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Abstract 

Molecular walkers standing on two or more “feet” on an anisotropic periodic potential of a 

crystal surface may perform a one-dimensional Brownian motion at the surface-vacuum 

interface along a particular direction in which their mobility is the largest. In thermal 

equilibrium the molecules move with equal probabilities both ways along this direction, as 

expected from the detailed balance principle, well-known in chemical reactivity and in the 

theory of molecular motors. For molecules that possess an asymmetric potential energy 

surface (PES), we propose a generic method based on the application of a time-periodic 

external stimulus that would enable the molecules to move preferentially in a single 

direction thereby performing as Brownian ratchets. To illustrate this method, we consider 

a prototypical synthetic chiral molecular walker, the 1,3-bis(imidazol-1-ylmethyl)-5(1-

phenylethyl)benzene, diffusing on the anisotropic Cu(110) surface along the Cu rows. As 

unveiled by our kinetic Monte Carlo simulations based on the rates calculated using ab 

initio density functional theory, this molecule moves to the nearest equivalent lattice site 

via the so-called inchworm mechanism in which it steps first with the rear and then with 

the front foot. As a result, the molecule diffuses via a two-step mechanism, and due to its 

inherent asymmetry, the corresponding PES is also spatially asymmetric. Taking 

advantage of this fact, we show how the external stimulus can be tuned to separate 

molecules of different chirality, orientation and conformation. The consequences of these 

findings for molecular machines and the separation of enantiomers are also discussed. 
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1. Introduction 

The controlled movement of molecules, either through intramolecular switching or binding 

and release between molecules, is a challenging contemporary goal. Hence, development 

of novel methods for controlling molecular motion on surfaces is necessary. The related 

area of research known as molecular motors[1, 2, 3, 4, 5, 6, 7] has also become a topic 

of significant interest. These molecular motors (or machines) under certain conditions are 

capable of a net unidirectional motion. In biology motor proteins such as kinesin[8, 9, 10], 

myosin[11] or dynein[12] “walk” along one-dimensional tracks thereby performing specific 

tasks in the cells. Inspired by these biological systems, successful DNA track nano-walkers 

have been developed[13, 14, 15]. The behaviours of many other molecules have also been 

investigated in terms of their ability to walk or rotate preferentially in a particular direction 

either driven by a laser pulse[16], chemical reactions[17, 18, 19, 20], electric field[21, 

22, 23, 24], temperature[25], or a combination of different stimuli[26]. A ratchet-like 

behaviour has been observed in colloidal particles[27], an artificial motor system designed 

to replicate a realistic motor protein[28], cold atoms in optical lattices[29, 30, 31], 

nanoparticles in solution[32, 33], in SQUIDs[34], soliton transport[35], nanopores in 

polymer films[36], polarons in diatomic molecular chains[37], superparamagnetic 

particles[38], and many other cases. 

Fundamental principles leading to unidirectional motion of molecules are well 

understood[39, 40, 41, 42, 43, 2]. If in thermal equilibrium a Brownian particle is placed 

in a periodic potential of a lattice in a single dimension 1D (which could be achieved, e.g., 

on surfaces with strong anisotropy, such as the Cu(110) surface [44]), then it would 

diffuse on average equally likely in both directions along that dimension even though the 

corresponding potential energy surface (PES) may consist of asymmetric periodic parts 

(or waveforms). This is because at equilibrium the principle of detailed balance is at work 

not allowing a net mass transport in any particular direction without doing any work (since 

that would contradict the second law of thermodynamics). In order to enforce 

unidirectional mass transport, one has to break thermal equilibrium. This can be achieved 

by applying an external stimulus, e.g. an external field or temperature fluctuation, or, as 

it is the case in biological systems, by performing a work on the molecules via a chemical 

reaction. Alongside the application of a time-periodic stimuli (e.g. a field or temperature 

gradient), an additional condition of broken symmetry is required. For instance, for a 

unidirectional movement the PES must consist of asymmetric periodic waveforms. 

Our main objective is to propose a method based on applying external time-periodic 

stimulus which would enable one to enforce preferential motion of molecular walkers. As 

an illustration of our method and a proof of principle, in this paper we explore the Brownian 

motion of a realistic small bipedal molecule 1,3-bis(imidazol-1-ylmethyl)-5(1-

phenylethyl)benzene (BIPEB), see the inset in Fig. 1, on the Cu(110) surface. Alongside 

the most stable geometry, a different conformer is also considered that is slightly less 

stable. This surface consists of parallel rows of protruding Cu atoms making it highly 

anisotropic. Consequently the molecules diffuse mostly along the rows; this is similar to a 

small molecular walker considered previously [44] that encounters much higher diffusion 

barriers across the rows than along the rows. The molecules diffuse along the rows by 

stepping separately with the rear “foot” and then with the front one akin to the inchworm 

mechanism, [44] and yielding a PES consisting of two-barrier periodic waveforms with 

barriers of different height, i.e. these waveforms lack spatial symmetry. 

The plan of the paper is as follows. In the next section we shall briefly consider the 

computational methods employed. Then the molecules are introduced and their PES 

calculated and discussed in Results of the kinetic Monte Carlo simulations without and with 
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various static and time-periodic external stimuli are presented. Finally, conclusions are 

drawn. 

