries sub-structure is consumed [130] through annihilation during recovery of the array of dislocations originally present in the
as-built material. The Si, which is originally in the form of continuous segregations around the a-Al cells, decomposes into spheroids of
Si, resulting in a composite-like microstructure with an Al matrix reinforced by Si particles, as can be seen in Fig. 20(b) and (e). The Si
content in Al dropped to the 1.6 wt% after 30 min of solution heat treatment at 500 °C [273]. The spherical morphology of the Si
particles is attributed to the thermally-activated growth of Si along the most stable plane with the lowest free energy, i.e. {111} [273].
The Si particles coarsen with increasing the treatment duration, i.e. the number of Si particles decreases and their size increases as
particles coalesce [162]. This spherodisation phase transformation has been reported when annealing AlSi12 [119,179], AlSi20 [187],
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Fig. 25. Contour pole figures and inverse pole figures of AlSi10Mg SLM parts produced using (a) unidirectional, (b) bidirectional and (c) chessboard
laser scanning strategies. The <1 0 0) texture along the scanning direction can be decreased when inter- or intra-layer scanning rotations are used
[40].

and AlSi10Mg [130,156] as well as solution heat treatment of AlSi12 [273] and precipitation hardening (T6 — solution heat treatment
followed by water quenching and artificial ageing) of AlSi10Mg [123,124,162,172].

Studies on the crystallographic texture evolution during heat treatment of SLM Al alloys are scarce. Takata et al. [130] compared
the texture of AlSi10Mg in the as-built and annealed/ solution-treated conditions. Aside differences in the sub-structure of the alloy,
no significant differences in terms of Al grain shape and morphology and texture was reported, suggesting that Si particles might act
as pinning sites for Al grains and heat treatments would only lead to a recovery of the structure.

8. The performance of SLM Al alloys

Essential to cope with SLM’s growing popularity [204], the assessment of the feasibility of its use for structural parts through
mechanical characterization is ever increasing. Material-laser interaction and rapid solidification lead to microstructural features that
can potentially yield enhanced material properties [280]. However, the presence of defects from the process, if not sufficiently
controlled by the process parameters, may as discussed deleteriously influence the mechanical behaviour [172].

Anisotropy is affected by the material’s crystallographic texture [254,281], which is attributed to the process parameters
[40,254]. The build direction is claimed to affect the mechanical properties, with better properties for horizontal samples
[29,172,254] since the density of dislocations is dependent on the build direction [281]. However in some cases, no significant effect
was observed under tension [87] or in fatigue behaviour [172]. This section will cover a range of mechanical properties that have
received researchers’ attention in the literature.

8.1. Nano-hardness

The extremely fine hierarchal microstructures produced by SLM triggered researchers’ interest in studying the local mechanical
properties of the material, i.e. at the nano-scale level. Published research [282] used nanoindentation, a depth sensing indentation
technique, to show that the hardness profile across an individual AISi10Mg melt pool is uniform whilst being significantly higher than
that of the cast material. Everitt et al. [171] further supported these findings by mapping the hardness profile across the SLM material
and the cast substrate, as shown in Fig. 26(a-b). Zhao et al. [169] reported similar results for the same alloy reinforced with SiC,
where the nano-hardness was uniform between the melt pool boundary and core but it significantly increased (by nearly three folds)
when indenting a reinforcing structure. Conversely, Prashanth et al. [192] reported spatial variation in AlgsNdgNisCo, processed by
SLM, since the resultant microstructure was more of a composite-like microstructure of an Al matrix reinforced with three types of
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Fig. 26. Nano-hardness profile mapped on (a) an AlSi10Mg single track created on a cast AlSi12 cast substrate showing (b) the uniform profile
across the SLM material versus the non-uniform profile in the cast counterpart [171]. A comparison is presented between the nano-hardness profile
of (c—d) the as-built material and (e—f) the heat treated material [124].

reinforcements, each returning a different nano-hardness value. This indicates how the constituent elements in each alloy and their
response to SLM processing controls the local mechanical properties through changes in the produced microstructure and distribution
of the various phases present in the material.

The uniform profile across the SLM material was attributed to the extremely fine microstructure coupled with the fine dispersion
of the alloying elements [38]. This was contrasted to the coarser microstructure in the cast material, which showed spatial variation
dependent on the indented phase. Everitt et al. [171] also reported a uniform hardness profile across the overlapping melt pools in an
individual layer. As for the nano-hardness profile across multi-layered samples, Fig. 26(c—d) shows a uniform profile [124]. It can be
concluded that the overlap of the melt pools to construct the 3D structures does not significantly affect the local mechanical
properties of the material, i.e. the re-melting and solidification of the material does not cause a trend in its local hardness despite the
variation in grain size within each melt pool.

Qi et al. [135] adopted similar methods in [124] to study the mechanical properties variation in AA-7050, in that study the
uniformity of the material, as indicated by the nano-hardness profile was seen to depend on the melting mode to an extent. In their
study, conduction mode melting was seen to produce a higher nano-hardness, with a more uniform profile. An increase in the nano-
hardness in keyhole samples towards the bottom of the melt pool was attributed to the presence of more fine grains in that region,
which can enhance the material’s resistance to deformation through increased grain boundary area. However, these conclusions were
drawn based on a single line of indentations rather than an array, so further investigations may be needed to support this finding.
Uzan et al. [275] used nanoindentation to show how shot peening induces an increase in the hardness of the sample near the surface.

