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A B S T R A C T   

This study explores how condition monitoring (CM) can help operate offshore wind turbines (OWTs) effectively 
and economically. In this paper, the Petri Net (PN) simulation models are developed to quantitatively assess the 
OWT availability and operation and maintenance (O&M) costs. By investigating the impact of two CM ap
proaches (i.e. purpose-designed CM and Supervisory Control and Data Acquisition (SCADA)-based CM) and their 
combinations with various maintenance strategies, the paper addresses two fundamental questions about OWT 
CM that have plagued the offshore wind sector for many years. They are ‘is a wind farm SCADA system a viable 
alternative to purpose-designed condition monitoring system (CMS)’ and ‘what is the best way to integrate CMSs 
and maintenance strategies to maximise the financial benefit of OWTs’. The research suggests that although 
utilising both a wind farm SCADA system and a purpose-designed CMS can achieve the highest turbine avail
ability, it is not the most cost-effective option in terms of maintenance expenses. Instead, combining purpose- 
designed CM with less frequent advanced service can achieve the desired availability at the lowest cost. 
Furthermore, the use of a purpose-designed CMS is essential for the economical operation of OWTs and cannot be 
replaced by the current wind farm SCADA system.   

1. Introduction 

Wind power has been widely recognised as a viable means of miti
gating climate change [1]. Although most wind turbines today operate 
on land, there is a growing trend towards deploying larger wind turbines 
offshore, where there are better wind resources and less visual impact, 
noise pollution, and land use issues [2]. According to the Global Wind 
Report published by GWEC, offshore wind farms (OWFs) have expanded 
greatly over the past decade, and global offshore wind capacity addi
tions are expected to exceed 70 GW in 2021–2025 [3]. According to the 
data published in the UK Wind Energy Database, as of mid-August 2022, 
the UK has 11,198 wind turbines with a total installed capacity of over 
25.5 GW, of which 11.3 GW is offshore [4]. These wind turbines 
contributed about 28.8% of the UK’s electricity generation in the first 
quarter of 2022, making wind power the UK’s largest source of renew
able electricity with a 63.3% share. The UK Government has pledged to 
further expand offshore wind capacity over the next few years to secure 
50 GW of offshore wind capacity by 2030. However, the offshore wind 
industry is currently under intense pressure to reduce the Levelised cost 
of energy (LCOE) [3,5]. Today, this pressure is being exacerbated as 

wind farms are moved further offshore, where the operation and 
maintenance (O&M) costs and the unavailability of offshore wind tur
bines (OWTs) may increase exponentially due to the increased offshore 
distance [6–8]. Many studies have shown that maintenance costs pose a 
non-negligible financial risk to wind power projects [9–12]. In addition, 
harsh environments at remote OWFs and rising charter rate of wind farm 
maintenance vessels will further worsen the situation. 

To address this issue, various wind turbine condition monitoring 
(CM) techniques have been studied over the past decade, as a successful 
condition monitoring system (CMS) is believed to be able to detect 
incipient faults, avoid catastrophic failure, assess fault severity, and 
even predict the remaining useful life of defective components. Thus, 
CM has been widely accepted by the wind industry as a common means 
of guiding O&M and reducing power generation costs [9]. A review of 
the literature highlights that, to date, the effort on wind turbine CM is 
mainly focused on the research of the following two types of CM ap
proaches [13,14]. 

The purpose-designed CM approach is specifically designed for 
monitoring a particular wind turbine component or subassembly. For 
example, Frequency Response Transmissibility Analysis was proposed 
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specifically for detecting and locating fractures that occur in wind tur
bine composite blades [15]; the oil debris counting technique was used 
specifically for monitoring the health condition of wind turbine gearbox 
[13,14]; Vibration analysis methods were developed for monitoring the 
health of wind turbine drive trains [16]; Variational mode decomposi
tion was applied to assessing the health condition of wind turbine 
bearing and generator [17]; Load independent technique was developed 
dedicatedly for predicting the optimum maintenance time of wind tur
bine bearings [18]; etc. More details about recent advances in research 
of these kinds of techniques can be found in [19]. Such techniques 
enable early detection and location of faults in wind turbine components 
and subassemblies. However, their results are affected by time-varying 
wind loads, which can sometimes result in incorrect judgments. For 
this reason, their effectiveness in practice is sometimes unsatisfactory 
[13,20]. In addition, the application of such techniques requires multi
ple sensors and dedicated data acquisition systems. This is an additional 
hardware investment, and moreover the sensors and data acquisition 
systems are power electronics, which are less reliable in offshore envi
ronments and therefore also require regular calibration and mainte
nance. This results in additional maintenance costs. 

Another type of CM approach is developed based on the wind farm 
Supervisory Control and Data Acquisition (SCADA) system. In contrast 
to purpose-designed CM techniques, the SCADA-based techniques are 
more cost-effective because the SCADA system is already installed in the 
wind farm and no additional hardware investment is needed [13,21]. 
Moreover, the SCADA system has collected operational and performance 
data for critical wind turbine components, which can be used for CM 
purposes. For example, Yang and his colleagues investigated the po
tential of SCADA data for wind turbine CM [21,22]; Xiang et al. devel
oped a convolutional neural network to detect wind turbine fault from 
SCADA data [23]; McKinnon et al. investigated the accuracy of three 
different fault detection techniques based on SCADA data [24]; Pandit 
and Infield developed a SCADA-based wind turbine CM technique with 
the aid of Gaussian process models [25]; Castellani et al. analysed 
SCADA data for detecting faults occurring in wind turbine generators 
[26], etc. More details about the state-of-the-art of this kind of technique 
can be found in [27]. However, it is worth noting that wind farm SCADA 
systems were not designed for CM purpose. They collect data by using a 
very low sampling frequency (usually one data value every 10 min). 
Therefore, the collected SCADA data cannot provide all the information 
needed for CM. Coupled with improper threshold settings, wind farm 
SCADA systems often generate false alarms in practical use [13,28–30]. 
The frequent false alarms significantly increase unnecessary site visits 
and wind turbine downtime, resulting in huge financial and power 
generation losses. 

