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Abstract 

Accuracy assessment and land cover mapping have been inexorably linked throughout the first 

50 years of publication of Remote Sensing of Environment.  The earliest developers of land-cover maps 

recognized the importance of evaluating the quality of their maps, and the methods and reporting 

format of these early accuracy assessments included features that would be familiar to practitioners 

today. Specifically, practitioners have consistently recognized the importance of obtaining high quality 

reference data to which the map is compared, the need for sampling to collect these reference data, 

and the role of an error matrix and accuracy measures derived from the error matrix to summarize the 

accuracy information.  Over the past half century these techniques have undergone refinements to 

place accuracy assessment on a more scientifically credible footing.  We describe the current status of 

accuracy assessment that has emerged from nearly 50 years of practice and identify opportunities for 

future advances.  The article is organized by the three major components of accuracy assessment, the 

sampling design, response design, and analysis, focusing on good practice methodology that contributes 

to a rigorous, informative, and honest assessment.  The long history of research and applications 

underlying the current practice of accuracy assessment has advanced the field to a mature state. 

However, documentation of accuracy assessment methods needs to be improved to enhance 

reproducibility and transparency, and improved methods are required to address new challenges 

created by advanced technology that has expanded the capacity to map land cover extensively in space 

and intensively in time.  
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1. Introduction 

Land cover and land cover change are fundamental environmental variables of broad impact. 

Land cover is an essential climate variable (Hollmann et al. 2013) that impacts numerous environmental 

processes and patterns ranging from influencing albedo and hence climate to zoogeographic 

distributions and hence patterns of biodiversity.  The effects of land cover may be relatively direct, such 

as by influencing albedo,  or indirect, such as by impacting environmental processes that determine 

aspects of ecosystem services valuations which is why land cover can be used as a surrogate variable in 

these valuations (Costanza et al. 1997). Land cover also greatly influences human use of the land (Turner 

et al. 2007) and can greatly impact health, wealth and well-being. Changes in land cover can be 

particularly important. Taking into consideration the impacts on just one essential variable, water, a 

land-cover conversion such as deforestation might impact processes such as interception, infiltration, 

evapotranspiration, ground water recharge and flood frequency with consequent impacts on variables 

such as erosion and sedimentation. Indeed, it has been recognized for many years that land cover 

change is one of the most important environmental variables impacting major societal concerns such as 

climate change and biodiversity conservation (Vitousek et al. 1997; Chapin et al. 2000; Foley et al. 2005). 

Given the importance of land cover and land cover change, there is considerable need for high quality 

and up-to-date information on them.  Because the remotely sensed response typically measured is a 

function of Earth surface properties, remote sensing has considerable potential as a source of 

information on land cover and land cover change at a range of spatial and temporal scales. 

From a wide range of methods (Lu and Weng 2007; Mather and Tso 2016), information on land 

cover is commonly extracted from remotely sensed data via a classification analysis and often presented 

in the form of a thematic map. Similarly, comparisons of mapped representations for different time 

periods typically provide the basis for monitoring land cover change. Consequently, maps depicting land 

cover are central to numerous scientific and practical applications.  Maps provide a generalised view of 

the world. As such, while a high quality map depicting the theme of interest can be used successfully to 

provide desired information it must be recognized that it can be imperfect and require careful 

interpretation. A fundamental feature of significance to the user of the land cover data is its quality. 

Quality has many dimensions (e.g., positional accuracy and image segmentation accuracy) but the focus 

of this article is limited to the critical issue of thematic accuracy. The latter is simple in concept, relating 

to how closely the map shows reality in terms of the land cover mosaic it represents, but has been 

surprisingly poorly addressed despite its significance (Olofsson et al. 2013). 
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Land cover maps can be easily generated from remotely sensed imagery. Using standard image 

classifiers available in popular software it is trivially easy to generate a land cover map. But the map 

produced will be a function of the data and classifier used (Foody and Mathur 2006; Pal and Foody 2012; 

Foody et al. 2016). Different training sets, classification algorithms, and remotely sensed images could 

be used to produce very dissimilar representations of the same geographic region. Regional to global 

maps of land cover, for example, provide different representations of the same phenomena which 

typically disagree on the label for much of the region mapped (Herold et al. 2008; Tchuenté et al. 2011). 

Which map to use as the closest representation of reality requires an ability to rigorously assess map 

accuracy; otherwise, each map remains nothing more than a pretty picture representing simply one 

possible untested hypothesised land cover scenario (Strahler et al. 2006; McRoberts 2011).  Good 

scientific practice demands that the quality of the measurements made by remote sensing be evaluated 

and integrated into studies.  High quality measurement is often seen as a hallmark of science. Without it 

there is the danger of mis-interpretation and mis-understanding. The assessment must, however, be 

rigorous and defensible. Poor or weak accuracy assessments offer a veneer of scientific respectability 

but are a façade that can impede understanding and successful practical application. 

Accuracy assessment has a long history in remote sensing as Congalton and Green (1999, 

Chapter 2) trace the origins back to approximately 1975. The subject has developed greatly and there is 

a large literature that explores the many dimensions and issues of importance.  This article does not aim 

to revisit the whole subject but is focused on appropriate methodology for a useful and credible 

accuracy assessment in typical scenarios.  For the most part we assume that the map and reference 

labels represent a hard classification and that accuracy assessment is conducted independently of 

classifier training.  The focus is explicitly on the correct use of design-based inference for the estimation 

of accuracy expressed on an overall and per-class basis. In this, the accuracy assessment is founded on 

the comparison of the predicted map class label with the actual label observed on the ground for a 

sample of selected sites in the mapped area. Although the need for accuracy assessment has long been 

recognized by the remote sensing community and there has been considerable research on the topic, 

many land cover maps produced have not been subjected to rigorous evaluation (Olofsson et al. 2013) 

limiting their scientific and practical value.  An accuracy assessment does more than simply describe the 

quality of a map, it provides a means to enhance its usefulness. An inaccurate map that is accompanied 

by a rigorous accuracy assessment may, for example, provide highly valuable information.  

Good practices have been promoted to help the production of credible accuracy assessments 

(Olofsson et al. 2014). These good practice recommendations also extend to area estimation, cautioning 
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against the common practice of using “pixel counting” for area estimation (i.e., summing the number of 

pixels allocated to a class in the map and multiplying by pixel areal extent). Instead the good practice 

guidelines advocate estimation of area based on the reference classification and using information 

contained in the error matrix to improve precision of the estimator (McRoberts 2011; Olofsson et al. 

2013, 2014). Although we emphasize elements of good practice, it is also necessary to point out aspects 

of bad practice such as neglecting to use estimation formulas that correspond to the sampling design, 

normalizing the error matrix (which equalises user’s and producer’s accuracy even though they may be 

meaningfully different and can be a large source of bias) or using the kappa coefficient (which 

unnecessarily adjusts for chance agreement in a manner in which chance agreement is mis-estimated).  

The organization of the article is as follows.  Section 1 provides an overview of the historical 

development of accuracy assessment (Sec. 1.1) and articulates general criteria to guide planning and 

implementation of accuracy assessment of land cover maps (Sec. 1.2). We then proceed to review the 

current state of good practice for the three main components of accuracy assessment (Stehman and 

Czaplewski 1998), sampling design (Sec. 2), response design (Sec. 3), and analysis (Sec. 4).  Recognizing 

the critical role of statistical inference in accuracy assessment, we describe the commonly used design-

based inference approach in Section 5 along with alternative options of model-based and Bayesian 

inference.  Practitioners have long been aware of the difficulties of obtaining gold standard (i.e., perfect) 

reference classifications motivating the discussion in Section 6 of the problems and impacts of imperfect 

reference data.  Section 7 is devoted to future needs and directions of accuracy assessment, and 

conclusions stated in Section 8 complete the article. 

 

1.1. Historical context  

The Scopus database was used to search for relevant articles published in the 50-year history of 

Remote Sensing of Environment (RSE). Specifically, two searches were undertaken. The first search 

extracted articles with the term ‘land cover’ in the title, keywords or abstract, and the second search 

identified articles via the search phrase ‘land cover AND accuracy’ to indicate the importance of 

accuracy assessments in these land cover studies. Through the first 20 years of RSE only 6 articles met 

the latter search phrase and comprised <1% of all articles published in RSE (Table 1).  In the most recent 

15 years of RSE (2004-2018), the number of articles including both search terms ‘land cover’ and 

‘accuracy’ has expanded to 331 comprising about 6.5% of all articles published in RSE during that 15 year 

period.  The percent of articles in RSE with ‘land cover’ has increased up until 1999 when it reached a 

plateau of 15% of all articles.  From 1994 to 2008 approximately 40% of all land cover articles also had 
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‘accuracy’ as a keyword and this percent increased to about 50% for the past decade, 2009-2018, 

providing some evidence that accuracy has become more prominently emphasized in land cover studies.   

 

Table 1. Publications in Remote Sensing of Environment (RSE) in five-year intervals resulting from two 

Scopus searches, one for ‘land cover’ and another for ‘land cover’ AND ‘accuracy’ in titles, keywords, and 

abstracts (searches conducted 25 January 2019). 

                        

    Time                    Total       Land Cover     Accuracy AND Land Cover 

Interval                 #RSE       (% of All)           (% of Land Cover)  

1969-1973      64           0 (0)      0   

1974-1978    128           0 (0)       0      

1979-1983    206           9 (4)           1 (11) 

1984-1988    307           6 (2)       3 (50) 

1989-1993    434           7 (2)                 2 (29) 

1994-1998    565         55 (10)        22 (40)  

1999-2003    755       117 (15)             45 (38) 

2004-2008       1263       185 (15)             72 (39) 

2009-2013       1503       227 (15)            110 (48) 

2014-2018     2187       286 (13)            149 (52) 

Total         7412       892 (12)  404 (45) 

 

The earliest five publications in RSE identified by the search phrase of ‘land cover AND accuracy’ 

foreshadowed methods and challenges that have persisted throughout the history of accuracy 

assessment of land cover.  The earliest article identified from the Scopus search was Bryan (1975) in 

which individuals with no experience in the use of side looking airborne radar (SLAR) imagery were 

asked to interpret the land cover class of 32 test case objects in Melbourne, FL, United States of America 

(USA).  Accuracy was reported simply as the proportion of these objects classified correctly.  Walsh 

(1980) used Landsat imagery to map 12 land-cover classes in the vicinity of Crater Lake, Oregon, USA, 

and  implemented stratified random sampling of 5x5 pixel sampling units to report user’s accuracy 

(without accompanying standard error).  Jensen et al. (1980) used MSS to map vegetation types in a 

4000 ha non-tidal wetland in South Carolina, USA.  The accuracy assessment consisted of field sampling 

along two transects (not randomly located) with a 1-m length of transect used as the assessment unit.  
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Jensen et al. (1980) summarized the accuracy information via an error matrix and reported omission and 

commission error rates (without standard errors).  Gordon (1980) used Landsat imagery to map 21 

classes within a small area of Ohio, USA (<100 km2) for two dates, 1973 and 1975, representing an early 

land-cover change application.  User’s accuracies for each date were estimated based on photo-

interpreted reference classifications for the entire study area (no sampling conducted).  Toll (1985) 

compared accuracy of land cover classified by MSS versus TM imagery for an 800 km2 test site near 

Washington, DC, USA.  Stratified systematic sampling was implemented with equal allocation of 75 

pixels (500 m x 500 m) from each of the 7 classes, and the comparison of MSS versus TM was reported 

using confidence intervals for overall accuracy of each classifier.  In addition to the examples identified 

from the algorithmic Scopus search, we found accuracy assessments of crop classifications reported in 

the very fir st two volumes of RSE.  Haralick et al. (1970) reported error matrices along with overall and 

producer’s accuracies for a classification of crop types, and Anuta and MacDonald (1971) presented an 

accuracy assessment of classifications of crops in the Imperial Valley of California.   

The initial forays into accuracy assessment of land cover included common current practices 

such as implementing stratified sampling and reporting results in the form of an error matrix 

accompanied by user’s and producer’s accuracies.  We also observe in these early articles the diversity 

of objectives of accuracy assessment, including basic description of map quality (see Secs. 4.2 and 4.4 of 

this review article), accuracy of land-cover change (Sec. 4.5), and comparison of maps (Sec. 4.6).  These 

articles are also illustrative of present day problems such as: 1) absence of standard errors or confidence 

intervals quantifying the uncertainty of accuracy and area estimates obtained (Sec. 4.4); 2) lack of clarity 

in the description of the sampling design so that it would be impossible to reproduce the sample 

selection protocol (Sec. 2.2); 3) absence of a probability sampling design (Sec. 2.1); 4) misplaced concern 

regarding independence, as reflected in Toll’s (1985) statement that non-contiguous pixels were 

sampled  “to increase independence” (Sec. 2.4); and 5) not employing stratified estimation formulas for 

a stratified sampling design (Sec. 4.2).  One major difference of current practice relative to these pioneer 

land-cover studies is that present-day applications typically map vastly larger areas.  

The late 1970s and early 1980s represented an era of emerging methodological developments in 

accuracy assessment as articles were published in RSE and other outlets.  Sampling design and sample 

size questions were commonly addressed (e.g., Hord and Brooner 1976; Fitzpatrick-Lins 1981) with Hay 

(1979) proposing use of stratified sampling with a minimum sample size of 50 per class, a practice still 

often followed today.  Another focus of these early articles was the question of whether maps were of 

acceptable quality, leading to an emphasis on the decision-making framework of statistical hypothesis 
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testing as well as frequent reference to 85% accuracy as a benchmark defining acceptable accuracy 

(Anderson 1971; Aronoff 1982ab; Fitzpatrick-Lins 1981) (see Section 7.5 for a critique of this 85% 

benchmark).  Among these early articles, Card (1982) warrants special acclamation for recognizing the 

relevance of estimating proportion of area based on the reference classification, an idea reinvigorated 

by McRoberts (2011) and Olofsson et al. (2013, 2014).  Not surprisingly, categorical data analyses 

developed in the statistical literature for two-way contingency tables (Bishop et al. 1975) were proposed 

for use in accuracy assessment (Congalton et al. 1983). These tables represent sample counts for data 

cross-classified by two categorical variables and thus bear a strong resemblance to an error matrix.  Two 

unfortunate remnants of these contingency table analyses that still persist are the normalized error 

matrix and kappa coefficient, both practices that are now recommended to be avoided (see Sections 

4.1, 4.8, and 7.5). 

Congalton (1991) and Congalton and Green (1999) synthesized much of the methodology 

developed up to 1990 and merit considerable credit for putting accuracy assessment “on the map” of 

the remote sensing community.   A series of subsequent review articles further elucidated the 

progression of accuracy assessment from the early 1990s to the present (Janssen and van der Wel 1994; 

Smits et al. 1999; Foody 2002; Strahler et al. 2006; Wulder et al. 2006a; Olofsson et al. 2014).  

Methodological developments and applications of accuracy assessment have grown exponentially since 

the early 1990s (Table 1).  Advances in technology related to satellite imagery and classification methods 

have surely fuelled this growth in land cover studies and accuracy assessment (Wulder et al. 2018).  Land 

cover analyses have evolved from rather limited studies of small geographic regions at a single point in 

time to present day regional, national, and global studies at multiple time periods, often with 

increasingly smaller spatial resolutions and increasingly greater temporal densities.  In this article, we 

discuss the status of accuracy assessment of land cover highlighting advances in concepts and methods 

developed primarily since Foody’s (2002) review, and focusing on issues relevant to land cover studies 

covering large areas.  We extend and apply the good practice recommendations of Strahler et al. (2006) 

and Olofsson et al. (2014) to critique current practice.  In particular, we discuss how commonly used 

protocols satisfy or fall short of good practice criteria (defined in the next section) specified to ensure a 

rigorous and credible assessment of accuracy and area of land cover and land cover change.    We also 

take a glimpse into the future and posit new directions for needed developments to address emerging 

challenges for accuracy assessment. 

