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1. Introduction

The eponymous method to estimate integral metrics and semi-metrics on spaces of probability mea-
sures proposed by Charles Stein (Stein, 1972) has led to tremendous improvements in distributional
approximation techniques. See, for example, the surveys by Barbour and Chen (2014) and Ross (2011).
The method has mainly been developed for probability measures on R𝑚 or N𝑚 for 𝑚 ≥ 1. The focus of
this paper is on developing a version of the method that can be employed to approximate probability
measures on an 𝑚-dimensional Riemannian manifold.

Abstracting Stein’s method to a general space X in a heuristic manner is useful for elucidating its
key ingredients and the ensuing challenges in developing a corresponding version on manifolds. The
goal is to bound an integral (semi-)metric

𝑑H (𝜇, 𝜈) := sup
ℎ∈H

����∫ ℎd𝜇 −
∫

ℎd𝜈
���� ,

between a probability measure 𝜈 and a target probability measure 𝜇 on X with respect to a class H
of real-valued test functions on X. Stein’s method is centred around the construction and study of an
operator 𝐿 that maps functions 𝑓 : X → R in a certain class F into mean-zero functions under 𝜇: if
𝑋 ∼ 𝜇, then E [𝐿 𝑓 (𝑋)] = 0 for every 𝑓 ∈ F . The operator 𝐿 thus encodes information about 𝜇 and,
when F is sufficiently large, one may determine a function 𝑓ℎ ∈ F associated with every ℎ ∈ H that
solves the Stein equation (or the Poisson equation in PDE literature)

ℎ(𝑥) − E [ℎ(𝑋)] = 𝐿 𝑓ℎ (𝑥).

As a consequence, bounding 𝑑H (𝜇, 𝜈) reduces to bounding the term sup 𝑓ℎ ∈F E [𝐿 𝑓ℎ (𝑍)], where 𝑍 ∼ 𝜈,
achieved in application-specific ways. An important implication, profitably used in some applications,
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is that the need to compute an expectation with respect to 𝜇 in 𝑑H is circumvented; an example is when
𝜈 is the empirical measure based on points 𝑥1, . . . , 𝑥𝑛 on X and 𝜇 represents a conjectured limit prob-
ability measure. Upper bounds on 𝑑H then depend explicitly on the smoothness of the functions in F .
Hence, integral to the success of Stein’s method in upper bounding 𝑑H are the following requirements:
(a) construction of the operator 𝐿 and identifying its domain F ; and, (b) determination of the solution
𝑓ℎ and its regularity properties.

An introductory account on choices of 𝐿 satisfying requirement (a) for various probability measures
𝜇 on R (or some subset thereof) is available in Ross (2011). When X = R𝑚, 𝑚 > 1, focus has mainly
been restricted to the case when 𝜇 is a Gaussian measure (see Barbour (1988), Chatterjee and Meckes
(2008), Meckes (2009)) although more recently results on extensions to non-Gaussian measures have
appeared in Chen et al. (2019), Fang, Shao and Xu (2019), Mackey and Gorham (2016), Mijoule, Reinert
and Swan (2019).

An important observation by Barbour (1988) relates the operator 𝐿 to the infinitesimal generator
of a diffusion process on R𝑚 that solves an SDE with invariant measure 𝜇. This observation enables
identification, and examination, of the solution to the Stein equation with the transition semigroup
associated with 𝐿. The diffusion approach hence opens up the possibility of defining 𝐿 for 𝜇 on a
manifold 𝑴 by considering an SDE on 𝑴 whose solution is a diffusion with invariant measure 𝜇.

Broadly, this is the approach we adopt in this paper. On a complete Riemannian manifold (𝑴, 𝑔)
without boundary, we consider approximating probability measures of the form 𝜇𝜙 with density, up to
a normalisation constant, 𝑒−𝜙 with respect to the volume measure dvol for a smooth 𝜙. Under some
conditions on 𝜙 and the geometry of 𝑴, the diffusion with infinitesimal generator

𝐿𝜙 :=
1
2
{Δ − 〈∇𝜙, ∇〉}

has 𝜇𝜙 as its invariant measure, where ∇ and Δ are the (Riemannian) gradient and Laplace-Bertrami
operators, respectively. The operator 𝐿𝜙 generates mean-zero functions under 𝜇𝜙 .

We address requirement (b) for generalising Stein’s method to 𝑴 by adapting the approach in
Mackey and Gorham (2016) for log-concave measures 𝜇 on R𝑚 to the manifold setting. In their pa-
per, bounds on lower-order derivatives of the solution 𝑓ℎ , known as Stein factors (see Röllin (2012)),
were derived by studying the distance between a pair of coupled diffusions 𝑋𝑡 and 𝑌𝑡 with same invari-
ant measure 𝜇 starting at distinct points. Analogously, we construct a pair of diffusions 𝑋𝑡 ,𝑥 and𝑌𝑡 ,𝑦 on
𝑴 starting at 𝑥 and 𝑦 with identical generator 𝐿𝜙 , and study the distance process 𝜌(𝑋𝑡 ,𝑥 ,𝑌𝑡 ,𝑦) around
neighbourhoods of non-empty cut loci. In particular, when there is no first conjugate point contained in
the cut locus to any given point in 𝑴 we establish exponential pathwise contraction for trajectories of
the two diffusions towards their initial points; on the other hand when first conjugate points are present,
we establish a similar contraction property that holds on average.

The study of the distance process enables the determination of Stein factors which bound the Lip-
schitz constants of the solution 𝑓ℎ , and its first and second derivatives, where the geometry of 𝑴
manifests itself through curvature-dependent terms in the factors. The derived bounds on 𝑓ℎ , as well as
on its first and second derivatives, reduce to the ones of Mackey and Gorham (2016) for R𝑚, which we
show remain valid for complete, connected flat manifolds. The Stein factors are then used to construct
upper bounds on integral (semi-)metrics between 𝜇𝜙 and another probability measure on 𝑴 for spe-
cific choices of the class of test functions H . In particular, using the first order bound on 𝑓ℎ , we derive
an upper bound on the Wasserstein distance between 𝜇𝜙 and 𝜇𝜓 . A related generalisation of Stein’s
method to manifolds, based on the approach of Fang, Shao and Xu (2019), can be found in Thompson
(2020).