As noted above, both wind turbine CM approaches have pros and 
cons and hence, operators often face a dilemma when deciding whether 
to invest in a purpose-designed CMS for their OWTs, particularly when 
cost reduction is a key concern. An alternative solution is to invest in 
building a stronger wind turbine O&M team to achieve the desired 
availability of wind turbines. This may work when operating easily 
accessible wind farms on land, but applying the same method to oper
ating remote OWFs would be very risky for operators. Some of the risks, 
e.g. thrown ice pieces from wind turbines, cold stress to workers, tower 
collapse, etc., have been reported or predicted in [31–34]. In addition to 
these risks, two factors also need to be taken into account when selecting 
a CM approach. Firstly, the availability of an OWT is not only deter
mined by how quickly the defective component can be repaired or 
replaced but is also dependant on the long waiting time for favourable 
weather for site visits. Such a fact cannot be changed by building a 
strong O&M team. Secondly, a purpose-designed CMS adds extra cost 
but can provide early fault alerts, giving people enough lead time to 
schedule cost-effective maintenance. By contrast, a SCADA-based CMS is 
almost free but lacks early fault warning capabilities. Sudden failures of 
wind turbines often result in prolonged downtime or even catastrophic 
damage to the entire wind turbine or adjacent facilities. 

In addition to CMSs and maintenance strategies, many other factors 
can affect wind turbine availability and O&M costs, such as spare parts 
availability, the reliability of wind turbine components, weather con
ditions, etc. [35,36]. The impact of these factors may greatly dilute the 
contribution of CMSs. To date, the combined effects of these factors and 
their complementary management strategies on improving the effective 
management of wind farms remain unexplored. The unique contribution 
of this paper to the field is distinguished by answering the following two 
fundamental questions that have plagued the wind power industry for 
many years.  

(1) Is a wind farm SCADA system a viable alternative to purpose- 
designed condition monitoring system (CMS). 

(2) What is the best way to integrate CMSs and maintenance strate
gies to maximise the financial benefit of OWTs. 

A mathematical modelling framework based on Petri nets (PNs) is 
developed in this paper to simulate the operation and impact of each 
type of CMS and different maintenance strategies. While developing the 
PN models, the false alarms triggered by CMSs and their impact on the 
O&M of OWTs and economics of wind power are carefully considered. 
As far as the authors are aware, no prior research has explored this area 
in existing literature. 

The remaining part of the paper is organised as follows. In Section 2, 
a typical OWT structure and maintenance strategies are defined. In 
Section 3, the PN modelling technique is briefly reviewed. In Section 4, 
four PN models that consider multiple OWF factors are developed. In 
Section 5, simulation calculations are implemented using the PN models 
developed to investigate the impact of CM on the performance of the 
OWT. In Section 6, the paper concludes with key research findings and a 
description of future work. 

2. Definition of offshore wind turbine structures and 
maintenance strategies 

2.1. Offshore wind turbine structures 

The six main subassemblies of the horizontal-axis OWTs, as depicted 
in Fig. 1, will be considered in the following research. They are the rotor 
system, yaw and pitch (YP) system, drivetrain system, braking system, 
power system, and turbine housing and support structures, respectively. 

In the six subassemblies,   

• the rotor system is composed of the blades and the hub;  
• the YP system controls the yaw angle of the nacelle and the pitch 

angle of the blades to ensure that the OWT is always aligned with 
the wind direction and efficiently captures energy from the wind of 
various speed;  

• the drivetrain system consists of the main bearing, main shaft, and 
gearbox; 

• the braking system is responsible for slowing down the wind tur
bine and even locking it if needed. For example, the braking sys
tem will shut down the wind turbine whenever the wind speed is 
found to exceed the turbine’s cut-off speed [6,37];  

• the power system converts mechanical torque into electrical power 
and ensures that the frequency and voltage of the electricity 
generated meet grid requirements;  

• the turbine structures include the nacelle, tower, and foundations 
of the wind turbine. 

To facilitate the study, the health state of these subsystems is clas
sified into four categories, i.e. normal, minor fault, critical fault, and 
failure [38]. The subsystem is still allowed to operate in the presence of a 
minor or critical fault. In comparison with minor faults, critical faults are 
more detectable by the CMSs due to excessive vibration or more heat 
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generation. Different wind turbine components have different critical 
characteristics (e.g. temperature, vibration and current), resulting in 
varying false alarm rates at different stages of fault development for 
different components. If the fault is not detected or repaired in time, it 
may cause the failure of the subsystem. It is assumed that the failure of 
any subsystem will trigger a turbine shutdown to prevent further dam
age to the entire machine. 

In the study, the natural deterioration process of each subsystem is 
assumed to follow a Weibull distribution, of which the parameters are 
derived from the wind turbine failure rate data published in the open 
literature. As it is found that the failure rates reported in [39,40] differed 
considerably from those in [38], both sets of failure rate data were 
adopted in this paper. This also highlights the flexibility of the devel
oped modelling framework, which can be easily adjusted for different 
OWTs. They are listed in Table 1. As in the work of Le and Andrews [38], 
the scale parameters (η) in the distributions are used to calculate the 
time that it takes for a normal subsystem to develop a minor fault, a 
critical fault, and finally the complete failure of the subsystem. In [38], a 
relatively crude estimation was used to obtain the scale paraments (η) of 

subsystems residing in the normal, degraded and critical states covering 
a certain percentage of the Mean Time to Failure (MTTF) as shown in 
Table 1. The MTTF of each subsystem is the inverse of the failure rate 
which is also listed in Table 1. The shape parameters (β) of the distri
butions are assumed to be 1.2, which is larger than 1, to reflect the 
increasing deterioration rates of mechanical components as recom
mended in [38]. In practical application, the values of η and β can be 
updated once the corresponding failure rate data becomes available. 

2.2. Maintenance strategies 

Three kinds of maintenance strategies, i.e. corrective maintenance, 
periodic maintenance, and condition-based maintenance, are usually 
adopted to improve the availability of the OWT [41,42]. They are also 
employed in this study and are specifically defined as follows. 

Corrective maintenance in this study is conducted only after a sub
system completely fails (i.e., a ‘failure’ occurs). Subsequently, the op
erators conduct a comprehensive turbine inspection, taking advantage 
of the readily available personnel and equipment. This should improve 
the safety and availability of the OWTs but results in extended downtime 
due to the prolonged corrective maintenance. 

Periodic maintenance is performed at predefined intervals, but it 
causes many unnecessary site visits and huge financial losses in practice 
[43,44]. To overcome this issue, in this paper, it is classified into two 
types, namely ‘basic service’ (BS) and ‘advanced service’ (AS), as 
described in [33]. The BS aims only to find and fix those issues that 
frequently occur and are easy to fix but difficult to monitor, such as the 
looseness of bolts, loose connection of signal lead, leak of lubrication oil, 
etc. In contrast, all wind turbine subsystems will be inspected during the 
AS to find and fix any problems that have not been detected by CMSs. 
Consequently, the AS will take a longer time than the BS. 

