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ABSTRACT   

Coherence scanning interferometry (CSI) is a well-established technique for measuring surface topography based on the 

coherence envelope and phase of interference fringes. The most commonly used surface reconstruction methods, i.e. 

frequency domain analysis, the envelope detection method, and the correlogram correlation method, obtain the phase of 

the measured field for each pixel and, from this obtain the surface height, by assuming the two are directly proportional. 

For surfaces with minor deviations from a plane, it is straightforward to show that the scattered field’s phase is a linear 

function of surface height. An alternative approach known as the “foil model” gives more generally the scattered field as 

the result of a linear filtering process operating on a “foil” representation of the surface. This model assumes that the 

surface slowly varies on the optical scale and that there is no multiple scattering. However, for surfaces that are rough at 

the optical scale or have coherent features (e.g. vee-grooves), the effect of multiple scattering cannot be neglected and 

remains a problem for reconstruction methods. Linear reconstruction methods cannot provide accurate surface 

topographies for complex surfaces, since for such surfaces, the measurement process of CSI is fundamentally non-linear. 

To develop an advanced reconstruction method for CSI, an accurate model of the imaging process is required. In this paper, 

a boundary elements method is used as a rigorous scattering model to calculate the scattered field at a distant boundary. 

Then, the CSI signal is calculated by considering the image formation as back-propagation of the scattered field, combined 

with the reflected reference field. Through this approach, the optical response of a CSI system can be predicted rigorously 

for almost any arbitrary surface geometry. Future work will include a comprehensive experimental verification of this 

model, and development of the non-linear surface reconstruction algorithm. 
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1. INTRODUCTION 

Coherence scanning interferometry (CSI) offers high precision measurement of surface topography, capable of achieving 

a sub-nanometre noise level for planar and relatively smooth surfaces1. By using a broadband illumination source and a 

reference mirror, fringes that are localised to the surface topography are formed as the instrument scans, and the coherence 

envelope and phase of these fringes can be obtained and used to estimate the surface topography2. These reconstruction 

methods include among others the envelope detection method3,4, which obtains the centroid of the coherence envelope to 

estimate surface height; the frequency domain analysis method5,6, which uses both envelope and phase information for a 

more refined surface estimation; and the correlogram correlation method7, which identifies the coherence peak through 

correlation to a reference signal.  

Reconstruction methods must rely on an assumed relationship between the measured field and the true surface topography, 

and the aforementioned common reconstruction methods all assume that the phase of the measured field at a point is 

proportional to the surface height at that point. Under elementary Fourier optics (EFO), it is assumed that the measured 

field’s phase is a linear function of surface height for surfaces close to a plane, beyond which the relationship no longer 

exactly holds8. Nonetheless, CSI models based on this simple assumption can still predict the main features of an 

interference signal9,10, and reconstruction methods that assume this are effective6. In particular, a CSI model based on this 

assumption has been used to simulate batwing effects, accounting for diffraction effects by convolution of the theoretical 

Modeling Aspects in Optical Metrology VII, edited by Bernd Bodermann, Karsten Frenner, Proc. of SPIE
Vol. 11057, 1105713 · © 2019 SPIE · CCC code: 0277-786X/19/$21 · doi: 10.1117/12.2526015

Proc. of SPIE Vol. 11057  1105713-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

 

 

two-dimensional (2D) point spread function of the imaging system11,12. A model that is based on the Debye 

approximation13,14 can calculate the electromagnetic field near to the focus of an aplanatic optical system for polarized 

light, but it does not account for multiple scattering (as noted elsewhere15). 

Some of the advanced approximate surface scattering models are based on the Kirchhoff-tangent (or physical optics) 

approximation16–18 (KA); an approximation which requires that surfaces vary slowly on the optical scale. CSI models 

reliant on the KA include one used to model rectangular grating structures with periods much larger than the grating 

heights14; and one based on linear systems theory called the foil model19,20. The foil model can provide the CSI signal from 

a surface so long as the KA is satisfied, and the model is currently being used to predict the effects of reference mirror 

defocus21, provide new methods of instrument calibration22, and characterise lateral resolution from measurements of 

micro-spheres23.  

