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Registration of multivariate functional data involves handling of
both cross-component and cross-observation phase variations.
Allowing for the two phase variations to be modelled as gen-
eral diffeomorphic time warpings, in this work we focus on
the hitherto unconsidered setting where phase variation of the
component functions are spatially correlated. We propose an
algorithm to optimize a metric-based objective function for reg-
istration with a novel penalty term that incorporates the spatial
correlation between the component phase variations through a
kriging prediction of an appropriate phase random field. The
penalty term encourages the overall phase at a particular location
to be similar to the spatially weighted average phase in its
neighbourhood, and thus engenders a regularization that pre-
vents over-alignment. Utility of the registration method, and its
superior performance compared to methods that fail to account
for the spatial correlation, is demonstrated through performance
on simulated examples and two multivariate functional datasets
pertaining to electroencephalogram signals and ozone concen-
tration functions. The generality of the framework opens up the
possibility for extension to settings involving different forms of
correlation between the component functions and their phases.
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1. Introduction

Modern functional datasets, such as longitudinal records, medical imaging signals or geometric
hapes, contain confounded amplitude and phase variations (Srivastava et al., 2011). Amplitude
efers to the magnitude and shape of functions, e.g., number, order and scale of extrema, whereas
hase refers to the timing of amplitude features. The adverse effects of ignoring phase variation
uring statistical analysis of functional data are now well-understood, including blurring of the
tructure in the data, e.g., during exploratory data analysis via visualization or summarization,
nflation of variance measures, and potential for misleading conclusions based on statistical in-
erence (Marron et al., 2015). The underlying issues are further exaggerated when the amplitude
nd/or phase components in a functional dataset are spatially dependent (Guo et al., 2022). For
ultivariate functional data R ⊃ I ↦→ Fi = (fi1, . . . , fiK )⊤ (Fi(t) = (fi1(t), . . . , fiK (t))⊤ ∈ RK

∀ t ∈ I)
onsisting of multiple correlated, univariate functional components fij : I → R, j = 1, . . . , K , the
otion of phase variation can be decomposed into two types: (i) cross-observation phase, which is

common across all K component univariate functions fij within an observation Fi, and (ii) cross-
component phase within each observed unit. The goal of a registration procedure for multivariate
functional data is to estimate the cross-observation and cross-component phase variations. Applying
these phase estimates to the observed multivariate functional data results in time synchronization
across observations and components (or alignment); the aligned data can then be used to quantify
amplitude variation. In many cases, cross-observation phase can be assumed to be independent.
However, since the components within a multivariate functional observation are often correlated,
one must account for this additional structure in the registration procedure. Further, when the
components are spatially indexed, the additional structure is engendered in spatial correlation
among cross-component phase. In this case, each multivariate functional observation Fi can be
viewed as an independent realization of a functional random field.

Registration procedures for multivariate functional data are driven by assumptions on the
two types of temporal variation. At the two extremes are procedures which assume that cross-
component variation within each Fi are either uncorrelated or identical. The former case is quite
commonly considered by researchers in neuroimaging (Makeig et al., 2007; Tsai et al., 2014; Zhao
et al., 2020), motivated mainly by the simplicity of independent componentwise registration. The
latter case, referred to as universal registration, is common in shape analysis of K -dimensional
curves {Fi} (Kurtek et al., 2012), wherein one assumes that cross-component phase variation
does not exist and a common warping function is estimated for all components within the same
observation (Olsen et al., 2016). Thus, neither of the two extreme cases directly addresses the
registration problem when cross-component variation is non-negligible.

Literature on registration methods for multivariate functional data that lie between the two
extreme cases is sparse. Noteworthy exceptions within the statistics literature are recent work
by Carroll et al. (2021), Carroll and Müller (2023) and Park and Ahn (2017), where specific forms of
cross-component temporal variation were considered. The first two works restrict attention to the
situation where all component functions fij for j = 1, . . . , K are assumed to have the same shape:
for each observation i, Carroll et al. (2021) assume that time-warped components fij(t) arise through
time shifts t ↦→ (t − τ ) of the same function, say g , while Carroll and Müller (2023) extend this
to the case where the time shift map is replaced by a general diffeomorphic warping t ↦→ γ (t)
f I; a formal definition of diffeomorphic warping is given later in Section 3. Motivated mainly by
lustering, Park and Ahn (2017) proposed a conditional observation-specific registration procedure
o extract relevant features for clustering.

It is quite common to encounter multivariate functional datasets wherein the component
unctions do not possess the same shape and/or when correlations between component functions
eed to be explicitly incorporated into the registration procedure. As an example, consider data gen-
rated from electroencephalogram (EEG) signals, specifically pertaining to event-related potentials
easured during EEG tests. Event-related potentials are small voltages that reflect the electrical
ctivity on the scalp in response to specific stimuli received by study participants (Sur and Sinha,
009). For the ith observation, EEG signals fij are densely recorded on a certain time domain I using a

et of electrodes placed at K different locations on the scalp, and together comprise a multivariate
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Fig. 1. Left: Example of a multi-trial EEG dataset with 61 electrodes from an alcoholism study. Each slide represents
a single trial in the study, while the red functions plotted at the locations of electrodes (grey circles) constitute the
components. Top Right: 61 signals from a single trial with considerable cross-component phase variation. Bottom Right:
Signals collected at electrode AFZ across 50 trials with considerable cross-observation phase variation.

functional observation Fi. In the left panel of Fig. 1, we display the observed EEG signals at the
(projected) two-dimensional electrode locations on a toy map of the scalp. The entire collection of
signals recorded during a single EEG trial is shown as a single slide and corresponds to an observed
multivariate functional data unit.

Evidently, the component functions fij and fik at electrode locations j and k during the ith
trial are spatially correlated due to functional connectivity between brain regions. As such, each
multivariate functional observation Fi can be viewed as a realization of a functional random field,
wherein electrode locations define the spatial index for each component function within Fi. Latency
of the brain’s responses to stimuli varies across trials for a single subject (and among different
subjects) resulting in cross-observation phase variation (Wang et al., 2001). At the same time,
different response lags of different brain regions to the presented stimuli (Stam et al., 2007)
result in cross-component phase variation. The right two panels of Fig. 1 offer an illustration
of cross-observation (bottom) and cross-component (top) phase variation among EEG signals. To
account for the two different types of phase variation in multi-trial EEG, an appropriate registration
procedure that accounts for spatially-correlated cross-component phase is required. Specifically, the
procedure should enable simultaneous registration of all components fij, while taking into account
the spatial dependence structure between the cross-component phases. This cannot be achieved by
implementing independent registration of f1j, . . . , fnj for each component j, since such a procedure
esults in additional cross-component phase variation in the estimated average components due to
ach component being treated independently. We note this phenomenon in the right panel of Fig. 6
and the associated discussion) in Section 6 during our detailed analysis of the EEG data.

Motivated by the type of registration task associated with the EEG data, we propose a registration
rocedure that exploits correlated phase variation between component functions {fij} of multivariate

functional data {Fi} and offers a compromise between the two extreme cases of independent
componentwise and universal registration methods alluded to earlier. Our focus is on multivariate
functional data with component functions fij whose overall phase variation, represented through a
time-warping function γij : I → I , is a combination γij = ξj◦αi of cross-observation phase αi : I → I
nd spatially correlated cross-component phase ξj : I → I (◦ denotes function composition). The

flexibility afforded, and desired, by such a general phase specification while registering multivariate
functional data with correlated components, such as the EEG data, comes at a cost: the individual
phase components αi and ξj cannot be decoupled and estimated individually, and incorporating
spatial information present in the latent {ξj} when estimating γij is hugely challenging. In view of
this, our main contributions are as follows.
3
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(i) We propose a metric-based penalized registration method for multivariate functional data
with a penalty term defined using spatial correlations between the cross-component phases
{ξj}, using which the overall phases {γij} are estimated by eliminating cross-observation phase
variation {αi}. Our framework utilizes the extended Fisher–Rao metric, which has desirable
(and necessary) mathematical properties for the registration problem.