 

1.2. Good practice criteria to guide accuracy assessment methods and reporting 
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If accuracy assessment is worth doing, then it most certainly is worth doing well.  A rigorous accuracy 

assessment should be viewed as an essential part of a mapping project (Strahler et al. 2006). We thus 

begin by articulating operational criteria that serve to guide the practice of accuracy assessment toward 

scientifically credible and informative methods and results.  In practice, accuracy assessments should be 

designed and implemented to achieve these criteria.  Criteria 1 through 4 address fundamental 

requirements for producing a map relevant, scientifically credible accuracy assessment that includes 

aspects of quality control and quantification of uncertainty.  Criteria 5 and 6 are proposed to address the 

emerging concerns of transparency (openness) and reproducibility of scientific research (Munafò et al. 

2017).  These criteria are ideals to be aspired to and will be satisfied to a matter of degree in any given 

application. Although the need for robust accuracy assessments is often espoused, robustness is not 

included as a good practice criterion because it lacks specific meaning relative to land cover issues (and 

also because “robust” has a longstanding statistical definition referring to resistance to impacts of 

outliers and violations of assumptions). The six good practice criteria are: 

1. Map relevant  - accuracy assessments should address the reality of the landscape mapped which is 

accomplished when the accuracy estimates and error matrix reflect the proportional areal 

representation of the study region in terms of both the map and reference classifications (Sec. 4.1).  In 

effect, the map relevant criterion imposes the requirement that the accuracy estimates have fidelity to 

the region of interest covered by the map.  For example, suppose that a map is produced with a binary 

legend of change and no change, and it is known that the mapped region has experienced 

approximately 3-5% change.  If the error matrix shows roughly equal proportions of area of change and 

no change (i.e., each class occupies ~50% of the mapped region), the assessment is clearly not map 

relevant.  This criterion is most often violated by use of normalized error matrices (Sec. 4.1) or reporting 

an error matrix based on sample counts when the sampling design is stratified with equal sample size 

allocated to each stratum (Sec. 4.4).    

2. Statistically rigorous - the primary requirements for a statistically rigorous assessment are to 

implement a probability sampling design (assuming design-based inference will be used), to employ 

consistent estimators (i.e., use estimation formulas that correspond to  the sampling design 

implemented), and to quantify the variability of the accuracy and area estimates by reporting standard 

errors or confidence intervals.  

3. Quality assured – protocols should be in place to monitor and evaluate the quality of the reference 

data and results.  An example of quality assurance would be to evaluate consistency of reference class 

labels obtained by different interpreters by providing two or more interpreters with a randomly chosen 
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set of sample locations and having the interpreters independently label the locations while blind to the 

map category.  These consistency data can be used to provide feedback to enhance agreement among 

interpreters and also to address the reliability criterion. 

4. Reliable – a repetition of the accuracy assessment protocol should produce approximately similar 

results.  Reliability is tantamount to controlling those features of the assessment protocol that are 

subject to variability.  The two most prominent such features are associated with variability attributable 

to sampling and variability attributable to interpretation of the reference class labels.  Reliability 

addresses the question, if we had obtained a different sample and had used different interpreters (all 

trained in the same manner and with equal expertise), would the estimates of accuracy and area be 

approximately the same?  A reliable assessment would be reflected in small standard errors for the 

accuracy and area estimates and small variability among interpreters when assigning reference class 

labels.  Reporting standard errors or confidence intervals provides an important assessment of reliability 

because these results quantify how repeatable the estimates would be over different random outcomes 

of the sample selection. 

5. Transparent – provide all relevant details, positive or negative, that would inform readers about the 

quality of the results (Castilla 2016).  For example, any problems with missing data due to cloudy 

imagery or inability to access sample locations should be reported, and any modifications to standard 

sampling design and analysis protocols should also be documented.  Synonyms for the transparency 

criterion would include “openness” and “honesty”.  The reality is that any accuracy assessment will be 

confronted with practical difficulties that will interfere with perfect implementation.  The transparency 

criterion simply mandates an honest depiction of the problems encountered and steps taken in 

response to these problems.  Transparency is particularly critical for the response design, and additional 

details are provided at the end of Section 3.  

6. Reproducible – the methodology of the accuracy assessment should be reproducible given the 

documentation provided for the sampling design, response design, and analysis.  The reproducibility 

criterion places a premium on lucid description of the key details of each protocol.  Achieving the 

reproducibility criterion is critically dependent on the transparency criterion because if documentation 

of full details of implementation is lacking the assessment protocols cannot be reproduced. A fully 

reproducible assessment would include any programming code and identification of software used to 

produce the results as well as the sample data used in the analyses.  Although it may not be possible in 

all applications, providing the sample data would allow users to obtain estimates for subregions of 

particular interest (e.g., a state or province within a national assessment) as well as to conduct 
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secondary analyses such as exploring how accuracy is associated with possible causes of 

misclassification.  Additional details necessary to satisfy the reproducibility criterion are presented in 

each of the sampling design, response design, and analysis sections described below. 

 

2. Sampling design  

The sampling design is the protocol for selecting the subset of assessment units for which the 

reference classification is obtained and then compared to the map classification.  Numerous sampling 

designs have been used for accuracy assessment (Stehman and Czaplewski 1998; Stehman 1999a; Brus 

et al. 2011) with the most commonly used designs being simple random, stratified random, systematic, 

and cluster.  Stehman (2009a) reviewed the advantages and disadvantages of these basic designs 

relative to accuracy assessment objectives, practical considerations, and desirable design criteria.  If 

design-based inference is to be invoked, the most important criterion the sampling design must satisfy is 

that it is a probability sampling design; in the absence of probability sampling, it is necessary to 

implement model-based inference or Bayesian inference (Sec. 5).  

 

2.1. Probability versus representative sampling  

Although the importance of sampling for collecting high quality reference data was recognized 

in the early days of accuracy assessment (Congalton 1991), it is only in the past 20 or so years that 

sampling has been placed in the rigorous statistical framework provided by probability sampling and 

design-based inference (Stehman and Czaplewski 1998).  The statistical rigor of accuracy assessment 

results produced from a sample require that the sampling design satisfy the conditions that define a 

probability sample.  These conditions are specified in terms of the inclusion probability of element u, 

denoted πu.  If a pixel is the spatial unit of the accuracy assessment, the inclusion probability is the 

probability that pixel u will be one of the pixels in the sample.  The two conditions required to satisfy the 

definition of probability sampling are that πu is known for all units selected in the sample, and πu>0 for 

all units in the population (i.e., all pixels in the region of interest). The basic sampling designs, simple 

random, stratified random, systematic, and cluster, meet these conditions.  Common exceptions to 

probability sampling include purposely choosing sample locations because of convenience or 

homogeneity of land cover, and implementing a complex selection protocol with numerous steps such 

that deriving inclusion probabilities is intractable. 

The focus on probability sampling is different from the common admonition for representative 

sampling.  By definition a probability sample is representative because such a sample can be used to 
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produce unbiased estimators of the population of interest.  Although inclusion probabilities must be 

known, they are not required to be equal, so a sample can be representative in the sense of yielding 

unbiased estimators even if the sample elements are not selected with equal probability.  Stratified 

sampling with equal allocation is a commonly used probability sampling design for which the inclusion 

probabilities are not equal for all elements of the population.  In fact, a primary motivation for stratified 

sampling is to create such unequal inclusion probabilities for the purpose of increasing the sample size 

from rare map classes.  It is thus a myth to believe that “the sample must represent the population” in 

the sense of the proportion of each class in the sample matching the proportion of each class in the 

population.  As long as the analysis takes into account the known unequal inclusion probabilities, the 

estimates produced will reflect the actual parameters of the population (i.e., the estimators are 

unbiased) even though the sample itself may bear little resemblance to the population in terms of 

proportion of area of each class.  Implementing an equal probability sampling design does offer the 

advantage of simplicity of analysis because the estimates are unweighted (i.e., weights are not needed 

to accommodate different inclusion probabilities).  Sampling designs that have equal inclusion 

probabilities include simple random sampling, systematic sampling and stratified sampling with 

proportional allocation (i.e., the sample size in each stratum is proportional to the area of the stratum).    

 

2.2. Choosing the sampling design 

Deciding which sampling design to implement requires considering the objectives of the 

accuracy assessment and prioritizing desirable design criteria.  The typical objectives for accuracy 

assessment focus on description of overall accuracy, class-specific accuracy, and proportion of area 

occupied by a class, and often these estimates are needed for subregions (e.g., states or provinces 

would be subregions within a national assessment).  Desirable sampling design criteria include that the 

design: 1) satisfies the conditions defining a probability sampling design; 2) is easy to implement for 

both selecting the sample and producing estimates of accuracy and area; 3) is cost effective; 4) readily 

allows for increasing or decreasing the sample size; 5) is precise in the sense that estimates have small 

standard errors; 6) has an unbiased estimator of variance; and 7) is spatially well distributed across the 

study area.  Different sampling designs achieve these criteria to varying degrees (Stehman 2009a).  

Criterion 1 is critical to achieve a statistically rigorous assessment, whereas criteria 2, 3, and 4 address 

practical concerns.  In particular, criterion 4 addresses the common occurrence that the sample size may 

need to be adjusted, as, for example, when the actual data collection cost is greater or less than the cost 

initially budgeted for in planning.  The ability to decrease the sample size (or, in rare circumstances 
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increase the sample size) while still maintaining the probability sampling feature of the design is very 

desirable in some applications.  Criteria 5 through 7 pertain to the reliability of the assessment as small 

standard errors (i.e., precise estimates) translate to narrow confidence intervals thus reflecting greater 

reliability of the accuracy assessment. Criterion 7 is relevant to precision because a spatially well-

distributed sample, such as from systematic sampling, often yields smaller standard errors (see Section 

2.4).   

The decision of what sampling design to use is not a matter of choosing between what is 

practical versus what is statistically rigorous, but rather choosing what is practical and rigorous 

(Stehman and Czaplewski 1998; Stehman 2001). The process for deciding which sampling design to 

implement focuses on three major questions: 1) Should clusters be used?  2) Should strata be used?  and 

3) What selection protocol, simple random or systematic should be used?  Regarding the first two 

questions, the recommendation is to stratify for objectives, cluster for costs.  Strata are generally used 

in the sampling design when the objectives include precise estimates by class (e.g., user’s accuracy) or 

by region.  Stratifying by map class achieves the former objective, and stratifying by region achieves the 

latter objective.  Cluster sampling is typically implemented when substantial savings in cost of imagery 

or cost to travel to field sample locations are achieved by grouping sampling units together (e.g., 

Mayaux et al. 2006; Stehman and Selkowitz 2010; Zimmerman et al. 2013).  The cost savings of cluster 

sampling must be tempered by the fact that because of intracluster correlation (i.e., correlation among 

secondary sampling units within clusters), each cluster may be equivalent to only a modest number of 

unclustered sample points or units (Gallego 2012; Gallego and Stibig 2013). Yang et al. (2018) provide a 

contrasting option to reduce cost by defining strata constructed to represent cost of access and then 

increasing the sample size in the low cost strata. 

The need for reproducibility (section 1.2) dictates that the sampling design must be clearly 

documented.  Unfortunately the sample design is often inadequately described. Ye et al. (2018) revealed 

the severity of the problem as they found that only one-third of the 209 articles they examined in their 

review of object-based accuracy assessment described how the sample was selected.  Key features of 

the sampling design that must be documented to satisfy the reproducibility criterion are: 1) describe the 

randomization implemented in the sample selection protocol; 2) specify the inclusion probabilities or 

the information needed to derive the inclusion probabilities; 3) if stratified sampling was implemented, 

describe how the strata were constructed, provide the proportion of area in each stratum, specify the 

sampling design implemented within each stratum, and state the sample size allocated to each stratum 

along with the rationale for this allocation; 4) if cluster sampling was implemented, define the primary 
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sampling unit (PSU) and the secondary sampling unit (SSU), state whether one-stage or two-stage 

sampling was implemented (in one-stage sampling all SSUs within each sampled PSU are observed, 

whereas in two-stage sampling a sample of SSUs is selected within each sampled PSU), and specify the 

sampling design implemented at each stage.   

Registering or archiving the original sample locations prior to collecting the reference data 

would be a valuable contribution to reproducibility.  Gallego (2011) and Waldner et al. (2019) expressed 

the concern that except for systematic sampling designs, it is impossible to trace whether the originally 

selected sample locations were actually the ones visited to obtain reference data or whether some of 

the sample locations had been moved or simply not used.  This concern with “traceability” would be 

greatly diminished if the original sample locations are registered or archived in the public domain prior 

to beginning data collection.  To address the transparency criterion, any problems related to missing 

data (i.e., non-response due to difficult access on the ground or due to clouds in the reference imagery) 

should be documented and quantified (e.g., percent of sample units that were not obtainable).  If 

sample units are moved or replaced, these modifications of the original sample selection should be 

clearly highlighted as part of an honest, transparent portrayal of the actual implementation of the 

sampling design.  Practical issues often may impact the sample selection protocol, but the remedies 

implemented to address these practical challenges must still adhere to principles of statistical rigor 

(Stehman 2001).  

 

2.3. Sampling design for accuracy assessment and area estimation of land-cover change 

Applications mapping land cover change have become increasingly common and there are many 

methods for change detection (Singh 1989; Mas 1999). Here we focus on land-cover conversions and do 

not address accuracy of land-cover modifications that are not manifested as a change in the land-cover 

class label. Choosing a sampling design in land-cover change studies requires additional considerations 

not present in single date assessments.  Not all of these issues have been fully resolved as the 

investigation of sampling designs for long-term, high temporal frequency land-cover monitoring is still at 

a nascent stage.  Because change is typically a rare characteristic of the landscape, stratified sampling is 

often implemented to ensure a specified minimum sample size from the change classes (Olofsson et al. 

2013, 2014).  Stratification is commonly employed in single date land cover assessments as well, but for 

land-cover change assessments the number of from-to change types may be so large that defining every 

from-to change possibility as a stratum would require an impractically large sample size.  In such cases, 

more general from-to categories can be defined as strata, as for example cropland loss to include all 
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changes from cropland to any other class and urban gain to include changes from all other classes to 

urban (Wickham et al. 2013, 2017).  

Multiple change periods may be of interest in land-change monitoring.  For example, suppose 

the objective is to monitor annual wetland change over a 20-year period using Landsat imagery.  In such 

applications, and assuming a stratified design will be employed, is it better to have a single, permanent 

set of sample units observed for each year throughout the 20-year period, or is it better to select a 

different sample for each annual change estimate?  Permanent sample locations may offer some 

efficiency in terms of the response design when using archived satellite imagery via software such as 

TimeSync (Cohen et al. 2010) or CollectEarth (Bey et al. 2016).  Further, the ability to view the entire 20-

year time series for each sample pixel may offer the interpreter greater temporal context for deciding 

whether change had occurred in a particular year of the time series and thus a permanent sample could 

conceivably yield a more accurate reference classification.  If the change process is cyclical (e.g., forest 

management that produces losses followed by gains in tree cover), then permanent sample locations 

may be preferred to capture this change dynamic.  But if the dynamic is predominantly unidirectional 

change (e.g., conversion of forest to developed), then a different sample for each time period of interest 

may be preferred because it would be possible to stratify the sampling design specific to that time 

period and this would likely yield better precision than permanent sample units.  Such an outcome was 

observed in a study estimating forest change on a biannual basis in which Arevalo et al. (2019) found 

that selecting a new sample for each biannual change period (with strata defined specifically for each 

biannual period) was more precise than selecting a single, permanent sample based on strata defined 

for the entire time period monitored. 