The foil model also assumes that multiple scattering is negligible20. Despite the mitigating effect of a finite spatial 

frequency bandwidth, the effect of multiple scattering and loss of diffraction orders cannot be neglected and remains a 

problem for surfaces that are rough at the optical scale, or when coherent features such as vee-grooves or sharp edges are 

present24,25. For such complex surfaces, the CSI measurement process is fundamentally non-linear, and consequently the 

linear reconstruction methods cannot reconstruct accurate surface topographies. Only an advanced reconstruction method 

that accounts for these effects could provide an accurate surface topography estimate for these surfaces, and such a method 

must be based on a rigorous scattering model. 

Rigorous models for optical scattering typically use numerical techniques to solve Maxwell’s equations exactly. A review 

on the field of computational electromagnetics (CEM) is beyond the scope of this paper, but some of the rigorous CEM 

methods include finite‐difference time‐domain, finite element methods (FEMs), boundary element methods (BEMs) (also 

known as Method of Moments), and rigorous coupled‐wave analysis (RCWA)26,27. A RCWA CSI model for high numerical 

aperture (NA) objectives has been developed for parameter determination of unresolvable etched grating structures28, 

however, RCWA approaches are typically only appropriate for periodic structures.  

In order to solve the scattering problem for arbitrarily complex surfaces efficiently, a rigorous BEM-based optical 

scattering model has been chosen. In contrast to FEM’s volume discretisation, BEM solves linear partial differential 

equations along only the boundaries and, therefore, is in principle faster for surface scattering. The method used in this 

work is based on that of Simonsen29, the theory being developed earlier by Maradudin et al30. This method finds along a 

surface the field and its surface normal derivative by taking advantage of the Ewald-Oseen extinction theorem31,32, and 

solves the subsequent set of inhomogeneous integral equations through conversion to matrix equations by appropriate 

spatial discretisation of the integrals. Such an approach is formally exact, and accounts for both surface plasmons, 

polarisation effects, and structures which contain overhangs and other complex re-entrant features. This BEM model has 

been used to calculate the far field scattering of a sinusoidal surface and the result agrees with that of laser scatterometry 

measurement33. The current algorithm restricts the BEM model to surfaces that only scatter within the plane of incidence, 

i.e. surfaces fully described by lines on the plane of incidence (x-z plane) and infinitely extended along the third dimension 

(y direction) perpendicular to the plane of incidence. However, a full three-dimensional (3D) algorithm that can handle 

any arbitrary complex surfaces is under development. 

The CSI model presented in this paper generates fringes based on the interference between the reference field and the 

scattered field, which is calculated through a BEM monochromatic scattering model for different illumination conditions 

that together comprise a broadband incoherent source. The image formation can be considered as a filtering and 

demodulation operation applied to the scattered field20; more details are given in the following section.  

 

2. MODELLING CSI 

The procedure that allows a BEM-based CSI model to generate fringe signal data for surfaces can be broken into a number 

of steps, which are illustrated in Figure 1.  
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Figure 1. Flowchart describing the operation of the CSI model 

2.1 Choice of inputs 

A surface’s coordinates along the lateral axis x and the optical axis z can be generated by an analytical function, or 

numerically specified. Naturally, the surface described by these coordinates defines the boundary between two 

homogeneous mediums of different refractive indices, and for each medium, the complex refractive index must be 

specified. Next, the optical parameters, such as the NA of the lens, are chosen, providing the range of angles that the 

incident illumination can take and the acceptance angle for filtering of the scattered field. The polarisation of illumination 

is selected, between either the transverse electric (TE) or transverse magnetic (TM) polarisation (i.e. s- or p-polarisations). 

The illumination’s broadband spectrum can be defined by a Gaussian distribution with a given mean wavelength and full 

width at half maximum (FWHM).  

 

2.2 BEM surface scattering 

Once the surface, optics and illumination have been defined, the broadband spectrum and the angles of illumination are 

sampled, and for each possible pairing of wavelength and incident angle, the surface field values and far field scatter are 

found using the BEM method, which provides the total field and its surface normal derivative along the surface. The BEM 

model takes advantage of the extinction theorem to form a pair of inhomogeneous surface integral equations for the two 

media, which are then coupled together by the boundary conditions that the field and its normal derivative must satisfy 

along the media’s interface. The extinction theorem used here can be considered equivalent to Kirchhoff’s integral 

equation, both consequences of applying Green’s second integral identity to the Helmholtz equation29,31,34. These equations 

can be solved computationally to find the surface “source” fields, from which the scattered field at any point can be found. 