2. Methods 

The geometry of the molecules on the surface was relaxed using an ab initio density 

functional theory (DFT) method as implemented in the CP2K computer code[45], which 

uses Goedecker-Teter-Hutter (GTH) pseudopotentials to describe atomic core electrons, 

and a hybrid scheme based on both Gaussian orbitals and plane waves (GPW) as the basis 

set for valence electrons. Exchange-correlation interaction was described by the Perdew-

Burke-Ernzerhof density functional[46], while the dispersion interaction by the rVV10 

functional[47]. The energy cut-off used was 400 Rydberg. To perform these calculations 

we used a periodic slab of the Cu(110) surface containing 2 layers of Cu atoms with a 

vacuum gap of 13 Å (138 atoms altogether), with atoms of the upper layer allowed to 

relax. As our calculations serve to yield mostly a general qualitative picture, this number 

of layers is considered sufficient. 

The 9 x 5 lateral size of the periodic unit cell with a single molecule on its surface was 

chosen such that the interactions between molecular images are negligible. Only k = 0 (Г) 

point was used in our calculations. The geometry relaxation was stopped when the forces 

on atoms were less than 1 meV/Å. 

To calculate the PES of the molecules associated with a single translation along the Cu 

rows between two equivalent lowest energy positions, the Climbing Image Nudged Elastic 

Band (CI-NEB)[48, 49] method was applied; in some cases the Dimer method[50] was 

used to optimise the geometry of the transition state. The path was split into two separate 

NEB simulations by an intermediate geometry found (see Section 3.2). The spring constant 

used varied between 2 and 5 eV/Å2. The NEB calculations were considered converged when 

the maximum force on the atoms of the band was less than 10 meV/Å. 

As for the computational tool used for investigating molecules’ dynamics we chose the 

kinetic Monte Carlo (KMC) method[51, 52] as a simple and practical alternative to the 

method based on the Fokker-Plank equation[2, 42], which has been widely used in studies 

on Brownian ratchets. This is because an application of the latter method to realistic many-

atomic molecules is highly difficult due to many degrees of freedom the whole system 

possesses. 

Moreover, when using the KMC method, we benefit from the advanced electronic structure 

methods, such as those based on DFT, and are able to calculate the corresponding 

transition rates. For these we have used the harmonic transition state theory (HTST)[51, 

53] according to which the transition rate rA-›B between two states A and B is calculated 

via rA-›B = ν exp (-βΔ), where ν is the frequency pre-factor, β = 1/kBT inverse temperature, 

kB is the Boltzmann constant, and Δ the energy barrier. The pre-factors can in principle be 

calculated from the vibrational frequencies of the system in the minimum and the saddle 

point (transition state) using Vineyard formula[53]. However, as this calculation is rather 

expensive, it was performed only for one molecule (see SI), and then fixed pre-factors 

were chosen at the value of ν = 10 ps-1 for all transitions, with or without the stimulus. 

This simplification should not affect our conclusions as the transition rates are 

exponentially more sensitive to the energy barriers rather than to the pre-factors. 

Now we have to discuss how the energy barriers in the presence of a weak external 

stimulus were calculated: Two types of the stimuli we have in mind in this study: (i) a 

uniform external electric field E [21, 24], and (ii) a spatially uniform temperature gradient 

gT = ∇T[25]. In the former case the molecule must be charged, and its PES would then be 

directly affected by the field causing the energy barriers to respond to it. Indeed, let E be 
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the electrostatic field along the direction x of the Cu rows on the surface, measured in 

eV/Å. The electrostatic potential across this direction, V (x) = -Ex, changes linearly with 

the distance and has to be added to the potential energy of the molecule calculated with 

DFT. As a result of this, the potential energy barriers Δ(x) of the transitions linearly change 

with x. Note that for this mechanism to work, it is not sufficient for the molecule to have 

only a dipole moment (e.g. due to a charge exchange with the metal surface), as in this 

case the contribution of the field to the PES will be spatially uniform and hence would not 

affect the energy barriers in a desired way. It is easy to see that the effect of the field is 

such that the barriers in the direction of the field are reduced, while in the opposite 

direction increased. 

In the second case of the temperature gradient the PES is affected indirectly via an 

effective change of the energy barriers. Indeed, for constant gradients gT, one has the 

temperature proportional to the distance x via T(x) = T0 + gTx, with T0 being the 

temperature somewhere in the middle of a molecular track (we assume that these tracks 

are of finite lengths λ such that |gTλ|‹‹ T0). Then, the transition rate can be written 

approximately as 

 

where β0 = 1/kBT0 (in all our calculations we used the same temperature T0 =220 K) and 

we have introduced an effective (distance dependent) energy barrier 

 

The effect of this stimulus is that the effective energy barriers in the direction of the 

temperature gradient (assuming gT > 0) are increased, while those in the opposite 

direction reduced. This change can also be treated as being caused by an effective 

‘electrostatic’ field 

 

Hence, both cases can be considered on the same footing, and in the following we shall 

interchangeably use both words, the ‘stimulus’ and the ‘field’, depending on the context. 