The paper is organised as follows. In Section 2.1 we define relevant quantities and introduce notation,
and in Section 2.2 we describe assumptions on probability measures and diffusions under considera-
tion, and the key condition (3) and assumption (A1) for the derivation of our results; the conditions
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are explicated with some examples. In Section 3 we describe the coupling of a pair of diffusions on 𝑴
and analyse their distance process, when conjugate points are absent (Section 3.1) and present (Section
3.2). In Section 4 we consider the Stein equation and its solution and derive Stein factor bounds that
depend on the curvature of 𝑴. In Section 5, using the Stein factors, we derive bounds for integral
(semi-)metrics: in Section 5.1 we derive an upper bound on the Wasserstein distance between 𝜇𝜙 and
a probability measure of similar type, and in Section 5.2 we do the same for an integral semi-metric
between 𝜇𝜙 and an arbitrary probability measure on 𝑴.

2. Preliminaries

2.1. Notation and definitions

We assume throughout that (𝑴, 𝑔) is a complete and connected Riemannian manifold without bound-
ary of dimension 𝑚 and with covariant derivative 𝐷; by 𝐷𝑖 , 𝑖 > 1 we then denote higher orders of 𝐷.
We shall denote by 𝜌(𝑥, 𝑦) the Riemannian distance between any two points 𝑥 and 𝑦 in 𝑴, and by dvol
the Riemannian volume measure of (𝑴, 𝑔). We denote by 𝑇𝑥 (𝑴) the tangent space to 𝑴 at 𝑥 ∈ 𝑴
and by 𝑻𝑴 the tangent bundle of 𝑴. For 𝑘 ≥ 1, C𝑘 (𝑴) denotes the class of 𝑘-times continuously
differentiable real-valued functions on 𝑴, C(𝑴) denotes the set of continuous functions, and C0 (𝑴)
denotes continuous functions vanishing at infinity. The Lipschitz constant𝐶0 (ℎ) of a Lipschitz function
ℎ ∈ C(𝑴) is defined as

𝐶0 (ℎ) := sup
𝑥≠𝑦∈𝑴

|ℎ(𝑥) − ℎ(𝑦) |
𝜌(𝑥, 𝑦) .

Higher-order Lipschitz constants of a function depend on bounding tensor fields. Accordingly, for each
𝑥 ∈ 𝑴 define the operator norm at 𝑥 for a tensor field 𝑇 on 𝑴, based on 𝑛-fold tangent vectors at 𝑥, as

‖𝑇 ‖𝑜𝑝 := sup
𝑣1 , · · · ,𝑣𝑛∈𝑇𝑥 (𝑴) , |𝑣𝑖 |≠0

|𝑇 (𝑣1, · · · , 𝑣𝑛) |
𝑛∏
𝑖=1

|𝑣𝑖 |
.

Then, if ℎ ∈ C𝑘 (𝑴), for 𝑘 ≥ 1, we may define

𝐶𝑖 (ℎ) := sup
𝛾𝑥,𝑦 ,𝑥≠𝑦∈𝑴

‖𝐷𝑖ℎ(𝑥) −Π𝛾𝑥,𝑦 (𝐷𝑖ℎ(𝑦))‖𝑜𝑝
𝜌(𝑥, 𝑦) , 𝑖 = 1, . . . , 𝑘, (1)

and call them the Lipschitz constants of 𝐷𝑖ℎ, where 𝛾𝑥,𝑦 denotes any possible minimal geodesic from
𝑦 to 𝑥 and Π𝛾𝑥,𝑦 denotes the parallel transport from 𝑇𝑦 (𝑴) to 𝑇𝑥 (𝑴) along 𝛾𝑥,𝑦 . Note that 𝐷ℎ = 𝑑ℎ

and that Hessℎ = 𝐷2ℎ, where Hessℎ is the Hessian of ℎ. Note also that sup𝑥∈𝑴 ‖𝐷𝑖+1ℎ(𝑥)‖𝑜𝑝 =𝐶𝑖 (ℎ)
for 𝑖 = 0, · · · , 𝑘 − 1. Finally, if 𝑋 and 𝑍 are two random variables on 𝑴 with 𝑋 ∼ 𝜇 and 𝑍 ∼ 𝜈, abusing
notation, we interchangeably use 𝑑H (𝜈, 𝜇) and 𝑑H (𝑍, 𝑋) to denote the integral (semi-)metric between
the two probability measures, where

𝑑H (𝑍, 𝑋) := sup
ℎ∈H

|E [ℎ(𝑍)] − E [ℎ(𝑋)] |

with respect to a set of real-valued test functions H .
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2.2. Key assumptions

On 𝑴, we consider probability measures of the form

d𝜇𝜙 =
1

𝑐(𝜙) 𝑒
−𝜙 dvol,

with 𝑐(𝜙) =
∫
𝑴

𝑒−𝜙 dvol < ∞ and with support on the entire space 𝑴. We assume that 𝜙 ∈ C2 (𝑴)
is such that ∇𝜙 is Lipschitz; specifically, we assume that 𝐷𝜙 has finite Lipschitz constant 𝐶1 (𝜙).
Throughout, 𝑋 denotes a random variable with 𝑋 ∼ 𝜇𝜙 .

The uniformly elliptic operator 𝐿𝜙 = 1/2 {Δ − 〈∇𝜙, ∇〉} then is the infinitesimal generator of a Feller
diffusion process that solves the Itô stochastic differential equation

d𝑋𝑡 = d𝐵𝑴
𝑡 − 1

2
∇𝜙(𝑋𝑡 ) d𝑡, (2)

where 𝐵𝑴
𝑡 is a Brownian motion on 𝑴. If there is a constant 𝜅 > 0 such that

Ric(𝑥) + Hess𝜙 (𝑥) > −𝜅 𝑔(𝑥), ∀𝑥 ∈ 𝑴, (3)

where Ric is the Ricci curvature tensor, then the corresponding semigroup 𝑃𝑡 = 𝑒𝑡𝐿𝜙 is conservative
(see Bakry (1986)), i.e., 𝑃𝑡1 ≡ 1 for all 𝑡 > 0 or, equivalently, 𝑋𝑡 will, with probability one, not leave
𝑴 in finite time. For a successful development of the Stein’s method on 𝑴, we need the Bakry-Emery
curvature criterion: there is a constant 𝜅 > 0 such that,

(A1) : Ric(𝑥) + Hess𝜙 (𝑥) > 2𝜅 𝑔(𝑥) ∀𝑥 ∈ 𝑴 .

Evidently, assumption (A1) implies the condition in (3).