For these far field scatter calculations to be accurate, the surface must be resampled equidistantly before the surface field 

values are found, with the resampling distance typically set to 𝜆/5 or smaller for illumination wavelength 𝜆. To ensure that 

the same surface coordinates are used for each wavelength of light sampled from the spectrum, the smallest wavelength 

sampled is chosen to determine the resampling distance.  

 

2.3 Generating the measured field for broadband illumination 

In order to reconstruct the scattered field along the surface, the measured scattered field in the far field 𝐸𝑚(𝐫), for position 

vector 𝐫, is demodulated by multiplying by the reference field that is reflected from the reference mirror in a real system, 

given by the conjugate of the illuminating field 𝐸𝑟(𝐫)∗. The reconstructed field is given by  

 𝑂(𝐫) = 𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗. (1) 
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The demodulation can be carried out in the spatial frequency domain, i.e. k-space, through a convolution of the far field 

scatter and the reference field to calculate the values of 𝑂̃(𝐤) = FT{𝑂(𝐫)}. The spatial frequency components of the 

scattered field 𝐸̃𝑚(𝐤) can only be found on a spherical shell in k-space with a radius of 1/𝜆 35. The reference field is a 

spherical shell in k-space with the same radius. Both spherical shells are truncated due to the finite NA19. As shown in 

Figure 2, the two truncated spherical shells are convolved as a consequence of the demodulation process, i.e. the reflected 

reference field shifts the scattered field values to higher spatial frequencies.  

For broadband illumination, the measured field 𝐸̃𝑚(𝐤) for each illumination wavevector 𝒌inc must be found over a range 

of observation vectors 𝒌obs, and the set of measured fields for each 𝒌inc summed. For each possible pairing of 𝒌inc and 𝒌obs 

(where |𝒌inc| = |𝒌obs| = 𝑘0 = 1/𝜆), the complex scattered field value is iteratively added at the position 𝒌obs − 𝒌inc to any 

existing value at that position. The calculation of the far field scatter and the demodulation process are repeated for each 

spectral component of the light source, weighted by the spectral density 𝑆(𝑘0). The fringe signal 𝑂̃(𝐤) is obtained through 

the superposition of the signal for each wavelength and angle of incidence. The CSI fringe image in real space is then 

given by the real part of 𝑂(𝐫) = FT−1{𝑂̃(𝐤)}. 

 

Figure 2. a) Construction of k-space fringe data 𝑂̃(𝐤) is achieved by adding the computed scattered field values for each 𝒌inc and 𝒌obs 

at the 𝒌obs − 𝒌inc  position, after suitable weighting. In b), for a specific 𝑘0, the non-zero field values of 𝑂̃(𝐤) for a limited set of 𝒌inc 

are shown in black, illustrating how scattered field values (red) are shifted by the range of 𝒌inc for a limited acceptance angle. Note that 

here each black arc originates from a different set of scattered field values due to a dependence on 𝒌inc. 

 

3. METHOD 

In order to verify the BEM CSI model, qualitative comparisons were made between results from the model and those from 

experimental measurements. A range of prismatic surfaces were measured using a Zygo Nexview™ NX2 CSI instrument, 

see Table 1. In each case, a 10 µm scan along the optical axis was performed using a 50× objective lens, which has a NA 

of 0.55 (acceptance angle of ~33°), a Sparrow criteria optical resolution of 0.52 µm, a field of view (FOV) of (0.17 × 0.17) 

mm when using the 1.0× zoom lens, and from the 1000 × 1000 pixel FOV, a spatial sampling of 0.174 µm per pixel. The 

signal data measured and recorded by the instrument, i.e. the intensity measured at each pixel for each scan position, is 

exported as a 3D array of integers. The k-space fringe data is then obtained through use of the 3D fast Fourier transform 

(3D FFT), and a band-pass filter (BPF) applied to isolate the high spatial frequency fringe components. A subsequent 

inverse 3D FFT of the filtered signal provides the real-space experimental fringe data without DC components. 