Since our main purpose in this study is to understand the qualitative effects of the time-

periodic stimulus on the molecular ratchet, the following approximate method which 

mimics all the essential features of the realistic calculation, has been used. Since, due to 

the field E the energy barriers change linearly with the distance x along the Cu rows on 

the surface and are increased in one direction and reduced in the opposite one, this can 

be imagined by the final PES of a molecule being tilted one or the other way, depending 

on the direction of the field. As the only meaningful quantities responsible for the net mass 

transport are the transition rates, it is sufficient to shift the energy barriers up/down by 

an appropriate amount (see Section 3.2 for details, especially Fig. 4(c)). 

Finally, since in our simulations the external driving changes with time, additional care 

should be taken when running KMC simulations. This is because in the standard 

formulation of KMC it is assumed that the rates remain constant in time, which is obviously 

not the case in our simulations, where the rates depend on time due to the time dependent 

external stimulus modifying the energy barriers in real time. Therefore, we use here an 
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approach [54] in which this assumption is lifted. At variance with the standard algorithm 

in which the rates for the system to jump into all available states from the given state are 

used and the timestep is chosen at random from the exponential distribution, in the 

method we used, the timestep Δt is fixed to 100 ps and probabilities to jump as well as to 

remain in the current state over this time are employed. Otherwise, the two algorithms 

are very similar. 

3. Results 

3.1 Isomers and their potential energy surface 

The preferential directional motion of a synthetic walking molecule is an important goal 

which can be achieved in the minimalist walker molecule on the copper surface described 

here given two conditions: (i) selective and directional adsorption on the Cu(110) surface 

and (ii) the application of an external stimulus. This effect can be seen in its simplest case 

by considering the energy minimum structures of two enantiomers that when arranged 

with their “tails” along the same normal to the copper atom rows will present mirror image 

potential energy surfaces. 

In this study, as a prototypical molecular walker, we consider an (electrically neutral) 

synthetic bipedal molecule 1,3-bis(imidazol-1-ylmethyl)-5(1-phenylethyl)benzene 

(BIPEB) shown in Fig. 1(a). We refer to different parts of the molecule as body, tail and 

legs, as indicated in the scheme; the body is the benzene group, while the tail (1-

phenylethyl) and the legs (imidazol-1-ylmethyl groups) are attached to it. Within the legs, 

the imidazole are the feet. The molecule possesses a stereogenic carbon atom in its tail, 

shown as yellow, leading to the existence of two enantiomers, (R) and (S), Fig. 1(b); both 

adopt a 3D geometry in the gas phase. When placed on the Cu(110) surface, several 

adsorption geometries were found for either of the two (the geometries of (R) being mirror 

reflections of those of (S)), with the most energetically favourable structure shown for the 

(S) enantiomer in Fig. 1(c). The molecule is strongly bound to the surface with the binding 

energy of 3.61 eV (after inclusion of the basis set superposition error (BSSE) employing 

the counterpoise method[55]). 

Here we also consider a competitive geometry that, as compared to (S), has the H atom 

and the methyl group attached to the stereogenic carbon swapped with each other, which 

changes its chirality from (S) to (R). The H atom is pointing outwards the surface, while 

in (S) it is directed towards it (the methyl group in both cases is pointed in the opposite 

direction to that of the H atom). Therefore, this metastable geometry is to be considered 

as another conformer of the (R) enantiomer, and will be referred to hereafter as the 

conformer (R)*, Fig. 1(c). It is 0.1 eV less stable than the (S) or (R) geometries. It is 

important to note that the calculated energy difference of 0.1 eV between the two 

conformers (R) and (R)* (and similarly between (S) and (S)*) is due to the existence of 

the stereogenic centre in the BIPEB molecule. The three point model for binding describes 

this situation well, and is a consequence of the “handedness”, or rather “footedness”[56] 

of the molecule.  
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Figure 1: (a) BIPEB molecule. The chiral centre is highlighted in yellow. (b) The (S) and 

(R) enantiomers representation in their 3D projection. Dashed line indicates a mirror 

plane. (c) Two relaxed geometries considered here, as viewed from the tail to show the 

chiral centre (yellow). The shown geometry of (S) is the most energetically favourable. 

The considered relaxed geometry (R)*, that is related to enantiomer (R) as one of its 

conformers, is by 0.1 eV less stable than (R) (which mirrors (S) exactly), and hence 

represents a metastable structure. (d) Top: DFT CI-NEB calculated change of the PES of 

the two enantiomers, (S) and (R)* along the diffusion path. Bottom: a legs view of selected 

geometries (the minima and saddle points) of the (R)* enantiomer during its 1D diffusion 

along the Cu row. The (S) or (R)* molecules go through a set of equivalent geometries 

with the corresponding difference due to their centre of chirality as shown in (c). 

 

 

These two conformations can generate other equivalent geometries related by mirror 

symmetry due to a plane perpendicular to the surface. This symmetry operation does not 

change the absolute value of the energy, but can change the shape of the PES. The mirror 

reflection of the (S) enantiomer with respect to a plane perpendicular to the Cu row leads 

to the (R) enantiomer. This operation also mirrors the PES. If the mirror plane is parallel 

to the Cu row, we transform the (S) enantiomer into the (R), but this time the tail points 

towards the opposite direction. We call this the (R)r enantiomer, as it is equivalent to 

rotating the enantiomer (R) by 180° with respect to an axis perpendicular to the surface. 