(ii) The penalty term is defined using a spatially weighted combination of the (estimated) cross-
component phases {ξj}, and is, owing to the invariant property of the metric to (simultaneous)
time warping, impervious to the cross-observation phases {αi}; this allows us to entirely
circumvent having to estimate the {αi}.

(iii) With respect to cross-observation registration, we demonstrate clear superiority of our
method over ones that fail to account for the spatial correlation under a variety of simulation
settings and two real data examples.

he rest of this paper is organized as follows. Section 2 details the registration problem for
ultivariate functional data whose component functions have spatially correlated phase variation.
ection 3 briefly reviews the geometric elastic functional data analysis framework, including uni-
ariate pairwise and multiple registration, and registration of multivariate functions with common
ross-component phase. Section 4 details the proposed spatially penalized registration objective
unction that accounts for spatial correlation in cross-component phase, and provides an algorithm
Algorithm 1) for its optimization. Section 5 presents results of simulation studies; in Section 6,
e apply the proposed registration approach to EEG and ozone data. Numerical assessment of
onvergence of the registration algorithm and comparative studies with an alternative penalized
pproach are available in the supplement.

. The registration problem

We can view multivariate functional data {F1, . . . , Fn}, where each Fi(t) = (fi1(t), . . . , fiK (t))⊤,
∈ [0, 1], i = 1, . . . , n, has K correlated components, with cross-observation and spatially

orrelated cross-component temporal variation, as being generated from the model

Fi ◦ wi(t) = µ(t) + Ei(t), t ∈ [0, 1], i = 1, . . . , n, (1)

here µ = (µ1, . . . , µK ), with µj : [0, 1] → R, is a deterministic mean/template multivariate
unction, Ei = (ei1, . . . , eiK )⊤ are realizations of an error process with spatially correlated component
unctions {eij : [0, 1] → R}, and wi = (γi1, . . . , γiK ) is a vector of monotone increasing, end-
points preserving, time warping functions assuming values in Γ := {γ : [0, 1] → [0, 1] | γ (0) =

0, γ (1) = 1, γ̇ > 0}, where γ̇ is the time derivative of γ . Each wi consists of K random warping
functions, accounting for the temporal variability across components in a multivariate functional
observation Fi; {wi} define overall phase variation in the data. Then, Fi ◦ wi = (fi1 ◦ γi1, . . . , fiK ◦

γiK )⊤ represents componentwise warping, where ◦ denotes function composition; {Fi ◦ wi} defines
amplitude variation in the data. Note that Γ is a group with operation ◦, identity element γid(t) = t ,
and the function inverse as the group inverse. An essential implication of the group structure for
warping functions is that the inverse of any γ ∈ Γ is also an element of Γ ; this property will be
used frequently in the development of the proposed registration framework. Further, it allows for
a rigorous definition of the amplitude of a functional observation via an equivalence class as will
be seen in subsequent sections. We will interchangeably refer to γ as a warping function or phase
depending on the context.

The characterizing feature of the problem is that, for i = 1, . . . , n, j = 1, . . . , K , the warping
functions γij = ξsj ◦ αi, where ξs1 , . . . , ξsK are spatially correlated warping functions at K spatial
ocations s1, . . . , sK within a spatial domain D ⊂ Rp, with ξsj , αi ∈ Γ for each i = 1, . . . , n, j =

, . . . , K . The phase γij of a component function fij is thus represented as a combination of warping
unctions corresponding to cross-observation and spatially correlated cross-component temporal
ariations. The index j will be used to denote the spatial location sj, i.e., ξj will be used in place of
sj , and the two notations will be used interchangeably.
Under the above setup, we can interpret α1, . . . , αn as representing cross-observation temporal

ariation within {Fi} and ξ1, . . . , ξK as representing spatially correlated cross-component temporal
ariation within {F }. The two-fold objective is to, jointly:
i
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1. register F1, . . . , Fn by estimating {γij : i = 1, . . . , n, j = 1, . . . , K } in a manner that ensures
for every i = 1, . . . , n, the warping functions γij and γik in nearby spatial locations sj and sk
in D are similar, owing to similar cross-component warpings ξj and ξk;

2. estimate components µ1, . . . , µK of the template µ.

n the context of the EEG application, e.g., in the ith trial for a single subject, we desire signals fij and
ik obtained from spatially proximate electrode locations sj and sk to have similar phase variation
ij and γik, with respect to template components µj and µk. The requirement is compatible with
indings by Stam et al. (2007) on different response lags of spatially disparate brain regions to
resented stimuli.
When the template µ is unknown, as is typical in practice, for each pair (i, j), the warping

unctions αi and ξj are individually not identifiable in a nonparametric (infinite-dimensional)
pecification of the class Γ with error Ei without restrictions. It is hence not possible to estimate
oth αi and ξj since their respective variabilities are confounded with the error Ei; this implies
hat it is not possible to decompose the overall phase variation given by {γij} in {Fi} into the
ross-observation and cross-component phase variations.
In view of this, our registration procedure will first estimate the spatially correlated cross-

omponent phase for each observation i = 1, . . . , n and then use them to estimate γij. Evidently
hen, the cross-component warping functions ξ1, . . . , ξK will depend on i. The key challenge arises from
he need to iterate between computing the template components µ1, . . . , µK and warping functions
γij} by explicitly incorporating spatial dependence between the, unobserved but observation
ependent, cross-component warping functions ξi1, . . . , ξiK . In Section 4.2, we consider a simplified
eometry of Γ that will further clarify the dependence of the cross-component phases on the
bservations.

. Overview of elastic functional data registration

The proposed algorithm is based on a componentwise spatially-penalized registration of
1j, . . . , fnj using the metric-based elastic functional data analysis framework (Srivastava et al., 2011;
rivastava and Klassen, 2016) of univariate functions. The metric enables us to propose a novel
enalty that quantifies the spatial correlation between the unobserved cross-component phases
ξj}, unaffected by the cross-observation phase {αi}. We begin with a brief review of the elastic
ramework, and for later comparison with the proposed algorithm, also review universal registration
f curves under this framework (Srivastava and Klassen, 2016), where all components are assumed
o have identical temporal variation.

.1. Univariate functions

We consider the representation space of univariate functional data objects to be F := {f :

0, 1] → R | f is absolutely continuous}. As stated earlier, the group of warping functions
epresenting phase is Γ = {γ : [0, 1] → [0, 1] | γ (0) = 0, γ (1) = 1, γ̇ > 0}. For any

∈ F , γ ∈ Γ , the warping of f by γ is given by the group action of composition, f ◦ γ ,
.e., (f ◦ γ )(t) = f (γ (t)) ∀ t ∈ [0, 1]. The group-theoretic formulation of phase further enables a
efinition of the amplitude of a function f as the equivalence class [f ] := {f ◦ γ | γ ∈ Γ } ⊂ F ,
nown as its orbit under the action of Γ ; thus, f ◦ γ ∈ [f ] has the same amplitude as f for each
∈ Γ . In other words, all possible warpings of a function f are unified by a single equivalence class,
hich uniquely represents the function’s amplitude. The amplitude space then is the quotient space
/Γ := {[f ] | f ∈ F}.
Separating amplitude and phase requires a metric on the amplitude space F/Γ . A convenient

ay to define one is through a metric d on F that is invariant to simultaneous warping: for every
∈ Γ , d(f1, f2) = d(f1 ◦ γ , f2 ◦ γ ). The standard L2 metric fails to be invariant and Srivastava et al.