 

The BEM CSI model is provided with the corresponding curves that specify the real surfaces, e.g. a sinusoid for a sinusoidal 

grating and a horizontal line for an optical flat. It was assumed that the light is incident upon a perfect conductor and 

arbitrarily use TE polarisation illumination. The spectral density as a function of wavenumber is modelled as a Gaussian 

with a mean of 1.72 cycles/µm, and FWHM of 0.24 cycles/µm (corresponding to a mean of 0.58 µm and a FWHM of 
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0.08 µm) and approximately matching the corresponding parameters of the instrument. The real-space fringe signal 𝑂(𝐫) 

is determined at coordinates with lateral and axial spacing that match that of the real instrument’s signal data, i.e. using a 

lateral spacing of 0.174 µm and an axial spacing of 0.071 µm, with 1000 lateral points and 205 axial points. This 

corresponds to a k-space grid spacing of 0.0058 cycles/µm and 0.0673 cycles/µm for the lateral and axial directions 

respectively. The spectrum is sampled fifteen times over three standard deviations of the total spectrum (i.e. from 1.42 

cycles/µm to 2.03 cycles/µm), and the incident angles sampled eighteen times over the angles within the acceptance angle 

for the NA. Over the same range of angles, 1113 observation angles are chosen, at which the far field scatter is calculated. 

Each surface in Table 1, with the exception of the vee-groove, has a length of 170 µm along the lateral direction, i.e. x-

direction, matching the FOV of the experiment, and the surface geometry was sampled with a spacing of 0.099 µm. Under 

these conditions, the CSI signal simulation took around forty-five minutes for each surface on a PC with Intel® Xeon® E5-

1620 v4 @ 3.50 GHz CPU and 64 GB RAM. However, for these surfaces, a reduction to nine incident angles halves this 

time with very little effect on the generated fringes. Additionally, it is expected that more computationally efficient 

approaches, e.g. parallelisation, would reduce this time considerably. 

Table 1. Surfaces measured and modelled for this paper 

Surface type Specific surface 

measured 

Nominal parameters 

Optical flat NPL AFL Measured areal root-mean-square roughness Sq: 1.4 nm 

(Levelling by least-squares mean plane subtraction; S-filter with a 

nesting index of 0.8 μm; L-filter with a nesting index of 80 μm) 

Sinusoidal 

grating 

Rubert 543E Peak-valley amplitude: 0.12 µm 

Surface wavelength: 2.5 µm 

Sinusoidal 

grating 

Rubert 528E Peak-valley amplitude: 1.5 µm 

Surface wavelength: 50 µm 

Step height with 

sharp edge 

NPL ACG-2.1 

XP01 

Step height: 2.1 µm 

Vee-groove N/A (only 

modelled) 

Vee-groove dihedral angle: 70° 

Depth: 10 µm 

 

4. RESULTS AND DISCUSSIONS 

First the experimental results when measuring an optical flat are compared with results from the model, as seen in Figure 

3 and Figure 4. Good agreement is achieved, showing that the model generates fringes that match the experimental results. 

The coherence envelope of the fringes slightly differs between the experimental results and those from the CSI model, 

which is expected given that the instrument’s source spectrum is not exactly Gaussian, with similar issues seen elsewhere22. 

In Figure 5 and Figure 6, a high spatial frequency, low amplitude sinusoidal grating is used, as specified in Table 1. As 

expected from EFO, the diffraction orders produced are spaced relatively far apart due to the surface wavelength of 

2.54 µm. The agreement between experiment and simulation is again good, with the signals in both the real space and k-

space matching. However, the amplitudes of the higher diffraction orders, relative to the zeroth-order, are weaker in the 

experimental measurement. This is partly because the current BEM algorithm only considers in-plane illumination, but in 

the experiment, the zeroth-order will have a number of contributions from off-axis illumination that increase its magnitude, 

i.e. this effect can be considered as the difference between measuring a grating using a spherical lens and a cylindrical 

lens. In addition, this effect is partially caused by the imperfect transfer function of the instrument due to optical aberration 

and apodisation due to the reference mirror in its Mirau objective23.  