The condition-based maintenance involves continuously monitoring 
of OWTs, where maintenance decisions are based on the actual health 
conditions of the turbines. Hence, its effectiveness heavily relies on the 
fault detection capability of the CMSs (e.g. the purpose-designed wind 
turbine CMS or the SCADA-based CMS in the paper). 

The overall logic of the O&M strategy adopted in this study is shown 
in Fig. 2. In the figure, three different maintenance processes, ‘Mainte
nance 1′, ‘Maintenance 2′, and ‘Maintenance 3′ are performed for fixing 
‘minor faults’, ‘critical faults’, and subsystem ‘failures’, respectively. 
They are different in terms of cost, time, and resources. ‘Maintenance 3′ 
includes not only subsystem failure repairs, but also a full inspection of 
the entire OWT to find and fix all other problems present in the turbine. 
In the study, it is assumed that  

• The OWT is operational initially.  
• In the presence of a minor or critical fault,  

○ if the CMS fails to detect the fault, the OWT will continue to 
operate with the fault, a check will be performed to see if the fault 
will be detected in the next AS in time. If ‘Yes’, the fault will be 
fixed by performing ‘Maintenance 1′ or ‘Maintenance 2′. If ‘No’, the 
fault will further deteriorate and develop into a more serious one, 
e.g., from a ‘minor fault’ to a ‘critical fault’ or from a ‘critical fault’ 
to a subsystem ‘failure’.  

○ if the CMS successfully detects the fault, the model will judge 
whether an AS is scheduled or in progress. If ‘Yes’, ‘Maintenance 1′ 
or ‘Maintenance 2′ will be performed to fix the fault during the 
period of the AS. Otherwise, the OWT will continue its operation 
while necessary preparations are made for maintenance. Once 
everything is ready, ‘Maintenance 1′ or ‘Maintenance 2′ will be 
performed.  

• In the presence of a subsystem failure, the OWT will be shut down 
and ‘Maintenance 3′ will be performed to repair the fault.  

• It is assumed that the health state of a subsystem after maintenance is 
‘as good as new’. 

Fig. 1. Main subassemblies of horizontal-axis offshore wind turbines.  

Table 1 
Failure rates of wind turbine subsystems.  

Subsystem Annual failure rate (/year) Percentage share in MTTF  

Dataset-A  
[38] 

Dataset-B 
[39,40] 

Normal Minor 
fault 

Critical 
fault 

Rotor system 0.0868 0.1600 70% 20% 10% 
Drivetrain 

system 
0.0600 0.1600 70% 25% 5% 

Power system 0.1430 0.1430 70% 25% 5% 
YP system 0.1534 0.5100 70% 20% 10% 
Braking 

system 
0.0799 0.1000 70% 20% 10% 

Structure 0.0790 0.1000 70% 20% 10%  
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3. A brief review of Petri net-based modelling technology 

PNs have been increasingly adopted in reliability studies because 
they are not only able to provide an intuitive graphical representation of 
a system but also have great capabilities to model complex dynamic 
behaviours in a system [45–49]. For example, Yan et al. used PNs to 
assess the reliability and availability of automated guided vehicle sys
tems [50]. Lee and Mitici adopted the PN method to assess the safety and 
efficiency of different aircraft maintenance strategies [51]. Rui et al. 
developed PN models to study the reliability of information networks 
[52]. Wang et al. proposed a method based on PNs to evaluate the 
reliability of manufacturing systems. In the field of offshore wind en
ergy, PN methods have often been used to assess and optimise the 
maintenance strategies for OWTs. For example, Le and Andrews adopted 
the PN method to simulate the deterioration processes of wind turbine 
subsystems, maintenance processes and the function of the CMS [38]. 
Leigh and Dunnett developed a PN-based simulation model to optimise 
the maintenance process for an OWT [39]. Müller and Bertsche used PNs 

to assess and optimise the availability and maintainability of an OWF 
[53]. Elusakin et al. developed a PN model to simulate the O&M of 
floating OWTs [54]. However, how CMSs and O&M strategies can 
complement each other to improve the availability and reduce the O&M 
costs of OWTs has not, to the authors’ knowledge, been studied before. 
Hence, this paper aims to fill this knowledge gap. 

In this paper, four types of symbols are adopted to visualise PNs. 
They are illustrated in Fig. 3. 

In Fig. 3, the circles in the first row represent the places, which are 
conditions or states of a system, such as working or failure. Coloured 
patterns inside the circles are used to represent special properties of 
these places as described in [33]. The condition place, marked with 
yellow-horizontal lines in the figure, can force the model to perform 
predefined actions if the conditions set for the place are met. The place 
filled with red-vertical lines can terminate the simulation if a token is 
placed in it. Rectangles represent the transitions, which are actions or 
events causing the change of condition or state. If the time of the tran
sition is zero, the rectangle will be filled black, otherwise it is empty. 

Fig. 2. The overall logic of the operation and maintenance strategy for the OWT.  

Fig. 3. Symbols used in the PN models [33].  
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Small solid black circles shown in the bottom row of Fig. 3 are used to 
represent tokens in the places. Arrows, known as arcs, are used to con
nect places and transitions. Arcs with a slash on and a number, n, next to 
the slash represent a combination of n single arcs and the arc is said to 
have a weight of n. The dashed arrow shown in the figure is a conditional 
arc. If the transition connected to a conditional arc is enabled, the 
probability of the expected tokens being produced in the output places is 
predefined. In addition, an arc with a small circle on one end is known as 
an inhibitor arc. This can prevent a transition from firing when enabled. 
A transition is enabled if the number of tokens in every input place is 
greater than or equal to the corresponding weights of the arcs to the 
transition. Once a transition is enabled, it will fire after the time asso
ciated with it has elapsed and the tokens will be removed from the input 
places and put into the output places according to the weight of the 
corresponding arcs. The movement of the tokens gives the dynamic 
property of the PNs. If there are two arcs with their arrows pointing in 
opposing directions between a place and a transition, then they can be 
combined into a single arc with arrows at both ends. 

To ease understanding, Fig. 4 shows an example of the PN model. In 
this example, the net has two input places and one output place con
nected by a timed transition indicated by a blank rectangle with a time 
delay, t. There are two and three tokens in the top and bottom input 
places respectively. The two input places are connected by arcs of weight 
1 and weight 2. It should be noted that the top arc is double-headed, 
which means it is not only an input arc but also an output arc. The 
output place is connected by an arc of weight 1. As shown in the net on 
the left of the figure, the transition is enabled, hence after the delay of 
time t associated with the transition, the number of tokens indicated by 
the arc weights will be removed from the input places and placed in the 
output place. By following the rules outlined above, one token will be 
removed from the top input place and two tokens will be removed from 
the bottom input place. Also, one token is placed in the output place and 
another one is placed back in the top input place. 