The effect of the microstructural changes with heat treatment (following a conventional T6 procedure) on the material’s local
mechanical properties is demonstrated in Fig. 26(e-f). The formation of Si particles through spherodisation and their coarsening with
thermal treatment led to spatial variation in the material’s nano-hardness with higher hardness returned by the indentations coin-
cident on Si particles. Furthermore, an overall softening was observed upon heat treatment [124,167]. Annealing had a more pro-
nounced softening effect [283] with the reason behind this softening being discussed in the next section.

8.2. Micro-hardness

Micro-hardness is commonly used to investigate the mechanical properties of SLM Al parts due to the relative ease of the test, as
well as small sample sizes requirements, making it a quick way to assess mechanical properties. Enhanced micro-hardness has been
reported for SLM AA-2xxx [210] compared to the traditionally produced counterparts; the micro-hardness of the as-built AA-2024
was ~37% higher than the equivalent 2024-O sheet but ~20% less than the T6-treated conventionally-processed sheet [191]. A
summary of the micro-hardness results from the literature are presented in Fig. 27 and listed with further relevant details in Table 3
where the variation in results between studies is clear. This is typical of SLM materials; the reasons behind this variation includes the
use of different machines, different combinations of process parameters, and different quality starting powder, which leads to various
degrees of densifications. Nevertheless, all the listed studies reported properties that are either similar to or even harder than the
conventionally-processed counterparts.

The summary in Table 3 and the map in Fig. 28 show how the various heat treatment procedures (annealing, solution heat
treatment, and solution heat treatment followed by ageing (T6)) softened the material significantly. This is similar to the trend in the
nanoindentation section. To understand this trend, the authors [162] considered the various factors contributing to strengthening
both the as-built and heat-treated AlSi10Mg samples. In the as-built material there is: (i) the strengthening driven by grain size
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Fig. 27. Some of the micro-hardness data from the literature for various SLM Al alloys in their as-built and heat treated conditions.

refinement, (ii) the solid solution strengthening, and (iii) the dislocation strengthening as the dislocations hinder each other’s motion.
Factors (ii) and (iii) still hold in case of the heat-treated material (T6-procedure); the main difference is that the grain size coarsens
upon heat treatment, but this is counteracted by Orowan strengthening due to the formation of Si spheroids where due to the stronger
effect of grain size refinement, the as-built material remains harder than the heat-treated one. Softening was more pronounced with
annealing due to the reduction in the dislocation density through annihilation of dislocations in addition to the microstructural
coarsening. A similar effect was seen for the T6 heat-treated AA-7075, according to Table 3. Material softening by T6 heat treatment
was not the case for ScalmalloyRP as an enhancement of 69% was achieved due to the formation of a large amount of Al;Sc [138].
This was also reported for Al alloys modified by Zr additions either with or without Sc [194,197].

Takata et al. [168] investigated the effect of the sample size on the micro-hardness of AlSi10Mg through fabricating samples with
thicknesses ranging from 0.1 to 10 mm; the hardness decreased slightly as the samples got smaller. However, this was not very
significant in the presented data since the change in hardness was from 112 HV to 107 HV across the investigated range of thick-
nesses. This can be correlated to the rate of solidification and its change with the sample size; the smaller the part the slower the rate
of solidification imposed. This suggests a coarser microstructure that can potentially lead to a softer material.

Although the as-built material has higher hardness compared to the conventionally-processed material, the necessity to develop
new tailored heat treatment procedures that can suitably alter the microstructure to further harden the material cannot be over-
looked. There is the hypothesis that the as-built material is already in a peak hardened state as precipitation occurs during processing
and therefore, any further T6 heat treatment causes over-ageing. The academic community would benefit from a dedicated study for
this matter. Atomic probe tomography could be helpful in investigating the precipitation behaviour defining the types of precipitates
forming, if any.

8.3. Tensile behaviour

The exceptionally fine microstructure in SLM Al parts improves their tensile strength. Some of the tensile properties from the
literature are presented in Table 4 and Fig. 29. The tensile strength of AlSi10Mg [29,87,124,254] and AlSil12 [176,179,287] have
been repeatedly reported to be better than their conventionally-processed counterpart. The improved strength is believed to be due to
the presence of sub-grain boundaries and inter-dendritic Si that hinder the motion of dislocations [120]. At elevated temperatures,
the AlSi12 alloy showed a slight reduction in the tensile strength coupled with a marginal improvement in the ductility, putting the
alloy forward for use in applications that involve high temperature environments [288]. Nevertheless, it is worthwhile noting that it
was not clear in that study for how long were the samples maintained at high temperature. Comparing this behaviour to the material’s
creep behaviour was also missing.