Assessing the accuracy of a burned area map presents a special case of change accuracy 

assessment.  The objectives include assessing both the spatial and temporal features of the burned area 

map (i.e., do the map and reference data agree on whether the sample unit burned and agree on when 

it burned).  The rarity of burned area exists in both space and time, so stratified sampling is motivated to 

intensify the sample in the space and during the time for which the classifier maps burned area.  

Boschetti et al. (2016) and Padilla et al. (2017) address this problem by representing the population 

using voxels defined by a time interval (e.g., a 16-day Landsat acquisition interval) and a two-

dimensional spatial unit (e.g., a Thiessen Scene Area shown in Fig. 1 of Boschetti et al. 2016). These 

voxels can then be assigned to strata and the sample intensified in strata for which burned area is more 

likely to be found.  The difference between this approach and a design in which a new sample is selected 
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for each time period is that the objective for the burned area application does not include estimating 

accuracy for each time period. 

 

2.4. Spatial correlation and sampling design 

Spatial correlation is frequently raised as a concern regarding sampling design for accuracy 

assessment.  The presence of spatial correlation has no impact on design-based inference in the sense 

that estimators of accuracy and their associated variance estimators remain unbiased regardless of the 

magnitude of spatial correlation (de Gruijter and ter Braak 1990; Stehman 2000).  Thus there is no need 

to space sample units apart to legitimize design-based inference. The primary impact of spatial 

correlation is that it may affect the precision of the estimates.  For example, positive spatial correlation 

will increase standard errors for cluster sampling because pixels within each cluster will be more similar 

to each other.  For systematic sampling, positive spatial autocorrelation leads to smaller standard errors 

relative to simple random sampling and this precision advantage is a primary motivation for having a 

spatially well-distributed sample (Sec. 2.3).  

The desire to avoid sampling spatially proximate units has led to development of spatially 

balanced probability sampling designs that spread sample units apart (Benedetti et al. 2017; Stevens and 

Olsen 2004).  Systematic sampling is the most familiar spatially balanced sampling design.  A simple but 

effective alternative to systematic sampling for achieving spatial balance is to stratify the region spatially 

and to sample one unit (e.g., one pixel or one cluster) per spatial stratum (Fattorini et al. 2015).  Two 

example applications of this design are Fichet et al. (2014), in which the spatial strata were 20 km x 20 

km cells, and Stehman and Selkowitz (2010), in which the spatial strata were biomes in Alaska, USA.  

Benedetti et al. (2017) review a variety of other spatially balanced probability sampling designs, some of 

which are quite complex.  The decision of whether to use these more complex designs will require 

choosing between two desirable design criteria, spatial balance versus ease of implementation and 

analysis. 

A more problematic consequence of the desire for a spatially balanced sample is when ad hoc 

methods are used to avoid sampling neighboring or nearby units.  For example, if a stratified random 

sample is initially selected and then sample units discarded or moved if they are within a certain 

distance of another sample unit, the inclusion probabilities of this design will be very complicated. 

Unless these complicated inclusion probabilities are derived, the sampling design will not satisfy the 

criteria defining a probability sample. Elaborate algorithms based on minimizing the spatial correlation 

among sample locations can be created but if such techniques are used it is incumbent on the 
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developers of the algorithm  to derive the inclusion probabilities for the design.  If a spatially balanced 

sample is implemented for accuracy assessment, we recommend using one of the probability sampling 

designs currently documented in the peer-reviewed literature (Benedetti et al. 2017). 

 

2.5. Sample size planning and allocation to strata 

The enduring question of “What sample size is needed?” must be addressed when planning the 

sampling design.  Although formulas for sample size planning yield deterministic, objective outcomes, 

the subjective component of choosing the sample size requires judicious selection of values to input to 

these sample size formulas.  The reality for many applications is that the sample size chosen will be 

constrained by availability of resources to collect the sample data.  Pragmatically, a priori sample size 

calculations are effectively an exercise in forecasting whether the sample size afforded by the project’s 

budget will meet the desired precision requirements.  Yet another difficulty is that typically several 

objectives are of interest, and sample size planning becomes more complex when attempting to meet 

precision requirements for multiple estimates. 

A commonly used sample size formula that can be applied to overall accuracy for simple random 

sampling and to user’s accuracy for stratified random sampling is:  

 𝑛 =
𝑧2𝑝(1−𝑝)

𝑑2          (1) 

where z=1.645 for a 90% confidence interval or z=1.96 for a 95% confidence interval, d is the desired 

half-width of the confidence interval (i.e., the confidence interval is estimated accuracy ±d), and p is the 

anticipated overall accuracy in the case of simple random sampling, or p is anticipated user’s accuracy in 

the case of stratified sampling where we determine the sample size nh for each stratum.  For example, if 

the anticipated user’s accuracy is p=0.80 and we would like a 95% confidence interval (z=1.96) to have a 

half-width of d=0.05, Eq. (1) yields n=246.  If instead we anticipate a user’s accuracy of p=0.5, the sample 

size formula yields n=384.  The choice of d may vary depending on the importance of a class, so for 

example a high priority class might have d=0.02 because we want a more narrow interval for this 

important class, whereas a class regarded as less important to the objectives might have d=0.05 

reflecting tolerance of a wider interval. Because the true overall accuracy or user’s accuracy is unknown 

at the sample planning stage, p is subjectively chosen.  Therefore, it is often useful to try several values 

of p to assess the range of n that might be needed for various potential outcomes of overall or user’s 

accuracy.  If in reality it turns out that p in Eq. (1) is different from the value used to plan the sample 

size, the width of the confidence interval d specified at the planning stage will not be the width of the 

confidence interval estimated from the sample data.  The maximum sample size from Eq. (1) occurs 
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when p=0.5 so it is possible to establish an upper bound on the sample size for a specified z and d.  Eq. 

(1) does not normally apply to estimating producer’s accuracy because in practice the reference classes 

cannot be used for stratification (this would require complete coverage reference data).   

In practice, the answer to the question, “Was the sample size large enough?” is observable from 

the standard errors and width of the confidence intervals obtained for the accuracy and area estimates.  

Consequently, when addressing the question of whether the sample size was adequate, the sample size 

planning details are not as important as the magnitude of the standard errors or confidence intervals 

associated with the estimates.  For example, if the 95% confidence interval for user’s accuracy of 

cropland is 78% to 85%, would a user interested in cropland have a different opinion of the quality of 

the map if true user’s accuracy is 78% versus 85%?  If not, the sample size was adequate to generate a 

confidence interval that is sufficiently narrow for this user’s purpose.  Conversely, if the confidence 

interval is 60% to 85%, we might expect a user to have a different opinion of map quality for cropland if 

the user’s accuracy is 60% (the lower bound of the confidence interval) compared to if the user’s 

accuracy is 85% (the upper bound).  For this latter interval, the range of values is likely too broad to 

meet the user’s needs.  If the standard errors are unacceptably large, the option exists to augment the 

sample size to reduce the standard errors and thereby narrow the associated confidence interval (see 

Sec. 2.2). 

 The sample size allocation to strata is a critical feature of stratified sampling designs.  The three 

primary allocation options are equal, optimal, and proportional.  Equal allocation is typically used when 

the objectives specify precise estimation of user’s accuracy for each class.  Equal allocation is justified if 

the classes are all considered equally important and all classes have the same user’s accuracy (i.e., p in 

Eq. (1) is the same for all classes).  If classes differ in importance, priority classes should have more 

narrow confidence intervals which can be achieved by decreasing d in Eq. (1).  The effect of decreasing d 

will be to increase the sample size n.  Optimal allocation is justified if the primary objective is to 

minimize the standard error of a single estimate such as overall accuracy or area of one class.  If many 

estimates are of interest, an algorithm to determine the optimal allocation for multiple estimates may 

not be available.  For proportional allocation the sample size nh is proportional to population size Nh in 

stratum h.  Proportional allocation has the benefit of simplicity of analysis because it is an equal 

probability sampling design, so estimation formulas for accuracy and area are the same as for simple 

random sampling (the standard error formulas are different).  However, the practical utility of 

proportional allocation is limited because nearly the same precision of estimates can be achieved via 

poststratified estimation applied to a simple random or systematic sample (see Sec. 4.2).   
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The sample allocation decision becomes complicated when multiple objectives are of interest, 

as for example when estimating area and accuracy for several classes and/or for multiple dates.  The 

challenge is that different sample allocations benefit precision of different estimates, so choosing an 

allocation that is very beneficial to one objective may be detrimental to other objectives in terms of the 

resulting standard errors.  Olofsson et al. (2014) provide some ad hoc guidelines for sample allocation 

when the objectives are to estimate accuracy and area, and Wagner and Stehman (2015) provide a 

spreadsheet program for objectively determining the optimal allocation that simultaneously minimizes 

the sum of the variances of the estimates of user’s accuracy, producer’s accuracy, and area (based on 

the reference classification) of a single target class.  Additional research on sample allocation options is 

needed because multiple objectives are the norm for many present day land cover studies.  The sample 

size question is revisited in the context of comparing accuracy in Section 4.6.  A final important concept 

regarding sample size is that it is the absolute size of the sample not the percent of the population 

sampled that drives the precision of the estimates.  That is, the standard errors for the accuracy and 

area estimators are determined by how large n and nh are.  Even if n and nh are a very small percent of 

the pixels present in the study region, the standard errors of the estimators may be acceptably small 

(Stehman 2001, p. 730). 

 

2.6. Examples of sampling designs used in practice 

A wide variety of sampling designs have been used to assess accuracy of large-area land-cover 

maps (Table 2). The examples listed in Table 2 have been purposely chosen to illustrate this diversity of 

options.  One of the most commonly used sampling designs is stratified random sampling where the 

strata are the map classes.  Olofsson et al. (2014) recommend this design as a good practice option.   

Stratification is a common feature of these examples with regional (geographic) stratification employed 

for the objective of estimating accuracy by region and stratification by land-cover class implemented to 

ensure that rare classes are represented by sufficient sample sizes to address the objective of estimating 

user’s accuracy.  Cluster sampling is also relatively prominent in these applications.  The different 

sampling designs implemented for the series of National Land Cover Datasets (NLCD) of the United 

States (Wickham et al. 2004, 2010, 2013, and 2017) track the evolution of advances in technology and 

mapping objectives (Table 2).  For example, the 1992 NLCD design (Wickham 2004) used cluster 

sampling because of the cost savings associated with collecting the reference data which required 

obtaining hard copy aerial photographs.  The reference class labels for more recent NLCD assessments 

were interpreted from freely available Google Earth and Landsat imagery.  Consequently, cluster 



19 
 

sampling was not used because the cost issue associated with purchase of aerial photographs was no 

longer a consideration.  Stratification was a prominent feature of all NLCD sampling designs.   However, 

the more recent NLCD products included the objective of assessing accuracy of change so the number of 

strata was increased and the strata re-defined to accommodate the objective of estimating the accuracy 

of change.   Sampling designs that use the reference classification to define strata are conspicuously 

absent from these examples (Table 2).  This is because the usual implementation of stratified sampling 

requires that all pixels in the region be assigned to a stratum, and reference class labels are not available 

for all pixels in the entire population.  If complete coverage reference data were available we would 

have no need for sampling to conduct the accuracy assessment.  

The high cost of obtaining accuracy reference data has motivated development of methods to 

improve efficiency of reference data collection.  Having a common repository of reference data 

applicable to assessing accuracy of several map products would be a valuable addition to land cover 

science (Loveland et al. 2000; Wulder et al. 2018, p. 4266; Zhao et al. 2014).  Olofsson et al. (2012) and 

Stehman et al. (2012) described a global sampling design tailored to this purpose, and Tsendbazar et al. 

(2018) implemented a modified version of this design in Africa.  Efforts to implement sampling designs 

for collecting reference data that can be used for multiple maps should continue to be pursued as the 

current practice of collecting reference data for every individual mapping project is clearly an inefficient 

use of resources.  Crowdsourcing and Volunteered Geographic Information (VGI) offer appealing 

possibilities for decreasing the cost of obtaining the reference classifications.  Stehman et al. (2018) 

elucidated the sampling design and inference issues encountered when combining sample VGI and 

authoritative data, and Waldner et al. (2019) implemented a global stratified systematic sample to 

evaluate methodology for augmenting expert interpretation with VGI.  Extracting reference data from 

ongoing land-cover monitoring sampling programs is another possibility to enhance efficiency of 

reference data collection.  For example, the Land Use/Cover Area-frame sample (LUCAS) in Europe has 

been used for accuracy assessments (Gallego 2011) and Kempeneers et al. (2013) used sample data 

from several national forest inventories for accuracy assessment.  Obtaining reference data from two or 

more sampling programs that were not specifically designed to provide accuracy assessment 

information  introduces several challenging issues for use of these data (Stehman et al. 2000), but if 

these issues are addressed data from these programs may enhance accuracy assessment and area 

estimation.    
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2.7. Sampling design for training and validation data 

Using the same data for training and validation can lead to optimistically biased accuracy 

assessments (Hammond and Verbyla 1996).  Consequently, the training sample and the validation 

sample need to be independent of each other which can be achieved by appropriately dividing a single 

sample of reference data or, perhaps more commonly, by acquiring separate samples for training and 

testing.  Moreover, the goals and needs of training are different from those of accuracy assessment and 

hence the optimal sample data for training could be markedly different from that for accuracy 

assessment.  For example, purposive sampling and pragmatic site selection can be perfectly acceptable 

in training a classifier, whereas a probability sampling design is a good practice requirement for accuracy 

assessment.   

Independence of the accuracy assessment sample from the training can be assured simply by 

implementing a separate probability sample for accuracy assessment.  That is, all pixels in the region of 

interest (ROI) have a known and non-zero probability of being included in the reference sample for 

accuracy assessment.  Often the reference sample used for accuracy assessment is selected after the 

map to be assessed has been produced. This allows use of stratified sampling where the strata are 

defined by the map classes.  Constructing the strata from the map does not violate the independence 

requirement as the strata affect only precision of the estimates and using the map for stratification does 

not introduce bias in the accuracy estimators.  

In some applications training and validation data are collected simultaneously from a common 

sampling design followed by random assignment of each sampled pixel to the training or validation set.  

In such applications, a probability sampling design must still be implemented to use design-based 

inference in a rigorous accuracy assessment, even though probability sampling may not be a necessity 

for training data.  If cluster sampling is the probability sampling design implemented, the random 

separation of sample units to training or accuracy assessment should be done at the cluster level rather 

than the pixel level (i.e., if a cluster is randomly assigned to training data, then all sampled pixels within 

that cluster would also be assigned to training data).  If pixels within a sampled cluster are randomly 

assigned to both training and accuracy assessment, the independence of the training and accuracy 

assessment samples is violated.  Several studies have found that optimistic estimates of accuracy are 

produced if individual pixels rather than clusters are the units randomly separated to training and 

validation (Friedl et al. 2000; Zhen et al. 2013; Lyons et al. 2018).   
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Table 2. Example sampling designs used for accuracy assessment (listed in chronological order of 

publication).  The three questions determining a sampling design (Sec. 2.2) are: 1) Are there strata?  2) 

Are there clusters (and if so, what are the primary sampling units (PSU) and secondary sampling units 

(SSU)? 3) What selection protocol was implemented? 