Remark 1. When 𝑴 = R𝑚, (A1) simplifies to 𝑣>Hess𝜙𝑣 > 2𝜅 for any unit (column) vector 𝑣 in R𝑚

where, as usual, Hess𝜙 is treated as an 𝑚×𝑚 matrix. Hence, (A1) reduces to the requirement in Mackey
and Gorham (2016) that −𝜙 is 2𝜅-strongly concave, noting that in their notation, 𝜙 here is − log 𝑝, up
to a constant. This is also true if the Ricci curvature of 𝑴 is always non-positive. In general, (A1) is
weaker than the requirement that −𝜙 is 𝑐-strongly concave for some 𝑐 > 0.

Example 1. In order to elucidate condition (3) and assumption (A1) we look at a few example mani-
folds and probability measures 𝜇𝜙 .

(i) 𝑴 is the standard sphere 𝑆𝑚 of dimension 𝑚. The function 𝜙(𝑥) corresponding to the von
Mises-Fisher distribution 𝑀𝑚 (𝑥0, 𝑐) takes the form 𝜙(𝑥) = −𝑐 cos(𝑟 (𝑥)), with 𝑟 (𝑥) = 𝜌(𝑥0, 𝑥)
for 𝑐 > 0 and a fixed point 𝑥0 ∈ 𝑴. Since 𝐷2 𝑓 (𝑟) = 𝑓 ′′(𝑟) d𝑟 × d𝑟 + 𝑓 ′(𝑟)𝐷2𝑟 on general
manifolds and since 𝐷2𝑟 = cot(𝑟){𝑔 − d𝑟 × d𝑟} on 𝑆𝑚 (see Greene and Wu (1979)), it follows
that

Hess𝜙 (𝑥) = −𝑐 𝐷2 cos(𝑟 (𝑥)) = 𝑐 cos(𝑟 (𝑥)) 𝑔(𝑥);

this ensures that

Ric(𝑥) + Hess𝜙 (𝑥) > {(𝑚 − 1) − 𝑐}𝑔(𝑥),

and condition (3) holds for the von Mises-Fisher distribution with 𝜅 > max{−(𝑚 − 1) + 𝑐,0}.
However, if there is a 𝜅 > 0 such that assumption (A1) holds, then we must have 0 < 𝑐 < 𝑚−1.
This requires in particular 𝑚 > 1, and thus any von Mises-Fisher distribution on the circle fails
to satisfy (A1).
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(ii) 𝑴 is hyperbolic space H𝑚 with sectional curvature −1. For 𝜙(𝑥) = 𝑐𝜌(𝑜, 𝑥)2 where 𝑐 > 0 and
𝑜 is a fixed point in 𝑴, we have

∫
𝑴

𝑒−𝜙 dvol < ∞ as, in terms of normal coordinates at 𝑜,
dvol = sinh(𝜌)𝑚−1 d𝜌 d𝜃. On the other hand, Hess𝜙 (𝑥) > 2𝑐𝑔(𝑥) by the Hessian Comparison
Theorem and Ric(𝑥) = −(𝑚−1)𝑔(𝑥). Hence condition (3) holds with 𝜅 > max{(𝑚−1) −2𝑐,0}
for such a 𝜙. Moreover, if 𝑐 > (𝑚−1)/2, then there is a 𝜅 > 0 such that assumption (A1) holds.

(iii) 𝑴 is the complex projective space CP𝑚 equipped with the Fubini-Study metric. This is also
the Kendall shape space of configurations in R2 with 𝑚 + 1 labelled landmarks. Let 𝐴 be an
(𝑚 + 1) × (𝑚 + 1) Hermitian matrix, i.e. 𝐴 = 𝐴∗ and 𝜙(𝑧) = −𝑧∗𝐴𝑧, for 𝑧 = 𝑥 + 𝑖𝑦 ∈ C𝑚+1 (col-
umn vectors) and |𝑧 | = 1, where 𝐴∗ denotes the complex conjugate transpose of 𝐴. Without
loss of generality, we may assume that the smallest eigenvalue of 𝐴 is zero. The correspond-
ing 𝜇𝜙 is the complex Bingham distribution on C𝑆𝑚 = 𝑆2𝑚+1. Since 𝜙(𝑧) = 𝜙(𝑒𝑖 𝜃 𝑧), 𝜇𝜙 can
be regarded as a distribution on 𝑴 (see Kent (1994)). It can be shown that Hess𝜙 (𝑤,𝑤) =
2{𝜙(𝑧) − 𝜙(𝑤)}> −2𝜆max for a horizontal (with respect to the projection from 𝑆2𝑚+1 to CP𝑚)
unit vector 𝑤 ∈ 𝑇𝑧 (𝑆2𝑚+1), where 𝜆max > 0 is the largest eigenvalue of 𝐴.

The complex projective space CP𝑚 equipped with the Fubini-Study metric is an Einstein
manifold with its Ricci curvature tensor equal to 2(𝑚 + 1) times the metric tensor. Thus,

Ric + Hess𝜙 > 2 {𝑚 + 1 − 𝜆max} 𝑔,

and so, for the complex Bingham distribution on CP𝑚, condition (3) holds with 𝜅 >

2 max{𝜆max − (𝑚 + 1),0} and assumption (A1) holds if 𝜆max < 𝑚 + 1.

(iv) 𝑴 is the rotation group 𝑆𝑂 (𝑚) with the bi-invariant metric determined by 𝑔(𝐸1, 𝐸2) :=
− 1

2 tr(𝐸1𝐸2) for skew-symmetric 𝐸1, 𝐸2, where 𝑚 > 2. Assume that, for 𝑆 ∈ 𝑴, 𝜙(𝑆) =
−𝑐 tr(𝑆0𝑆) with 𝑆0 ∈ 𝑆𝑂 (𝑚) and a constant 𝑐 > 0. Then, the corresponding 𝜇𝜙 is a von Mises-
Fisher distribution on 𝑆𝑂 (𝑚). It can be shown that Hess𝜙 > −𝑐 𝑔.

Recall that the Killing form of 𝑴 is 𝐵(𝐸1, 𝐸2) = (𝑚 − 2)tr(𝐸1𝐸2) and the Ricci curvature
Ric(𝐸1, 𝐸2) = − 1

4𝐵(𝐸1, 𝐸2) = 𝑚−2
2 𝑔(𝐸1, 𝐸2). Thus, in this case,

Ric + Hess𝜙 >

{
𝑚 − 2

2
− 𝑐

}
𝑔,

and so, for the von Mises-Fisher distribution on 𝑆𝑂 (𝑚), condition (3) holds with 𝜅 > max{𝑐−
(𝑚 − 2)/2,0} and assumption (A1) holds if 𝑐 < (𝑚 − 2)/2.