This operation does not change the shape of the PES. Hence, enantiomers (S) and (R) 

have identical orientations but mirrored PES, while enantiomers (S) and (R)r have identical 

PES but different orientations. The same procedure can be applied to the (R)* conformer. 

Due to these symmetry relations, calculating the PES only for one enantiomer and one of 

its conformers allows us to obtain the PES for the rest of the geometries. All eight 

conformations are presented in Fig. 2, with their corresponding PES to show how it is 

modified after each reflection. 
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Figure 2: (a) Schematics (the top view) of the four most energetically favourable 

equivalent configurations the BIMPEB molecule can adopt when adsorbed on the surface, 

shown with the schematics of their corresponding PES. By symmetry, these four 

configurations have exactly the same energy. The four geometries are connected by mirror 

symmetry operations (grey dashed lines). Every reflection transforms the molecule into 

its enantiomer, but only the reflection over planes perpendicular to the Cu rows also 

transforms the PES by reflecting it. The rotated configurations (bottom line) (S)r and (R)r 

are equivalent to the (S) and (R) enantiomers, respectively, and are obtained by a 180° 

rotation about the axis perpendicular to the surface. (b) Conformers and their PES shown 

in filled colour. For comparison, we also show with the line of appropriate colour the PES 

of the corresponding competitive molecule from (a), which has the closest PES shape (but 

slightly different barriers). This colour code for each isomer is used throughout the paper: 

red, yellow, green and blue will represent the isomers (S), (R), (S)* and (R)*, respectively. 

Note that for clarity the schematic PES shown here do not correspond exactly to the 

calculated ones shown in Fig. 1(d). 

 

In all geometries, the BIPEB molecule shows two N-Cu interactions[44] similar in nature 

to the nitrogen atom surface (NAS) interactions we have recently reported for the p-

terphenyl m-dicarbonitrile molecule on the Ag (111) surface[57]. This is clearly seen in 

the electron density difference (EDD) maps shown in Fig. 3. The imidazole groups of the 

molecule interact with the surface via their nucleophilic nitrogen atoms that act as its feet, 

which bind to two non-adjacent Cu atoms in the same close-packed row. The NAS 

interactions are strong enough to noticeably lift up the interacting Cu atoms from their 

relaxed positions on the surface. At the same time, the tail of the molecule interacts with 

a neighbouring Cu row; however, this binding is much weaker than that of the imidazole 

feet as the EDD maps illustrate and hence this connection to the surface is less important 

and in most cases can be ignored, except when the two geometries are compared with 

each other as we discuss below. Comparing the EDD of (S) and (R)*,we can see that the 

(S) enantiomer has an extra interaction with the surface via the hydrogen atom attached 

to the stereogenic carbon atom, which is missing in the (R)*. This interaction appears in 

the EDD in a “kebab”-like form, i.e. via alternating regions of excess and depletion of the 

electronic density along the straight line connecting the atoms participating in the bond, 

and is highlighted in Fig. 3. This fact yields slightly different barrier heights for both 

geometries along the asymmetric PES, which will be exploited later on for their separation. 
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Figure 3 Comparison of the electronic density difference maps of the (S) (a) and (R)* (b) 

conformers of the BIPEB molecule adsorbed on the Cu (110) surface. Red (negative) and 

purple (positive) isosurfaces correspond to 0.003 electron per Å3. White, grey and blue 

balls stand for H, C and N atoms, respectively. The orange ball represents the stereogenic 

carbon atom, responsible for the different orientations of the methyl group and the H atom 

of the enantiomers on the surface. The region where the interaction of the molecule with 

the surface differs is highlighted in the cyan dashed boxes. 

 

In the stable equilibrium geometries for both (S) and (R)* the imidazole feet are separated 

by a single Cu atom along the same row. We have also found another adsorption geometry 

for both conformers in which there are no Cu atoms between the feet, see geometry Bi at 

the bottom of Fig. 1(d). This configuration is 0.15 eV less favourable and appears as an 
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intermediate state between the more stable equilibrium geometries labelled Ai, Ai+1 (see 

below). Note that other adsorption geometries are also possible when both feet stand on 

the neighbouring Cu rows or the tail is rotated. However, these are much less favourable 

and hence are much less relevant in considering the molecules diffusion and will be ignored 

hereafter. 

To calculate the diffusion path between the two most favourable geometries of Fig. 1(c), 

we first run NEB calculations between these two states via two different mechanisms: one, 

in which the molecule slides as a whole along the Cu row in a one-step motion, and the 

other, the so-called inchworm mechanism, in which the molecule follows a two-step 

movement whereby first its rear foot moves forward and then its front one. Interestingly 

enough, the latter calculation indicated the existence of an intermediate minimum in the 

middle of the path. After relaxation of the geometry in that minimum, the second geometry 

mentioned above (labelled Bi at the bottom of Fig. 1(d)) was found. Hence, the whole path 

was split into two, and two separate CI-NEB simulations were run with nine images each, 

to characterize both elementary steps. This computational scheme was applied to both the 

(S) and (R)*. The resulting PES for the complete inchworm path between two equivalent 

states (Ai, Ai+1) that passes through an intermediate minimum Bi, is shown at the top of 

Fig. 1(d) for both enantiomers. A selection of geometries along the path of (R)* is shown 

at the bottom. The PES for the other molecules can be obtained by applying the 

corresponding symmetry operations, as shown in Fig. 2. While the NEB calculation for the 

sliding mechanism revealed a one-step diffusion with the energy barrier of 0.55 eV, in the 

inchworm mechanism the diffusion occurs via a two-step diffusion path where the highest 

barrier was found to be below 0.34 eV. Hence, it is evident that the diffusion of either of 

the molecules is manifested by the inchworm walking mechanism [44], whereby imidazole 

groups act like feet that step on top of the Cu atoms along the row: to move forward, first 

the rear foot moves one surface lattice constant (Ai Bi), then the front foot moves 

forward one lattice constant (Bi Ai+1) bringing the molecule to an equivalent state 

displaced by one lattice constant. 