 

Source Strata Clusters Selection Protocol 

Fuller (1994) 32-class environmental 
stratification 

No Simple random 
within strata 

Edwards et al. (1998) 1) 3 ecoregions 
2) Road, off-road within each 
ecoregion 

PSU: USGS 
quadrangle 
SSU: 1 ha block 

1st: Simple random 
within strata 
2nd: Simple random 

Scepan (1999) Map land cover  No Simple random 
within strata 

Nusser and Klaas (2003) 1) 5 geographic strata 
2) Land-cover class 

PSU: 7.5’ 
quadrangle 
SSU: pixel 

1st: Systematic 
within strata 
2nd: Systematic 

Wickham et al. (2004)  
 

1) 10 mapping regions 
2) 60 x 30 km cell 
3) map land cover 

PSU: aerial 
photograph 
SSU: pixel 

1st: One random PSU 
per grid cell 
2nd: Simple random 
within strata  

Wickham et al.  (2010) 1) 10 mapping regions of US 
2) 120 x 120 km cell 
3) map land cover 

PSU: 12 km x 12 
km 
SSU: pixel 

1st: One random PSU 
per grid cell 
2nd: Simple random 
within strata 

Olofsson et al. (2012) and 
Stehman et al. (2012) 

Regional related to 
biogeography 

PSU: 5 km x 5 km 
SSU: variable  

Simple random 
within strata 

Wickham et al. (2013) 1) Mapping regions of US 
2) Map land cover 

No Simple random 
within strata 

Gong et al. (2013) and 
Zhao et al. (2014) 

7000 hexagons globally, 
approximately equal area 

No Simple random 
within strata  

Zimmerman et al. (2013) 1) Three regional strata (PSUs) 
2) Disturbance classes (SSUs) 

PSU: 1/8 x 1/8o 
quadrangles 
SSU:  map pixel 

1st: Simple random 
within strata 
2nd: Stratified 
random 

Fichet et al. (2014) 20 x 20 km cell PSU: 2 km x 2 km 
SSU: point 

1st: One random PSU 
per stratum 
2nd: simple random 

Linke et al. (2017) 1) 5 biomes 
2) Change type within biome 

No Simple random 
within strata 

Wickham et al. (2017) 1) East and west of US 
2) Change (e.g., forest loss) 
and stable classes 

No Simple random 
within strata 

Badjana et al. (2017) Stable and change classes No Simple random 
within strata 

Waldner et al. (2019) Four strata representing mis-
classification probabilities 

No Systematic 
(specialized) 
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3. Response design 

The response design defines how a decision on the agreement between the predicted (map) 

class label and the reference class label is made. Although this may seem a simple task the response 

design entails fundamental issues that greatly influence an accuracy assessment, including specifying the 

spatial unit of the assessment, deciding what ground data or imagery to collect, determining the 

labelling protocol for the reference data, and deciding how thematic agreement will be defined.  Key 

general principles of the response design are identified in this section, but because details of the 

response design are very specific to each land-cover application, we do not delve into individual case 

study examples.  Congalton and Green (1999, Chapter 4) and Olofsson et al. (2014) are good sources for 

additional description of response design options.  

A variety of reference data sources have been used in accuracy assessments. Popular sources 

include data acquired directly in the field and imagery with a spatial resolution considerably smaller 

than that used to produce the land cover product being evaluated. The former may include fieldwork 

undertaken specifically for the accuracy assessment (e.g., Nusser and Klaas 2003) and rigorous 

authoritative studies such as forest inventories (e.g., Wulder et al. 2006b; Kempeneers et al. 2013). The 

latter data source may be aerial photographs (e.g., Wickham et al. 2004), airborne video (e.g., Marsh et 

al. 1994) or fine spatial resolution satellite sensor data such as are available via Google Earth (Gorelick et 

al. 2017; Wickham et al. 2017; Badjana et al. 2017; Tsendbazar et al. 2018). 

In some applications, the same source of imagery used to determine the accuracy assessment 

reference classification may have also been used to produce the map classification.  This typically occurs 

when it is not possible to obtain better imagery for the accuracy assessment.  For example, land-cover 

change studies may be dependent on Landsat imagery both for accuracy assessment and for classifier 

training.  In such applications, it is necessary to obtain the reference classification in a manner that 

ensures better quality than can be obtained from the classifier used to produce the map.  Often better 

quality is achieved by focusing attention on a much smaller area (i.e., the reference sample) and 

employing visual interpretation of the imagery to obtain the reference classification (Cohen et al. 2010).  

Determining the reference classification via a different protocol from that used to produce the map, 

even if both employ common imagery, is acceptable to maintain independence of the reference and 

map classifications.  Moreover, interpreters need not be different from the operator(s) who developed 

the classification as often the team that produced a classification has the most incentive, the most 

resources, and the greatest expertise for obtaining the most accurate reference interpretation.  A major 

benefit of disclosing the sample locations, a feature of reproducibility of the sampling design (Sec. 2.2), 
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is that if there is any doubt regarding impartiality or expertise of the interpreters, the opportunity would 

exist to independently verify the reference class interpretations. 

Even though gold standard reference data are rarely feasible to obtain, it is still essential that 

the reference dataset be more accurate than the map to be evaluated. The selection of reference data 

source, which will vary with data availability and cost constraints, can have important impacts on 

reference data quality.  For example, the quality of the data obtained from fine resolution imagery may 

vary in relation to their date of acquisition relative to that of the data used to generate the land cover 

map (the closer the two data sets are in time the better).   The quality of the data obtained via field 

work or image interpretation may vary with the expertise of the staff involved.   Interpreters trained for 

a specific application are often used to obtain the reference class labels, but reference data derived via 

crowdsourcing have become increasingly available (Fritz et al. 2009; Fonte et al. 2015). Regardless of the 

reference labelling protocol, the quality of the reference data set is important as it can be a source of 

substantial mis-estimation of accuracy and land cover change (Foody 2010, 2013). 

The reference data labelling protocol addresses the conversion of the reference data into a class 

label for comparison against the land cover product to be evaluated.  This includes issues such as the 

minimum mapping unit and rules to allocate a class label. The minimum mapping unit is a fundamental 

variable that should be selected with care; if the unit is too large it may not adequately represent highly 

fragmented land cover mosaics. The rules to label an observation also require careful selection. There 

are many definitions of land cover classes (Ahlqvist 2005; Comber et al. 2005).  The map relevant 

criterion (Sec. 1.2) requires that the definition of classes used for the reference data must be the same 

as those used in mapping, and an implicit assumption in cross-tabulating map and reference data is that 

the classes are exactly the same (Congalton and Green 1999). 

Accuracy assessment based on the analysis of an error matrix is site-specific in that the label in 

the map is compared to a reference label and the spatial unit defines the fundamental geographical 

region upon which the comparison is based. Commonly assessments are undertaken on a pixel, group of 

pixels (e.g. block), or an object basis (Radoux et al. 2011; Stehman and Czaplewski 1998, Table 1; 

Stehman and Wickham 2011).  Pixels are convenient as the basic building block of digital images but are 

artificial units whose boundaries need not relate in any meaningful way to the land cover mosaic on the 

ground. Conversely, objects are (potentially) natural spatial units that relate to real-world land cover 

patches, but the quality of objects is often highly dependent on the method to produce them. The 

analyses employed in a conventional accuracy assessment (Section 4) are typically constructed based on 

the assumption that the spatial unit represents homogeneous cover of a single class. Unfortunately 
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mixed pixels and mixed objects often occur, representing a source of ambiguity and potential error in 

accuracy assessment, and alternative analyses must be considered in such circumstances (Section 6). 

The quantification of accuracy requires rules to define agreement between the map and 

reference classifications. If each classification provides a single label for an assessment unit (e.g., a pixel) 

and the two labels agree the unit would be regarded as being correctly classified. Should the labels 

disagree the map label is deemed to be incorrect, an assertion predicated on the assumption of perfect 

reference data.  Accordingly, all error in the assessment is placed upon the map which may be unfair 

because issues such as geo-reference error in addition to reference label error may be present (Foody 

2008; Verbyla and Hammond 1995). Sometimes the assessment is more difficult, for example, if a spatial 

unit can belong to more than one class. Here, agreement might focus on the dominant class or 

estimated class composition (e.g., Latovic and Olthof 2004) in the map and reference data set. 

Deviations from the common circumstances assumed in the discussion of the core good practice 

may occur such as when the map and reference data do not use the same set of classes or spatial units. 

It is possible to adapt the accuracy assessment to accommodate such circumstances while maintaining 

the statistical rigor and credibility. For example, when the set of classes differ an accuracy assessment 

can be undertaken by bringing them to a common class scheme. Alternatively methods for non-square 

matrices such as entropy-based average mutual information content (Finn 1993; Foody 2006) may be 

used. Similarly, the use of different spatial units can be recognized in the response design of the 

accuracy assessment allowing adaptation from typical per-pixel based assessments for other scenarios 

such as the use of blocks or objects (Stehman and Wickham 2011; Ye et al. 2018). 

Given that many options are available for each of these aspects of protocol in the response 

design, it is critical that a detailed description of the response design is provided to satisfy the 

reproducibility criterion.  Specifically, the following key features of the response design should be 

documented: 1) definition of spatial assessment unit; 2) definition of classes; 3) sources of reference 

data (e.g., imagery, field visit, date of imagery or field visit); 4) specific information collected from each 

source (e.g., direct assignment of a reference class label versus collection of an assortment of attributes 

that are later converted to a reference class label); 5) rules for assigning reference class label(s) based 

on the reference information collected; and 6) specification of how agreement between the map and 

reference classifications is defined.   

Documentation of the response design also requires considerable information to satisfy the 

transparency criterion, such as: 1) if the reference label was determined by human interpreters, 

describe characteristics of the interpreters (i.e., their background, how they were trained); 2) state 
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whether interpreters were unaware of (i.e., “blind” to) the map class of the sample units they were 

interpreting; 3) state whether interpreters were oblivious to information regarding sample allocation to 

strata that might consciously or unconsciously lead to trying to produce reference interpretations that 

would correspond to this known distribution of the sample by strata (e.g., if interpreters know that the 

sample design was equally allocated to strata with 50 pixels per stratum, it is plausible that interpreters 

would produce reference labels that were close to equal per class); and 4) provide information regarding 

the date of reference imagery or reference ground data to allow evaluating whether discrepancies in 

time between data for accuracy assessment and map production could be responsible for some portion 

of classification error.  Land-cover studies that provide thorough explanations contribute to 

transparency and acquire credibility attributable to full disclosure and a self-critical evaluation.  

Acknowledging potential limitations of the assessment provides map users with a more informed 

understanding of the accuracy results and this is preferred to less transparent reporting that would give 

the impression of a stronger assessment than what took place in reality. 

 

4.  Analysis 

The analysis component focuses on: 1) how to organize and summarize information to quantify 

accuracy, and 2) how to estimate accuracy and area from the sample data. Historically, the analysis 

protocol for accuracy assessment has depended on an error matrix and accuracy measures derived from 

the error matrix, specifically overall, user’s, and producer’s accuracies.  The error matrix also includes 

the information needed to estimate the proportion of area of each class based on the reference 

classification.  Because of its ease of interpretation and valuable descriptive information, the error 

matrix should remain a cornerstone of the analysis protocol.  In practice, the analysis should be map 

relevant and statistically rigorous, focusing on easily interpretable accuracy measures.   To be map 

relevant, the error matrix and accuracy estimates must reflect the proportional areal representation of 

the study region (e.g., as shown in Table 3, the row totals of the error matrix represent the proportion of 

area mapped of each class).  The primary requirements for the analysis to satisfy the criterion of 

statistical rigor are to employ consistent estimators and to quantify the variability of the accuracy and 

area estimates by reporting standard errors or confidence intervals (Sections 4.2 and 4.3).  Deviating 

from these exacting requirements for statistical rigor is sometimes justified by an argument for 

pragmatism, but such deviations carry with them the risk that the resulting accuracy and area estimates 

will have poor credibility.  The analysis should also include provisions to assess quality of reference data 

and to evaluate the potential impact that bias and variability of the reference classification may have on 
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the accuracy and area estimates.  Finally, it is important to note that the error matrix supplies a global 

(entire map) level of assessment, but cannot provide information regarding the spatial distribution of 

classification errors.  Consequently, a spatial display of classification error and/or uncertainty may often 

be beneficial (Sec. 4.7). 

 

4.1. Error matrix  

 The error matrix has traditionally provided an effective basis for organizing and summarizing 

agreement between the map and reference classifications (Sec. 1.1).  A population error matrix 

representing a census of reference condition, and the corresponding notation defining population 

parameters used to describe accuracy are displayed in Table 3.  In this error matrix, the rows represent 

the map classification and the columns represent the reference classification.  The cell entry pij is the 

population proportion of area for which the map class is i and the reference class is j.  The main diagonal 

cells of the error matrix represent correct classifications, whereas the off-diagonal cells indicate which 

classes are confused, providing valuable information for improving the map and for users to evaluate 

how specific types of misclassification might affect their applications.  The population error matrix 

simplifies greatly to a 2x2 matrix for the common case of a binary legend (e.g., change and no change, 

burned area and not burned, or water and not water). 

 

Table 3. Population error matrix for a classification with four classes (1-4), where the rows (i) represent 

the map classification and the columns (j) represent the reference classification; pij is the population 

proportion of area with map class i and reference class j. The row (pi+) and column (p+j) marginal totals 

are the sum of the pij values in each row and column. 

  

 Map 1 2 3 4 Total 

User’s 

accuracy 

 

 

1 p11 p12 p13 p14 p1+ p11/p1+ 

2 p21 p22 p23 p24 p2+ p22/p2+ 

3 p31 p32 p33 p34 p3+ p33/p3+ 
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The row and column totals of the population error matrix are important because they quantify 

the area distribution (e.g., fractional cover) of the classes in the ROI.  Given the layout of Table 3, the 

row totals represent the proportion of area of each class according to the map classification and the 

column totals represent the proportion of area according to the reference classification.  The estimated 

row and column totals resulting from the analysis protocol must represent the reality of the ROI to 

satisfy the map relevant criterion (Sec. 1.2).  Normalizing an error matrix (Congalton et al. 1983) is an 

egregious violation of the map relevant criterion as it results in an error matrix in which all row and 

column totals are forced to equal to 1/c (c=number of classes).  Thus a normalized matrix has no basis in 

the reality of the map or ground condition as rarely will all classes be present in equal proportions 

(Stehman 2004).  Further, normalizing an error matrix results in user’s and producer’s accuracies being 

equal and this also will almost never be a real feature of a land-cover map.  

The typical suite of accuracy measures computed from the population error matrix includes 

overall, user’s, and producer’s accuracies.  Overall accuracy is the sum of the entries on the main 

diagonal of the error matrix,   

    𝑂 = ∑ 𝑝𝑖𝑖
𝑐
𝑖=1        (2) 

Overall accuracy has a direct interpretation in terms of area of the ROI as it represents the proportion of 

area correctly classified.  Overall accuracy provides a very coarse assessment because it aggregates 

information over all map classes thereby obscuring important class-specific information.  For example, if 

the map is a binary change/no change classification and change is rare (e.g., 1 or 2% of the total area), a 

naïve map that shows no change will have very high overall accuracy simply because most of the area is 

unchanged.  In this example, class specific information such as user’s and producer’s accuracies or 

quantity disagreement and allocation agreement (described in subsequent equations) would be more 

informative than reporting just overall accuracy.  Overall accuracy does not “overweight” more 

prevalent classes or “underweight” less common classes, but instead incorporates classes proportionally 

to their areal representation in the ROI.   The limitation of overall accuracy is not how it weights or 

4 p41 p42 p43 p44 p4+ p44/p4+ 

Total p+1 p+2 p+3 p+4 1  

Producer’s 

accuracy 

p11/p+1 p22/p+2 p33/p+3 p44/p+4   
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represents class-specific information, but rather that it simply provides no class-specific information.  

Consequently, it is strongly recommended to provide estimates of user’s and producer’s accuracies or to 

provide the error matrix when reporting an accuracy assessment so that these class-specific measures 

can be estimated by others if desired. User’s accuracy for class i, defined as  

𝑈𝑖 = 𝑝𝑖𝑖/𝑝𝑖+       (3) 

quantifies accuracy conditional on the area mapped of each class, the row total pi+.  The complement of 

user’s accuracy (1-Ui) is the commission error rate of class i.  Producer’s accuracy for class j, defined as  

𝑃𝑗 = 𝑝𝑗𝑗/𝑝+𝑗        (4) 

provides a view of accuracy conditional on the reference area of each class, the column total p+j.  The 

complement of producer’s accuracy (1 – Pj) is the omission error rate of class j.   