In Figure 7 and Figure 8, comparison is made using a sinusoidal grating with higher amplitude and longer wavelength, as 

specified in Table 1. The surface wavelength of 50 µm causes the resulting pattern in k-space to be closer together, and the 

increased amplitude gives the more complex pattern seen here. Good agreement is again seen for both the real and k-space 

fringe data.  
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The final comparison between the model and experiment uses a step height, as shown in Figure 9 and Figure 10, and as 

specified in Table 1. Agreement between experimental results and the modelled results in Figure 9 is good in the flat 

regions, but differs significantly around the step itself. This discrepancy likely occurs due to the inherent difference 

between the CSI model, which is restricted to surfaces that only scatter within the plane of incidence, and a real 3D 

measurement; this can in part be seen through examination of the fringes after filtering of the out-of-plane k-space signal 

(not shown here). Polarisation effects introduced by the instrument’s optical elements, and in particular the Mirau 

interferometric objective36, are not considered in our model, which could contribute to this difference. In addition to these 

effects, the tilted fringes near the corner and the vertical wall of the modelled step height is probably caused by the double 

reflection between the two orthogonal surfaces, which are likely less pronounced in the experiment because the texture of 

the vertical wall is higher compared to the smooth surface assumed in the simulation. This discrepancy will be investigated 

in future work.  

In addition to comparisons to experimental measurements, in Figure 11 the model’s results of a 10 µm deep vee-groove 

with 70° dihedral angle are presented, where the sampling in wavenumber and incident angle has been increased. The 

inverted “v” fringe pattern seen at the pit of the vee-groove is understood to be virtual images of the two vee-groove walls, 

generated by multiple reflection37,38; and the relationship, described elsewhere37, that relates the dihedral angle of the 

multiple reflection image to the vee-groove dihedral angle appears to be satisfied here. The result also visually matches 

that found elsewhere25. This result, therefore, presents evidence that the model can account for multiple scatter. 

 

Figure 3. Cross-sectional CSI signal of an optical flat after BPF filtering a), and corresponding simulation c) of fringe intensity, where 

along the blue dotted lines the profiles b) and d) have been taken from measurement and simulation respectively. The fringe intensity 

has been normalised to lie within ±1 in each case. 

 

Figure 4. Cross section of the magnitude of the k-space CSI signal from measurement of an optical flat a), and corresponding simulation 

b). The k-space signal magnitude has been normalised to +1 in each case. 
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Figure 5. Cross-sectional CSI signal of a sinusoidal grating after BPF filtering a), and corresponding simulation b). Note that the fringes 

were measured a) and generated b) over the same FOV as in Figure 3, but the display window has been shrunk for better visual 

comparison. 

 

Figure 6. Cross section of the magnitude of the k-space CSI signal from a sinusoidal grating a), and corresponding simulation b).  
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Figure 7. Cross-sectional CSI signal of a sinusoidal grating after BPF filtering a), and corresponding simulation b). 

 

Figure 8. Cross section of the magnitude of the k-space CSI signal from a sinusoidal grating a), and corresponding simulation b). 
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Figure 9. Cross-sectional CSI signal of a step height obtained from cross grating sample after BPF filtering a), and corresponding 

simulation for a step height, assuming a step inclination of 90° b).  

 

Figure 10. Cross section of the magnitude of the k-space CSI signal from a step height found on a cross grating sample a), and 

corresponding simulation for a step height b). 
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Figure 11. a) Simulated CSI signal in real space for a vee-groove as described in Table 1. Note that the blue dashed line denotes the 

geometry of the vee-groove modelled. b) The magnitude of the k-space CSI signal. 

 

5. CONCLUSIONS 

In this paper, a rigorous model of CSI based on BEM is presented as an approach for generating fringes for arbitrarily 

complex surfaces. Current CSI models cannot accurately predict interferometric fringes for surfaces with complex 

geometries that cause multiple scattering. Here, a rigorous CSI model that accounts for multiple scattering is presented. 

Evidence of the model’s validity is provided by comparison to experimental measurements from a commercial CSI 

instrument for a number of surfaces, giving good qualitative agreement.  

In future work, it is planned to demonstrate clearly that this rigorous CSI model can provide accurate results for structures 

where multiple scatter visibly dominates, and results depart significantly from that predicted by traditional linear models. 

In particular, it would be valuable to show that fringes can be accurately predicted for surfaces that are difficult to 

reconstruct using current surface reconstruction methods. Development of a three-dimensional version of the BEM model 

is already in progress, and once completed, a full 3D CSI fringe model can be constructed and results for various surfaces 

compared to the current model.  
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