Thus, the PES of the two conformers by moving one lattice constant along the Cu row is a 

waveform consisting of two peaks. In both cases the peaks heights, measured from the 

geometries A or B, are slightly different rendering the expected diffusion of the two 

conformers to be slightly different as well. This difference originates from the slightly 

different interaction of the tails of the two molecules with the surface. The calculated 

energy barriers between the minima are shown in Table 1 and are found to be indeed 

different by around 19 meV from Ai to Bi and 31 meV for Ai+1 to Bi, for both conformers. 

Therefore, the PES of the molecules along a Cu row consists of an infinite periodic sequence 

of such two-peak waveforms. We conclude that the PES of either of the molecules is 

spatially asymmetric, even though the difference in peaks heights is small. 

 

Table 1 Energy barriers D for the diffusion of the two conformers by one lattice constant 

along the Cu row. See the bottom of Fig. 1(d) for labels Ai, Bi and Ai+1. 

Description Δ (eV) 

(R)* (S) 

From Ai to Bi (to the right) 0.339 0.320 

From Ai+1 to Bi (to the left) 0.316 0.285 

From Bi to Ai+1 (to the right) 0.147 0.146 

From Bi to Ai (to the left) 0.170 0.181 
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For performing KMC simulations, a periodic sequence of states A and B was in all cases 

considered with all possible transitions between neighbouring states. When a molecule 

moves the whole lattice constant to the right, i.e. Ai Bi Ai+1, then +1 (in units of the 

lattice constant) is added to its position along the row; when the molecule moves the 

whole lattice constant to the left, i.e. Ai+1 Bi Ai, then -1 is added to its position, see 

Fig. 1(d). 

A final note is in order related to the fact that when performing NEB simulations the 

molecule was not charged: the above calculation (and the dynamic simulations described 

in the following sections) corresponds directly only to the case of the temperature gradient 

as the stimulus. One may think that the PES calculated in our NEB simulation is irrelevant 

then to the first type of the stimulus, an external electric field, since in this case the 

molecule has to possess a charge. We argue that even in this case the NEB calculation 

makes perfect sense, at least qualitatively. 

Indeed, the two-peak PES of the molecule is related primarily to the fact that the molecule 

stands on two ‘feet’ and diffuses via the inchworm mechanism. An extra charge on the 

molecule does not affect the former point (see the SI), and hence the latter point must be 

valid as well as a consequence. Therefore, if the molecule is charged, the energy barriers 

would somewhat change numerically; at the same time, the dynamical behaviours we 

obtain will remain qualitatively exactly the same. 

3.2 Diffusion with zero and constant external stimulus 

Consider first the diffusion of all conformers without being driven by any external field. 

The position of the molecules along the Cu row during the course of a selected number of 

KMC simulations is shown in Fig. 4(a). One can clearly see that there is no preference for 

the molecules to go in one or the opposite direction in spite of the fact that the waveform 

of their PES is asymmetric. After 50 ms, the average distance walked by the molecules is 

zero within the accuracy of our calculations. In Fig. 4(b) calculated KMC paths are shown 

for the equally oriented enantiomers under constant values of the field E = ±0.02 eV/a, 

where a =2.56 Å is the Cu-Cu distances along the Cu row. Application of a constant field 

forces the molecules to perform preferentially unidirectional movement in the direction of 

the field, as expected. Note that all conformers would move preferentially along the field. 

Moreover, each enantiomer may adopt two orientations on the same Cu row, the second 

being obtained from the first by rotating the molecule by 180° about the vertical axis. 

Because either of the PES is tilted in the same direction (either to the right or left, 

depending on the sign of E), preferential diffusion along the field is observed irrespective 

of the orientation of the molecules, so the separation is difficult in this case. 

Application of a permanent field along one direction of the copper rows will lead to motion 

of the molecules, but because of the differences in the potential energy surfaces the (R) 

and (S) enantiomers will move at different velocities, i.e. the distance travelled per certain 

time is actually different when going to the right (positive distance values) or to the left 

(negative distance values), Fig. 4(b). Indeed, if we look at the curves for the enantiomers 

(S) and (R), red and yellow respectively, the (S) molecule moves to the right (E > 0) 

slower than the (R); in the case of the opposite direction of the field (to the left, E < 0) 

the (S) moves faster than the (R): after 50 ms (S) travels around 17500 lattice constants 

to the right and 26000 lattice constants to the left, while the (R) travels 26000 lattice 

constants to the right and 17500 to the left. This can be explained in the following way. 