Having two measures of class-specific accuracy has caused some consternation when the 

objective is to compare accuracy or decide which of two classifiers or maps is better, leading to omnibus 

measures that provide a single value to characterize accuracy of a given class.  Liu et al. (2007) reviewed 

a variety of such measures, including the Dice coefficient, Jaccard’s index of similarity, the average of 

user’s and producer’s accuracy and the harmonic mean of user’s and producer’s accuracy (also called 

Hellden’s Index and F-score).  These omnibus measures treat the off-diagonal cell proportions for a 

given class (pij and pji) as equally important.  An example in which it would be reasonable to make no 

distinction between the off-diagonal entries would be when comparing two analysts who provide 

independent reference interpretations for a common set of pixels in an evaluation of analyst 

consistency.  Because the identity of the two analysts would be interchangeable, it would be reasonable 

to create a single measure of agreement per class between the two analysts.  However, in accuracy 

assessment the map and reference classifications are not interchangeable as errors of omission and 

commission are not interchangeable. Consequently, combining omission error and commission error 

into one measure obscures valuable information.  Omission and commission errors may not be equally 

problematic for the objectives of a given application of the map so having the separate estimates of 

user’s and producer’s accuracies is often critical.  If omnibus measures are reported, they should be 

accompanied by the class-specific measures. 

Non-site-specific accuracy is defined as the difference between the row and column proportions 

of each class,  

   𝑝𝑘+ − 𝑝+𝑘        (5) 

(Congalton and Green 1999).  Because omission and commission errors may negate each other, non-

site-specific accuracy may be close to 0 even if both omission and commission error rates are high.  Non-
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site-specific-accuracy has a direct connection to the objective of area estimation (Sec. 4.3).  For area 

estimation, the target parameter is p+k because the reference classification is considered the best 

assessment of ground condition.  Consequently, non-site-specific accuracy may also be viewed as “map 

bias” in that the difference pk+ – p+k represents the degree to which the proportion of area mapped as 

class k differs from the proportion of area of class k based on the reference classification.  Map bias is 

thus the bias attributable to using pixel counting to estimate the area of each class (i.e., count the 

number of pixels for each class and multiply by the area per pixel).   

Pontius and Millones (2011) proposed partitioning the overall differences between the map and 

reference classifications into two mutually exclusive components, quantity and allocation differences.    

Quantity disagreement of class k is defined as the absolute value of Eq. (5), 

    𝑞𝑘 = |𝑝𝑘+ − 𝑝+𝑘|      (6) 

and overall quantity disagreement (aggregating the class-specific disagreement) is defined as 

    𝑄 = ∑ 𝑞𝑘
𝑐
𝑘=1 2⁄  .      (7) 

Allocation disagreement for class k is defined as  

    𝑎𝑘 = 2𝑚𝑖𝑛[𝑝+𝑘 − 𝑝𝑘𝑘 , 𝑝𝑘+ − 𝑝𝑘𝑘]     (8) 

and overall allocation disagreement as  

    𝐴 = ∑ 𝑎𝑘
𝑐
𝑘=1 2⁄ .      (9) 

Lastly, if total disagreement is defined as  

    𝐷 = 1 − ∑ 𝑝𝑘𝑘
𝑐
𝑘=1       (10) 

overall agreement can be partitioned as the sum of overall quantity disagreement and overall allocation 

disagreement, 

    𝐷 = 𝑄 + 𝐴.       (11) 

Pontius and Santacruz (2014) and Pontius (2019) have further developed this approach to describing 

map quality by partitioning the allocation difference into two components, exchange in which a pair of 

pixels swap class labels (e.g., a pixel classified as A by the map has reference class B and the paired pixel 

is classified as B by the map but has reference class A), and shift in which the allocation difference is not 

exchange.  These components of the difference between the map and reference classifications may 

provide insights into map quality to supplement the understanding gleaned from the error matrix and 

user’s and producer’s accuracies. 

 

4.2. Estimating the error matrix and accuracy from a sample 
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  In practice, the error matrix and associated accuracy measures are estimated from the sample 

of reference data.  The formulas for estimating the cell proportions of the error matrix and overall, 

user’s, and producer’s accuracies depend on the sampling design used.  Satisfying the reproducibility 

criterion requires that the formulas used for estimating accuracy and area and their associated standard 

errors must be clearly documented.  Pragmatically, the estimation formulas must incorporate a weight 

for each sampled pixel u, where the weight is 1/πu (Stehman et al. 2018).  In those cases for which the 

inclusion probabilities are not the same for all sampled pixels, the estimator formulas applied to the 

sample data do not necessarily match the formulas defining the population parameters presented in 

Sec. 4.1.  For example, stratified sampling formulas (Eqs. 12-18) accommodate the fact that pixels 

sampled from different strata may have different inclusion probabilities, πu, and the sample data from 

different strata must be weighted. The dependence of the estimator formulas on the sampling design is 

the essence of the property of consistent estimation (Särndal et al. 1992, Sec. 5.3; Overton and Stehman 

1995) that serves as a necessary ingredient of a statistically rigorous accuracy assessment.  Simply put, 

the consistency property is met by using estimator formulas specific to the sampling design 

implemented. 

The majority of accuracy assessment studies employ simple random, systematic, or stratified 

random sampling.  Stratified estimation formulas (Card 1982) are particularly important because of their 

general utility to all three of these designs. Stratified estimation formulas are, of course, always applied 

to a stratified sampling design.   However, even when the sampling design is simple random or 

systematic,  stratified estimation formulas can be applied, a protocol called poststratification or 

poststratified estimation, where “post” indicates that the strata information is employed after the 

sample has been obtained at the estimation (analysis) stage, but strata are not used in the sampling 

design.  Thus, poststratification uses stratified estimation formulas applied to sample data from an 

unstratified design.  The same information required to implement a stratified sampling design is 

required to implement poststratified estimation.  That is, we must know the stratum to which each pixel 

in the ROI belongs, and we must know the proportion of area of the ROI each stratum occupies.  

We present the stratified estimators because of their common use in practice. For these sample 

estimators we assume that the strata are defined as the classes mapped (e.g., a pixel with map class i is 

assigned to stratum i), and that all pixels have the same area. The stratified estimator (estimators are 

denoted by placing a ^ over the parameter being estimated) for the pij=proportion of area in cell (i, j) of 

the error matrix is  

 �̂�𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖+
         (12)  
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where 𝑊𝑖 is the proportion of area mapped as class i, nij is the number of sample pixels in cell (i, j) of the 

error matrix, and ni+ is the sample size from stratum i.  Estimators for other parameters characterizing 

the error matrix can be produced by substituting  �̂�𝑖𝑗  for pij in the formulas for each parameter.  The 

estimator of overall accuracy is then 

  �̂� = ∑ �̂�𝑖𝑖
𝑐
𝑖=1 = ∑ 𝑊𝑖

𝑛𝑖𝑖

𝑛𝑖+

𝑐
𝑖=1        (13) 

the estimator of user’s accuracy of class i is 

  �̂�𝑖 = �̂�𝑖𝑖/�̂�𝑖+         (14) 

and the estimator of producer’s accuracy of class j is 

  �̂�𝑗 = �̂�𝑗𝑗/�̂�+𝑗         (15) 

where �̂�+𝑗 = ∑ �̂�𝑖𝑗
𝑐
𝑖=1  is the estimated proportion of area in reference class j.  The standard errors of the 

stratified estimators are obtained by taking the square root of the estimated variance, where the 

variance estimators are as follows: 

  �̂�(�̂�) = ∑ 𝑊𝑖
2�̂�𝑖(1 − �̂�𝑖)/(𝑛𝑖+ − 1)𝑐

𝑖=1       (16)  

 

 �̂�(�̂�𝑖) = �̂�𝑖(1 − �̂�𝑖)/(𝑛𝑖+ − 1)       (17) 

 

 �̂�(�̂�𝑗) =
1

�̂�+𝑗
2 [

𝑁𝑗+
2 (1−�̂�𝑗)

2
�̂�𝑗(1−�̂�𝑗)

𝑛𝑗+−1
+ �̂�𝑗

2 ∑ 𝑁𝑖+
2 𝑛𝑖𝑗

𝑛𝑖+
(1 −

𝑛𝑖𝑗

𝑛𝑖+
) /(𝑛𝑖+

𝑐
𝑖≠𝑗 − 1)] (18) 

where �̂�+𝑗 = ∑
𝑁𝑖+

𝑛𝑖+
𝑛𝑖𝑗

𝑐
𝑖=1  is the estimated total number of pixels of reference class 𝑗,  𝑁𝑗+ is the total 

number of pixels of map class j in the entire map, and 𝑛𝑗+ is the sample size of stratum j.  For simple 

random and systematic sampling these are poststratified variance estimators following the 

recommendation of Särndal et al. (1992, Sec. 7.10.2) to “condition” the estimators on the actual sample 

sizes ni+ for each stratum.  Further, for systematic sampling the variance estimators presented above are 

approximations that usually result in overestimation of variance.  

In practice, situations arise in which the map class of a pixel is not the same as the stratum to 

which it belongs, so in such cases the strata do not correspond exactly to the map classes.  For example, 

suppose that a stratified sample is selected using two strata defined by change and no change as 

determined from Map Y.  After the reference sample data have been obtained, the producers of Map Z 

want to use the same reference data for their change/no change classification.  However, some of the 

pixels that were labelled as change by Map Y are not change in Map Z, so for Map Z the stratum to 

which a pixel was assigned when the sample was selected is not necessarily the same as the Map Z class 
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label of the pixel.  These reference sample data may still be used to assess accuracy of Map Z, but the 

conventional stratified formulas (Eqs. 12-18) must be replaced by different formulas based on indicator 

functions (Stehman 2014).  Another common situation for which the strata do not correspond to the 

map classes is when a hierarchical classification legend is employed.  For example, suppose stratified 

sampling is implemented and three of the strata are deciduous forest, coniferous forest, and mixed 

forest.  If a general forest class is defined as the combination of these three classes, this forest class is 

not equivalent to a stratum for this sampling design so we cannot simply combine sample counts from 

the three forest-related strata.  Again an indicator function approach provides the needed general 

framework for estimation that can be applied to this situation (Stehman 2014).  

Estimation formulas for cluster sampling depend on whether one-stage or two-stage cluster 

sampling is implemented and on the specific sampling design employed at each stage.  It is critically 

important that the variance estimation formulas account for the fact that the sample units are clustered 

because otherwise variances may be substantially underestimated.  Stehman (1997a) presents formulas 

relevant to one-stage cluster sampling in which the clusters are selected using simple random sampling.  

Estimation formulas for various two-stage cluster sampling designs may be found in Zimmerman et al. 

(2013), Edwards et al. (1998), Nusser and Klaas (2003), Stehman et al. (2003), and Potapov et al. (2014). 

The variance estimation formulas may become complex when the cluster sampling design includes 

stratification at one or both stages. 

 

4.3. Area estimation 

 Accuracy assessment and area estimation have been closely linked dating back at least to Card 

(1982) as area estimation is a common objective of land cover studies.  Although the area of each class 

can be readily computed from a map (i.e., “pixel counting”), classification errors likely result in bias of 

the map area obtained from pixel counting (Eq. 5).  Consequently, Olofsson et al.’s (2014) good practice 

recommendation is that area estimation should be based on the reference classification because it is the 

best possible assessment of ground condition (although see Waldner and Defourny (2017) for another 

perspective).  The reference classification is available only for the pixels in the sample so it is necessary 

to estimate area from the sample.  In this review, we limit attention to area estimation conducted in 

conjunction with accuracy assessment.  Gallego (2004) and Stehman (2009b) provide expanded 

overviews of area estimation that encompass applications in which accuracy assessment is not an 

objective. 
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 The proportion of area of each class based on the reference classification can be estimated 

directly from the error matrix if the cells of the error matrix are reported in terms of proportion of area 

(Table 3).  For the commonly used sampling designs of simple random, systematic, or stratified random, 

an unbiased estimator of the proportion of area of class k (p+k) is the sum of the estimated error matrix 

cell entries for column k, 

 �̂�+𝑘 = ∑ �̂�𝑖𝑘
𝑐
𝑖=1          (19) 

where �̂�𝑖𝑘  is given by Eq. (12) and c=number of classes.  Note, as explained below, this calculation 

accounts for the effect of errors of omission and commission on the area estimates for a class. The 

variance estimator for �̂�+𝑘 is  

   �̂�(�̂�+𝑘) = ∑ 𝑊𝑖
2�̂�𝑖(1 − �̂�𝑖)/𝑛𝑖+

𝑐
𝑖=1      (20) 

where �̂�𝑖 = �̂�𝑖𝑘/𝑝𝑖+ is the estimated proportion of area of class k in stratum i (Eqs. 19 and 20 assume 

that the strata are equivalent to the map classes).  For simple random and systematic sampling designs, 

Eqs. (19) and (20) represent poststratified estimation of area (Sec. 4.2). 

 

4.3.1 Role of the map in area estimation 

 Although the fundamental data used for area estimation are the reference classifications for the 

sampled pixels, the map still plays the important role of reducing standard errors of these area 

estimates.  In the case of stratified sampling design or poststratified estimation, the map provides the 

information to construct the strata (e.g., Gallego and Bamps 2008).  As a general rule, the more accurate 

the map, the greater the reduction in the standard errors of the area estimates compared to a strategy 

that does not use strata determined from the map.   

Understanding that the role of the map is to reduce standard errors is critical because the 

terminology used for area estimation is sometimes confusing in this regard.  The terms “error-adjusted” 

(Olofsson et al. 2013) or “bias-adjusted” estimator (Stehman 2013) are a source of this confusion.  These 

phrases are based on the intuitively appealing idea that the bias of the pixel counting estimate of area 

can be compensated for by adjusting the area using a sample-based estimate of this bias.  From the 

population error matrix (Table 3), the proportion of area of class k according to the reference 

classification can be expressed as  

 

  𝑝+𝑘 = 𝑝𝑘+ − ∑ 𝑝𝑘𝑗 + ∑ 𝑝𝑖𝑘𝑖≠𝑘𝑗≠𝑘       (21) 

which upon inspection can be viewed as the proportion of area mapped as class k from pixel counting 

(pk+) and then adjusting this area by subtracting the proportion of area of commission error and adding 
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the proportion of area of omission error of class k.  Rather than estimate the three separate 

components of the righthand side of (21), we simply estimate p+k directly using Eq. (19).   

An alternative estimator of proportion of area directly originating from an adjustment of the 

map proportion has been proposed (McRobers and Walters 2012).  That is, the bias of the pixel counting 

map proportion pk+ is given by (𝑝+𝑘 − 𝑝𝑘+).  This bias can be estimated from the sample data, and then 

used to adjust the map proportion pk+ via 

   kkkk pppp ˆˆˆ        (22) 

where the term in parentheses is an estimator of the map bias given by Eq. ( 5), also known as non site-

specific accuracy.  The estimator (22) thus starts with the map proportion of area from pixel counting 

and adjusts that area for map bias estimated from the sample.  Referring to this estimator as bias-

adjusted mis-directs the focus of the role of the map in the process because the phrase bias-adjusted 

implies that the map supplies the fundamental data for the area estimator.  In reality the reference 

sample data are the basis for the estimator of area, and the role of the map is to provide the auxiliary 

information that contributes to reducing the standard error of the area estimator via either stratified 

sampling design or poststratified estimation.  The key consideration regarding the map is not whether 

pixel counting leads to bias but rather how much benefit does the map provide in terms of reducing the 

standard error of the area estimators.  An additional consideration is that the so-called bias adjusted 

estimator (Eq. 22) is not equivalent to the stratified estimator (Eq. 19) (unless the sampling design is 

stratified random).  The stratified estimator (Eq. 19) is generally preferred to the estimator given by Eq. 