3. The distance between coupled diffusions

Our approach to define the Stein equation on 𝑴 and analyse properties of its solution rests on the
construction of a pair of diffusions (𝑋𝑡 ,𝑌𝑡 ), and handling of the distance process 𝜌(𝑋𝑡 ,𝑌𝑡 ) between
the pair. In particular, we prove exponential contraction of 𝜌(𝑋𝑡 ,𝑌𝑡 ) towards the initial points, and thus
extend the approach used by Mackey and Gorham (2016) on R𝑚 to the manifold setting. In contrast to
the Euclidean setting, since the distance function (𝑥, 𝑦) ↦→ 𝜌(𝑥, 𝑦) is not in C2 (𝑴 ×𝑴) if the cut locus
of a point in 𝑴 is not empty, analysis of the distance process 𝜌(𝑋𝑡 ,𝑌𝑡 ) requires additional care.
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3.1. When no conjugate points are present in cut loci

We first consider the relatively simple situation where there is no conjugate point in the cut locus of
any given point in 𝑴. In this setting, by modifying the arguments in Kendall (1986a) and Kendall
(1986b), we are able to establish exponential pathwise contraction of distance between the diffusions,
aided by a key result given in Lemma 3 in Appendix A of Supplementary Material, which expresses the
distance function in terms of finitely many smooth functions in neighbourhoods of cut point, despite it
not belonging to C2 (𝑴 ×𝑴).

Note first that, in terms of a Brownian motion 𝐵𝑡 on R𝑚 starting from the origin, the Itô differential
equation (2) with initial condition 𝑋0 = 𝑥0 is equivalent to

d𝑠𝑋𝑡 = Ξ𝑡 d𝑠𝐵𝑡 − 1
2∇𝜙(𝑋𝑡 ) d𝑡, 𝑋0 = 𝑥0;

d𝑠Ξ𝑡 = 𝐻Ξ d𝑠𝑋𝑡 , Ξ(𝑋0) = 𝜉0,
(4)

where d𝑠 denotes the Stratonovich differential, 𝐻 the horizontal lift from 𝑇 𝑴 to the tangent bundle
of the orthonormal frame bundle O(𝑴), where 𝜉0 sits above 𝑥0. For an introduction to horizontal lifts
and orthonormal frame bundles, see for example, Kobayashi and Nomizu (1963).

Theorem 1. Assume that 𝑴 has the property that there is no conjugate point to any given point in 𝑴,
and that the Bakry-Emery curvature criterion (A1) holds for a constant 𝜅 > 0. Then, for any 𝑥0, 𝑦0 ∈ 𝑴,
there is a pair of coupled diffusions (𝑋𝑡 ,𝑌𝑡 ) starting from (𝑥0, 𝑦0) such that both 𝑋𝑡 and 𝑌𝑡 satisfy (2)
and, for any ℓ > 1,

𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ 6 𝜌(𝑥0, 𝑦0)ℓ𝑒−ℓ𝜅𝑡 , 𝑡 > 0. (5)

Proof. Consider the map

Exp : 𝑇 𝑴 → 𝑴 ×𝑴; (𝑥, 𝑣) ↦→ (𝑥, exp𝑥 (𝑣)).

For any (𝑥, 𝑣) ∈ 𝑇 𝑴, this map provides an intervening geodesic 𝑠 ↦→ exp𝑥 (𝑠𝑣), 0 6 𝑠 6 1, connecting
𝑥 and exp𝑥 (𝑣). The length of this geodesic is at least the distance between 𝑥 and exp𝑥 (𝑣). If the interior
of this geodesic does not intersect the cut locus of 𝑥, then it is also a minimal geodesic between its two
end points. Denote by Π̃(𝑥,𝑣) the parallel transport along this intervening geodesic from 𝑥 to exp𝑥 (𝑣)
where, for our purpose, Π̃(𝑥,𝑣) is taken to be the identity map on 𝑇𝑥 (𝑴) if 𝑥 = exp𝑥 (𝑣) even though
this may imply a discontinuity.

For any given (𝑥0, 𝑦0) ∈ 𝑴 ×𝑴, we take 𝑣0 ∈ 𝑇𝑥0 (𝑴) such that

exp𝑥0
(𝑣0) = 𝑦0 and |𝑣0 | = 𝜌(𝑥0, 𝑦0). (6)

Under the given assumptions, 𝑦0 is not conjugate to 𝑥0. Then, if 𝑦0 is a cut point of 𝑥0, a consequence
of the proof of Lemma 3 in Appendix A of Supplementary Material is that there is a neighbourhood
N of (𝑥0, 𝑦0) such that Exp−1 (N) is a disjoint union of a finite number of open sets on 𝑻𝑴 and, re-
stricted to each such set, Exp is a diffeomorphism from that set onto N . If 𝑦0 is not a cut point of 𝑥0,
then 𝑣0 is uniquely determined by 𝑣0 = exp−1

𝑥0
(𝑦0) and a similar result holds with just one component

in Exp−1 (N). Hence, in particular, 𝑻𝑴 is locally a covering space of 𝑴 ×𝑴. Within such a neigh-
bourhood N of a given (𝑥0, 𝑦0), we can determine a continuous process (𝑋𝑡 ,𝑉𝑡 ) ∈ 𝑻𝑴 starting from
(𝑥0, 𝑣0) associated with (2), by solving the following coupled diffusions 𝑋𝑡 and 𝑌𝑡 = exp𝑋𝑡

(𝑉𝑡 ):
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d𝑠𝑋𝑡 = Ξ𝑡 d𝑠𝐵𝑡 − 1
2∇𝜙(𝑋𝑡 ) d𝑡; 𝑋0 = 𝑥0;

d𝑠𝑌𝑡 = Υ𝑡 d𝑠𝐵′
𝑡 − 1

2∇𝜙(𝑌𝑡 ) d𝑡, 𝑌0 = 𝑦0;

d𝑠Ξ𝑡 = 𝐻Ξ d𝑠𝑋𝑡 , Ξ(𝑋0) = 𝜉0;

d𝑠Υ𝑡 = 𝐻Υ d𝑠𝑌𝑡 , Υ(𝑌0) = 𝜂0;

d𝐵′
𝑡 = (Υ−1

𝑡 Π̃𝑋𝑡 ,𝑉𝑡
Ξ𝑡 ) d𝐵𝑡 ,

(7)

where, similarly to Ξ and 𝜉0 for 𝑋 , Υ and 𝜂0 are respectively a lift of𝑌 to the orthonormal frame bundle
O(𝑴) and 𝜂0 sits above 𝑦0. Since 𝐵′

𝑡 is also a Brownian motion on R𝑚, both 𝑋𝑡 and 𝑌𝑡 are diffusions
satisfying (2) before they leave N .