2011) thus proposed to use the extended Fisher–Rao (eFR) metric. While direct use of this metric
or amplitude-phase separation is difficult in practice, the square-root slope transform can be used
o flatten the complicated eFR metric on F to the standard L2 metric on the transformed space. The
5
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transform maps f ↦→ Q (f ) = q := ḟ |ḟ |
−1/2

(ḟ is the time derivative of f ). Given f (0), Q is bijective
ith inverse Q−1(q, f (0))(t) = f (t) = f (0)+

∫ t
0 q(u)|q(u)|du. Henceforth, for any f ∈ F , we will refer

o q = Q (f ) as its square-root slope function (SRSF).
The transformed space Q (F) is a subset of L2([0, 1],R), and is denoted by Q. Under Q , the eFR

etric on F maps to the standard L2 metric on Q, and thus analysis of SRSFs can be carried out
using standard Hilbert space machinery. Warping of f ∈ F by γ ∈ Γ induces the warping action
q ⊙ γ := (q ◦ γ )γ̇ 1/2 on Q equipped with the L2 metric, and the action is by isometries, i.e., for
q1, q2 ∈ Q and γ ∈ Γ , ∥q1 − q2∥ = ∥q1 ⊙ γ − q2 ⊙ γ ∥ (∥ · ∥ denotes the L2 norm); the action is
also norm preserving, i.e., ∥q ⊙ γ ∥ = ∥q∥ for every γ ∈ Γ , q ∈ Q.

3.1.1. Pairwise registration
Given two functions f1, f2 ∈ F , amplitude-phase separation through pairwise alignment of f2

to f1, or vice versa, is formulated as the determination of the relative phase of f2 with respect to f1
(q1 = Q (f1), q2 = Q (f2)):

γ̂ = argmin
γ∈Γ

∥q1 − q2 ⊙ γ ∥
2

= argmin
γ∈Γ

∫ 1

0
|q1(t) − (q2 ⊙ γ )(t)|2dt. (2)

The minimization problem in (2) is typically solved using the dynamic programming algorithm. To
further regularize pairwise registration, one can instead solve the penalized optimization problem
given by

γ̂ = argmin
γ∈Γ

{∥q1 − q2 ⊙ γ ∥
2
+ λ∥

√
γ̇ − 1∥2

}, (3)

here λ is the regularization parameter. The penalty is defined as the squared L2 distance between
he SRSFs of γ and the identity warping function γid, where γid(t) = t ∀ t . It is evident that,
epending on the magnitude of λ, this penalty forces the estimated phase to be close to the identity
lement, i.e., no warping.

.1.2. Multiple registration
Amplitude-phase separation for a sample of functions fi, i = 1, . . . , n, n > 2 is carried out with

espect to a common template function that must also be estimated. Let qi, i = 1, . . . , n denote
he corresponding SRSFs. A template for multiple registration is estimated via

µ̂ = argmin
µ∈Q

n∑
i=1

min
γi∈Γ

∥µ− qi ⊙ γi∥
2. (4)

hen, multiple registration is carried out via pairwise registration of each qi, i = 1, . . . , n with
respect to µ̂ using (2), resulting in relative phases γ̂i, i = 1, . . . , n. The minimizer µ̂ of (4) is not
unique, with any element of the orbit [µ̂] resulting in the same value of the cost function due to
the isometric action of Γ . Thus, for identifiability, we select µ̂ ∈ [µ̂] such that the relative phases
γ̂i, i = 1, . . . , n average to γid; see Srivastava et al. (2011) for details.

3.2. Componentwise and universal registration

Let F̃ = {F : [0, 1] → RK
| F is absolutely continuous} denote the space of multivariate

functional data. Each multivariate function F contains K univariate components f1, . . . , fK ∈ F .
Independent componentwise registration of multivariate functional data applies multiple registra-
tion given by (4) to functions in each component independently. This fails to account for correlation
between γij and γik for every i = 1, . . . , n and j, k = 1, . . . , K .

At the other end of the spectrum is universal registration, which treats each Fi as a parameterized
curve t ↦→ (fi1(t), . . . , fiK (t))⊤ in RK , and thus assumes the same relative phase for all components.
Registration under such a setup is again available through the elastic framework under a suitable
transformation. With a slight abuse in notation, let Q (F ) = q = Ḟ |Ḟ |

−1/2
denote the SRSF of F , where

˙ K
F is the componentwise time derivative of F and |·| is the Euclidean norm in R ; each SRSF in this

6
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case is a function q : [0, 1] → RK and the space of such SRSFs is denoted by Q̃ ⊂ L2([0, 1],RK ).
Then, given q1 = Q (F1) and q2 = Q (F2), the relative phase of F2 with respect to F1 is given by

γ̂ = argmin
γ∈Γ

∥q1 − q2 ⊙ γ ∥
2

= argmin
γ∈Γ

∫ 1

0
|q1(t) − (q2 ⊙ γ )(t)|2dt, (5)

where again |·| denotes the Euclidean norm in RK and q ⊙ γ is applied componentwise. A
enalized version of registration can also be implemented in this case by appropriately adapting
he optimization problem defined in (3). Further, multiple registration, via estimation of a template
ˆ ∈ Q̃, and pairwise registration of each function to µ̂ via (5), follows the approach defined for
nivariate functional data.

. Registration of multivariate functions with spatially dependent cross-component phase

We propose a penalized multiple registration method for multivariate functional data wherein
ross-component phase in each observation is spatially correlated. The proposed algorithm is based
n a non-trivial extension of the elastic functional data framework to account for the spatial
orrelations.
Let Fi = (fi1, . . . , fiK )⊤ ∈ F̃, i = 1, . . . , n denote a multivariate functional data sample; we

ssume that Fi, i = 1, . . . , n are independent. Each component function fij, i = 1, . . . , n, j =

, . . . , K is assumed to be an element of F , and the components fij, j = 1, . . . , K , for a fixed i, have
patially dependent phase. Further, let qij = Q (fij) ∈ Q, i = 1, . . . , n, j = 1, . . . , K denote the
RSFs of the component functions in each observation. Registration of multivariate functional data
equires estimation of the overall phase (composition of cross-observation and spatially correlated
ross-component phase) for each component in each observation, γij ∈ Γ , i = 1, . . . , n, j =

, . . . , K . This facilitates simultaneous synchronization of the component functions across i and j.
As a compromise between the two extreme settings of independent componentwise and univer-

al registration described in Section 3.2, we propose a spatially penalized registration approach that
akes spatial cross-component phase correlation into account, but allows each component to have
ts own phase. As described in Section 2, within each Fi, the dependence between the component
unctions fi1, . . . , fiK arises through spatial correlation in the cross-component phases ξ1, . . . , ξK .