(22) because of smaller standard error (Stehman 2013). 

 The sample provides estimates of the total area or proportion of area of each class, whereas the 

map provides the spatially explicit information on how the area of each class is distributed across the 

landscape.  Consequently both the sample-based area estimates and the map spatial depiction are 

critically important.  For consistency, the area mapped for each class would ideally match the area 

estimated from the sample.  It would thus be desirable to adjust the map to create this correspondence 

with class area sample estimates (Song et al. 2017; Healey et al. 2018) or, for example, inventory data 

such as from agriculture and forestry surveys (Ramankutty et al. 2008).  How best to make such area 

adjustments merits further study.  The sample estimates of area have associated uncertainty as 

quantified by the confidence intervals, so techniques to adjust a map to match sample-based estimates 

of area would also need to incorporate the inherent uncertainty of the area estimates. 

4.3.2 Pixel counting versus sample-based estimation of area 
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 The good practice recommendation to estimate area using the reference classification (Olofsson 

et al. 2013, 2014) is based on the premise that the reference classification is obtained with negligible 

error (Sec. 6.1) and variability (Sec. 6.3).  The former may introduce bias of the area estimator and the 

latter will increase the variance of the area estimator.  In reality, reference data error and variability 

thus affect whether estimating area based on a sample of reference data is superior to the pixel 

counting approach to area estimation.   Mean square error (MSE) can be used to decide which approach 

to area estimation, sample-based or pixel counting, is better, where  

 MSE = Variance + Bias2          (23) 

and smaller MSE is preferable because it represents smaller uncertainty (Stehman 2005).  When 

calculating area from the map (pixel counting), the bias is attributable to map classification error (Eq. 5), 

whereas reference data error would be the only source of bias for the sample-based approach to 

estimating area.  In terms of the variance contribution to MSE, the sample-based estimator would 

include contributions from sampling variability, as quantified by the standard error, and variability 

resulting from the reference classification (i.e., interpreter variability, Sec. 6.3).  It is less clear what 

contributions to variance should be considered when calculating area from the map.  The map could be 

considered a census of the ROI in which case there would be no variance contributed from sampling 

variability (Stehman 2005).  However, it would seem reasonable to consider variability of the mapping 

process as relevant, for example variability over different sets of training data or variability over 

different technicians implementing the classification.   

Area estimation plays an important role in land cover science and a variety of considerations 

impact the utility of area estimates produced from pixel counting versus sample-based estimation.  

Uncertainty of the area estimators is one aspect of utility, and quality of reference data, both accuracy 

and consistency, have received greater attention as contributors to the overall uncertainty of area 

estimates.  The conceptual foundation of the comparison of uncertainty requires further development 

to help resolve the question of which approach, pixel counting or sample-based estimation, is better in a 

given application. 

4.4. Reporting accuracy and area 

Early presentations of the error matrix often focused on sample counts by displaying the 

number of sample pixels that fell in each cell of the matrix (Congalton and Green 1999, pp. 46-47; 

Congalton 1991, p.36).  This practice is justifiable for equal probability sampling designs such as simple 
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random and systematic sampling.  However, if the sampling design is not equal probability, an error 

matrix comprised of sample counts does not provide the correct representation of the ROI in terms of 

the area proportions for the cells of the error matrix, thereby violating the map relevant criterion.  

Further, accuracy estimators produced from an error matrix of sample counts will be biased.  Even when 

the sampling design is equal probability, poststratified estimation should typically be implemented and 

this will result in different estimated proportions �̂�𝑖𝑗  from those obtained using the sample counts (see 

the numerical example in the following paragraph).  The recommended reporting format is 

consequently an error matrix expressed in terms of percent or proportion of area (as in Table 3), with an 

error matrix of sample counts provided as an appendix or supplemental information. 

 A numerical example illustrates the basic principles of a statistically rigorous, map relevant 

analysis.  In this example, the error matrix presented as sample counts is provided in Table 4.  Upon 

inspection of Table 4, our attention should immediately be drawn to the fact that the class percentages 

represented by the row totals are all equal, raising a concern regarding the map relevant criterion.  Is 

this mapped region a highly unusual case in which all classes are equally common, or is there an 

alternate explanation?  Given that there are four classes and all row totals are 25%, the most likely 

explanation is that the sampling design used to collect the reference data was stratified by the map 

classes with an equal sample size specified for each class.  The accuracy assessment documentation, as 

per the reproducibility criterion, should be explicit regarding these details of the sampling design to 

avoid the potential for mis-interpretation of the matrix or mis-calculation of accuracy measures.  

Assuming the sampling design was stratified with equal allocation, a simple diagnostic evaluation of 

whether the analysis of the error matrix was conducted appropriately can be obtained by examining the 

overall accuracy reported from the error matrix (Table 4).  If overall accuracy is reported as 75%, based 

on summing the diagonal and dividing by the sample size of n=100, the analysis is likely wrong because 

this calculation of overall accuracy ignores the necessary weighting of different strata (Eq. 13) when 

equal allocation of the sample size to strata is used.  Similarly, if producer’s accuracy is reported as the 

diagonal entry divided by the corresponding column total, this naïve calculation of producer’s accuracy 

is also likely incorrect because again the proper stratified estimation formula (Eq. 15) has not been used. 

 The results of the analysis using the stratified estimation formulas are provided in Table 5.  The 

map relevant criterion specifies that the row and column proportions should be consistent with 

expectations of class composition for the ROI.  In the case of stratified sampling or poststratified 

estimation, the row totals should match closely the proportion of each class computed from the entire 

map (i.e., the row totals in Table 5 are consistent with Wk specified in Table 4).  The Table 5 error matrix 
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results based on using the statistically rigorous, consistent estimators may differ substantially from the 

results of Table 4.  Because user’s accuracy is estimated only from sample data within each stratum, the 

unweighted estimates based on the sample counts from Table 4 are correct.  However, overall and 

producer’s accuracies are estimated from sample data combined over all strata so employing the 

stratified estimation formulas (i.e., the consistent estimators for the stratified design) is a necessity for 

correct estimation.  In this example, the correct (i.e., consistent) estimator of producer’s accuracy yields 

estimates (Table 5) that differ considerably from the naive estimates shown in Table 4 (e.g., for class A 

the correct estimate from Table 5 is 91% versus 70% from Table 4, and for class D the correct estimate is 

43% from Table 5 compared to 73% from Table 4).  This example demonstrates that adherence to 

correct methodology is important as naïve estimation based on the sample counts of Table 4 mis-

represents the reality that is expressed by the results in Table 5. 

 Table 5 also illustrates a recommended format for reporting error matrices.  Cell entries are 

reported as proportion (or percent) of the total area of the ROI which allows for computing estimates of 

overall, user’s, and producer’s accuracies directly from the error matrix.  Reporting standard errors (SE) 

is important because an approximate 95% confidence interval can be constructed as the estimated 

accuracy or area ±1.96*SE to quantify the uncertainty (precision) of the estimates thus providing a key 

indicator of reliability of the estimates.  The row and column totals provide direct representation of the 

composition of the ROI in terms of proportion of area of the map classification and reference 

classification allowing easy confirmation of the map relevant criterion.  Further, map bias (Eq. 5) for 

each class is readily estimated as the difference between the corresponding map and column 

proportions (or percents).   Row and column sample sizes, which strongly impact the standard errors, 

are provided to indicate the number of sample observations that were used for estimating user’s and 

producer’s accuracies as well as proportion of area.  If area estimation is an objective, the standard error 

for the estimated proportion of area of each class based on the reference classification should also be 

included (as it is in Table 5).  Because the proportion of area based on the map classification is known 

from the map and does not have to be estimated from the reference sample, it is unnecessary to include 

a standard error in association with the map proportion of area (row total). 
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Table 4. Error matrix presented in terms of sample counts (nij).  Because the total sample size is 100, the 

cell numbers can also be viewed as percent of area. Wk is the percent of area mapped as class k in the 

ROI.  Naïve producer’s accuracy, calculated as (nkk/n+k)*100%, and naïve overall accuracy, calculated as 

the sum of the diagonal entries (75%), are the estimates obtained if the stratified estimation formulas 

are not used.  User’s accuracy computed as nkk/nk+ from the sample counts is an unbiased estimator. 

     Reference 

Map     A    B    C    D   nk+ User’s(%) Wk(%) 

  A    21     3     1     0   25       84    60 

  B      4   18     0     3   25       72    25 

  C      0     2   20     3   25       80    10 

  D      5     2     2   16   25       64      5 

n+k    30   25   23   22 100 

Naïve Prod(%)   70   72   87   73 

 

Table 5. Estimated error matrix based on sample data in Table 4 and assuming stratified random 

sampling with equal allocation.  Cell entries represent percent of area.  Standard errors are presented in 

parentheses for the user’s and producer’s accuracy estimates.  Estimated overall accuracy is 79.6% with 

a standard error of 5.1% which would yield a 95% confidence interval of 69.5% to 89.7%. 

           Reference        Total         User% 

Map          A       B     C    D    Area%         (SE)    n 

    A       50.4      7.2    2.4   0.0      60.0       84.0 (7.5)  25 

    B         4.0    18.0    0.0   3.0      25.0       72.0 (9.2)  25 

    C         0.0        0.8    8.0   1.2      10.0       80.0 (8.2)  25 

    D         1.0      0.4    0.4   3.2        5.0       64.0 (9.8)  25 

TotalArea% (SE)   55.4(4.9) 26.4(4.6) 10.8(2.6)  7.4(1.9) 

Prod% (SE)   91.0(3.2) 68.2(10.8) 74.1(16.7) 43.2(11.1) 

n        30    25    23    22 

 

4.5. Land-cover change 

The analysis for change accuracy assessment has much in common with single date map 

accuracy assessment as an error matrix and associated accuracy measures are still applicable (Congalton 

and Green 1999).  A starting point for describing accuracy of change is an error matrix for the binary 
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change / no change classification.  Of course, a full transition error matrix (van Oort 2007) that displays 

all class-specific transitions would provide more complete information.  However, for c land-cover 

classes the error matrix of all possible transition and steady state types is c2 x c2, so a full transition error 

matrix may be too unwieldy to be broadly useful in practice.  To reduce the volume of results reported, 

user’s and producer’s accuracies could be limited to more general transitions such as “any class to 

urban” (i.e., urban gain) and “cropland to any class” (i.e., cropland loss) (e.g., Wickham et al. 2017).  

Additional accuracy metrics may be desirable to assess the accuracy of land-cover change 

trajectories over multiple dates.  The approach in the previous paragraph could be used for change 

between any two dates within the time series, but such analyses would be less effective for evaluating a 

long time series trajectory.  Cohen et al. (2010) developed several accuracy measures applicable to a 

time series trajectory in which segments partitioned the time series into periods of forest stability, 

disturbance, and recovery.  These measures were based on the number of segments in the trajectory, 

the labels of the segments, and match scores representing the proportion of the trajectory in which the 

reference and map condition agreed.  Pontius et al. (2017) proposed several ways to summarize change 

information that could be used in accuracy assessment: 1) number of incidents, defined as the number 

of times a pixel experiences a change across all time intervals; 2) number of states, defined as the 

number of different categories that the pixel represents over all time points; and 3) flow matrices which 

express transitions of one category to a different category between two time points.  These change 

accuracy metrics could be obtained from the reference data for each pixel in the reference sample and 

compared to the corresponding map change information to provide the data for estimating accuracy 

metrics.  Simplicity and ease of interpretation are still guiding principles for choosing how to 

characterize accuracy of change products.  Quantifying accuracy of multi-date land-cover products 

remains a challenge and a subject of ongoing research (Wulder et al. 2018, Sec. 4.2).   

 

4.6. Use of accuracy data to compare maps 

Land cover products obtained from remote sensing are often compared to evaluate different 

mapping methods (Khatami et al. 2016). For example, a series of classifiers may be applied to a single 

remotely sensed dataset to determine which yields the most accurate classification, or different 

approaches to classifier training may be used with a single classifier to yield recommendations of 

protocols for the design of the training stage of a particular classifier.  In such studies, the relative 

accuracy of the maps obtained is used to indicate the quality of the mapping method. Such analyses are 

typically undertaken on the assumption that the maps being compared are perfectly co-registered 
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spatially and that the same set of classes are used. Although seemingly straightforward the comparison 

must adhere to protocols that ensure a rigorous and credible comparison can be achieved.  Further, 

map accuracy comparisons may be motivated by different objectives, for example choosing a classifier 

to use for a particular application or evaluating classification procedures under more general conditions 

of application.  These objectives may require different study designs and different inference frameworks 

(Stehman 2006).  In particular, if the results of the comparison are intended to be broadly applicable to 

a range of conditions, more than a single test site needs to be evaluated. 

Because map accuracy is typically estimated from a sample, it is inappropriate to simply 

compare the estimated accuracy (e.g., overall accuracy) directly. Instead, the comparison should take 

into account the variances of the estimates which may be achieved by a test based on use of the 

standard z score (Foody 2009b). In essence this is essentially ensuring that the confidence interval fitted 

to each estimate is considered. This is important because the confidence intervals fitted to two 

dissimilar accuracy estimates may overlap indicating that, at the relevant level of confidence, the 

accuracy parameters (i.e., population values) do not differ statistically from each other. The width of the 

confidence intervals can therefore be important and the analyst has some influence over this as the 

width is inversely related to sample size. The latter should be selected with care as it is quite possible to 

obtain an exceptionally large sample but find that trivial non-meaningful differences appear statistically 

significant (Fleiss et al. 2003; Foody 2009b). Conversely, the use of a sample that is too small may result 

in confidence intervals that are so wide that finding a statistically significant difference is unlikely due to 

lack of statistical power.  Fleiss et al. (2003) and Foody (2009c) provide guidance on choosing the sample 

size in relation to the aim of the study.  

A further consideration in the comparison of accuracy values relates to the data used in their 

derivation. Considering a basic pairwise comparison, a key issue is whether the samples used to 

generate the accuracy assessments are independent or related. Independent samples are often 

assumed and standard equations suitable for such situations are presented (Congalton and Green 1999). 

However, it is common in remote sensing studies to use a single reference dataset in the assessment of 

each classification. For such related or “paired” samples the equations need to be modified to account 

for covariance (Stehman 1997) or an alternative method such as a McNemar test should be used (Foody 

2004). 

In relation to the aim of the comparison, the test to be undertaken often has a directional 

component. Thus, rather than simply looking for a difference in accuracy the a priori objective might be 

to determine if the accuracy of one map is greater than another.  In such circumstances a test of non-
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inferiority or superiority should be undertaken (Fleiss et al. 2003; Foody 2009b). In addition sometimes 

the desire is to show that two maps are of equivalent accuracy. This should not be assessed by showing 

no difference but by showing equivalence. These various tests, whether for difference, non-inferiority, 

superiority or equivalence, can all be undertaken on the basis of the confidence intervals obtained for 

the classifications to be compared (Fleiss et al. 2003; Foody 2009b). 

 

4.7. Spatial description of accuracy 

 The error matrix analyses described in Section 4.1 provide only a global evaluation of thematic 

map accuracy but do not indicate how accuracy may vary spatially across the mapped region (McGwire 

and Fisher 2001). A guide to the spatial variation in map quality can be generated from some classifiers 

by mapping the uncertainty of class allocation. With a standard maximum likelihood classification, for 

example, it is possible to map the probabilities of class membership, likelihood and typicality, on a per-

case basis to indicate the spatial pattern of class allocation uncertainty in addition to the most likely 

class label for each pixel (Foody et al. 1992; Steele et al. 1998). Similar approaches to representing the 

uncertainty of allocation can be made from fuzzy classifiers and machine leaning approaches. While 

representations of the uncertainty of class allocation do help convey useful information on classification 

quality they do not necessarily reflect accuracy; a classifier may, for example, confidently mis-classify 

cases.  