When (𝑋𝑡 ,𝑌𝑡 ) hits the boundary of N , we can find a neighbourhood N ′ of (𝑋𝑡 ,𝑌𝑡 ) satisfying the
above properties of N . Then, allowing 𝑉𝑡 to move discontinuously without altering (𝑋𝑡 ,𝑌𝑡 ) such that,
after the jump, it satisfies (6), we can continue to run (𝑋𝑡 ,𝑌𝑡 ) within N ′ so defined. Note that, if
𝑋𝑡0 =𝑌𝑡0 for some 𝑡0 > 0, then 𝑋𝑡 =𝑌𝑡 for 𝑡 > 𝑡0.

For (𝑋𝑡 ,𝑌𝑡 ) constructed as above, denote by �̃�(𝑋𝑡 ,𝑌𝑡 ) the length of the intervening geodesic
exp𝑋𝑡

(𝑠𝑉𝑡 ) between 𝑋𝑡 and 𝑌𝑡 = exp𝑋𝑡
(𝑉𝑡 ); and write 𝛾𝑡 for the unit speed intervening geodesic from

𝑋𝑡 to 𝑌𝑡 , that is, 𝛾𝑡 (𝑠) = exp𝑋𝑡
(𝑠𝑉𝑡/|𝑉𝑡 |). Note that �̃�(𝑋𝑡 ,𝑌𝑡 ) depends implicitly on the choice of 𝑣0,

which is not unique when 𝑦0 is a cut point of 𝑥0. On the other hand, for any given 𝑣0 which satisfies (6),
�̃� is a smooth function of (𝑥, 𝑦) within the neighbourhood N chosen as above. However, the change of
neighbourhood from N to N ′ usually results in a discontinuity for the process �̃�(𝑋𝑡 ,𝑌𝑡 ). Nevertheless,
𝜌(𝑋𝑡 ,𝑌𝑡 ) is always continuous and

𝜌(𝑋𝑡 ,𝑌𝑡 ) 6 �̃�(𝑋𝑡 ,𝑌𝑡 ), 𝑡 > 0,

where the latter becomes an equality immediately after the jump. Hence, to find an upper bound for
𝜌(𝑋𝑡 ,𝑌𝑡 ), it is sufficient to find an upper bound for �̃�(𝑋𝑡 ,𝑌𝑡 ).

To bound �̃�(𝑋𝑡 ,𝑌𝑡 ) we may assume, without loss of generality, that (𝑋𝑡 ,𝑌𝑡 ) lies in N for all 𝑡 > 0.
Write 𝑢0, 𝑢1, · · · , 𝑢𝑚−1 for an orthonormal base in R𝑚 such that Ξ𝑡𝑢0 = ¤𝛾𝑡 (0), and, for 𝑖 = 0,1, · · · , 𝑚 −
1, let 𝑣𝑖 = (Υ−1

𝑡 Π̃(𝑋𝑡 ,𝑉𝑡 )Ξ𝑡 )𝑢𝑖 . Then, the Itô formula for �̃�(𝑋𝑡 ,𝑌𝑡 ) is given by

d�̃�(𝑋𝑡 ,𝑌𝑡 ) = (Ξ𝑡𝑢0) �̃�(𝑋𝑡 ,𝑌𝑡 ) d〈𝑢0, 𝐵𝑡 〉 + (Υ𝑡𝑣0) �̃�(𝑋𝑡 ,𝑌𝑡 ) d〈𝑣0, 𝐵
′
𝑡 〉

+ 1
2

𝑚−1∑︁
𝑖=0

(Ξ𝑡𝑢𝑖 +Υ𝑡𝑣𝑖)2 �̃�(𝑋𝑡 ,𝑌𝑡 ) d𝑡

+ 1
2
{〈∇𝜙(𝑋𝑡 ), ¤𝛾𝑡 (0)〉 − 〈∇𝜙(𝑌𝑡 ), ¤𝛾𝑡 ( �̃�(𝑋𝑡 ,𝑌𝑡 ))〉} d𝑡.

(8)

Since 〈𝑢0, 𝐵𝑡 〉 = 〈𝑣0, 𝐵
′
𝑡 〉, since (Ξ𝑡𝑢0) �̃�(𝑋𝑡 ,𝑌𝑡 ) = − (Υ𝑡𝑣0) �̃�(𝑋𝑡 ,𝑌𝑡 ) and since

(Ξ𝑡𝑢0)2 �̃�(𝑋𝑡 ,𝑌𝑡 ) = (Υ𝑡𝑣0)2 �̃�(𝑋𝑡 ,𝑌𝑡 ) = (Ξ𝑡𝑢0) (Υ𝑡𝑣0) �̃�(𝑋𝑡 ,𝑌𝑡 ) = 0,

(8) simplifies to

2 d�̃�(𝑋𝑡 ,𝑌𝑡 ) =
𝑚−1∑︁
𝑖=1

(Ξ𝑡𝑢𝑖 +Υ𝑡𝑣𝑖)2 �̃�(𝑋𝑡 ,𝑌𝑡 ) d𝑡

+ {〈∇𝜙(𝑋𝑡 ), ¤𝛾𝑡 (0)〉 − 〈∇𝜙(𝑌𝑡 ), ¤𝛾𝑡 ( �̃�(𝑋𝑡 ,𝑌𝑡 ))〉} d𝑡.