4. Dynamic PN modelling of the O&M of an offshore wind 
turbine 

In this section, four PN models are developed to simulate the O&M of 
an OWT. They are   

(1) Operation Petri net (OPN) – for simulating the normal operation 
and periodic maintenance of an OWT. In the OPN, the lifetime of 
the OWT and the interval of the periodic maintenance will be 
defined.  

(2) System Petri net (SPN) – for simulating the degradation, the 
health state of the OWT subsystems over time, and the shutdown 
of the turbine due to failure.  

(3) Detection Petri net (DPN) – for simulating fault detection by the 
CMSs.  

(4) Recovery and Maintenance Petri net (RMPN) – for simulating the 
process to prepare and conduct maintenance when a subsystem 
fails or a subsystem fault is detected. 

These PNs work together and communicate with each other, as 

shown in Fig. 5. It should be noted that the OPN and SPN are two core 
models for the simulation, their structures will not change over the 
whole modelling process. The other two PN models, i.e. DPN and RMPN, 
are called upon in the simulation as needed. This can be achieved by 
importing new places, transitions, tokens, and connections (i.e. arcs) 
defined in the DPN and RMPN models into the existing PN structure. 
They will be removed from the simulation when the assigned PN 
simulation task is completed or cancelled. The details of the nets are 
explained in the following sections. 

4.1. Operation Petri net (OPN) 

The OPN adapted from [33] is designed to simulate the normal 
operation and periodic maintenance throughout the life cycle of an 
OWT. It is illustrated in Fig. 6. 

In Fig. 6, the top part of the PN labelled ‘Operation of the wind 
turbine’ governs the normal operation of the OWT throughout its life
time. Transition ‘S1’ represents the lifetime of the OWT, which is set to 
be 20 years in this paper, as in [39,55,56]. A token produced in the place 
‘End of design life’ after the firing of Transition ‘S1’ means the end of the 
operation of the OWT, which also indicates the end of one iteration of 
the simulation. 

The middle part, labelled as ‘Periodic maintenance’, is developed to 
simulate the periodic maintenance of the OWT. Both the AS and BS 
mentioned earlier are included in the model. Transitions ‘PM1’ and 
‘PM3’ represent the time intervals between the maintenance for the two 
levels of service BS and AS, respectively. Transitions ‘PM2’ and ‘PM5’ 
represent the times that are required respectively for performing the BS 
and AS. They are assumed to be 6 h and 120 h, respectively. It is 
important to note that the turbine should be stopped while performing 
these services. The BS is performed regularly for checking non-major 
issues that frequently occur but difficult to monitor in practice, so that 
they will not cause extra failure beyond those considered in the simu
lation model. In the study, it is assumed that all faults can be detected 
and restores the components to an ‘as good as new’ state in an AS. 
Herein, it is worth noting that three types of wind farm maintenance 
vessels, i.e., crew transfer vessel (CT), jack-up vessel (JU), and crane 
vessel (CS), are considered in this study for repairing different types of 
faults. The details of this will be further explained later in this section. In 
the models, each AS requires one JU to conduct most of the maintenance 
tasks and the cost for charting the vessel has been included, but the cost 
of the CS will be calculated separately if needed. 

The bottom part labelled ‘Time of year’ is developed to model the 
progression of time throughout a year. Different from the PN model 
developed in [33], this part simulates the time of year instead of directly 
simulating weather conditions. Considering wind speed can significantly 
affect the waiting time for favourable weather to conduct inspection and 
maintenance in the RMPNs and the average wind speed in summer is 
usually lower than the average wind speed in winter [57,58], this part of 
the model divides the annual time into two periods, i.e. April to the end 
of September and October to the end of the following March. This is one 
of the factors that most studies choose to ignore due to its complexity. 

Fig. 4. Example of an enabled transition.  
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4.2. System Petri nets (SPNs) 

The SPNs are developed to simulate the degradation process over 
time and the health states of the OWT subsystems. As mentioned in 
Section 2, the health states of the subsystems are categorised as 
‘Normal’, ‘Minor fault’, ‘Critical fault’, and subsystem ‘Failure’. As 
shown in Fig. 7, the degradation time from ‘Normal’ to ‘Minor fault’ is 
indicated by Transitions ‘W1’ to ‘W6’, and the degradation time from 
‘Minor fault’ to ‘Critical fault’ is indicated by Transitions ‘W7’ to ‘W12’, 
respectively. Whenever a token is produced in any of the condition 
places representing fault conditions, the information is passed on to the 
DPNs to simulate the fault detection by the CMSs. 

If the fault is not detected or repaired in time, the subsystem will fail 
eventually. The corresponding degradation time from ‘Critical fault’ to 
subsystem ‘Failure’ is indicated by Transitions ‘W13’ to ‘W18’. Herein, it 
is assumed that time associated with Transitions ‘W1’ to ‘W18’ follow 
Weibull distributions that are characterised by the shape parameters (β) 
and scale parameters (η) defined in Table 2. The shape parameters in the 
distributions are assumed to be larger than 1 for all six subsystems in 

order to capture the gradual deterioration of the subsystems over time. 
As described in Section 2, two sets of failure rate data from different 
sources are considered in this paper to investigate the impact of the 
reliability of the OWTs on their availability and O&M costs. 

In the model, the OWT will be shut down immediately upon the 
failure of any subsystem. This is modelled by Transitions ‘W19’ to ‘W24’. 
Once a token is produced in the place, ‘OWT shutdown’, the OWT will be 
shut down and the information about the subsystem failure will be fed to 
the corresponding RMPNs. 

After the failed subsystem is repaired, a token will be given to the 
place, ‘Wind turbine recovered’, and then Transition ‘W25’ will be 
activated for conducting a full inspection of the entire OWT. The time 
associated with the full inspection is assumed to be 5 days. As mentioned 
earlier, it is assumed that apart from the subsystem failure, all other 
problems present in the OWT can be found and fixed by performing a full 
inspection. 

Fig. 5. Interactions between PNs [33].  

Fig. 6. Operation Petri net (OPN).  
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Fig. 7. System Petri Net (SPN).  

Table 2 
Weibull distribution parameters for Transitions ‘W1’ to ‘W17’.  