28



N.T. Aboulkhair, et al. Progress in Materials Science 106 (2019) 100578

Table 3
Micro-hardness of SLM Al parts and the effect of heat treatment.
Material Heat treatment Details As-built (HV) Heat-treated (HV) Source
AlSi7 AA 300°C - (0.1-168h) 94 45 [198]
AlSi7Mg T2 300°C — 3h 124-133 76-78 [153]
AA 165°C — 0.01-60h - 115-150 [154]
SHT + AA 535°C — 1-8h - 60-115 [154]
165°C - (0.01-60) h
SHT + AA 535°C — 1-8h - 63-115 [154]
180°C - (0.01-60) h
AlSil0Mg - - 140-150 - [29]
- - 127 - [254]
- - 106-112 - [168]
Annealing 300°C — 2h 132 88 [130]
SHT 530°C — 6h 132 60 [130]
SHT 520°C-(1-4h 110 62-68 [162]
SHT + AA 520°C — 1h 110 75-79 [162]
160°C - (6-12)h
SHT + AA 520°C — 4h 110 94-96 [162]
160°C - (6-12)h
SHT + AA 520°C — 1h 125 100-103 [124]
160°C - (6-7)h
AlSi12 - - 135 - [284]
- - 110 - [176]
Annealing 300°C — 3h 145-150 105-115 [285]
Annealing 450°C — 6h 135 65 [286]
- - 119 - [180]
AlSi12/TiB, - - 142 - [180]
AA-2024 - - 111 - [191]
AA-7075 AA 150°C — 6h 160 170 [122]
SHT 470°C — 2h 160 100 [122]
SHT + AA 470°C — 2h 160 115 [122]
150°C-6h
SHT + AA + AA 470°C — 1h 80 150-170 [149]
110°C-5h
150°C - 14h
ScalmalloyRP AA 325°C — 4h 105 177 [138]
Al-Sc-Zr AA 300°C - (0.1-168h) 40 115 [198]
Al-Mg-Sc-Zr AA 300°C — 12h 110-135 160-170 [194]
- - 86-94 - [195]
Al-3.60Mg-1.18Zr AA 400°C — 0.5-144h 275 320-410 [197]
Al-3.66Mg-1.57Zr AA 400°C — 0.5-144h 300 360-420 [197]

Heated build-plates significantly reduce the strength without affecting the ductility [151]; since a lower thermal gradient pro-
duces a relatively coarser microstructure. The range of values reported for each material can be quite broad due to several reasons
including, but not limited to, the influence of the process parameters and the variation from a machine to another plus the dis-
crepancies in the raw material used as well as the build orientation. This applies to the as-built and heat-treated properties.

Despite having higher strength, the brittleness cannot be overlooked. Heat treatments such as annealing recovered a fraction of
the ductility [187] at the expense of the strength although the microstructure does not change significantly [130]. This is supported
by the results documented in Table 4. The reduction in strength can be attributed to the reduced solid solution strengthening and
recovery, which coarsens the microstructure detangling the arrays of dislocations.

A significant amount of residual tensile stress was measured for Si in as-built AlSi12 that was relaxed by solution heat treatment.
These stresses alongside the ultra-fine-grained Al and the nano-sized Si mean that there is a high dislocation density, which eases
diffusion during heat treatment leading to enhanced recovery, which is advantageous for the material’s ductility or capability for
stable plasticity [273]. Solution heat treatment increased the ductility of AlSi12 by 400% at the expense of its ultimate tensile
strength (UTS) which dropped by 46% [273]. The conventional T6 heat treatment, on the other hand, provided AlSi10Mg with a push
of ductility (180% increase) without significantly losing its strength (12% reduction) [124]. Therefore, it can be surmised that the T6
heat treatment can yield a compromise between the strength and ductility.

Rao et al. [151] reported anisotropy with the build orientation in A357 parts in ductility but not strength. This agrees with results
published by Read et al. [87] for AlSi10Mg who showed that horizontally produced samples exhibited increased ductility. In addition
to agreeing with these findings, Takata et al. [130] showed that the AlSi10Mg vertical samples also tend to have lower yield strength.
After heat treatment via either annealing or solution heat treatment, there was no direction-dependence any more [130]. This is due
to the phase transformation during heat treatment where the melt pool structure is cancelled and replaced with a more homogeneous
composite-like structure without distinct directionality in the microstructure.

The direction of loading with respect to the build orientation plays a vital role on the performance of the material under tensile
loading. Given the columnar grain morphology, less resistance will face crack propagation when loading is parallel to the build
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Fig. 28. The effect of various heat treatment procedures on the micro-hardness of SLM AlSi10Mg [224].

orientation. Nevertheless, the morphology of the irregularly shaped pores in the parts can also affect the strength. The lack-of-fusion
pores typically resemble the shape of the melt pool, as shown in Fig. 12; they have an ellipsoidal shape with their long axes perpen-
dicular to the build orientation. Loading along this long axis will eventually close the pore, mainly without material diffusion. However,
loading perpendicular to the long axis will result in opening this pore and delamination occurring across the plane where it lies.