Suppose one direction of the field forces the molecules to move preferentially along the 

field and in that direction the smaller peak of the PES comes first, while the opposite 

direction of the field makes the molecules preferentially to move in the opposite direction 

when the higher peak of the PES comes first. In this case the molecules would move faster 
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in the former case than in the latter since overcoming a sequence of two smaller barriers 

(Ai+1  Bi   Ai) is on the whole ‘easier’ than moving in the opposite direction, Ai   Bi  

 Ai+1, which requires first climbing a larger energy barrier, Fig. 4(c). 

 

Figure 4: A set of KMC trajectories for all isomers with the same orientation (with each 

colour corresponding to different isomers) calculated (a) without external driving, (b) 

using the constant fields E = 0.02 eV/a, when all isomers move in the positive direction, 

and E = -0.02 eV/a; when they move in the negative direction, (d) using an oscillating 

external driving E = A sin (ωt) (A =0.02 eV/a and ω =10000 s-1). The inset in (d) shows 

the shape of the external field. In all cases the distance is measured in the integer number 

of the Cu-Cu distances a =2.56 Å along the Cu row. (c) Schematics of the PES of the (R) 

molecule with and without the applied external field (stimulus): no field (the dashed line), 

with the positive field, E > 0 (blue), and the negative field, E < 0 (red). 

 

Even though the application of the constant field cannot be used for molecular separation 

(molecules go all together displaying almost identical trajectories in each case, albeit with 

different speeds), the effect of the sign of the field on the velocity of the molecules in 

performing unidirectional movement appears to be crucial for developing methods which 

are capable of achieving the desired separation of the molecules via their unidirectional 

motion. 

 

3.3 Separation of molecules using oscillating fields 

We have seen that an application of a constant field (stimulus) is trivially able to cause 

unidirectional diffusion of the molecules along the field; because of the asymmetry of the 
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PES, the speed with which the molecules move depends on the direction of the field. This 

effect can now be exploited in order to propose an external stimulus that is able to separate 

the molecules with respect to their chirality on the Cu rows. Note that the PES of an 

enantiomer is obtained simply by mirroring the PES corresponding to the original molecule, 

see Fig. 2. This is also true for molecules rotated by 180°. 

The idea is to apply a time-periodic (but still spatially uniform) external field E(t) = A sin 

(ωt). In this case for any sensible choice of the parameters A and ω molecules of different 

chirality will move in the opposite directions and with the same speed, as shown in Fig. 

4(d). Indeed, if in the case of a constant field molecules moved in the direction of the field, 

when applying an oscillatory field, molecules move preferentially in the direction in which 

they move faster (see our discussion above). As the enantiomer (S) moves faster to the 

left and the (R) to the right in the presence of a field, the application of an oscillating field 

will drive the enantiomers (S) to the left and the (R) to the right, performing a separation 

of enantiomers. Moreover, in the case of the molecules of opposite orientations their 

movement will be also mirror reflection of each other. Note that the actual trajectories 

shown in Fig. 4(d) are not exactly the mirror images of each other as they represent a 

sample of stochastic KMC trajectories. 

Hence, applying a properly adjusted oscillating field, in a racemic mixture with equally 

oriented molecules, one should be able to separate the enantiomers. On the other hand, 

in a enantiopure system, it is possible to separate the molecules based on their orientation. 

 

3.4 Separation of competitive conformers 

As shown in Fig. 4 (d), both conformers (S) and (R)* (or (R) and (S)*), at least for the 

molecules considered here, would move in the same direction; only their velocities will be 

different. Hence, the oscillating field considered so far is not appropriate to separate them. 

This is because the field has equal duration in both positive and negative directions. In 

other words, a time-symmetric stimulus does not allow one to fully resolve the molecules 

of different conformations. In order to separate two competitive geometries (conformers 

with similar PES but slightly different energy barriers), it is necessary to allow for the field 

to operate in one direction longer (shorter) than in the other, i.e. the time symmetry must 

be broken. This asymmetry of the field can be easily created by applying, e.g., a shifted 

field, E(t) = A[sin (ωt) + δ], where the relative displacement -1 ≤ δ ≤ 1.  

By fine-tuning the parameters of the field appropriately, it is possible to exploit the 

difference in the conformers velocities. We can either make one conformer to stay around 

the initial position while the other moves away, Fig. 5(a,c), or make them to move with 

the same velocity, Fig. 5(d). Finally, we can make them to move in the opposite directions, 

i.e. to separate them, as shown in Fig. 5(b). Note that by taking the value of the parameter 

around the value used in Fig. 5(d), one can make the two molecules to move in the same 

direction, but with different velocities (not shown).  

Hence, by applying a properly shifted (asymmetric) field it is possible to separate out 

molecules of different conformations. 
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Figure 5: KMC trajectories for two conformers of identical orientation, (R)* (blue) and (S) 

(red), for several values of the shift parameter of the asymmetric external driving field: 

(a) δ =0.021118 (b) δ =0.026411; (c) δ =0.02800; (d) δ =0.030818. In all cases A =0.10 

eV/a and ω =10000 s-1. The distance is measured in the integer number of the Cu-Cu 

distances a =2.56 Å along the Cu row. 