Transition Parameters Transition Parameters  

β η (year)  β η (year)   

Dataset-A Dataset-B   Dataset-A Dataset-B 

W1 1.2 8.06 4.38 W10 1.2 1.30 0.39 
W2 1.2 11.67 4.38 W11 1.2 2.50 2.00 
W3 1.2 4.90 4.90 W12 1.2 2.53 2.00 
W4 1.2 4.56 1.37 W13 1.2 1.15 0.63 
W5 1.2 8.76 7.00 W14 1.2 1.67 0.63 
W6 1.2 8.86 7.00 W15 1.2 0.70 0.70 
W7 1.2 2.30 1.25 W16 1.2 0.65 0.20 
W8 1.2 3.33 1.25 W17 1.2 1.25 1.00 
W9 1.2 1.40 1.40 W18 1.2 1.26 1.00  
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4.3. Detection Petri nets (DPNs) 

Two DPNs are developed for respectively modelling the conditions 
and the monitoring process of the purpose-designed CMSs and the 
SCADA-based CMSs. Their net structures are the same. To facilitate 
understanding, the DPN for simulating the purpose-designed CMSs is 
illustrated in Fig. 8. Each DPN consist of two parts. As shown in Fig. 8, 
the first part of the DPNs is for simulating the health condition of the 
hardware in the purpose-designed CMSs, e.g., the health state of sensors 
and data acquisition (DAQ) system. It is assumed that the sensor groups 
for monitoring different subsystems can appear in three possible health 
states, i.e. working properly, failed, and working improperly (i.e., 
generating inaccurate signals due to the performance drift of the sen
sors). For example, a token in the place, ‘CMS - rotor sensor group 
working’, indicates that the sensor group for monitoring the rotor are 
normal and functioning properly. In the figure, Transition ‘C1’ repre
sents the time duration before a false message about the rotor condition 
is generated, while Transition ‘C2’ represents simulates the time dura
tion before the rotor sensor group fails. Once it fails, the health condition 
of the rotor will be unknown and the sensor group will be repaired 
during the next AS. These transitions are assumed to follow exponential 
distributions. The firing of Transition ‘C1’ means that the sensor will 
generate a false message about the health condition of the rotor, which 
could be ‘normal’, ‘Minor fault’, or ‘Critical fault’. Their occurrence 
probabilities are assumed to be 0.4, 0.5, and 0.1, respectively. In the 
figure, this process is modelled by Transition ‘C15’. Besides sensors, the 
DAQ system could also fail, which is modelled by Transition ‘C13’. Once 
the DAQ system fails, the CMS will be completely unable to monitor any 

subsystem. The failure rates and false alarm rates of the CMS are listed in 
Table 3, sourced from [29,30,59]. In the study, it is assumed that false 
messages will be resolved during the BS and AS, and the failure of the 
CMSs can only be fixed during the AS. It is necessary to note that the 
CMS may indicate that a subsystem is functioning correctly even if there 
is a fault present. This could lead to a situation where no maintenance is 
carried out. Conversely, a false alarm may also be triggered by the CMS 
without any actual fault in the subsystem. Such false alarms could result 
in unnecessary site visits and the chartering of vessels. Assume that the 
OWF operators have complete trust in the CMS, they will schedule 
various vessels to rectify the false alarm’s reported fault. Additionally, if 
either a CT, a JU, or a CS is chartered, the OWT must be halted for 2, 5, 
and 8 h, respectively, to investigate for any potential minor or critical 
faults in the OWT. These time periods are determined based on the in
spection and docking times required. 

The second part of the DPNs, as shown in Fig. 9, simulates the fault 
detection process by the purpose-designed CMS and wind farm SCADA 

Fig. 8. PNs for simulating the health and operation of the CMSs.  

Table 3 
Failure rate and false alarm rates of hardware systems [23,24,46].  

Subsystem Annual failure rate 
(/year) 

Annual false alarm rate 
(/year) 

SCADA sensor group for each 
subsystem 

0.06 0.2 

SCADA DAQ system 0.05 – 
CMS sensor group for each 

subsystem 
0.06 3 

CMS DAQ system 0.05 –  
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system. In the presence of a fault, the information about the specific 
subsystem where the fault arises and the severity level of the fault will be 
given to the DPNs. As a result, the probability that the fault can be 
detected by each monitoring system will be given to the conditional arcs, 
represented by the dashed arrow lines in the figure. Both purpose- 
designed CMS and wind farm SCADA system are considered in the 
study. The subsystems that they can monitor and the corresponding 
probability that the fault can be detected by each monitoring system (i.e. 
Fault detection capability) are given in Table 4. They are assumed based 
on expert knowledge and the data given in [13]. 

Then, the health states of the corresponding sensor group and the 
DAQ systems of both monitoring systems will also be fed to this part of 
the DPN. This is achieved by reading the token markings in the first part 
of the DPNs depicted in Fig. 8 and then giving tokens to the corre
sponding places of the PNs in Fig. 9. The second part of the DPNs will be 
activated by placing a token in the places, ‘CMS detection’ and/or 
‘SCADA detection’. Transitions ‘D1’ and ‘D2’ represent the fault detec
tion process when the purpose-designed CMS and SCADA system work 
properly. If the purpose-designed CMS and/or SCADA system cannot 
work properly, Transitions ‘D3’ and/or ‘D4’ with a short time delay 
(0.000001 s) will fire. Once a token is produced in the places ‘Detected 
by CMS’ and/or ‘Detected by SCADA’, the corresponding information 
about the fault will be fed to the RMPNs to initiate access to essential 
maintenance resources, followed by a site visit to fix the identified fault. 
If the fault is not detected by the CMS, a token will be produced in the 
place, ‘Not detected by CMS’. Similarly, if the fault is not detected by the 
SCADA system, a token will be produced in the place, ‘Not detected by 
SCADA’. If neither the purpose-designed CMS nor the SCADA system 
detects the fault, no further action will be taken. In other words, 
whenever at least one of the monitoring systems detects the fault, 

appropriate maintenance procedures will be implemented. 

4.4. Recovery and maintenance Petri nets (RMPNs) 

The RMPNs are developed to simulate the preparation and imple
mentation of corresponding maintenance when a subsystem fails or a 
subsystem fault is detected by the CMSs. As mentioned earlier, three 
types of vessels, i.e. CT, JU, and CS, are considered in this study for 
conducting the maintenance of different types of faults or subsystem 
failures, as in [38]. The CT is small in size and has limited lifting capacity 
(1 to 1.5 tonnes), primarily used to transport people and small tools or 
spare parts. The JU features a jack-up platform and increased lifting 
capacity, which enables it to perform more complex maintenance and 
part installation tasks. The CS is a kind of heavy lift vessel equipped with 
powerful cranes for carrying out the repair or installation of oversized 
and heavy OWT components. In the study, larger vessels can also 
conduct the maintenance tasks assigned to smaller vessels. For example, 
a minor fault will be assigned to the JU vessel already chartered for 
another maintenance task, rather than charter a new CT. An RMPN 
dedicated to each type of vessel is developed to differentiate these ves
sels in terms of charter rate and time required to operate. The structure 
of the RMPNs for different vessels will be the same, but the times for 
each stage will be different. To ease understanding, an example of RMPN 
is given in Fig. 10. 