As for the high strength alloys, micro-cracking has been shown to lead to poor mechanical properties, as reported for AA-7075
[111]. Functionalising the surface of the powder with Zr nano-particles eliminated cracking and refined the microstructure leading to
tensile properties that are comparable to the wrought material [111]. The strength and ductility of AA-2024 was improved over the
non-heat-treated cast samples but fell short of the wrought aged equivalent [191]. Sc-containing alloys, such as ScalmalloyRP,
yielded ultimate tensile strength values exceeding 530 MPa with elongation percentages up to 14% (aged) [138]. Furthermore, the
anisotropy with the build orientation was insignificant [138,139]. The high strength in this alloy was attributed to the super-
saturation of Sc as well as the precipitation of Al;Sc, which hinders the dislocations’ motion through pinning [245]. Adding incre-
ments of Zr to Al-Cu-Mg-Mn alloys enhanced the tensile strength along with improving the material’s ductility [196]. Furthermore,
Al-Mg alloys strengthened by Zr with no Sc exhibited outstanding tensile properties due to the formation of AlsZr precipitates
(cuboidal [137]), close to the Sc-containing ones without the extra cost associated with using Sc [197]. Sub-micrometer particles and
nanosized precipitates of Al;Zr led to grain refinement, preventing hot tearing during rapid solidification and enhancing the strength
through the Hall-Petch effect. This was coupled with material’s hardness that is significantly higher than the Sc-containing alloys.
Further refinement was realised by laser rescanning driven by a shallower melt pool forming by the second scan due to the reduced
laser absorptivity of the consolidated metal [137]. It is worth noting that the Zr-modified alloy was characterised by higher ductility
than the Sc-modified alloys [197]. Another approach to remarkably strengthen the Al-Si alloys whilst benefitting from their relative
ease of processing by SLM is tweaking their chemical compositions, such as the work by Pozdniakov et al. [292]. By means of heat
treatments, this alloy offered a compromise between strength and ductility.

Failure under tensile loading occurs along the boundaries between the melt pools for samples built in the vertical orientation
[124,130], as shown in Fig. 30(a), i.e. fracture occurs through the melt pools’ detachment. This is the area where coarser grains were
observed, i.e. softer regions and less grain boundaries obstructing the dislocation motion. The finer microstructure in the as-built
specimens alongside the more homogeneous dispersion of the alloying elements (Fig. 30(a) and (c)) justifies the higher tensile
strength. Si provides the material with strain hardening capability so the cracks initiate within the softer a-Al grains. Therefore, the
distribution of Si in the material controls the properties directional-dependence. In the case of samples built in the horizontal
orientation, cracks initiated at random defects and propagated through the melt pools (Fig. 30(e)) [132].

After heat treatment (Fig. 30(b) and (d)), cracks initiated and coalesced at the Si particles [124]; the favoured sites for crack
initiation. The spherical morphology of the Si particles is much better, in terms of the material’s ductility, than the rod- or needle-like
morphology in the conventionally-processed material that act as stress concentrators reducing ductility [273].
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Table 4

Tensile properties of SLM Al parts and the effect of heat treatments.
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Material Ref As-built Heat treatment Heat-treated
UTS (MPa) Yield strength (MPa) Elongation (%) UTS (MPa) Yield strength (MPa) Elongation (%)

AlSi7Mg, A356 [153] 368 - 9.2 T2 226 - 12.8

[242]  380-390 200-225 12.5-17.5 Annealing 200-420 125-250 27-30

T6 270-275 190-210 7-13

AlSi10Mg [111] 315 209 7.3 - - - -

[87] 316 231 1.1 - - - -

[124] 333 268 1.4 T6 292 239 3.9

[289] 340-370 160-220 4-7 - - - -

[245] 350-380 250 8 - - - -

[290] 384 241 6 HIP 141 115 35

[167] 446 270 8 Annealing 273 170 15

T6 214 164 11

[174] - - - Stress-relief 358 204 7.2
AlSi12 [273] 350 225 5 SHT 200 100 25

[288] 375 260 2.8 - - - -

[291] 425 101 12.1 - - - -

[176] 342-368 221-224 1.5-4.8 - - - -

[179] 380 260 3 Annealing 150 95 15

[185] 190-418 150-220 0.98-4.38 - - - -

[186] 380 240 2.8 - - - -
AlSi11CuMn [292] 470 350 1.8 Annealing 434 242 4.4

[292] 470 350 1.8 T6 354 288 5.4
AA-2024 [191] 402 276 6 - - - -
AA-7075 [111] 25 - 0.4 - - - -

[150] 42-203 - 0.5 T651 45-206 - 0.2-0.5
ScalmalloyRP [139] 400-430 270-310 - - - - -

[245] 490 470 8.2 - - - -

[138] - - - Ageing 520 500 14
Zr/Al-Cu-Mg-Mn [196] 411-494 256-484 4.8-11.8 - - - -
Al-Mg-Sc-Zr [194] 300-410 405 1.5-5.0 T6 470-500 357 1.5-2.5
Al-Mn-Sc [198] 460 431 21.5 AA 550 570 18.1
Al-3.60Mg-1.18Zr [197] 287-292 220-221 25.6-29.0 AA 382-386 350-353 17.1-18.6
Al-3.66Mg-1.57Zr [197] 329-332 282-290 24.0-25.2 AA 383-389 349-365 19.5-23.9
Al-6Zn-2Mg-1(Sc + Zr) [199] 386 283 18.4 T6 435 418 11.1

8.4. Compressive behaviour

Investigating the compressive behaviour of Al alloys is not generally common due to the material’s ductility. Such alloys normally buckle or
barrel under compressive loading, which can complicate the analysis of the stress-strain curves collected from compression tests. For example,
internal work by the authors has shown that the sample size along with the length-to-diameter ratio affect the material’s response to com-
pressive loading, as shown in Fig. 31. The samples with a length-to-diameter ratio of 3 buckled. A length-to-diameter ratio of 2, on the other
hand, led to barrelling. The change in sample size, therefore, influences the material’s yield strength, ultimate strength, and Young’s modulus.

There is no strong driving force for assessing the compressive behaviour of these alloys from an application’s perspective and this
is not any different for the SLM-produced parts. The amount of studies focussing on this aspect is quite limited with most of the
attention directed to investigating the compressive behaviour of Al lattice structures.