.1. Spatially penalized componentwise registration

Our approach is to carry out cross-observation registration through a modification of the
ultiple registration procedure in (4) using a spatially-informed penalty term. For a fixed function
omponent j, the registration of functions fij, i = 1, . . . , n, with SRSFs qij, i = 1, . . . , n, amounts
o determination of γij, i = 1, . . . , n. However, for each i = 1, . . . , n, we note that γij is spatially
orrelated with γil, l ̸= j, l = 1, . . . , K , through the spatial correlation between the latent ξj and
l, l ̸= j. We thus consider a penalized modification of (4) wherein the penalty term for each
= 1, . . . , n depends on the phases γi1, . . . , γi(j−1), γi(j+1), . . . , γiK . Our choice is to define the penalty
erm using (an estimate of) the conditional mean of γij given {γil}l̸=j: we wish to discourage γij from
ssuming values that are far away from its spatially weighted conditional mean. We accordingly
onsider the following optimization problem for each component j = 1, . . . , K :

(γ̂1j, . . . , γ̂nj, µ̂j) = argmin
γ1j,...,γnj∈Γ , µj∈Q

n∑
i=1

{
∥µj − qij ⊙ γij∥

2
+ λ d2(γij, γ̃ij)

}
, (6)

here µj is the template for registration in component j, λ > 0 is a penalty parameter, and d is a
istance on Γ ; the warping function γ̃ij is an estimate of the conditional mean of γij given {γil}l̸=j,
hich takes into account the spatial correlation among cross-component phases; γ̃ij is defined next

n Section 4.2.
The first term in (6) provides a measure of synchronization for component j, across observations

, with respect to the template µj. The second term, a penalty on phase, measures the distance
etween the estimated phase γ and a target γ̃ determined by the spatially correlated phase in the
ij ij

7
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other components; the regularization penalty attempts to preserve the phase-induced correlation
structure in the aligned components. If the function components are assumed to be independent,
and γ̃ij = γid (identity warping) for all i and j, the proposed approach is equivalent to K independent
nivariate penalized registration problems, as specified in (3), with µj acting as the template for

each component.

4.2. Penalty using spatial model for cross-component phase

We first discuss the choice of distance d on Γ in the penalty term in (6). Elements of Γ can be
viewed as differentiable, increasing distribution functions of random variables on [0, 1], and thus
constitute a nonlinear, convex set. A simplified geometric structure compatible with the L2 norm
preserving action under the operation ⊙ is available under the SRSF transform, where γ → Q (γ ) =

γ̇ 1/2
=: ψ . The SRSF map Q is bijective, and each ψ corresponds to a square-root probability density

since
∫ 1
0 ψ

2(t)dt = 1. As a consequence, the set Ψ := {Q (γ ) =: ψ : [0, 1] → R+ | γ ∈ Γ } can be
identified with the positive orthant of the unit sphere in L2([0, 1],R). While the natural candidate
for distance d on Γ is the intrinsic arc-length distance on Ψ , we use the extrinsic distance

d(γ1, γ2) := ∥Q (γ1) − Q (γ2)∥ = ∥ψ1 − ψ2∥,

where ∥ · ∥ is the standard L2 norm. Our choice is linked to the choice of γ̃ij in the penalty term.
Observe that with d on Γ defined as above, we have that, for every α, γ1, γ2 ∈ Γ ,

d(γ1 ◦ α, γ2 ◦ α) = ∥Q (γ1 ◦ α) − Q (γ2 ◦ α)∥ = ∥ψ1 ⊙ α − ψ2 ⊙ α∥ = ∥ψ1 − ψ2∥, (7)

and Γ acts on itself by isometries under the SRSF map. We thus combine the SRSF of cross-
component phase ξj and cross-observation phase αi to obtain the SRSF ψij of γij:

ψij := Q (ξj ◦ αi) = Q (ξj) ⊙ αi. (8)

As described in Section 2, our registration procedure will estimate ψij by first estimating the
spatially correlated cross-component phases for each observation i = 1, . . . , n, since αi and ξj are
individually not estimable; in other words, we wish to induce dependence in the generative model
(1) between the confounded cross-component and cross-observation phases. We achieve this using
the SRSF transform of γij in the manner defined in (8).

Under the SRSF transform of Γ , the population conditional expectation E[ψij | ψ1, . . . , ψi(j−1),

ψi(j+1), . . . , ψiK ] is an ideal choice for ψ̃ij. As with spatially correlated real- or vector-valued obser-
vations in traditional statistics modelled using random fields, a viable estimate of the conditional
expectation in this context is the spatial interpolant or kriging prediction at location sj of a functional
random field

{
ψs := Q (ξs)⊙α, s ∈ D

}
assuming values in Ψ , conditioned on its values at locations

s1, . . . , sj−1, sj+1, . . . sK . In other words, the random field {ψs} is derived by time-warping the values
assumed by another functional random field {ξs, s ∈ D} with a fixed α ∈ Γ .

Computing the kriging prediction of {ψs} at sj requires estimation of Q (ξi1), . . . ,Q (ξiK ). Suppose
that the components fij, i = 1, . . . , n, j = 1, . . . , K are indexed by spatial locations sj ∈ D, j =

1, . . . , K . Denote by ψij the SRSFs of the warping functions γij, which, for every i, are viewed as
values assumed by the random field {ψs : s ∈ D} defined above at spatial locations s1, . . . , sK .
Then, under assumptions of second-order stationarity and isotropy on {ψs}, we can consider the
phase trace-variogram, defined by Guo et al. (2022) as

V (h) =
1
2

∫ 1

0
E [ψs(t) − ψs′ (t)]2 dt =

1
2
E(∥ψs − ψs′∥

2),

using Fubini’s theorem, where h = |s − s′
| and |·| is the Euclidean norm on the spatial domain

D ⊂ Rp. For a fixed observation i, the estimator of V (h) is given by

V̂i(h) =
1

2|N(h)|

∑
∥ψ̂ia − ψ̂ib∥

2, (9)

a,b∈N(h)

8
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Fig. 2. High-level overview of Algorithm 1.

where N(h) = {(sa, sb) | a, b = 1, . . . , K , |sa − sb| = h}. For irregularly spaced data, N(h) can be
odified to Nϵ(h) = {(sa, sb) : |sa − sb| ∈ (h − ϵ, h + ϵ)} for a small ϵ > 0.
Despite the fact that the spatially correlated cross-component phases ξ1, . . . , ξK are unobserved

nd confounded with the cross-observation phases α1, . . . , αn, we can access their correlation
tructure by estimating γij using V (h) and V̂ (h). To see this, note that due to the isometry property
n (7),

E(∥ψs − ψs′∥
2) = E(∥Q (ξs) ⊙ α − Q (ξs′ ) ⊙ α∥

2) = E(∥Q (ξs) − Q (ξs′ )∥2),

and V thus equals the phase-trace variogram of the functional random field {Q (ξs)}; a similar
argument applies to the estimate V̂ . We thus note that the phase-trace variogram is invariant
to (simultaneous) warping (Guo et al., 2022, Lemma 1), which motivates our use of the extrinsic
distance on Ψ and the functional random field {ψs} with values in Ψ .

We now move on to computing the kriging prediction ψ̃ij using the variogram estimate V̂ . For
component j in observation i, given phase for the other components {ψil}l̸=j, the conditional mean
phase is given by the weighted average

ψ̃ij =

∑
l̸=j

ζijlψil, where
∑
l̸=j

ζijl = 1, ζijl ≥ 0. (10)

The coefficient vector ζij = {ζijl}l̸=j is implicitly defined as the minimizer of the expected prediction
error functional. Guo et al. (2022) show that ζij can be estimated using a quadratic optimization
problem that depends on the trace-variogram V (h) and pairwise spatial distances |sa − sb|, for
, b = 1, . . . , K . The estimator ψ̃ij is subsequently normalized using ψ̃ij → ψ̃ij/∥ψ̃ij∥ to correspond
o a valid warping function.