(9)
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Denote by 𝐽𝑖𝑡 the Jacobi vector field along 𝛾𝑡 with 𝐽𝑖𝑡 (0) = Ξ𝑡𝑢𝑖 and 𝐽𝑖𝑡 (1) = Υ𝑡𝑣𝑖 . Then, since �̃� is
smooth under the assumption that (𝑋𝑡 ,𝑌𝑡 ) lies in a given neighbourhood of (𝑥0, 𝑦0), using the second-
variation formula (see Cheeger and Ebin (1975)), a modification of the argument by Kendall (1986a)
shows that the right hand side of (9) is given by

∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0

𝑚−1∑︁
𝑖=1

{
|𝐷 ¤𝛾𝑡 (𝑠) (𝐽

𝑖
𝑡 (𝑠)) |2−〈𝑅(𝐽𝑖𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) ¤𝛾𝑡 (𝑠), 𝐽𝑖𝑡 (𝑠)〉

}
d𝑠 d𝑡

+ {〈∇𝜙(𝑋𝑡 ), ¤𝛾𝑡 (0)〉 − 〈∇𝜙(𝑌𝑡 ), ¤𝛾𝑡 ( �̃�(𝑋𝑡 ,𝑌𝑡 ))〉 d𝑡} ,

(10)

where the integral is along 𝛾𝑡 and 𝑅 denotes the curvature tensor of 𝑴.
To analyse the first term of (10), we use a modified form of the argument in Cheeger and Ebin (1975),

the proof of Lemma 1.21. It shows that, for each 𝑖 = 1, . . . , 𝑚 − 1,∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0

{
|𝐷 ¤𝛾𝑡 (𝑠) (𝐽

𝑖
𝑡 (𝑠)) |2 − 〈𝑅(𝐽𝑖𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) ¤𝛾𝑡 (𝑠), 𝐽𝑖𝑡 (𝑠)〉

}
d𝑠

6
∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0

{
|𝐷 ¤𝛾𝑡 (𝑠) (𝑉

𝑖
𝑡 (𝑠)) |2 − 〈𝑅(𝑉 𝑖

𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) ¤𝛾𝑡 (𝑠),𝑉 𝑖
𝑡 (𝑠)〉

}
d𝑠,

where 𝑉 𝑖
𝑡 (𝑠) := (Π̃(𝑋𝑡 ,𝑠𝑉𝑡/ |𝑉𝑡 |)Ξ𝑡 )𝑢𝑖 . Now, since 𝑉 𝑖

𝑡 is parallel along 𝛾𝑡 , it follows that 𝐷 ¤𝛾𝑡 (𝑠) (𝑉 𝑖
𝑡 (𝑠)) =

0. As a consequence, since { ¤𝛾𝑡 (𝑠),𝑉1
𝑡 (𝑠), . . . ,𝑉𝑚−1

𝑡 (𝑠)} forms an orthonormal base of 𝑇𝛾𝑡 (𝑠) (𝑴) and
〈𝑅( ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠)〉 ≡ 0, we have

∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0

𝑚−1∑︁
𝑖=1

{
|𝐷 ¤𝛾𝑡 (𝑠) (𝐽

𝑖
𝑡 (𝑠)) |2 − 〈𝑅(𝐽𝑖𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) ¤𝛾𝑡 (𝑠), 𝐽𝑖𝑡 (𝑠)〉

}
d𝑠

6 −
∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0

𝑚−1∑︁
𝑖=1

〈𝑅(𝑉 𝑖
𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) ¤𝛾𝑡 (𝑠),𝑉 𝑖

𝑡 (𝑠)〉 d𝑠

= −
∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0
Ric(𝛾𝑡 (𝑠)) ( ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) d𝑠.

(11)

For the remaining two terms of (10), we note that

d
d𝑠

〈∇𝜙(𝛾𝑡 (𝑠)), ¤𝛾𝑡 (𝑠)〉 = 〈𝐷 ¤𝛾𝑡 (𝑠) (∇𝜙(𝛾𝑡 (𝑠))), ¤𝛾𝑡 (𝑠)〉 + 〈∇𝜙(𝛾𝑡 (𝑠)), 𝐷 ¤𝛾𝑡 (𝑠) ¤𝛾𝑡 (𝑠)〉

= 〈𝐷 ¤𝛾𝑡 (𝑠) (∇𝜙(𝛾𝑡 (𝑠))), ¤𝛾𝑡 (𝑠)〉

= Hess𝜙 ( ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠)),

as 𝛾𝑡 is a geodesic. From this, we deduce that

〈∇𝜙(𝑌𝑡 ), ¤𝛾𝑡 ( �̃�(𝑋𝑡 ,𝑌𝑡 ))〉 − 〈∇𝜙(𝑋𝑡 ), ¤𝛾𝑡 (0)〉 =
∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0
Hess𝜙 ( ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠)) d𝑠. (12)
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Thus, under the Bakry-Emery curvature criterion (A1) condition, (10), (11) and (12) together give
that

2 d�̃�(𝑋𝑡 ,𝑌𝑡 ) 6 −
∫ �̃�(𝑋𝑡 ,𝑌𝑡 )

0

{
Ric( ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠))+Hess𝜙 ( ¤𝛾𝑡 (𝑠), ¤𝛾𝑡 (𝑠))

}
d𝑠 d𝑡

6 − 2𝜅�̃�(𝑋𝑡 ,𝑉𝑡 ) d𝑡.

(13)

Now, for any ℓ > 1, it follows from (13) that

d
(
�̃�(𝑋𝑡 ,𝑌𝑡 )ℓ

)
6 −ℓ 𝜅 �̃�(𝑋𝑡 ,𝑌𝑡 )ℓ d𝑡,

so that

𝑒ℓ𝜅𝑡 �̃�(𝑋𝑡 ,𝑌𝑡 )ℓ = �̃�(𝑋0,𝑌0)ℓ +
∫ 𝑡

0
𝑒ℓ𝜅𝑠

{
ℓ𝜅 �̃�(𝑋𝑠 ,𝑌𝑠)ℓ d𝑠 + d

(
�̃�(𝑋𝑠 ,𝑌𝑠)ℓ

)}
6 �̃�(𝑋0,𝑌0)ℓ .

Finally, by recalling that �̃�(𝑋0,𝑌0) = 𝜌(𝑋0,𝑌0), we have

𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ 6 �̃�(𝑋𝑡 ,𝑌𝑡 )ℓ 6 𝜌(𝑋0,𝑌0)ℓ𝑒−ℓ𝜅𝑡

as required.

3.2. When conjugate points are present in cut loci

When conjugate points are present in cut loci in 𝑴, the construction of a pair of diffusions in the
proof of Theorem 1 fails at such points. More precisely, if 𝑦0 is a (first) conjugate point of 𝑥0 along the
geodesic exp𝑥0

(𝑠𝑣), which also lies in the cut locus of 𝑥0, then 𝐷 exp𝑥0
(𝑣) is singular. This means that

it would be impossible to find a neighbourhood N of (𝑥0, 𝑦0) that has the properties described above
following (6). In particular, it would be impossible to find a subset of 𝑻𝑴, as specified there, such that
Exp is a diffeomorphism from that subset onto N . It is evident from the proof of Theorem 1 that the
existence of such a diffeomorphism offers a way to couple (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) at, and beyond, cut points.