The characteristic microstructure also yielded compressive behaviour surpassing that of the conventionally-processed counter-
part. Compressive yield strength three times that of the cast material was reported for AlSi10Mg [124]. The use of reinforcements to
improve the compressive strength was evidenced in an AlSi12-TNM composite that showed an enhanced compressive strength at the
expense of ductility [293]. The compressive strength of AlSi12 was also improved by adding TiB, particles without affecting the
material’s ductility through eliminating the crystallographic texture [180].

The compressive behaviour of the high-strength alloy AA-7075 was found to be inferior to the conventional counterpart, despite
the enhancement achieved by heat treatment [122]. It is worth noting that this result was for AA-7075 with 4% Si addition to reduce
cracking; worse behaviour would be expected if the cracks were not reduced beforehand. An AIMg6.5 alloy modified by Sc and Zr
additions yielded enhanced compressive strength values that changed with changing the energy density [193]. The AlgsNdgNisCos
alloy yielded superior compressive strength (1.08 GPa) that was retained after heat treatment and when tested at elevated tem-
peratures [192]. This was attributed to the formation of a composite-like material after SLM process in the form of an Al matrix
reinforced with AINd®, Al,CoNi,, and AINdNiy, these reinforcements forced crack deflection under loading.

Although the compressive behaviour of Al alloys has not received much consideration previously, it is becoming more important
now as Al alloys are increasingly being used in SLM produced lattice structures, where compressive strength is often of interest.
Overall, it can be concluded that the fact that the compressive performance of parts fabricated by SLM is superior to the con-
ventionally-processed is attractive for various applications.
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Fig. 29. Tensile strength versus elongation per cent for some of the Al alloys processed by selective laser melting in the as-built and heat-treated
condition.

8.5. Fatigue performance

The fatigue performance of SLM materials usually falls short of the conventionally-manufactured counterparts [294]. This has
been attributed to various factors in the literature as fatigue performance is prone to common SLM defects such as porosity, residual
stresses, and surface roughness [281,295,296] specially for cast alloys due to second phase particles [297]. These act as stress
concentrations depressing the fatigue life through crack nucleation and growth [172,295,297-299]. However, acceptable fatigue
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ISi particles where micro-voids Fracture surface
imitia te and coalesce
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Fig. 30. Cross-sectional views of fracture surfaces from SLM AlSi10Mg tensile specimens comparing the (a) as-SLM sample built in the horizontal
orientation along with its corresponding EDS map in (c) to the heat-treated sample in (b) and (d) [124]. The fracture surface of an as-SLM sample
built in the horizontal orientation is shown in (e) [132].

strength was observed in SLM parts from Al alloys for the finer microstructure developed in the material, as demonstrated in Fig. 32
where the S-N curves from various studies are plotted in comparison to the performance of the conventionally-cast material. The
variability between parts fabricated from different powders on different systems using a wide range of process parameters leads to a
significant variation in fatigue properties.

Internal pores containing un-bonded powder have been observed in SLM parts from alloys such as AlSi10Mg [32,87] and
Al6061 [145], among others. Although they are reasonably small, i.e. they might not considerably reduce the load bearing area
under tension [87], they might have a more pronounced effect under cyclic loading. As the size of the defect grows larger, the
fatigue life is shortened [170]. Furthermore, oxides forming at these pores or randomly scattered across the samples lead to
premature failure. These oxides and pores are commonly observed at the crack initiation region (see Fig. 33). The formation of
these oxides is believed to be due to laser spatter (see Fig. 14), oxidised vapour, and the oxide layer originally on the powder used
in the process [123,170].

Surface open pores or sub-surface porosity also leave the part susceptible to premature failure under cyclic loading. Damon et al.
[270] observed a ring of porosity close to the sample’s surface. Work by the author [123] has reported sub-surface pores to surface
upon machining increasing the scatter in data, which is usually performed to improve the surface roughness of SLM samples. These
pores were found to be points where cracks initiate and propagate, eventually causing failure. Yang et al. [152] compared samples
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Fig. 31. The various failure modes of SLM AlSi10Mg based on the sample size.

with machined surfaces leaving some residual sub-surface porosity to ones presumably without sub-surface porosity. The latter
showed better fatigue life while both of them exceeded the life of the as-built samples. Therefore, the sub-surface pores play a
detrimental effect in the fatigue life of SLM samples. Siddique et al. [184] recommended scanning the contours of the parts more than
once for re-melting to reduce the probability of porosity formation in these regions.

The fatigue performance is also affected by some of the process parameters, such as the build orientation and the build-plate
temperature, as the fatigue strength of a material is directly related to its ductility. Given that the ductility of the SLM material
showed evidence of anisotropy based on the build orientation, this was also expected for the material’s fatigue resistance. This was
confirmed by Mower and Jong [249], Tang and Pistorius [170], and Awd et al. [245] who reported the fatigue life of samples built in
the horizontal orientation to be longer than those built in a vertical orientation.

Incorporating supporting structures in parts with overhangs improves the fatigue strength of the material, where supports
aid in increasing the cooling rate, thus imposing the development of a finer microstructure [300]. The build-plate temperature
was not seen to affect the fatigue strength of SLM AlSi10Mg by Brandl et al. [172] but rather it reduces the scatter in data.
Heating the build-plate also reduced the scatter in data for AlSi12 [182]. An enhancement in fatigue strength was also
observed (see Fig. 32(b)), negating an earlier observation by Siddique et al. [185]. The reasons behind this discrepancy is
not clear.