In Fig. 10, once a subsystem failure occurs or a subsystem fault is 
detected, a repair request will be made via instant transition, ‘M1’. 
Transition ’M2’ represents the time required to arrange a meeting to 
plan the maintenance. Transition ‘M3’ models the time required for 
approving the maintenance plan. After firing Transition ‘M3’, the tokens 
produced in the places ‘Charter vessel’ and ‘Organise crews, tools and 
spare parts’ will enable Transitions ‘M4’ and ‘M5’, respectively. Tran
sitions ‘M4’ and ‘M5’ represent the time required for chartering the 
appropriate maintenance vessel and waiting for the vessel to arrive at 
the port, organising maintenance crews, collecting maintenance tools, 
and preparing spare parts. These times are assumed to follow a normal 
distribution with mean and standard deviation given by µ and σ. If there 
are spare parts stored onsite, Transition ‘M6’ will also be enabled. Its 
distribution time will be much shorter than the time of Transition ‘M5’. 
Once all the preparation works are completed, Transition ‘M7’ will fire, 
which indicates that the corresponding maintenance vessel is ready to 
go. After the maintenance vessel arrives at the port where the wind 

Fig. 9. Detection Petri Nets (DPNs).  

Table 4 
Fault detection capability for each subsystem of the OWT.  

Subsystem Detectability of SCADA system Detectability of CMS  

Minor fault Critical fault Minor fault Critical fault 

Rotor system 0.25 0.50 – – 
Drivetrain system 0.40 0.80 0.50 0.90 
Power system 0.40 0.80 0.80 0.95 
YP system 0.40 0.80 0.70 0.90 
Braking system 0.30 0.80 0.70 0.95 
Structures – – 0.50 0.90  
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turbine spare parts are stored, two scenarios may occur: one is where the 
maintenance time window is sufficient, and the other is where the time 
window is insufficient. The arcs, represented by the dashed arrow lines, 
connect Transition ‘M7’ with Places ‘Sufficient time window’ and 
‘Insufficient time window’. The probabilities that a token transfers to 
either of the two places are dependant on the seasons in a year. In the 
research, it is assumed that the probability of having a sufficiently long 
maintenance window is 0.8 from April to September and 0.6 from 
October to March. Of the two Transitions ‘M8’ and ‘M9’, the former 
indicates the time required to load spare parts and repair tools on board 
when the weather is favourable for wind farm maintenance. In contrast, 
the latter, which follows the Weibull distribution, represents the time to 
wait for favourable weather conditions to ensure a sufficient time 
window. 

After the vessel arrives at the site, the maintenance crew will spend 
some time preparing for the maintenance to take place, which is indi
cated by Transition ‘M10’. The time it takes for the maintenance crew to 
perform the maintenance is indicated by Transition ‘M11’. The param
eters for all transitions in RMPNs are listed in Table 5. Due to the lack of 
real data for these parameters, all data in Table 5 are hypothetical and 
based on expert knowledge. This has only been used to facilitate the 
model development and these parameters would need to be updated in 
future practical applications according to the actual situation of the 
OWTs of interest. Finally, a token will be produced in the place, 
‘Maintenance completed’, indicating that the current maintenance has 

been completed and the new health status of the corresponding sub
system will be fed back to the SPNs. The vessel required and the average 
costs for different types of maintenance are listed in Table 6. They are 
cited from [38]. It is necessary to note that the monitoring systems are 

Fig. 10. Recovery and Maintenance Petri Nets (RMPNs).  

Table 5 
Timed transition parameters for RMPNs.  

Transition Type Parameters (hour)   

Crew transfer vessel Jack-up vessel Crane vessel 

M1 constant 0 0 0 
M2 constant 12 12 12 
M3 constant 24 24 24 
M4 Normal μ = 24, σ = 9.6 μ = 168, σ = 33.6 μ = 480, σ = 96 
M5 Normal μ = 120, σ = 24 μ = 240, σ = 48 μ = 360, σ = 72 
M6 Normal μ = 24, σ = 4.8 μ = 48, σ = 9.6 μ = 72, σ = 14.4 
M7 constant 0 0 0 
M8 constant 24 24 24 
M9 Weibull β = 3.2, η = 1008 (OCT-MAR) 

η = 504 (APR-SEP) 
β = 3.5, η = 504 (OCT-MAR) 
η = 252 (APR-SEP) 

β = 3.1, η = 1008 (OCT-MAR) 
η = 504 (APR-SEP) 

M10 constant 1800 3600 10,800 
M11 constant 2 (Clear false alarm) 

3 (Minor fault) 
10 (Critical fault) 
50 (Failure) 

5 (Clear false alarm) 
10 (Minor fault) 
50 (Critical fault) 
70 (Failure) 

8 (Clear false alarm) 
10 (Minor fault) 
50 (Critical fault) 
70 (Failure)  

Table 6 
The vessel required and the average costs for different types of maintenance.  

OWT 
Subsystems 

Vessel required Repair/replacement cost (£)  

Minor 
fault 

Critical 
fault 

Failure Minor 
fault 

Critical 
fault 

Failure 

Rotor system CT JU CS 3000 44,000 200,000 
Drivetrain 

system 
CT JU CS 5000 37,000 260,000 

Power 
system 

JU JU CS 12,000 30,000 150,000 

YP system CT JU CS 7000 9000 23,000 
Braking 

system 
JU JU CS 2000 2000 4000 

Structures CT CS CS 5000 40,000 264,000 
SCADA/CMS 

sensor 
group 

– – – – – 1000 

SCADA/CMS 
DAQ 
system 

– – – – – 10,000  
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only maintained during the AS. 

5. Investigation of the impact of CM on the performance of 
offshore wind turbines 

In the following, different wind farm O&M scenarios will be simu
lated by using the PN models developed in Section 4 to reveal the impact 
of CM on the performance of the OWT. The relevant calculations are 
performed on a personal computer with the Windows 10 operating 
system. The specification of the computer is Intel(R) Core(TM) i7–7500 
U CPU @ 2.70 GHz, 16 GB RAM. The calculations are implemented by 
the following steps.  