Nevertheless, we now show that it is still possible to construct a pair of diffusions on 𝑴 with prop-
erties that (i) they both satisfy (2) and (ii) the expected distance between them contracts at least ex-
ponentially. This relies on a generalisation of the technique used in Theorem 5 of Kendall (1986b) to
deal with the presence of conjugate points. In the non-conjugate part of the cut locus of 𝑴 analysis
proceeds as with Theorem 1. To warn us of when the diffusions get close to the first conjugate locus,
we use the operator 𝐿𝜙 , and monitor the value of its action on the distance function 𝜌; this value decays
towards −∞ when the points approach the first conjugate locus. Effectively, we determine a neighbour-
hood 𝑁2𝛿 ⊂ 𝑴 ×𝑴 of the first conjugate locus in 𝑴 ×𝑴 for a constant 𝛿 that depends on 𝜅 and the
injectivity radius of 𝑴. Once the coupled diffusions enter �̄�2𝛿 , the closure of 𝑁2𝛿 , we decouple them,
run independent diffusions until they hit 𝑴 \𝑁𝛿 , where 𝑁𝛿 ⊃ 𝑁2𝛿 , and then return to coupling again.

We first need two preliminary results before stating and proving the main result in this section.
Observe that the set

Ẽ := {(𝑥, 𝑣) ∈ 𝑻𝑴 | the geodesic exp𝑥 (𝑠𝑣), 0 6 𝑠6 1,

contains no conjugate point of 𝑥}
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is an open set in 𝑻𝑴. The map Exp: (𝑥, 𝑣) → (𝑥, exp𝑥 (𝑣)) maps Ẽ surjectively to its image

E := {(𝑥, 𝑦) ∈ 𝑴 ×𝑴 | there is a geodesic from 𝑥 to 𝑦

containing no conjugate point}. (14)

Then, the construction (7) of (𝑋𝑡 ,𝑌𝑡 ) can be applied to the case when the starting point (𝑥0, 𝑦0) is in E
and it remains valid until the first exit of (𝑋𝑡 ,𝑉𝑡 ) from Ẽ. We now modify the construction by Kendall
(1986b): combine the coupled diffusions (𝑋𝑡 ,𝑌𝑡 ) defined by (7), while the corresponding (𝑋𝑡 ,𝑉𝑡 ) is
not too close to the boundary of Ẽ, with 𝑋𝑡 , 𝑌𝑡 evolving independently.

For this, we first need a result on the distance function of two independent diffusions on 𝑴 specified
by (2). Lemma 3 in Appendix A of the Supplementary Material ensures the following property of
𝜌(𝑥, 𝑦) on neighbourhoods of the cut locus

C := {(𝑥, 𝑦) ∈ 𝑴 ×𝑴 | 𝑦 lies in the cut locus of 𝑥}

of 𝑴 ×𝑴: there is a set C0 ⊂ C such that

(i) C0 contains the (first)-conjugate part of C;
(ii) for any (𝑥, 𝑦) ∈ C \ C0, there is a neighbourhood N of (𝑥, 𝑦) in 𝑴 ×𝑴 and two smooth func-

tions 𝜚1 and 𝜚2 on N such that

𝜌(𝑥′, 𝑦′) = min{𝜚1 (𝑥′, 𝑦′), 𝜚2 (𝑥′, 𝑦′)}, ∀(𝑥′, 𝑦′) ∈ N .

Since the (first)-conjugate part of C has co-dimension 2 in 𝑴 ×𝑴 (see Barden and Le (1997)), the
result of that Lemma also implies that C0 can be chosen to have co-dimension 2. Also, similarly to the
argument at the beginning of the proof of Theorem 1, N in (𝑖𝑖) above can be chosen such that Exp−1 (N)
is a disjoint union of two open sets V1, V2 in 𝑻𝑴 and, restricted to each V𝑖 , Exp is a diffeomorphism
from that set to N . Then, the smooth function 𝜚𝑖 (𝑥′, 𝑦′) constructed in the proof of Lemma 3 in
Appendix A of the Supplementary Material is in fact the length of the geodesic from 𝑥′ and 𝑦′, the
initial tangent vector 𝑣𝑖 to which lies in V𝑖 . That is, using our notation for the length of intervening
geodesics, we have 𝜚𝑖 (𝑥′, 𝑦′) = �̃�(𝑥′, exp𝑥′ (𝑣𝑖)). This leads to the following generalisation of Theorem
5 of Kendall (1986b) and of Theorem 3 of Barden and Le (1997). The proof of this generalisation is a
slight modification of the proof for Theorem 3 of Barden and Le (1997) (see also Le and Barden (1995)
for more detailed derivations), and we hence omit it here.

Lemma 1. Suppose that 𝑋𝑡 and 𝑌𝑡 are independent diffusions on 𝑴, both satisfying (2). Then, the
distance 𝜌(𝑋𝑡 ,𝑌𝑡 ) is a semimartingale and, before the first time that 𝑋𝑡 =𝑌𝑡 ,

d𝜌(𝑋𝑡 ,𝑌𝑡 ) =
√

2 d𝐵𝑡 +
1
2

{
L𝜙,1𝜌(𝑋𝑡 ,𝑌𝑡 ) + L𝜙,2𝜌(𝑋𝑡 ,𝑌𝑡 )

}
d𝑡 − d𝐿𝑡 ,

where 𝐵𝑡 is a Brownian motion on R; 𝐿 is a non-decreasing process that is locally constant outside C;
and, for fixed 𝑥0 and 𝑥 ≠ 𝑥0,

L𝜙,1𝜌(𝑥, 𝑥0) :=


0 if (𝑥, 𝑥0) ∈ C0;

1
2
{𝐿𝜙 �̃�(exp𝑥0

(𝑣1), 𝑥0)+𝐿𝜙 �̃�(exp𝑥0
(𝑣2), 𝑥0)} if (𝑥, 𝑥0) ∈ C\C0;

𝐿𝜙𝜌(𝑥, 𝑥0) otherwise,

and L𝜙,2𝜌 is similarly defined with respect to the second argument of 𝜌, and where the operator 𝐿𝜙 is
defined by 𝐿𝜙 = 1

2 {Δ − 〈∇𝜙, ∇〉}.
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To detect that the coupled (𝑋𝑡 ,𝑌𝑡 ), constructed by (7), is close to the boundary of E and to control the
independent diffusions 𝑋𝑡 and 𝑌𝑡 , we need the following generalisation of a geometric description (see
Kendall (1986b)), wherein we replace the Laplacian operator considered there with L𝜙 , and replace
the lower bound constant 𝑐 determining the set O𝑐 (which was denoted by 𝑈𝑐 by Kendall (1986b)) by
𝑐𝜌(𝑥, 𝑦). Since 𝜙 is in C2 (𝑴), the proof for our result is analogous to that for the lemma in Kendall
(1986b), and we omit it here.