Several approaches to reveal spatial patterns of accuracy have been developed.   Accuracy 

could, for example, be assessed for sub-regions of the map (Foody 2005). For this approach to be viable, 

however, a large reference data set would typically be required.  Spatial modelling techniques have 

been applied to depict accuracy spatially.  For example, Kyriakidis and Dungan (2001) used a 

geostatistical, stochastic simulation approach and Park et al. (2016) employed indicator kriging.  Comber 

et al. (2012) and Comber (2013) applied geographically weighted logistic regression to estimate local 

accuracy, and Tsutsumida and Comber (2015) extended this approach to include the temporal 

dimension of accuracy.  Khatami et al. (2017) developed a method for producing maps of accuracy based 

on the spectral feature space.  For large-area land-cover products, these methods that exploit spatial 

correlation to predict accuracy at unsampled locations may be challenged by the sparse density of the 

reference sample data that is common in practice.  Further, the computing time for some spatial 

prediction methods may be excessive when working with a large area such as a national or global map. 

 

4.8. Kappa  
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The kappa coefficient expressed as a population parameter is 

   κ=
𝑂−∑ 𝑝𝑖+𝑝+𝑖

𝑐
𝑖=1

1−∑ 𝑝𝑖+𝑝+𝑖
𝑐
𝑖=1

        (24) 

Despite Pontius and Millones (2011) provocative “Death to Kappa” proclamation, a cursory review of 

recent published accuracy assessments reveals that reports of kappa’s demise are premature.  Kappa is 

a good illustration of the principle of primacy in which an idea or method introduced in the early stages 

of a developing field will persist despite evidence contraindicating its use.  Although the notion of 

correcting for chance agreement has some intuitive appeal, the criterion of map relevance raises the 

question of how chance agreement is related to the reality of the map.  For example, it is not possible to 

identify actual pixels classified correctly by random chance because chance agreement is a model 

construct and different models yield different chance agreement. Kappa also fails the map relevant 

criterion because as noted by Ye et al. (2018), a random classification is usually not a realistic alternative 

method to create a map. 

Liu et al. (2007) showed that kappa was highly correlated with overall accuracy, which is evident 

from Eq. (24), so reporting both measures is redundant.  In most cases, chance agreement is 

inconsistently applied as kappa is typically reported as an overall value (analogous to overall accuracy) 

but chance-corrected agreement is rarely reported at the individual class level via conditional kappa 

(i.e., chance-corrected analogs to user’s and producer’s accuracies).  Pontius and Millones (2011) stated 

that use of kappa rarely if ever has changed the interpretation or conclusion of an accuracy assessment.  

In practice, kappa seems to be reported more out of a sense of obligation than to provide 

enlightenment of map accuracy.  Thus kappa is to accuracy assessment what the appendix is to the 

human body – it may cause no serious harm if you have it and pay little attention to it, but it does not 

fulfil a necessary function.  

 

5. Statistical inference and accuracy assessment 

 Statistical inference is the process of generalizing from sample data to produce estimates of 

population parameters.  Key elements of inference include how variability and bias of estimators are 

defined.  Design-based inference has traditionally been the inference framework invoked in accuracy 

assessment (Stehman 2000, 2001).  In design-based inference, uncertainty is attributed to the 

randomization present in the sample selection, whereas the observations obtained on each sample unit 

are regarded as fixed constants, not random variables.  Because probability sampling is a necessity when 

using design-based inference, it is consequently a key element contributing to the statistical rigor of 
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accuracy assessment (Stehman 1995; Stehman and Czaplewski 1998).  The emphasis on probability 

sampling as a good practice recommendation (Strahler et al. 2006; Olofsson et al. 2014) is an important 

development in the evolution of accuracy assessment methods.    

As a matter of terminology, “design-based” refers to a method of inference, not a method of 

sampling or estimation.  That is, there is no such thing as a “design-based sample” or a “design-based 

estimator.    Although a probability sample is required to implement design-based inference, data from a 

probability sample could be used in any mode of inference, so “design-based sampling” should not be 

used as a synonym for probability sampling.  Similarly estimators such as the sample proportion and the 

stratified estimators of Eqs. (12-15) are not inherently design-based but the manner in which bias and 

variance of these estimators is defined determines whether it is being used in a design-based or other 

inference setting.   

An assumption of design-based inference is that measurement error is negligible, which in the 

accuracy assessment setting translates to these reference data being correct.  Therefore, design-based 

inference does not directly accommodate the likely reality that some sample units are assigned an 

incorrect reference label or that variability in the assignment of reference labels likely exists (e.g., 

inconsistency among multiple interpreters).  Measurement error models (Särndal et al. 1992, Chapter 

16) are needed to accommodate these features of reference data uncertainty in the estimation methods 

and quantification of variability. 

 Two other approaches to inference are model-based (Valliant et al. 2000) and Bayesian (Green 

and Strawderman 1994; Denham et al. 2009; Magnussen 2009).  As indicated by its name, model-based 

inference requires positing a model that treats the observation recorded for a sampling unit as a 

random variable.  For example, the observation that a pixel is correctly classified would take the form of 

a model predicting whether the observation was y=1 if correctly classified and y=0 otherwise.  The 

model must specify a form for the variance of this random variable and may also specify a functional 

relationship between the target variable of interest for estimation and other auxiliary variables 

observable on the sampling unit.  One of the challenges of model-based inference for accuracy 

assessment is that a model would need to be specified for each accuracy estimate produced.  Further, 

the model assumptions would need to be verified as plausible.  An advantage of model-based inference 

is that it does not require a probability sampling design, although it is suggested that probability 

sampling should still be employed to convey the advantage of objectivity (Valliant et al. 2000, p. 19).  

Model-based inference offers a viable option for using reference data that were not obtained via a 

probability sampling design.  Steele et al. (2003) provide an example of model-based inference applied 
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to accuracy assessment and McRoberts (2006) applied model-based inference to area estimation.  

Magnussen (2015) provides an informative quantitative assessment comparing the variance of 

estimators derived from model-based and design-based inference.   

 Bayesian inference is based on a probability distribution (called the posterior distribution) for 

the parameter of interest where this distribution is conditional on the sample data observed (Denham et 

al. 2009). The Bayesian perspective that a parameter is characterized by a probability distribution is in 

contrast to the design-based approach in which a parameter is viewed as a fixed, albeit unknown 

constant characterizing a population.  The Bayesian approach allows incorporating prior knowledge into 

the assessment, as for example a completed accuracy assessment of a neighboring area (Denham et al. 

2009).  This prior information may enhance the precision of the accuracy estimates.  Denham et al. 

(2009) state, “This approach [Bayesian] may appear to involve more work than a standard analysis, but 

any analysis, Bayesian or frequentist, should involve a similar amount of effort in testing assumptions 

and interpreting the results.”  In reality, one of the main advantages of design-based inference is the 

absence of assumptions and so it requires virtually no effort to verify assumptions.  The primary 

assumption of design-based inference is that the reference data are correct, but Bayesian inference, as 

well as model-based inference, would similarly need to make some accommodation to account for error 

and variability in the reference class labels.   

All three inference options, design-based, model-based, and Bayesian offer a statistically 

rigorous basis for inference.  Design-based inference requires the fewest assumptions, but is dependent 

on probability sampling.  Model-based inference can be applied when a probability sample has not been 

implemented or when the sample size is so small that design-based inference lacks adequate precision 

(e.g., accuracy estimates for small sub-areas).  Bayesian inference offers an alternative perspective of 

how parameters are viewed (i.e., the posterior distribution) and the potential advantage to use prior 

information to enhance precision. 

 

6. Imperfect reference data 

In the context of this article, accuracy assessment is the process of determining the quality of 

the mapped representation of land cover obtained via remote sensing.  In essence, an accuracy 

assessment is based on the assessment of error, the misclassifications where the class label in the 

mapped representation differs from that observed in reality.  Strictly, gold-standard, error-free, 

reference data depicting the ground condition perfectly are required to undertake an accuracy 

assessment.  In reality, the reference data set is just another classification and may contain error.  In 
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recognition of this situation many have called for the reference data set to be of a higher quality than 

the map it is being used to assess (Olofsson et al. 2014). This may be a pragmatic approach to adopt in 

an accuracy assessment but it does not exonerate us from having to consider that the reference 

classification may be imperfect.  In the site-specific approach to accuracy assessment that is used 

widely, disagreements between the map and reference class labelling are taken to indicate an error in 

the map obtained via remote sensing. However, the mapped label could actually be correct and the 

error lies in the reference label, just one way in which accuracy assessments in remote sensing can be 

viewed as being harsh (Foody 2008). 

Determining the reference condition is a challenging aspect of accuracy assessment.  

Imperfections in reference data may include: 1) reference data error (i.e., an incorrect reference class 

label); 2) reference class ambiguity in which a single class label does not adequately characterize the 

reference condition of the pixel; and 3) inconsistent reference class labels (i.e., different interpreters 

assign a different reference class to the same pixel).  These aspects of imperfect reference data are 

discussed in the following three subsections.  Congalton and Green (1993; 1999, Chapter 4), Powell et al. 

(2004), and Defourny et al. (2012) provide additional discussion of specific sources of uncertainty 

associated with reference data.   

 

6.1. Reference data error 

Several studies have explored the effect of reference data error on classification and estimation 

(e.g., Verbyla and Boles 2000; Carlotto 2009; Foody 2010; McRoberts et al. 2018). In the conventional 

approach to accuracy assessment that is stressed in this article, a major concern is that, even if small, 

reference data error may lead to substantial biases in accuracy and area estimators, for example, 

deflating the apparent accuracy for a class and leading to over-estimation of its areal extent (Foody 

2009a). Taking one simple scenario presented in Foody (2013) for a binary classification in which both 

the map being evaluated and the reference data are very accurate, with producer’s accuracy values of 

90% and 95% respectively, the effect of the reference error was to overestimate class abundance (area) 

by nearly a factor of 6. The magnitude of the bias varies with the accuracies of the data sets and the 

abundance of the classes.  For example, Foody (2013) provided an example in which the areal extent of 

a rare class was overestimated by a factor of nearly 40 because of reference data error even when 

accuracy was well within the range of results typically reported in the literature. Reference data error 

also has the undesirable effect of introducing a prevalence dependency into accuracy assessment based 

on measures that are (when using a gold standard reference) prevalent-independent (Foody 2010). 
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Given that a binary error matrix is often used in studies of land cover change and that the class 

of interest, change, is often rare, the mis-estimation may be so large that the effect of reference data 

error should not be ignored (Foody 2013), especially as there are methods to address the issue.   For 

example, if the accuracy of the reference dataset is known it is possible to compute the real accuracy of 

the map rather than the apparent accuracy suggested by naïve interpretation of the error matrix 

(Staquet et al. 1981; Foody 2010). If the reference class accuracy is not well known but there are a set of 

labels for each case, perhaps arising from a series of classifications of the same region or multiple 

interpreters, a latent class analysis may be used to estimate the actual accuracy of the maps (Foody 

2012). Latent class analysis is an example of a model-based approach to accuracy assessment that may 

have considerable potential as an alternative to the standard design-based approaches when reference 

data error is problematic. 

 

6.2. Reference class ambiguity 

Accommodating ambiguity in the reference class of a sample unit has justifiably received a great 

deal of attention.  As a minimum, the percent of ambiguous sample pixels should be documented and it 

should be stated whether such pixels have been included in the estimation of the error matrix and 

accuracy measures.  The recommended approach is that ambiguous pixels should be included in the 

analysis with accommodations to address their potential impact.  In some studies ambiguity of reference 

class labels is addressed by having the interpreters rate their confidence in each interpretation.  

Accuracy results can then be produced for sample subsets defined by these confidence ratings to assess 

if accuracy differs by confidence rating.  For example, if low confidence is associated with greater 

reference data ambiguity, accuracy likely will decrease as confidence declines.  Another option for 

accommodating reference class ambiguity is to assign a primary and an alternate reference label, where 

the alternate label is included when a single label does not suffice to characterize the sample unit.  

Agreement can then be defined as a match between the map class and either the primary or alternate 

reference label (e.g., Wickham et al. 2004; Olofsson et al. 2014).  

The use of primary and alternate labels is closely related to the more elegantly formulated 

linguistic scale fuzzy reference labelling protocol developed by Gopal and Woodcock (1994) in which the 

information recorded for each land cover class of a sample unit would be:  1 = absolutely wrong, 2 = 

understandable but wrong, 3 = reasonable or acceptable answer, 4 = good answer, and 5 = absolutely 

right.  Based on this linguistic scale reference data, two fuzzy accuracy measures are the MAX operator 

in which the map is considered correct if the map label matches the reference class with the greatest 
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value on the linguistic scale, and the RIGHT operator in which the map is considered correct if the map 

class matches a reference class that would be deemed an acceptable answer on the linguistic scale (e.g., 

3, 4, or 5).   Accuracy results based on defining agreement using the primary and alternate reference 

labels will closely approximate the results of the MAX and RIGHT operators (Stehman et al. 2003).  That 

is, agreement based on only the primary reference label will mimic the MAX operator and agreement 

with either the primary or alternate reference label will approximate fuzzy accuracy based on the RIGHT 

operator.  

  Several other extensions have been developed to address the problem of reference class 

ambiguity.  For example, Sarmento et al. (2013) used fuzzy intervals to account for uncertainty in 

linguistic scale reference data.  Hagen (2003) and Hagen-Zanker (2006) developed methods that take 

into consideration spatial uncertainty of the reference data in addition to reference class ambiguity.  

When the reference data for each sampled pixel is recorded as the proportion of area of each class, 

several options exist for quantifying agreement, including methods that could be applied to a soft-

classified map (Finn 1993; Foody 1996; Lewis and Brown 2001; Latifovic and Olthof 2004; Pontius and 

Cheuk 2006; Pontius and Connors 2009).  A potentially challenging aspect of some of these approaches 

is that sample-based estimation formulas have only been provided for equal probability sampling, and 

even for such designs formulas for estimating standard errors may not have been published.  

 

6.3. Inconsistent reference class labelling 

 When the reference classification is obtained by human interpreters, it is highly likely that the 

interpreters will disagree on some proportion of the sample units (Powell et al. 2004).  Interpreter 

variability may impact the analysis in several ways.  If several interpreters view the same sample unit, it 

is common practice to resolve disagreements among interpreters by having the interpreters reach a 

consensus decision or to have an expert interpreter make a final decision on the reference class.  In 

addition to the well recognized issue of how to resolve these interpreter inconsistencies (Sec. 3), there is 

also the impact of variability among interpreters on the standard errors of the accuracy and area 

estimates.  McRoberts et al. (2018) demonstrated that standard errors of area estimates are inflated by 

interpreter variability, and incorporating this added uncertainty into standard error estimates may be 

necessary for a valid assessment of reliability.  Greater attention to and quantification of interpreter 

consistency may motivate new analysis methods to address this longstanding challenge of quality of 

reference data. 
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7. Future needs and directions 

This article has focused on basic methods for conducting a rigorous and credible evaluation of 

map quality. There is considerable scope for additional analyses, to reveal a richer and more informative 

assessment of accuracy.  There are many possible ways in which the basic approach to accuracy 

assessment can be usefully extended.  We discuss several such possibilities in the following subsections. 