 

3.5 Fences 

Brownian molecular motion on surfaces may be conditioned by the intrinsic features of the 

molecules, the anisotropy of the surface or the existence of natural barriers such as steps 

and/or local defects (e.g. impurities). Molecular fences, e.g. such as the filaments of 

porphyrins described in Ref. [44], provide realistic spatial constraints for the walkers, 

adding new possibilities to the resolution of racemic mixtures. In particular, these fences 

could be used as a practical tool in collecting the molecules of either one orientation, 

conformation or, possibly, even chirality. 

Now we shall describe our KMC simulations in which two infinite parallel fences were placed 

perpendicular to the Cu rows, and the molecules are placed between them. It was assumed 

in our KMC simulations that the molecules cannot move across the fences, but can ideally 

be reflected upon them. How the distance between these barriers affects the separation 

of the conformers, when external fields differed only by the value of the shift parameter 

are applied, is illustrated in Fig. 6. In Figs. 6 (a) and (c), with δ2 = 0.021294 and δ4 = 

0.02800, respectively, the applied fields are able to fuel one of the conformers in less than 

two milliseconds to one fence, while the second conformer remains broadly distributed 

between the fences. Note, however, that for distant fences at long simulation times the 

second molecule would spend more of its time at the other fence, as it is still under the 

influence of the field that biases its movement, see right panels in Fig. 6(a,c). Applying a 

different field with δ3 = 0.02638, Fig. 6(b), the two conformers are fully separated by the 
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top (R)* and bottom (S) fences, but due to the stochastic nature of the movement, 

molecules confined near one fence may still reach the opposite fence if the distance 

between them is not large enough, see the left panel in Fig. 6(b).  

 

 

 

Figure 6: (a,b,c) KMC simulations of both conformers (R* - blue, S - red) confined between 

two molecular fences oriented horizontally and spaced by 200 (left panels), 600 (middle) 

and 1000 (right) lattice constants under the effect of three different external sinusoidal 

fields with various displacement factors δ : (a) δ2 = 0.021294, (b) δ3 = 0.026380 and (c) 

δ4 = 0.02800. The ‘distance’ is measured in the integer number of the Cu-Cu distances a 

=2.56 Å along the Cu row. (d) Schematics of the time averaged spacial distributions of six 

different states a confined system of two molecules between fences (striped blocks) may 

adopt. The fences are perpendicular to Cu rows shown by the small orange-filled squares 

for clarity. 

 

Note that by increasing the frequency ω of the field, molecules can be confined at narrower 

spaces and kept separated between even closer placed fences (not shown). For our 

system, a distance between fences of around 600 lattice constants (the middle column in 
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(a-c)) would allow to have five different states in the presence of the field, Fig. 6(d): (i) 

both conformers at the lower fence (δ1 = -1), (ii) the conformer (S) at the lower fence 

while the (R)* moves broadly within the confined space (δ2 = 0.02194), (iii) both 

conformers separated at opposite fences (δ3  = 0.026380), (iv) conformer (R)* confined 

at the upper fence while the (S) enantiomer moves everywhere (δ4  = 0.02800), and 

finally, (v) both conformers are at the upper fence (δ5 =1). Note that all of these states 

are achievable by just changing the δ parameter of the field. Simulations were run for long 

times, up to one second, and show that these states are stable in time as long as the field 

is kept. Obviously, when the field is switched off, all molecules move freely between the 

fences. 

 

 

4 Discussion and Conclusions 

In this work, we have explored the unidirectional motion of a prototypical molecular walker 

under an external time-periodic stimulus such as a weak uniform temperature gradient 

which acts as an effective uniform field linearly distorting the molecular PES. Our results 

must also be directly relevant to the other type of the stimulus, an external uniform electric 

field, although in this case the calculated parameters of the field that influence the 

unidirectional motion are expected to be numerically slightly different. Practical ways of 

charging molecules on surfaces are e.g. discussed in Ref. [58, 59]. 

The particular chiral molecule considered is the 1,3-bis(imidazol-1-ylmethyl)-5(1-

phenylethyl)benzene that has two enantiomers, (R) and (S). We demonstrated that both 

enantiomers diffuse on the Cu(110) surface via a walking mechanism akin to the inchworm 

motion where the molecule’s first step is with its rear foot and then with its front one. 

Consequently, the PES of the molecule on the Cu(110) surface consists of a periodic 

sequence of slightly asymmetric waveforms containing two peaks each associated with the 

stepping of a single foot. At variance with common computational approaches in which 

Brownian molecular ratchets are studied using oversimplified molecular models by means 

of, e.g., the Fokker-Planck equation, we propose a method that is based on running KMC 

simulations. The obvious advantage of our theoretical approach is that it is able to consider 

dynamics of realistic systems (both molecules and surfaces) with adsorption geometries 

and diffusion rates calculated using modern ab initio methods. 

It has been shown that despite the spatial asymmetry in the PES of the molecules, no 

preferential motion into a particular direction along the Cu rows is observed, which is in 

accord with the second law of thermodynamics and the principle of detailed balance. 