Fatigue life of parts can be improved by several methods such as sand blasting [301], shot peening [270,275], rolling, burn-
ishing [298], heat treatments, and hot isostatic pressing [295,296]. Shot peening using steel and ceramic balls improved the
fatigue strength of AlSi10Mg, exceeding the performance of the conventionally-processed samples (see Fig. 32(c)). Brandl et al.
[172], further supported by Aboulkhair et al. [123], have shown that a conventional T6 heat treatment remarkably improved the
performance (see Fig. 32 (d)) through material softening [162], i.e. increasing the ductility [124]. Si dendrites transformation into
spheroids hinder crack initiation and propagation [172]. The enhancement by heat treatment was effective for samples both with
and without machined surfaces. Aboulkhair et al. [123] have also shown that the effect of heat treatment surpasses that of
machining, i.e. improved fatigue performance can be achieved through heat treatment on its own. This is a promising result for the
production of net-shapes since post-process machining might not always be feasible, such as in the case of geometrically chal-
lenging topology optimised parts and lattice structures where shape complexity is high. The combined effect of heat treatment with
a surface treatment such as sand blasting or shot peening was insignificant compared to the effect of surface treatment on its own
[301]. The discrepancy between the magnitudes of the effect of surface treatments on the fatigue performance of SLM parts can be
attributed to the variability in quality of samples produced using different machines and process parameters. The post-process
treatment, hot isostatic pressing (HIP), caused fatigue performance deterioration in both AlSi10Mg [290] and AlSil2 [184]
samples.

The high strength Al alloys (e.g. AA-7075) showed a much worse fatigue behaviour when compared to the conventionally-
processed material [150]. This is due to the high cracking density in the material, as explained in earlier sections.
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Fig. 32. (a) Some of the fatigue data in the literature for SLM AlSi10Mg. (b) S-N curves for SLM AlSi12 showing the effect of build plate heating were
batch B is manufactured without build plate heating and batch D had a build plate temperature of 200 °C [182]. (c) S-N curves demonstrating the
effect of shot peening on SLM AlSi10Mg samples [275]. (d) S-N curves for SLM AlSi10Mg showing the effect of heat treatment and machining on the
material’s fatigue behaviour [123].

8.6. Fracture toughness

The fracture toughness of a material defines its ability to resist crack propagation. A material’s toughness is directly proportional
to its ductility. However, the toughness of the SLM material markedly surpassed that of the cast material by nearly 3 or 4 times [181]
despite having lower ductility. This is driven by the presence of inter-dendritic Si at the boundaries of the Al cells that hinder the
crack propagation. Also, the circular morphology of the melt pools and the favoured crack propagation at the melt pool boundaries
forces the crack to change its path quite frequently, which is translated in higher fracture toughness. The anisotropic microstructure
produced by SLM has therefore influenced the fracture toughness of samples built in various build orientations; the vertical samples
having the lowest fracture toughness [302].

Annealing reduced the fracture toughness of the material although its ductility improved and strength decreased. The decom-
position of the melt pool boundary’s structure is believed to be the reason behind the lower resistance to crack propagation, i.e. lower
fracture toughness. Nevertheless, the toughness of the heat-treated material was still double that of the cast counterpart [181].

It can be concluded that SLM offers the possibility of fabricating parts benefitting from enhanced strength and ductility, con-
currently. This combination of properties is an advantage unachievable using the conventional processing techniques.

8.7. Creep resistance

A material’s creep resistance is an assessment of its time-dependent mechanical performance at elevated temperatures. The
temperature limit above which creep becomes a design consideration is material-dependent. Because Al has a relatively low melting
temperature, it is known to creep at around 200-300 °C. Read et al. [87] reported the creep resistance of SLM AlSi10Mg parts to be
within the predictions for this material, i.e. comparable to the conventionally-processed material, in agreement with [174]. As
expected, the creep resistance deteriorated with increasing the testing temperature or the load/stress applied. Creep resistance
deteriorates at higher temperatures as recovery can start to take place.

One of the approaches that improves creep resistance is to increase the obstacles that limit the dislocation motion. This could
explain the improved creep resistance observed in the abovementioned study; since SLM produces parts with a high dislocation
density. These dislocations are expected to entangle and act as obstacles to one another, improving the resistance to deformation.

Contrary to the tensile behaviour, creep resistance is normally enhanced for larger grain-sized materials. This is because the larger
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(1) Al-rich droplet (2) Possible oxide

Fig. 33. Evidence for the presence of oxides in the SLM sample at the crack initiation region that promotes pre-mature failure under cyclic loading [170].

grain size depresses the diffusion rate and limits grain boundaries sliding, which are two phenomena critical for creep. The presence
of precipitates in the material also increases the resistance to creep, which is the case for age hardenable Al alloys. However, whether
this will hold for SLM materials or not is still unknown given the converse effect age hardening had on the other mechanical
properties discussed earlier. Solid solution strengthening has a similar effect.

The work on creep resistance of SLM Al in the literature is quite superficial. Studies investigating the above mentioned approaches
for enhancing creep resistance are still lacking.

8.8. Impact resistance

In the SLM field, investigating the impact resistance behaviour is probably more relevant for lattice structures. This is driven by
their potential for use as an impact-protective mechanism and within energy absorption applications.