 

7.1. Technology and reference data 

Recent technological developments may provide a means to help acquire reference data to 

facilitate accuracy assessments. Three technological developments in particular have revolutionised the 

generation of reference data: citizen sensing, unmanned aerial vehicles, and resources such as Google 

Earth that distribute free high resolution imagery.  Citizen science has a long history and is described by 

a range of terms such as crowdsourcing and VGI (See et al. 2016). But the proliferation of inexpensive 

location aware devices and web 2.0 technology that fosters sharing of information have made it simple 

for potentially anyone to provide geolocated information on land cover.  In addition, this acquisition of 

data can be an active process in which citizens are steered to sites selected (e.g., following a probability 

sampling design) or a passive one in which data acquired by citizens are mined for reference data. The 

former approach has been used to acquire reference data in a range of studies, especially using 

collaborative internet projects (Fritz et al. 2017; Laso Bayas et al. 2017; Foody et al. 2018). If the active 

process does steer the volunteers to a locations selected by a probability sampling design, these data 

can be used in design-based inference.  For example, the Degree Confluence Project (Iwao et al. 2006) 

provides photographs over a systematic grid which can be treated as a probability sample. The passive 

approach has also been used for acquisition of reference data, often involving visual interpretation of 

photography uploaded to internet sites (Iwao et al. 2006; Foody and Boyd 2013; Antoniou et al. 2016). 

Typically these photographs are acquired opportunistically and not from a probability sampling design 

so are not ideally suited to a design-based inference approach to accuracy assessment.  Such data can, 

however, be usefully integrated with reference data acquired by a probability sample to enhance the 

accuracy assessment (Stehman et al. 2018). 

A common concern raised with the use of crowdsourced data such as that made available by 

citizen scientists is its quality, clearly an important issue given the impacts of using imperfect reference 

data noted elsewhere (Sec. 6). However, the accuracy of such data can be evaluated (Foody 2012) and in 

some instances once characterized can be used to aid accurate estimation (Foody et al. 2015). The 

accuracy of citizen derived data can also be comparable to if not superior to authoritative data (e.g., 



49 
 

Dorn et al. 2015).  A variety of strategies to enhance the accuracy of labelling by citizens have also been 

proposed (Foody et al. 2018; Prelec et al. 2017; Navajas et al. 2018). 

The development of drones or unmanned aerial vehicles (UAVs), and especially inexpensive 

systems capable of carrying a basic sensor such as a camera, has revolutionised the acquisition of data 

that could be used as a reference in accuracy assessment (Pla et al. 2017). Critically, a UAV based sensor 

can be deployed to acquire images that may be interpreted to yield the reference classification. This has 

many advantages over ground based data collection.  For example, UAVs can be used to acquire data for 

sites that may be dangerous to visit on foot (e.g., swamp), and the ability of UAV-based sensors to 

rapidly collect data allows acquisition of large data volumes.  Because the location of deployment is in 

the control of the pilot the data acquisition can be steered to sites selected by a probability sampling 

design if desired. 

In many mapping studies the reference data do not arise from field based work but from 

analyses of imagery with a much finer spatial resolution than that used to produce the map being 

evaluated. Commonly, for example, Landsat sensor data may be used to provide reference data for a 

map derived from coarse resolution MODIS data.  As with other data sources concerns with data quality 

arise, the classification of the fine resolution image will contain error and this will impact negatively on 

the accuracy assessment (Foody 2008). However, in many studies a very fine spatial resolution image 

can be an excellent source of high quality reference data.  Such activity was boosted by the launch of a 

series of fine spatial resolution systems such as IKONOS in 1999 that provided multispectral images with 

a resolution of <5 m and further extended by the launch of systems such as Digital Globe’s WorldView 

systems that provide multispectral images with sub-metre resolution (Toutin 2009). Additionally, access 

to such data was substantially increased by their use in resources such as Google Earth. The latter 

provides global coverage of imagery at a variety of resolutions. Most critically in the context of this 

review article it provides fine resolution images, typically from systems such as WorldView, across the 

world in a manner that is easy to use (Gorelick et al. 2017), and such resources are widely used to 

generate reference data to support accuracy assessments (Cha and Park 2007).   

Although the temporal and spatial availability of very high resolution (VHR) imagery is uneven 

(Lesiv et al. 2018), we still advocate that a probability sampling design be implemented for the full 

region (i.e., the sample should not be limited to only those areas for which VHR imagery is available) so 

that design-based inference can be invoked.  However, the transparency criterion of the response 

design will require clear documentation of which sample pixels had VHR available.  Further, the analysis 

may include estimates for the subsets of the sample for which VHR was and was not available to gain 
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some insight into the impact of using different reference data sources for different sample pixels.  In the 

ideal situation the reference classification would be obtained by the same protocol for all sample pixels, 

but under the guiding principle that the best reference data should be used, we would recommend 

using VHR where available even if it means forfeiting uniformity in how the reference class labels are 

obtained.  Clearly employing different sources of reference data for different pixels in the sample may 

create inconsistencies both spatially and temporally in the reference classification, and methods to 

resolve these inconsistencies are needed. 

 

7.2. Importance of classification errors 

In the conventional approach to accuracy assessments all errors are treated equally.  Yet some 

errors may be more serious than others (DeFries and Los 1999; Smits et al. 1999), and thus in these 

studies an accuracy assessment could be enhanced by accounting for differences in error severity. Some 

classes may be more (dis)similar to others for a range of reasons. For example, different classes of forest 

may be more similar in terms of their role in the hydrological cycle than artificial surfaces. In such a 

situation, misclassifications between forest classes would be less serious than those involving a forest 

class and an artificial class.  Mayaux et al. (2006, Table IV) formalize this concept using a matrix of 

thematic distance that can then be incorporated to adjust accuracy estimates based on dissimilarity of 

the classes.  Also, sometimes classes are defined by dividing up a continuum (Ahlqvist 2005) and 

confusion between neighboring classes on the continuum is less severe than confusion of classes 

located at the end points. If the feature being mapped is continuous the analysis protocol must be 

modified from the standard methods used to assess categorical, discrete features.  Fortunately, 

methods to assess accuracy for classifications that range from those with variable degrees of error 

severity (Woodcock and Gopal 2000) through to continuous classes exist (Foody 1996; Riemann et al. 

2010) but may benefit from additional research to facilitate issues such as rigorous comparison. This 

would be valuable in some areas of topical interest such as the study of land cover changes that are less 

severe than transformations of cover, for example modifications such as forest thinning that change the 

character of the land cover but not its class type.  

It is common for the results of an accuracy assessment to be referred to when a map is used. 

However, an accuracy assessment can be more useful than just a descriptive statement of map quality, 

it can be used to enhance studies that use the map.  The impact of different classification errors will 

impact the value of a map for use in a particular application (Stehman 1999b), and identifying the cost 

or loss function of different classification errors on estimation of a target value can be used to compare 
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the expected value of different maps for a given application (de Bruin et al. 2001).  Several recent 

examples illustrate how the results of an accuracy assessment of a map can be used to enhance the 

analysis and interpretation of land cover studies using that map.  Estes et al. (2017) provided a 

comprehensive assessment of how errors in cropland maps could impact downstream analyses of 

estimation of carbon stocks, simulation of evapotranspiration, disaggregation of crop yield and 

production, and simulation of household dynamics.  In addition to assessing how quantitative estimates 

were influenced by land cover map errors, Estes et al. (2017) also noted the importance of evaluating 

how map errors impact the ability to locate specific features of interest, such as areas of high cropland 

cover.  Tsendbazar et al. (2016) compared the fitness for use of several global land cover maps for 

applications such as general circulation models, agriculture assessments, and biodiversity assessments.  

Their approach was to produce weighted accuracy estimates based on incorporating similarity matrices 

where similarity between classes was determined specific for each application of the global maps.  

Foody (2015) illustrates another important use of accuracy assessment results by demonstrating how 

valuations of ecosystem services derived from land cover class areal extent can differ substantially when 

adjustments are made for classification error.  Olofsson et al. (2013) used confidence intervals for the 

area estimates obtained from an accuracy assessment to conduct a sensitivity analysis of a carbon flux 

model, illustrating another way in which an accuracy assessment may inform applications of the map. 

   

 

7.3. Other dimensions of map quality 

As well as an increasing array of data sources to inform an accuracy assessment there is scope to 

look at other map quality dimensions. The core focus of this article has been on thematic accuracy but 

other indicators of map quality such as consistency, reliability, trust, and precision may be considered 

(Fonte et al. 2015). Also, it may be helpful to explore issues of locational accuracy or completeness. The 

various aspects of data quality may also gainfully be used together.  For example, a high locational 

accuracy is implicitly assumed with standard site-specific accuracy assessments, so a small mis-location 

error, such as one pixel error, could substantially degrade a per-pixel accuracy assessment of a region of 

heterogeneous land cover.  Some means to accommodate locational error within the accuracy 

assessment may provide a degree of tolerance that makes the approach less harsh (Foody 2008).  For 

example, accuracy results can be reported for the subset of homogeneous locations, where 

homogeneity is defined as all pixels in a 3x3 window centered on the sample pixel having the same map 

class.  The difference in accuracy estimates for the homogeneous subset compared to the full sample 
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provides an indication of the potential impact of spatial misregistration between the map and reference 

data as sample pixels within the homogeneous subset should not be greatly affected by geolocation 

error.  The non-homogeneous subset will generally have lower accuracy because of the possibility of 

geolocation error but also because this subset includes all edge pixels which are generally more difficult 

to classify correctly. 

 

7.4. Object-based accuracy assessment 

Object-based image analysis (OBIA) has become an increasingly popular approach in land-cover 

mapping (e.g., Blaschke et al. 2014). Ye et al. (2018) provide a comprehensive critique of OBIA map 

accuracy assessment based on their review of 209 articles published between 2003 and 2017. Assessing 

the accuracy of OBIA maps introduces new dimensions to all three component protocols of accuracy 

assessment because of the variable sizes of the objects mapped (Stehman and Czaplewski 1998).  For 

example, depending on how the sample is selected, the inclusion probabilities may be a function of the 

area of the objects.  That is, if objects are sampled based on whether they are intersected by points of a 

systematic grid, the inclusion probability will be proportional to the area of the object, so objects of 

greater area will have greater inclusion probabilities.  Such a design still yields a probability sample but 

accounting for these unequal inclusion probabilities adds complexity to the analysis.  To avoid this 

unequal inclusion probability feature, a list of all objects could be constructed and the sampled objects 

selected with equal inclusion probabilities from this list.  An object-based assessment also introduces 

response design issues such as choice of assessment unit (map polygon, reference polygon, or pixel), 

heterogeneity of land cover within a polygon, and definition of agreement.  Ye et al. (2018) state that 

based on their review of the literature there was no straightforward way to match mapped polygons 

with reference polygons. Further, when the objects differ in size accuracy measures will need to take 

object area into account if an area-based accuracy assessment is desired.  Radoux et al. (2011), Radoux 

and Bogaert (2017), Stehman and Wickham (2011) and Whiteside et al. (2014) addressed various 

aspects of accuracy assessment of OBIA maps.  Ye et al. (2018) concluded that “… the literature shows 

no obvious method to assess the accuracy of OBIA maps in a manner that appreciates that OBIA maps 

consist of objects of various shapes and sizes.”  The good practice recommendations of Radoux and 

Bogaert (2017) provide progress in this direction as protocols continue to be developed and tested in 

practice. 

  

7.5. Eliminating bad practice 
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It is hoped that in the future not only will good practices (Olofsson et al. 2014) be followed but 

aspects of bad practice eliminated.  Following earlier discussion, three examples of bad practice that are 

widespread are the often unjustified use of 85% target accuracy, normalisation of the error matrix, and 

chance correction of agreement.  While a target accuracy is a desirable feature in an accuracy 

assessment, the target should be selected for the application at-hand. The 85% target value had a clear 

and well-justified place in the literature, linked to Anderson (1971) for large area mapping of broad land 

cover classes, but it is not and should not be considered universally applicable (Foody 2008). The key 

accuracy metrics and their targets should be identified in advance of the analysis and these targets 

should be application specific to indicate fitness for purpose.  Thus the 85% threshold has no universal 

status despite sometimes being used as such.  Normalisation of the error matrix is touted as an aid to 

the interpretation of an error matrix but its use is undesirable not least because it has the effect of 

equalizing the producer’s and user’s accuracy which may be meaningfully different (Stehman 2004). Last 

but not least, the community should cease to correct for chance agreement. The latter may have some 

value in assessing the performance of a classifier but it has no place in the assessment of map accuracy. 

The source of misclassifications or correct allocations is not a necessary component of an accuracy 

assessment. Thus widely used measures such as the kappa coefficient of agreement should not be used. 

The latter measures provide only an indication of accuracy that is highly correlated with overall 

accuracy, from which it is calculated, and conveys no useful new information on map accuracy.  

Numerous calls for kappa to be removed from the community’s toolbox (Foody 1992; Stehman 1997b; 

Pontius and Millones 2011) need finally to be heeded. 

 

8. Conclusions 

 Accuracy assessment has a long history and its origins and development have paralleled the 

development of remote sensing methods to map land cover.  The error matrix and associated user’s, 

producer’s, and overall accuracies have remained core elements of accuracy assessment.  Having served 

well in this capacity for nearly half a century, the error matrix and estimates of accuracy and area 

derived from the error matrix should continue to be relied upon as standard practice.  Accuracy 

assessment has expanded beyond the error matrix to account for imperfect reference data and to 

provide better spatial representation of error.  The critical role of sampling to obtain the reference data 

was recognized early on (Hord and Brooner 1976; Hay 1979; Fitzpatrick-Lins 1981), and the recognition 

of design-based inference as the traditional approach for inference in this sampling context formalized 

the meaning of “statistically rigorous” when applied to accuracy assessment (Stehman 2000).  
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Specifically, statistical rigor can be achieved by implementing a probability sampling design and applying 

statistically consistent estimators (i.e., formulas specific to the sampling design used to collect the 

reference data).   

Advances in the availability and quality of reference data (e.g., very high resolution imagery, 

internet access to Google Earth) have transformed response designs from dependence on hard copy 

aerial photographs and expensive ground visits to intensive human interpretation of multiple data 

sources at a desktop computer.  The development of tools such as TimeSync (Cohen et al. 2010), Collect 

Earth (Bey et al. 2016) and LACO-wiki (See et al. 2017) for convenient and efficient acquisition of 

imagery and other sources of reference data for use in the response design  offers a major advance over 

the early days of accuracy assessment.  Citizen science has opened up potentially new options for 

obtaining reference data that will surely continue to be explored.  Response design methodology has 

advanced beyond simply recognizing that reference data are not “ground truth” to specifying the 

impacts of reference data error and variability and having options for accounting for reference error and 

for quantifying the contribution of reference data variability to the total variance.   

Advances in remote sensing technology have enhanced the spatial and temporal scale of issues 

that can be studied and reinforced the importance of rigorous and map relevant accuracy assessments 

(Wulder et al. 2018).  National, continental, and global land-cover mapping efforts have led to 

development and implementation of accuracy assessments for these very expansive map coverages.  

The greater availability and ease of access to imagery has created the opportunity for monitoring land 

cover at a much denser temporal frequency.  Accordingly, accuracy assessment methodology must 

progress to develop methods capable of assessing these long time series, land-cover change products.  

The increasing popularity of object-based mapping methods has brought about yet other needs for 

methodological advances in accuracy assessment.  

 Much has been accomplished in the nearly 50 years of theory, methods, and applications of 

accuracy assessment and area estimation in the study of land cover.  We can no doubt expect advances 

to continue as new technology as well as new opportunities and challenges arise in the study of Earth’s 

land cover.  In the meantime, it is critical that practitioners implement current methodology in a manner 

that ensures a statistically rigorous and map relevant accuracy assessment.  Documentation of accuracy 

assessments must certainly improve to enhance transparency and facilitate reproducibility of 

methodology and results.  Greater attention to quality assurance of reference data will also contribute 

to the overall reliability of accuracy assessments.  Practitioners should continue to aspire to resolve the 
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present day challenges of accuracy assessment as we move into the next half century of studying land 

cover.   
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