(1) Place tokens in the initialisation places of the PNs described in 
Section 4. Initialise the simulation time by setting t = 0 s.  

(2) Randomly sample the values of transition times in the model 
based on the data listed in Tables 1 to 6.  

(3) Determine the earliest timed transition to switch and fire it.  
(4) Update the tokens in the PNs, and recompute the time of the 

transition fired.  
(5) If a token is produced in a condition place or a terminate place, 

activate the predefined corresponding conditions.  
(6) Find the next transition to switch and fire it. Repeat Steps 4 and 5.  
(7) Repeat Step 6 until the lifetime of the OWT is reached. 
(8) Iterate the above simulation until the defined number of itera

tions is reached. 

First of all, a study was conducted to find the appropriate number of 
simulation iterations (n) that are needed to ensure the convergence of 
calculation results. In the calculation, the failure data from Dataset-A, in 
Tables 1 and 2, are considered. The conclusion obtained should be also 
applicable to the simulations based on the data from Dataset-B. This is 
because Dataset-A comprises smaller failure rate values, which means 
more simulation iterations will be required to achieve convergence. 
Fig. 11 shows the calculated average number of subsystem failures as a 
function of n. From the figure, It can be observed that the results for all 
six subsystems eventually converge to stable values after surpassing 
30,000 iterations. To ensure the utmost reliability of the simulation 
results, 50,000 simulation iterations will be conducted in all subsequent 
calculations in this paper. 

5.1. Impact of CM on turbine availability 

This subsection investigates the impact of applying purpose-designed 
CMS and SCADA systems on turbine availability when using different 
wind farm maintenance strategies. In the investigation, the failure data 
from Dataset-A are considered and it is assumed that  

• the lifetime of the OWT is 20 years  
• both purpose-designed CMS and SCADA system are employed  
• the time interval of the AS is 2 years  
• spare parts stock is sufficient 
• the time duration and cost of the BS are the same whether recali

bration is carried out or not  
• a 5-day full inspection is conducted following each failure recovery 

Then, the average number of system failures recovered (F), the 
average number of minor and critical faults repaired (MFD, CFD) after 
being detected by the monitoring systems, and average the number of 
minor and critical faults repaired (MFI, CFI) after being found in the AS 
and full inspection following failure recovery are calculated. The 
calculation results are listed in Table 7. 

From Table 7, it is found that the number of subsystem failures that 
cause shutdown within the lifetime of the OWT is only 0.164, although 
15.080 minor subsystem faults (12.092 detected by monitoring systems 
and 2.988 found in full inspection) and 1.221 critical faults (0.961 
detected by monitoring systems and 0.260 found in full inspection) are 
repaired before getting worse and causing failure. amongst the six 
subsystems, the YP system experiences the most failures, followed by the 

Fig. 11. Average number of subsystem failures as a function of number of simulation iterations.  

Table 7 
The average number of recovered failures and repaired faults within the lifetime.  

Subsystem Contribution from 
monitoring systems 

Contribution from 
maintenance strategies 

F  

MFD CFD MFI CFI  

Rotor 1.524 0.095 0.590 0.075 0.041 
Drivetrain 1.098 0.079 0.391 0.015 0.004 
Power system 3.374 0.199 0.395 0.035 0.028 
YP system 3.355 0.310 0.527 0.050 0.047 
Braking system 1.755 0.087 0.329 0.016 0.006 
Structure 0.986 0.191 0.755 0.069 0.038 
Sum 12.092 0.961 2.988 0.260 0.164 

13.053 3.248  
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rotor system and drivetrain system. The braking system has the mini
mum number of failures, which is 0.006. Notably, the number of faults 
fixed after being detected by monitoring systems is as high as 13.053 
times, while the number of faults fixed after being found in the AS and 
full inspection following failure recovery is only 3.248 times. This 
demonstrates the important contribution of the monitoring systems to 
the O&M of OWFs. 

In order to obtain the optimal mix of the monitoring systems and the 
O&M strategies and thus achieve the highest OWT availability, five 
different maintenance strategies are investigated. They are listed in 
Table 8. In the calculations, different input settings of the PN models are 
used in each strategy for revealing the different impacts of these settings 
on the availability of the OWT. 

In each strategy, four different scenarios for using the monitoring 
systems are considered. They are (1) no monitoring system, (2) only the 
SCADA system, (3) only the purpose-designed CMS system, and (4) both 
the SCADA and purpose-designed CMS, respectively. By applying the 
above settings, the availability of the OWT in the 20-year lifetime is 
calculated, and the obtained simulation results are illustrated in Fig. 12. 

From the calculation results shown in Fig. 12, it can be inferred that  

• In the absence of monitoring systems, higher turbine availability can 
be achieved by performing frequent AS. However, the availability 
achieved by this method is still lower than that achieved with either 
monitoring system. This means that CM is indispensable, and it 
cannot be replaced by simply strengthening the maintenance of wind 
farms. 

• Compared to scenarios without any monitoring system, the appli
cation of the SCADA-based CMS can significantly improve avail
ability. However, the SCADA system should be calibrated regularly, 
otherwise, the increased false alarms will lead to more unnecessary 
site visits, ultimately reducing the availability of the OWT.  

• The purpose-designed CMS outperforms the SCADA system in 
improving the availability of the OWT and mitigates the impact of 
‘no recalibration’ and ‘no stored spare’. Moreover, the use of the 
purpose-designed CMS enables the frequency of the AS to be 
reduced. Satisfactory OWT availability can still be obtained even 
without periodic calibration of the CMS.  

• When the AS is infrequent, the combined use of the purpose-designed 
CMS and SCADA system can lead to the highest availability of the 
OWT. By contrast, when the AS is frequently executed, the combined 
use of the two types of monitoring systems will reduce the avail
ability of the turbine due to the increase in downtime caused by the 
AS, full inspection following fault recovery, and false alarms. 

• amongst all 20 cases shown in Fig. 12, the highest turbine avail
ability can be achieved by using the two types of monitoring systems 
and eliminating full inspection following failure recovery. The full 
inspection following each failure recovery does increase downtime 
to a certain extent, which affects the availability. 

• The small difference in the availability results obtained using Strat
egy 1 and Strategy 4 seems to indicate that insufficient spare parts 
stock does not have a large impact on availability. This is mainly 

because Dataset-A corresponds to a very reliable turbine, which 
rarely fails, so it does not require many spare parts. 