The impact resistance of a material is typically assessed through measuring the impact energy experimentally; the amount of work
needed to fracture a specimen. Upon impact, the energy is absorbed by the sample up to the yield point, after which plastic de-
formation starts. As the material reaches the threshold and becomes unable to absorb more energy it fractures. The dynamic be-
haviour of a metallic sample is quite complicated and is governed by the competition between the material’s strain hardening
capacity (up to the peak flow stress) followed by thermal softening [303].

Similar to the other types of mechanical strengths discussed up to this point, the impact resistance of SLM parts was superior to
the conventionally-processed equivalents. Although this was not expected as limited ductility usually goes hand-in-hand with inferior
impact resistance. The impact energy of as-processed SLM samples from Charpy impact tests were either comparable to [304] or
better than (~1.5 times) [254] the cast material. The dynamic yield strength of heat-treated samples from planar impact tests was
almost double that of the sand-cast counterpart, while the dynamic tensile strength was four times better [305]. The improved impact
strength is owing to the finer more homogeneous microstructure.

Despite having a bit of influence on some mechanical properties, anisotropy was not evident in the case of impact resistance, i.e.
the material’s resistance to impact was not dependent on the build orientation [254,305].

36



N.T. Aboulkhair, et al. Progress in Materials Science 106 (2019) 100578

8.9. Wear resistance

The tribological behaviour of an SLM Al part is particularly important for applications in the automotive industry where a part can
experience a significant amount of friction in application. In the Al-Si alloy family, the higher the Si content, the higher is the material’s
wear resistance [178]. The finer grain structure produced by SLM results in good wear resistance in the case of sliding wear, surpassing
its cast [286] and extruded [183] counterparts. Similar results were observed for wear by erosion [306] and corrosion [307].

Wear resistance can be enhanced by adding reinforcements to the materials. Metallic reinforcements offer better compatibility
with the parent metal compared to ceramic reinforcements. For example, the metallic reinforcement TNM granted AlSi12 higher
wear resistance capabilities [293].

The wear mechanism is mainly abrasive for higher hardness materials, shifting to adhesive as the hardness decreases [183]; this is
influenced by the SLM process parameters. A material’s resistance to wear is directly proportional to its hardness. The lowest wear rate
is therefore observed for parts in the as-built condition; annealing softens the material leading to a higher wear rate (see Fig. 34(a)).

The tribological behaviour of the SLM material in comparison to the cast counterpart is shown in Fig. 34(b) [286]. Since pro-
cessing by SLM produces material that is harder than the conventional processes do, the enhanced tribological behaviour is justified.

The coefficient of friction in SLM samples is higher at the surface [109] due to the presence of a surface oxide layer, which is
removed during the first rounds of sliding in a wear test. Beyond this layer, the coefficient of friction stabilises and becomes more
representative of the material’s performance. Kang et al. [183] attributed this to the weld-fracture mechanism common in soft metals
before stabilisation. This is observed in the form of fluctuations in the coefficient of friction patterns. The longer the fluctuation

region, the softer the material. Samples that suffer from extensive porosity tend to show no fluctuation region due to the limited weld-
fraction mechanism.

8.10. Electrical properties

Al is a good conductor for electricity; coupled with its weight and price compared to copper, silver, and gold, it is attractive for a
range of electrical applications. Alloying elements, particularly if they have more of an insulating nature, can however increase the
electrical resistance [308]. The extent of resistance is correlated to their morphology and distribution. A finer grain size means an
increased area of grain boundaries that are barriers to electrical conductivity. The grain boundary state can significantly influence the
material’s resistivity, i.e. lowering the grain boundary energy state by a heat treatment procedure without affecting the grain size in
ultrafine-grained materials can reduce the resistivity [309].

The finer microstructure produced by SLM leads to higher resistivity [283] due to the increased grain boundaries and density of
dislocations. In AlSi10Mg, the networks of Si encapsulating the a-Al columnar grains act as barriers increasing the resistivity.
Therefore, the anisotropic nature of SLM parts affects the electrical properties as they are correlated to the build orientation. Hor-
izontal samples tend to show higher resistivity (needing to cross more Si barriers) than the vertical ones with inclined samples
showing intermediate values [283].

Heat treatments (annealing and T6-procedure) reduce the resistivity of the parts to be closer to the cast counterpart [283,308], in
addition to eliminating anisotropy [283]. This is attributed to the phase transformation during heat treatment (Section 7), where the
breakdown of Si allows an easier path for the electrons along the Al matrix. It is important to note that these heat treatment
procedures however were not optimised for the lowest resistivity. Further improvements can potentially be achieved.

Another approach to reduce the material’s resistivity is the use of additives during the SLM process. Adding carbon nanotubes
(CNT) to AlSi10Mg significantly reduced the resistivity [310]. This was attributed to the presence of C in the material due to the
decomposition of the CNT upon laser irradiation. However, further investigations are needed to support this hypothesis, as the
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Fig. 34. (a) The effect of heat treatment on the wear rate and hardness in SLM AlSi12. (b) The tribological behaviour of the SLM material shown to
be comparable to the cast counterpart [286].
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authors of the work used energy dispersive spectroscopy to prove the presence of C, which might not be the most accurate technique.
Raman spectroscopy would serve better to analyse the form of C present in the material after SLM.