Summarily, for the ith observation, if ψ̃ij denotes the kriging prediction at sj, the penalty term in
6) becomes d(γij, γ̃ij) = ∥ψij − ψ̃ij∥, and the optimization problem for registration in (6) with the
patial penalty assumes the specific form

(γ̂1j, . . . , γ̂nj, µ̂j) = argmin
γ1j,...,γnj∈Γ , µj∈Q

n∑
i=1

{
∥µj − qij ⊙ γij∥

2
+ λ∥ψij − ψ̃ij∥

2} . (11)

.3. Registration algorithm and implementation details

The optimization problem for registration in (11) is solved in an iterative fashion in Algorithm 1,
here tools from Section 4.2 are used to model the spatially dependent cross-component phase
ithin each observation. Fig. 2 provides a high-level diagrammatic representation of Algorithm
. More specifically, given component functions {fij, i = 1, . . . , n, j = 1, . . . , K } of multivariate
unctional data F1, . . . , Fn, we first transform them to obtain their SRSFs {qij}. Then, for a fixed
enalty parameter λ > 0, Algorithm 1 can be decomposed into two blocks:
9
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Algorithm 1 Spatially penalized registration of multivariate functions
1: Input: SRSFs qij, i = 1, . . . , n, j = 1, . . . , K and regularization parameter λ.
2: Output: Estimated componentwise template functions µ̂j, j = 1, . . . , K , and warping functions γ̂ij, i =

1, . . . , n, j = 1, . . . , K .
3: for j = 1 to K do
4: Multiple alignment of {qij, i = 1, . . . , n} via (4) to initialize the template µ̂(0)

j .
5: end for
6: for i = 1 to n do
7: Multiple alignment of {qij, j = 1, . . . , K } via (4) to estimate cross-component phase {ξ̂ij, j = 1, . . . , K };
8: Estimation of trace-variogram V̂i(h) in (9) using {ξ̂ij, j = 1, . . . , n};
9: Estimation of coefficient vector ζij using V̂i (Section 4.2).
10: end for
11: Set z = 0, ϵ1 > 0 (small) and ψ̂ (0)

ij (t) = 1, i = 1, . . . , n, j = 1, . . . , K with µ̂(0)
j = n−1 ∑n

i=1 qij,
j = 1, . . . , n.

12: while z < zmax and
∑K

j=1 ∥µ̂
(z)
j − µ̂

(z−1)
j ∥ > ϵ1 do

13: for i = 1 to n do
14: Set k = 0, ϵ2 > 0 (small);
15: while k < kmax and

∑K
j=1 ∥ψ̂

(k)
ij − ψ̂

(k−1)
ij ∥

2 > ϵ2 do
16: for j = 1 to K do
17: Estimation of ψ̃ij using ζij and [ψ̂

(k+1)
i1 , ..., ψ̂

(k+1)
i(j−1) , ψ̂

(k)
i(j+1), ..., ψ̂

(k)
iK ];

18: Solve γ̂ij = argmin
γ∈Γ

{
∥µ̂

(z)
j − qij ⊙ γ ∥

2
+ λ∥

√
γ̇ − ψ̃ij∥

2
}
.

19: Compute SRSF ψ̂ (k+1)
ij of γ̂ij.

20: Set k = k + 1.
21: end for
22: end while
23: Set γ̂ij = γ̂

(k)
ij

24: end for
25: Set µ̂(z+1)

j =
1
n

∑n
i=1(qij ⊙ γ̂ij), j = 1, . . . , K ;

26: Set z = z + 1.
27: end while

Initialization:

(i) Obtain initial template component functions µ̂(0)
1 , . . . , µ̂

(0)
K by performing independent com-

ponentwise registration of {q1j, . . . , qnj} for each j = 1, . . . , K given by (4);
(ii) initialize the phase functions to the identity warping by initializing their SRSFs to ψ (0)

ij ≡

1, i = 1, . . . , n, j = 1, . . . , K ;
(iii) for each observation i = 1, . . . , n, implement multiple registration of {qi1, . . . , qiK } using (4)

to estimate cross-component phase ξi1, . . . , ξiK ;
(iv) for each observation i = 1, . . . , n, compute weights ζi1, . . . , ζiK required for the kriging

prediction using the estimated phase trace variogram V̂i.

Iteration: Starting with the initial values, obtain phases {γ̂ij} and template components {µ̂j} by
terating and updating, until convergence.

(i) Compute ψ̃ij in penalty using kriging coefficients {ζijℓ}ℓ̸=j and phases {γ̂iℓ}ℓ̸=j;
(ii) solve γ̂ij = argmin

γ∈Γ

{
∥µ̂j − qij ⊙ γ ∥

2
+ λ∥

√
γ̇ − ψ̃ij∥

2
}
;

(iii) compute template components {µ̂j} by averaging {qij ⊙ γ̂ij} over i.

Algorithm 1 contains nested while loops (lines 12–27). The inner loop indexed by k (lines 15–22)
pdates the estimated warping functions given the templates for all components. The outer loop
ndex by z (lines 12–27) updates the template for each component given the estimated warping
10
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functions. The convergence of Algorithm 1 is assessed empirically using simulation studies in
Section 1 in the supplement.

5. Simulation studies

We conduct simulation studies to assess the performance of the proposed multiple registration
pproach for multivariate functional data. Specifically, we estimate the componentwise template
unctions {µj, j = 1, . . . , K } using three different approaches: (1) the proposed method, which
tilizes spatial cross-component phase correlation in penalized registration (Section 4 and Algo-
ithm 1), (2) independent componentwise registration (Section 3.1 and Section 3.4 in Srivastava
t al., 2011), and (3) universal registration wherein each component is assumed to have the same
hase (Section 3.2). Section 2 in the supplement additionally compares the proposed approach to
enalized independent componentwise registration via (3).

.1. Data generating model

We consider multivariate functional data wherein dependence between function components is
nduced by spatial correlation. In this setting, each component of a simulated observation is indexed
y a spatial coordinate s ∈ Rp; component j for observation i is denoted by fi,sj . Component functions
f the data are generated using the model:

fi,sj (t) = (µsj + ei,sj ) ◦ (ξi,sj ◦ αi)(t), t ∈ [0, 1], i = 1, . . . , n, j = 1, . . . , K .

n the model, µsj ∈ F denotes the template for component j indexed by spatial location sj, which is
he object that we wish to estimate through a registration procedure. The random functional error
i,sj and cross-component warping functions ξi,sj ∈ Γ are also indexed by the spatial location. The
arping function αi ∈ Γ denotes the observation specific warping function (common across all
omponents).
We consider two simulation settings characterized by choice of the component template func-

ions (see below). For both settings, the random phase components are composed of two warping
unctions: αi ∈ Γ , the phase that is common across components for observation i, and ξi,sj ∈

Γ , the cross-component phase within observation i. Such a nested structure is similar to the
structure in a mixed-effects model. The warping functions αi are taken to be cumulative distribution
functions (CDFs) of a beta distribution, Beta(1, exp(zi)), with random parameter zi ∼ Unif[−Z, Z].
he cross-component phase ξi,sj is also the CDF of a beta distribution, Beta(1, exp(bi,sj )), where

(bi,s1 , . . . , bi,sK )
⊤ follows the correlated uniform distribution on [−B, B], independently for every

; a sample from the correlated uniform distribution can be generated by transforming a correlated
ultivariate normal sample with mean (0, . . . , 0)T and Matern covariance CMat (·, ·; 1, 0.5, ℓ). The

parameters Z and B control magnitudes of the cross-observation and cross-component phase
variations; the range parameter is set to ℓ = 0.5×dmax, where dmax is the maximum spatial distance
between the simulated sites sj.