To further investigate the impact of turbine reliability on availabil
ity, the above simulation calculations are repeated using the data from 
Dataset-B. The obtained availability results are shown in Fig. 13. 

By comparing Fig. 12 and Fig. 13, it is found that  

• The availability results in Fig. 13 are lower than the corresponding 
values in Fig. 12. This suggests that the reliability of the OWT does 
have a significant influence on its availability. The lower the reli
ability, the lower the turbine availability.  

• With any monitoring system, the availability is increased more in 
Fig. 13 than in Fig. 12. This suggests that the monitoring systems are 
more important to improve the availability of unreliable OWT.  

• The difference in the availability obtained using Strategy 1 and 
Strategy 4 is only 0.01% in Fig. 12, while the difference increases up 
to 0.06% in Fig. 13. This suggests that insufficient spare parts stock 
will have a greater impact on the availability of unreliable OWTs. 

5.2. Impact of CM on the cost on availability 

Since the average maintenance cost on availability (COA), i.e. the 
ratio of maintenance cost to availability, is closely related to the cost of 
energy (COE), this subsection focuses on exploring the impact of 
applying purpose-designed CMS and SCADA systems on the COA when 
using different wind farm maintenance strategies. In the investigation, it 
is assumed that the average costs of the BS and AS are £10,000 and 
£50,000 per occurrence, respectively. The values of other model pa
rameters are the same as those used in Section 5.1. In order to calculate 
the COA, the maintenance costs for those cases in Section 5.1 are 
initially estimated based on the cost information given in Section 4. The 
cost estimation results are presented in Figs. 14a and 14b, which 
represent the costs based on Dataset-A and Dataset-B respectively. 

From Fig. 14, it is noticed that compared to the cases without 
monitoring systems, the application of the SCADA system increases the 
cost when using any maintenance strategy to look after a reliable OWT. 
This is mainly due to the false alarms generated by the SCADA system 
causing many unnecessary site visits and therefore additional costs. A 
similar observation can also be found when using the first four main
tenance strategies to look after an unreliable OWT. However, one 
exception is when using Strategy 5 to maintain the unreliable OWT, 
where the application of the SCADA system reduces the cost. This 
highlights the important complementary role of the SCADA system to 
the AS in securing the OWT and ensuring its availability, especially 
when no purpose-designed CMS is used. In contrast to the application of 
the SCADA system, using the purpose-designed CMS always results in 
significant cost savings regardless of the reliability of the OWT and the 
maintenance strategy employed. However, Figs. 12 and 13 have shown 
that using the purpose-designed CMS alone cannot result in the highest 
availability of the OWT. The highest turbine availability can only be 
achieved when the purpose-designed CMS and the SCADA system are 
jointly used for monitoring, but the corresponding costs of the combined 

Table 8 
Five maintenance strategies considered.  

Maintenance strategy Input settings   

Time interval of 
the BS 

Time interval of 
the AS 

Recalibrate monitoring systems during the 
BS and clear false alarms 

Sufficient spare 
parts stock 

Conduct full inspection after 
each failure recovery 

1 2-year periodic AS 6 months 24 months Yes Yes Yes 
2 1-year periodic AS 6 months 12 months Yes Yes Yes 
3 No recalibration 6 months 24 months No Yes Yes 
4 No stored spare 6 months 24 months Yes No Yes 
5 No inspection after 

failure recovery 
6 months 24 months Yes Yes No  
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use of the two types of monitoring systems will be higher as shown in 
Fig. 14. This highlights the problem, should we use the purpose- 
designed CMS alone or should we use it in conjunction with the 
SCADA system in future wind farms? To answer this question, the COA is 
calculated. It is believed that the COA can help wind farm operators 
make appropriate judgments when faced with a choice. The COA results 
obtained in the cases outlined in Table 8 are shown in Fig. 15. In the 
figure, Fig. 15a and Fig. 15b show the results obtained based on Dataset- 
A and Dataset-B, respectively. 

From Fig. 15, it is found that regardless of the reliability of the OWT, 
using a purpose-designed CMS alone in conjunction with maintenance 
Strategy 1 can always result in the lowest COA. This suggests that the 
combined use of a CMS and less frequent AS is currently the best option 
in terms of the COA. This rule is applicable to the maintenance of any 
OWT with varying reliability due to differences in age or product 
quality. In addition, from Fig. 15 it is also found that regardless of the 
reliability of the OWT and the maintenance strategy employed, neither 
the use of the SCADA system alone nor the joint use of a purpose- 
designed CMS and SCADA system is the best choice. This proves once 
again that the purpose-designed CMS is indispensable to ensure the 

economical operation of OWFs and it cannot simply be replaced by 
current wind farm SCADA systems. 

6. Conclusion 

In light of the debate over the use of various CMSs in the operation of 
OWFs, a mathematical modelling framework is developed in this paper 
using PNs to investigate whether the wind farm SCADA system is a 
viable alternative to purpose-designed CMS and how to integrate CMSs 
and maintenance strategies to maximise the financial benefit of OWTs. 
From the work reported above, the following conclusions can be drawn:   

• The combined use of a purpose-designed CMS and wind farm 
SCADA system yields the highest OWT availability. However, 
neither the use of the SCADA system alone nor the joint use of a 
purpose-designed CMS and SCADA system for monitoring is the 
best choice in terms of COA.  

• Regardless of the reliability of the OWT, using purpose-designed 
CMS alone in conjunction with maintenance Strategy 1 can 

Fig. 12. The availability of the OWT obtained when using different maintenance strategies and dataset-A.  

Fig. 13. The availability of the OWT obtained when using different maintenance strategies and dataset-B.  
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always result in the lowest COA. This suggests that the combined 
use of a purpose-designed CMS and less frequent AS is the best 
option in terms of the COA.  

• The purpose-designed CMS is indispensable to ensure the 
economical operation of offshore wind farms and its function 
currently cannot simply be replaced by a wind farm SCADA 
system. 

• Insufficient spare parts stock has a greater impact on the avail
ability of unreliable OWTs.  

• A comparison of maintenance cost and COA results obtained when 
using Strategy 1 and Strategy 5 shows that a full inspection 
following each failure recovery helps reduce maintenance cost and 
the value of COA, although it may slightly affect turbine 
availability. 

In the future, the accuracy of the PN models will be further improved 
by considering factors, such as the costs of different types of purpose- 

designed CMSs, the reliability of different types of OWTs, the influ
ence of extreme weather, etc. These factors are not taken into account in 
this paper, but they can also have a significant impact on the economic 
operation of OWTs and can be incorporated into the framework 
developed. 
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