9. Summary

Additive manufacturing of metals is becoming more common - both on the industrial and academic levels — with the recent
advancements in the field. This review article focussed on the recent progress in the literature on selective laser melting of Al-alloys.

Al alloys are in high demand in various industrial sectors, therefore they are receiving significant attention. Being a large alloy
family with a range of alloying elements, not all classes of Al-alloys behaved similarly when processed by SLM due to the difference in
alloying elements and compositions.

There is an abundance of published works on optimising the process parameters to avoid the formation of defects (pores, cracks,
laser spatter, surface irregularities, and shape distortions) in the fabricated parts. Some of these defects can now be resolved in-process
while others still require post-processing. Virtually defect-free parts from Al-Si alloys can now be fabricated using a range of SLM
systems. These alloys are conventionally processed by casting due to the presence of the Si hard phase, which poses limitations on their
machinability. Their excellent fluidity and cast-ability are behind the good SLM process-ability and the larger amount of work con-
ducted on them compared to the other Al alloys. The high strength Al alloys remain challenging as they suffer extensive cracking; these
cracks form during the final stages of solidification due to material shrinkage. The most effective approach to eliminate cracks is
changing the alloy composition by in-situ alloying where the added elements promote heterogeneous nucleation during solidification,
replacing the columnar microstructure (common in SLM materials) with an equiaxed microstructure avoiding cracks’ formation.

During processing, the metal powder is irradiated with a high energy laser beam and allowed to rapidly solidify to room tem-
perature. The steep cooling rate leads to the formation of extremely fine microstructures within the overlapping melt pools. Three
regions of grains make up every melt pool; the core with fine equiaxed grains, the boundary with coarser columnar grains, and the
heat affected zone. The columnar grains grow in the direction of the thermal gradient. This directionality produces a textured
material with the texture controllable by the scan strategy used during processing. The characteristically fine microstructure pro-
duced during manufacture is an excellent alternative to the traditional approach of using additives to refine the conventionally-
processed microstructures to improve their mechanical properties and cope with the demands of the automotive and aerospace
industries [273]. This was reflected on the improved hardness, tensile and compressive strengths, fatigue performance, creep, impact,
and wear resistance, and electrical properties. The main downside in SLM parts is the lack of ductility. However, heat treatments
provide the material with an increase of ductility and with careful treatment selection the strength is not significantly lost.

10. The outlook

The amount of work undertaken in the field of SLM of Al alloys nowadays is significant. However, some confinement is needed to
direct the future research into the aspects that can further improve the standing of the technology. This section provides some
examples for the areas that can benefit from researchers’ efforts in the future. Some of these topics are of a more generic nature that
they can be applied to the process irrespective of the material being processed.

Material qualification studies often optimise the process parameters for cubic samples with side dimensions that range from 5 to
10 mm. However, the set of optimised parameters at this scale might not be scalable for larger or smaller parts, i.e. the quality of
larger parts can be different and they might even become more susceptible to failure during processing. Research into the effect of the
sample size on the process parameters and their selection is still lacking. Similarly, the translation of these process parameters to the
fabrication of significantly small features, such as in the case of lattice structures, is not yet fully explored. Custom scan-strategies for
lattice structures can improve their quality and thus their performance will be enhanced.

Research into remedying the defects produced in SLM parts has been split into two routes; in-process or post-processing. Although the
latter route may have received more attention in the literature, research on the former is essential for the progression of SLM as a net-shape
manufacturing process as post-processing techniques add to the time and costs of production. For instance, the steep cooling rates in SLM
play an important role in the formation of defects in the produced parts and therefore heated build-plates have been used to reduce the
residual stresses by slightly slowing down the rate of solidification. Most of the studies deploying this feature used a temperature of 200 °C,
limited by the machines’ capabilities. Higher build-plate temperatures can potentially reduce the defects developed in the process but its
effect on the material’s microstructure and mechanical properties and the process’s efficiency can be an issue.

Standardizing the properties of metal powders for SLM is important for the process to cope with its needs through producing
powder with specifications meeting the process requirements. Despite the success in producing defect-free parts from powders that do
not fully comply with the process requirements, it requires extra measures when selecting the process window, which means that
every batch of powder might require its own material qualification study if its properties were not identical.

Besides the advances regarding the readily-available alloys, there has been some interest in developing new alloys for the process
that take into account the process needs and the target properties concurrently. The reviewed approaches in this field mostly relied on
in-situ alloying of mixed powders where there is a large chance of segregation in the produced samples due to variations in particle
size distributions and such. Designing new alloys for the process and producing them in the form of pre-alloyed powder is costly and
beyond the budgets for most research projects. Materials’ design softwares and high-throughput methods to experimentally validate
the custom alloys are needed to exploit this capability effectively. This should aim at understanding the effect of the alloying
constituents on the process-ability of the material by SLM and ultimately the properties of the fabricated parts in application.

The feasibility of SLM and its efficiency is an important area of research [30,33]. However, such research is hindered by the
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immaturity of the process reflected in the variability and inconsistency in production. Only when these issues are tackled and the
scatter in data from different research that is driven by material variability (depending on the source or supplier that controls the
properties of the powders) and the machine variability (variation in results from machine to machine based on manufacturer) [239]
is reduced, the efficiency-related research will find its way. Modifications to the currently-available systems and using different types
of laser (diode lasers or green lasers) to improve the efficiency of the process can then follow.
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