5.1.1. Simulation setting 1
In this setting, the component template functions {µsj} have a specific bimodal form. We consider

K = 20 components where the spatial coordinates sj are generated using a uniform distribution on
[−2, 2]2 ⊂ R2. The componentwise template functions are generated as µsj (t) = a1sj exp(−100(t −

1/3)2) + a2sj exp(−100(t − 2/3)2), where (am,s1 , . . . , amsK )
⊤, m = 1, 2 are independently sampled

from a multivariate normal distribution with mean vector (3, . . . , 3)⊤ and Matern covariance
CMat (·, ·; σ 2

a , 0.5, ℓ); here, σ
2
a is the scale parameter, ℓ is the range, and the smoothing parameter

is fixed to 0.5. The random errors (ei,s1 (t), . . . , ei,sK (t))
⊤ are generated independently for each

observation i in a pointwise manner: for each value of t , we generate a sample from the multivariate
ormal distribution with mean vector (0, . . . , 0)⊤ and covariance CMat (·, ·; σ 2

e , 0.5, ℓ). The other

ovariance parameters are set to σa = 1, σe = 0.5 and ℓ = 0.5 × dmax.

11
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5.1.2. Simulation setting 2
In this setting, in order to replicate the structure of EEG data, the component template functions

µsj} are chosen to possess the (typical) shape of EEG signals, i.e., each component is treated
s a signal from an EEG electrode. We consider 16 electrode locations on the scalp with three-
imensional coordinates. To imitate the shape variation in EEG signals from different brain regions,
e use a more flexible data generating model. The componentwise template functions are generated
sing 10 B-spline basis functions, Bm, m = 1, . . . , 10, of order 4 on the interval [0, 1]: µsj (t) =∑10
k=1 βk,sjBk(t). The B-spline basis coefficients (βm,s1 , . . . , βm,sK )

⊤, m = 1, . . . , 10 are generated
independently from a multivariate normal distribution with mean vector (0, . . . , 0)⊤ and Matern
covariance CMat (·, ·; σ 2

a , 0.5, ℓ). Random functional errors, ei,sj , are generated in the same way as in
Simulation setting 1, but under a lower signal-to-noise ratio: the covariance parameters are set to
σa = 2, σe = 0.5 or 1 and ℓ = 0.5 × dmax.

5.2. Assessing performance of template estimation

Denote by f̃i,sj and q̃i,sj the aligned multivariate functions and their SRSFs obtained after registra-
tion. We define two performance metrics that quantify the accuracy of template estimation based
on the registered functions:

MSE =
1
Kn

K∑
j=1

n∑
i=1

∥f̃i,sj − µsj∥
2, QMSE =

1
Kn

K∑
j=1

n∑
i=1

∥q̃i,sj − Q (µsj )∥
2,

here µsj is the true template for component j. MSE, based on the L2 norm on F , is sensitive to
hase errors, while QMSE, based on the eFR metric on F , is sensitive to shape differences (Srivastava
nd Klassen, 2016).
We use n = 20, 20 and K = 20, 16, respectively, for the first and second simulation settings

escribed in Section 5.1; we replicate each simulation 50 times. When implementing the proposed
ethod, we use 4-fold cross-validation to select a value for the regularization parameter λ. Denote
y µ̂[−k]

sj the estimated template function for component j based on data in all folds except the kth
ne; here, we use ⟨k⟩ to denote the set of observation indices in fold k. Then, the value for the
egularization parameter λ is chosen by minimizing 1

4Kn

∑4
k=1

∑K
j=1

∑
i∈⟨k⟩ ∥fi,sj ◦ γ̂i,sj − µ̂

⟨−k⟩
sj (λ)∥2,

here γ̂i,sj = argminγ∈Γ ∥Q (µ̂⟨−k⟩
sj (λ)) − Q (fi,sj ) ⊙ γ ∥

2, i.e., we align functions in the validation set
fold k) to the template estimated using the training set (all folds except k). The selected value for
he regularization parameter is then used for registration of all observations.

Results for each simulation setting described in Section 5.1 are summarized in the boxplots
hown in Fig. 3. In all cases, we also report values of the error metrics when no registration is
pplied to the data; this serves as the baseline.

.2.1. Simulation setting 1
The left panel of Fig. 3 shows that both componentwise registration and the proposed method

learly have smaller MSEs than universal registration; further, the mean MSE for the proposed
ethod (0.083) is slightly lower than the mean MSE for the componentwise method (0.099). With

espect to QMSE, the performance of componentwise registration is clearly worse than the proposed
pproach. Interestingly, universal registration outperforms componentwise registration in terms of
edian QMSE.
The improvement in registration quality with the proposed method over the componentwise

pproach is due to the addition of the regularization term. Componentwise registration tends
o ‘overalign’ features of the component functions, e.g., peaks and valleys, that are due to the
andom error, i.e., the estimate of cross-component phase is too flexible. On the other hand, the
niversal approach performs poorly since all components within an observation are constrained to
e identical, i.e., the estimate of cross-component phase is too restrictive. The compromise achieved
y the proposed method between the componentwise and universal methods by introducing a
egularization penalty that synthesizes spatial phase information from all components within an
12
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Fig. 3. Left: Simulation setting 1 with Z = 0.5 and σe = 0.5; scale parameter of cross-component phase variation is set
to B = 0 or B = 0.25. Right: Simulation setting 2 with Z = 0.5 and B = 0; when σe = 1, we also present results after
pplying smoothing splines with a low value of the smoothing parameter. Boxplots of the (a) MSE and (b) QMSE for
emplate functions estimated with no registration (red), componentwise registration (green), universal registration (cyan)
nd proposed penalized registration (purple). (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

Fig. 4. Registration result for a single component in one simulation replicate under Simulation setting 2 with σe = 0.5.
anel 1: Simulated data in grey with cross-sectional average without registration in red. Panels 2-4: Aligned functions in
rey with estimated template in red, generated using componentwise registration, universal registration, and the proposed
ethod, respectively. The ground truth template function is shown in black. (For interpretation of the references to colour

n this figure legend, the reader is referred to the web version of this article.)

bservation results in improved registration. Finally, we note that the performance of the proposed
ethod is consistently better than the other two approaches, even if no cross-component phase
ariation exists in the data (the case when B = 0).

.2.2. Simulation setting 2
Recall that the setting here is designed to replicate the structure in EEG data. The low signal-

o-noise ratio presents significant challenges for all of the registration procedures. The right panel
f Fig. 3 shows that the componentwise approach, expectedly, is the most sensitive to the random
unction errors due to its lack of regularization. Despite the good performance of this method in
he first simulation setting, the low signal-to-noise ratio when σe = 1 significantly deteriorates
the template estimates, especially with respect to QMSE. In fact, when σe = 1, the advantages
of registration are not obvious since all of the procedures are essentially driven by random noise;
regularization with the spatial penalty provides some help, but there is insufficient structure in {fi,sj}
to inform estimation of the conditional mean phase based on cross-component spatial correlation.
In such situations, we recommend slight smoothing of the observed functions prior to registration
using any off-the-shelf smoothing procedure (e.g., splines). To examine value in the pre-smoothing
when σe = 1, we report additional results after applying smoothing splines to the simulated data,
with a small value for the smoothing parameter. We see that the proposed registration method
produces more accurate and stable template estimates than the other two registration approaches.