However, unidirectional motion is achieved by the application of an external field, and we 

have shown that small differences in the heights of the two peaks in the PES waveforms 

yield different diffusion velocities of the molecules on the surface, according to the sign of 

the field. The central result of this study is that, when applying a uniform time-periodic 

(sinusoidal) external field, the molecules diffuse preferentially towards the direction they 

move faster. This effect is general and would be applicable to a wide class of surface-

molecule systems, being of principal importance for the separation of the molecules. If we 

have a racemic mixture, where all molecules are equally oriented in the same direction 

and hence have mirror symmetric PES, they will diffuse in opposite directions under the 

presence of the oscillating field. It is also possible to separate molecules of the same kind 

(i.e. in an enantiopure system) but of opposite orientation as they would preferentially 

diffuse in the opposite directions along the Cu rows, thereby ensuring their separation. 

Hence, we have shown that the molecules can be separated according to either their 

chirality or their orientation by applying an appropriate external stimulus. 
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In reality, for a chiral molecule and the surface like the one we considered here, there will 

be four types of isomers on the surface after deposition (see Fig. 2): (S), (R), (S)r and 

(R)r (and this is also true for each conformer), all present in equal quantities. Therefore, 

by applying our method, we should be able to separate these molecules into two groups: 

(i) (S) and (R)r, and (ii) (R) and (S)r, which corresponds only to a partial separation. 

However, if in the presence of the same field the PES of the molecules in different 

orientations are different (e.g. by applying an extra weak field acting in the direction 

perpendicular to the direction of motion), then using an appropriate modification of our 

method it should be possible to perform full separation of the molecules both with respect 

to their chirality and orientation. 

Furthermore, we have demonstrated that when the PES are not mirror-symmetric but 

have a similar shape with slightly different energy barriers, the diffusion direction of the 

molecules can still be controlled. By combining a constant field with an oscillating one, so 

that the times during which the field points in both directions are different, one can fine-

tune the parameters of such a field to achieve various effects in the diffusion of the 

enantiomers. For instance, one can ensure that one enantiomer moves faster (slower) 

than the other while moving in the same direction, or one would on average not move at 

all while the other moves. Most intriguingly, however, we have shown that one can also 

adjust the parameters of the field (its constant component) in such a way that two 

competitive molecules, when oriented in the same way on the surface, would move in 

opposite directions. 

The possibility to control the movement of the molecules in a confined system, like 

between fences, can have potential applications at the nanoscale. It could be used as a 

tool for molecular control. If fences for example are not only physical barriers that only 

block the diffusion, but molecules or electrodes, or even individual entities that can 

perform an action according to the presence (or not) of the molecules, then, the application 

of the field could rearrange the molecules in that hypothetical device and trigger a certain 

response. If this is taken to a more complicated device, these molecules could act as 

information carriers or molecular relays, activated by the shape of the external fields if 

instead of an inert fence there is a nanodevice capable of triggering a reaction according 

to the presence or not of the molecules. Also, the possibility to control the diffusion at the 

molecular level, could allow to seed enantiopure regions on a surface to start growing 

enantiopure self-assembled monolayers. 

Our findings open a way for enantiomer separation with exciting applications in physics 

and chemistry. Understanding molecular ratchets provides a novel route to designing 

efficient methods to separate various molecules, with particular relevance to racemic 

mixtures of enantiomers where preferential crystallization works sporadically.[60]. In 

particular, we have shown that by providing parallel fences [44] perpendicular to the Cu 

rows, one can collect molecules of the same orientation and/or chirality near different 

fences. We hope that this study will be useful to a wide community of physicists and 

chemists working in different areas related to studying molecules on surfaces and in the 

field of molecular motors and nanoscale devices. Furthermore, it may contribute to solving 

exciting questions like why proteins and, by extension, life are stereospecific. May be this 

relation between the directional motion and chirality could be part of the answer. 
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SUPPORTING INFORMATION 

 

1 Rate pre-factors 

 

Within the Harmonic Transition State Theory the prefactor ν is calculated via the Vineyard 

formula [G. H. Vineyard. Frequency factors and isotope effects in solid state rate 

processes. J. Phys. Chem. Solids, 3:121, 1957] as ν = Wmin/WTS, where Wmin is the product 

of all vibrational frequencies at the minimum of the potential well corresponding to the 

initial state (either Ai or Bi) and WTS is the product of all vibrational frequencies, with the 

exception of the imaginary one, at the saddle point (transition state) connecting the two 

minima. 

 

Table : DFT calculated pre-factors for the diffusion of the enantiomer (R)�. 

Description Prefactor 

 

From Ai to Bi (to the right) 13.9217 

From Ai+1 to Bi (to the left) 36.0214 

From Bi to Ai+1 (to the right) 10.5505 

From Bi to Ai (to the left) 4.0776 

 

2 Diffusion mechanism 

Full animation of the diffusion of both conformers are available as separated animated gif 

files. For each conformer views from the legs and tail perspectives are provided. 

 

3 Density difference maps of a negatively charged system 

The electronic density difference map between the molecules on the surface with a single 

extra electron (a negative charge) and the neutral system (both in the same geometry to 

ease the comparison) is shown in the Figure below. It can be seen that the molecule 

allocates a part of the charge, the rest of the charge is spread out across the upper layer 

of the surface; at the same time, the character of the bonding of the molecule to the 

surface remains the same. 

 

Figure 1: Electronic density difference map between a negatively charged and a neutral 

system. Purple isosurfaces show excess of charge and red ones indicate depletion, at the 

values of ±0.00045 e/Å3, respectively. 