In Fig. 4, we provide results of template estimation for a single component in one simulation
run when σe = 0.5. The simulated data for this component is shown in grey with the ground truth
template in black. The estimated templates are shown in red. In Panel 1 of Fig. 4, it is evident that
when no registration is performed, the resulting template underestimates relevant shape features,
e.g., the two peaks and one valley between t = 0.4 and t = 0.75; in Panel 2, componentwise
13
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registration results in a template that generates additional shape features due to overalignment of
noise, e.g., the two small peaks and three valleys between t = 0 and t = 0.3; in Panel 3, universal
egistration results in a template that has the nearly correct shape, but that is out of phase with
espect to the ground truth template, e.g., there is significant lag between t = 0.7 and t = 1. Finally,
n Panel 4, we note that the proposed approach results in a template that is very similar in shape
o the ground truth and is largely in phase.

. Illustrations on real data

In this section, we examine performance of the registration method on two real-data examples
ertaining to multivariate functional data arising from EEG and ozone studies.

.1. Electroencephalogram data

We analyse an EEG dataset arising from a study that examined EEG correlates of genetic
redisposition to alcoholism (Bache and Lichman, 2013). The study resulted in EEG measurements
ecorded at 64 electrodes placed on the subjects’ scalps, with a sampling rate of 256 Hz (3.9-msec
poch) for 1 s. Each subject was exposed to a stimulus in each trial and completed multiple trials
here different stimuli were shown. The study used standard 64-channel electrode placements as
efined by the American Electroencephalographic Association. In our analysis, we use EEG signals
rom 50 trials for one subject, and treat each trial as an independent multivariate functional
bservation. We use 61 out of the 64 electrode locations as the components in each observation;
he three electrode locations that are not used are very far away from the main scalp region. Thus,
he data for this study is Fi = (fi1, . . . , fiK )⊤, K = 61, i = 1, . . . , 50. Prior to analysis, each EEG
ignal was smoothed using smoothing splines with a small parameter value of 1×10−5. To compare
he performance of different methods, we register the 50 trials using the componentwise, universal
nd proposed registration approaches. After registration, we average the aligned signals recorded by
ach electrode across trials to estimate the mean event related potentials. For the proposed method,
e use 4-fold cross-validation to select a value for the regularization parameter λ.
For easy comparison across the three methods, we display the registration results for electrode

FZ in Fig. 5. As in the simulations, we also display the result of averaging across trials when no
egistration is applied to the data as a baseline (Panel 1). The electrode AFZ was chosen as an
llustration since many of the EEG signals recorded there contain a pronounced activation peak
etween t = 0.75 and t = 1. We observe similar results in this real EEG data example, based on the
ifferent registration methods, as in the simulation studies. In Panel 1, when no alignment is applied,
he pronounced activation peak is almost completely nonexistent in the average signal shown in
ed; thus, registration of the data is necessary prior to averaging. In Panel 2, the componentwise
egistration method tends to overalign many of the relatively small modes present in the signals
hat are likely due to noise. This results in an average that has many small fluctuations that
re indistinguishable from the pronounced activation peak. In Panels 3 and 4, the universal and
roposed methods are effective in capturing the large peak in the respective average signals and
end to produce fewer small fluctuations prior to t = 0.75. Essentially, these two methods mitigate
he contribution of noise and result in average signals that reflect the most prominent feature in the
iven data. The magnitude of the pronounced activation peak is similar in the two averages, but it
s stretched over a longer part of the domain in the average produced using the universal method.

In EEG data analysis, it is often of interest to study the relationship between average signals
across trials) at different electrode locations after registration. To show the benefits of the proposed
pproach in downstream EEG data analysis tasks, we explore the spatial correlation between
stimated average EEG signals using the empirical trace-variogram (Giraldo et al., 2011), defined
s

V̂ (h) =
1

2|Nϵ(h)|

∑
∥µ̂sa − µ̂sb∥

2, (12)

a,b∈Nϵ (h)

14
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Fig. 5. Registration and estimate µ̂sj of template component µsj at electrode AFZ (location sj). Panel 1: Simulated data in
rey with cross-sectional average without registration in red. Panels 2-4: Aligned functions in grey with estimated average
ignal in red, generated using componentwise registration, universal registration, and the proposed method, respectively.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 6. Empirical trace-variograms V̂ (left) computed using estimated average signals {µ̂sj , j = 1, . . . , 61} obtained using
hree registration methods: componentwise (red, solid), universal (blue, dashed), and proposed (green, dotted). Estimated
verage EEG signals {µ̂s1 , . . . , µ̂s14 } at 14 (out of the total 61) electrodes placed in an area related to the parietal lobe,
omputed using the proposed (middle) and componentwise (right) registration approaches. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

here Nϵ(h) = {(sa, sb) : ∥sa − sb∥ ∈ (h − ϵ, h + ϵ)} for a small ϵ > 0 and µ̂sa denotes the
stimated average signal for electrode located at sa, a = 1, . . . , 61. The empirical trace-variograms,

computed based on average signals generated by the three different registration methods, are
shown in the left panel of Fig. 6 (componentwise in red, universal in blue, proposed in green);
the average signals estimated using the proposed approach, which were used to compute the
green trace-variogram, are shown at their respective scalp locations in the left panel of Fig. 7.
The variograms suggest very similar spatial correlation patterns between the average signals, but
the proposed approach produces averages with smallest spatial variation. The universal approach
results in more spatial variation due to its very restrictive assumption of common phase across
all channels. The magnitude of spatial variation in this case is similar to the proposed method at
small spatial distances. This is intuitive since cross-component phase variation at nearby electrodes
is very small and the common phase assumption is reasonable. However, as the spatial distance
increases, this assumption becomes unrealistic.

The componentwise method conducts separate alignment of EEG signals at each electrode,
resulting in large phase variation across electrode locations. On the other hand, the proposed
method avoids this issue by accounting for spatial phase correlation across electrodes via the
regularization penalty. To demonstrate this, we consider 14 electrodes in the area corresponding to
the parietal lobe. Since all 14 electrodes are related to the same brain region, we expect very little
phase variation in the resulting average signals. The estimated averages are shown in the middle
panel in Fig. 6 for the proposed method and the right panel for the componentwise method. In
the middle panel, there is very little phase variation across the estimated averages, as expected.
However, in the right panel, it is easy to see that considerable phase variation remains.
15
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Fig. 7. Left: Average EEG signals estimated using the proposed method, {µ̂sj , j = 1, . . . , 61}, shown at the (projected)
wo-dimensional electrode locations on a toy map of the scalp. Right: Average ozone concentration functions estimated
sing the proposed method, {µ̂sj , j = 1, . . . , 16}, shown at the station locations in northern California.

.2. Ozone concentration data

Ground-level ozone is a harmful pollutant that is monitored closely by the Environmental
rotection Agency. The temporal trend of daily ozone concentration varies from year to year due
o variations in various environmental conditions, including the weather. To explore average ozone
oncentration patterns at a certain location, we desire to first eliminate phase variation that exists
cross different observation years using a registration procedure. At the same time, we must account
or cross-component phase variation across different locations within the same year that is due
o different temporal patterns of pollutant spread. Thus, we view multi-year ozone concentration
unctions, observed at different spatial locations, as multivariate functional data with two different
ources of phase variation; here, univariate ozone concentration functions observed at different
patial locations are treated as components of a full observation corresponding to a single year. In
his analysis, we focus on a small area in northern California (35◦

∼ 39◦ N, 120 ∼ 123◦ W) with
= 16 observation stations (components). Each station recorded daily average ozone concentration

in parts per million) from year 2000 to year 2019 (sample size n = 20). Thus, the data for this study
s Fi = (fi1, . . . , fiK )⊤, K = 16, i = 1, . . . , 20. The data is publicly available on the air data website1
f the United States Environmental Protection Agency. The data for the single year 2018, constituting
ne multivariate functional data observation, is shown in the left panel of Fig. 8. There is evidence of
ross-component spatial correlation, i.e., ozone concentration patterns at nearby stations are similar.
n the right panel of Fig. 8, we fix the spatial location to station 6–19, and present the observations
t this single site across multiple years: 2000–2019. It is clear that there is considerable phase
or temporal) variation across these yearly observations, since the timing of features in the ozone
oncentration functions varies across years. This motivates application of the proposed approach
or cross-year registration while accounting for the spatial structure across observation sites.

As in the previous real data analysis example that considered EEG data, we compare the
erformance of three registration procedures in this context: componentwise, universal and pro-
osed. We display the registration results for a single location, corresponding to Alameda County
37.8 N, 122.3 W; location 6–1), in Fig. 9. We also display the result of averaging across trials
hen no registration is applied to the data as a baseline (Panel 1). We make several interesting
bservations based on these results. First, the proposed method yields an estimate of the average

1 https://www.epa.gov/outdoor-air-quality-data
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Fig. 8. Left: Daily average ozone concentration functions observed at 16 stations in northern California in 2018. The IDs
mark the locations of stations on the map and red curves are smoothed concentration data during a year. Right: Daily
ozone concentration functions at site 6–19 for each of the years 2000–2019; different colours indicate different years. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Registration and estimate µ̂sj of template component µsj where sj is Alameda County (37.8 N, 122.3 W; ID 6–1
n map in left panel of Fig. 8). Panel 1: Observed data in grey with cross-sectional average without registration in red.
anels 2-4: Aligned functions in grey with estimated average signal in red, generated using componentwise registration,
niversal registration, and the proposed method. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

zone concentration function (Panel 4) that contains clearer patterns than the average computed
ithout alignment (Panel 1), e.g., the steep reduction in ozone concentration around day 200.
he proposed approach produces an average that has very similar patterns to those computed
sing the componentwise and universal registration methods, but is smoother overall. The most
oticeable difference occurs in early autumn where the proposed approach results in an average
hat has a single mode, while the other two methods result in averages with two smaller peaks. A
ossible reason for this phenomenon is the large regularization parameter value chosen via cross-
alidation; this restricts the complexity of estimated cross-component warping functions and forces
he registration procedure to overlook small features that are potentially induced by noise.

As in the EEG data example, we further analyse the estimated average ozone concentration
unctions at the 16 spatial locations. Modelling of spatial correlation based on averages computed
fter registration is also of particular interest in this application. In the left panel of Fig. 10, we
isplay the empirical trace-variograms, computed using (12) after estimating the average ozone
oncentration functions using the componentwise (red), universal (blue) and proposed (green)
pproaches; the average signals estimated using the proposed approach, which were used to
ompute the green trace-variogram, are shown at their respective station locations in the right
anel of Fig. 7. The conclusions here are similar to those reached in the EEG data example. The
roposed method yields componentwise averages that have smallest spatial variation. The variation
ap between the universal and proposed methods appears bigger in this case, even for small spatial
17
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Fig. 10. Empirical trace-variograms V̂ (left) computed using estimated average ozone concentration functions {µ̂sj , j =

1, . . . , 16} at 16 locations in a small area in northern California obtained using three registration methods: componentwise
(red, solid), universal (blue, dashed), and proposed (green, dotted). Estimated average ozone concentration functions
{µ̂sj , j = 1, . . . , 16} computed using the proposed (middle) and componentwise (right) registration approaches. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

distances. We further display the componentwise estimated average ozone concentration functions,
for each of the 16 locations, generated using the proposed and componentwise registration methods
in the middle and right panels of Fig. 10, respectively. It is obvious that the proposed approach
(middle) results in estimated average functions that exhibit much less cross-component phase
variation than the average functions generated using the componentwise registration method
(right). Furthermore, most averages in the middle panel have two ozone concentration maxima
around April/May and August, and a single ozone concentration minimum around June/July. In the
right panel, there is much more variation in the number of extrema in the estimated averages as
well as their timing.

7. Discussion

We have proposed a novel penalized registration framework for multivariate functional data
wherein cross-component phase variation is spatially correlated. The spatial structure is incorpo-
rated into a penalty term that regularizes the estimated phase variation. Importance of the elastic
metric and its invariance to time warping, which is made practically useful through the square-root
slope function (SRSF) representation, cannot be overstated. The invariance property is used to great
benefit in both the objective function and the novel spatially-informed penalty term through the
kriging prediction ψ̃ij, and enables us to disregard estimating the cross-observation phases {αi}. We
ave shown the effectiveness of this approach using simulation studies, and via real data examples
hat consider multi-trial EEG data and daily ozone concentration functions observed across multiple
ears.
The proposed regularization penalty is limited by the strength of spatial correlation across

omponents in a multivariate functional observation. Thus, a sufficient number of components
across locations that are not widely spread on the spatial domain) is needed for reliable estimation
f the cross-component phase trace-variogram used to define the kriging prediction in the spatial
enalty term. Furthermore, we only consider the case of dense multivariate functional data. For
parse functional data, an additional function estimation procedure needs to be incorporated into
he framework.

The proposed penalized registration procedure can in principle be used to align multivariate
unctional data with component functions that are correlated in other ways. For example, when
omponent functions are temporally correlated, we can replace the kriging prediction ψ̃ij in the
enalty term of the objective function (6) with a temporal interpolant or temporally weighted
stimate (e.g., moving time-window average). There is much to be done in this direction, and the
roposed method represents a promising initial foray.
The focus in this paper was restricted to multivariate functional data wherein only the cross-

omponent phases are spatially correlated. The objective function (6) does not quantify and
ncorporate any spatial correlation between the cross-component amplitudes, and this may well
18
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be of interest in certain applications. Extension of the algorithm to this case is possible using the
amplitude trace-variogram proposed by Guo et al. (2022), in addition to the phase trace-variogram.
This presents a fruitful line for future work.

There is potential for improvement in reducing the computational burden when implementing
the registration procedure when the number n of functional observations with K components are
oth large. Registration in the elastic framework uses the dynamic programming algorithm since
he class of warping functions Γ is infinite-dimensional and unconstrained (Srivastava and Klassen,
016). Restricting attention to a smaller parametric class (e.g., parameterized class of distribution or
uantile functions on [0, 1]) will reduce computing time considerably, but at the cost of flexibility
n registration.
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ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/
.spasta.2023.100760. The supplement includes an empirical assessment of convergence for Algo-
ithm 1 and a comparison to penalized componentwise registration.
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