Lemma 2. For any 𝑐 > 0,

O𝑐 ⊂ Ō𝑐 ⊂ Ẽ,

where

O𝑐 := {(𝑥, 𝑣) ∈ Ẽ | L𝜙,1 �̃�(𝑥, exp𝑥 (𝑣)) + L𝜙,2 �̃�(𝑥, exp𝑥 (𝑣)) > −2𝑐𝜌(𝑥, exp𝑥 (𝑣))}

and, as before, �̃�(𝑥, 𝑒𝑥𝑝𝑥 (𝑣)) denotes the length of the intervening geodesic 𝛾(𝑡) = exp𝑥 (𝑡𝑣), 0 6 𝑡 6 1.

We are now ready to prove the following result for Riemannian manifolds 𝑴 with non-empty conju-
gate locus (e.g., spheres), which is weaker than Theorem 1 in that the exponential contraction between
the diffusions towards their initial points is in expection and not pathwise.

Theorem 2. Assume that the Bakry-Emery curvature criterion (A1) holds for a constant 𝜅 > 0. Then,
for any ℓ > 1 and for any 𝑥0, 𝑦0 ∈ 𝑴, there is a pair of diffusions (𝑋𝑡 ,𝑌𝑡 ) starting from (𝑥0, 𝑦0) such
that both 𝑋𝑡 and 𝑌𝑡 satisfy (2) and

E
[
𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ

]
6 𝜌(𝑥0, 𝑦0)ℓ𝑒−ℓ𝜅𝑡 , 𝑡 > 0. (15)

Note that, unlike the result of Theorem 1, the (𝑋𝑡 ,𝑌𝑡 ) constructed here will depend on ℓ.

Proof. Let 𝜅 > 0 be the constant in Bakry-Emery curvature criterion (A1) For given ℓ ∈ [1, 𝑛], fix
𝛿𝑛 > 0 sufficiently large such that

(i) 𝛿𝑛 > 𝜅 +4(𝑛−1)/𝑟2
0 , where 𝑟0 > 0 is the minimum of the injectivity radius and a fixed positive

constant 𝑟 ′0 say;
(ii) 𝑂 𝛿𝑛 ⊃ {(𝑥, 𝑦) ∈ 𝑴 ×𝑴 | 𝜌(𝑥, 𝑦) < 𝑟0/2}, where 𝑂 𝛿 = Exp (O𝛿) and where O𝑐 is the subset

of 𝑻𝑴 as defined in Lemma 2 above.

We now construct diffusions 𝑋𝑡 and𝑌𝑡 , both satisfying (2), as follows. For given (𝑥0, 𝑦0) ∈ 𝑴 ×𝑴, if
there is a minimal geodesic between them which contains no conjugate point, we construct diffusions
𝑋𝑡 and 𝑌𝑡 by solving (7) beginning at (𝑥0, 𝑦0). By allowing the corresponding (𝑋𝑡 ,𝑉𝑡 ) to jump if
necessary, as commented following the construction (7), we continue such a construction for (𝑋𝑡 ,𝑌𝑡 )
until the first time that (𝑋𝑡 ,𝑉𝑡 ) leaves O2𝛿𝑛 . Suppose that (𝑋𝑡 ,𝑉𝑡 ) leaves O2𝛿𝑛 at time 𝜏. We then
consider all minimal geodesics between 𝑋𝜏 and 𝑌𝜏 containing no conjugate point and, if possible,
choose one for which the corresponding (𝑋𝜏 ,𝑉𝜏) lies in Ō𝛿𝑛 . We then repeat the construction as
before with the chosen new starting point. This iterated construction continues until the choice of such
(𝑋𝜏 ,𝑉𝜏) in Ō𝛿𝑛 is no longer possible.

If it is not possible initially to choose a minimal geodesic containing no conjugate point, or if at some
stage a choice of the above (𝑋𝜏 ,𝑉𝜏) in Ō𝛿𝑛 is impossible, then we continue the construction of 𝑋𝑡 and
𝑌𝑡 by evolving them independently until (𝑋𝑡 ,𝑌𝑡 ) hits �̄� 𝛿𝑛 .
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To show that the required result holds for (𝑋𝑡 ,𝑌𝑡 ) constructed in such a way, it is sufficient by
Theorem 1 to restrict to the case when 𝑋𝑡 and 𝑌𝑡 evolve independently. Then, (𝑋𝑡 ,𝑌𝑡 ) is not in �̄� 𝛿𝑛 .
Recalling that a co-dimension 2 set in 𝑴 ×𝑴 is a polar set of a non-degenerate diffusion on 𝑴 ×𝑴 it
follows from Lemmas 1 and 2 and from the choice of 𝛿𝑛 that

d
(
𝑒ℓ𝜅𝑡 𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ

)
6 d𝑀𝑡 + ℓ𝜅𝑒ℓ𝜅𝑡 𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ d𝑡

+ 1
2
ℓ𝑒ℓ𝜅𝑡 𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ−1 {

L𝜙,1𝜌(𝑋𝑡 ,𝑌𝑡 ) + L𝜙,2𝜌(𝑋𝑡 ,𝑌𝑡 )
}

d𝑡

+ ℓ(ℓ − 1) 𝑒ℓ𝜅𝑡 𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ−2 d𝑡

6 d𝑀𝑡 + ℓ𝑒ℓ𝜅𝑡 𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ
{
𝜅 − 𝛿𝑛 + (ℓ − 1)𝜌(𝑋𝑡 ,𝑌𝑡 )−2

}
d𝑡

6 d𝑀𝑡 + ℓ𝑒ℓ𝜅𝑡 𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ
{
𝜅 − 𝛿𝑛 + 4(𝑛 − 1)/𝑟2

0

}
d𝑡

6 d𝑀𝑡 ,

where 𝑀𝑡 is a martingale. Hence, we have E
[
𝜌(𝑋𝑡 ,𝑌𝑡 )ℓ

]
6 𝜌(𝑥0, 𝑦0)ℓ𝑒−ℓ𝜅𝑡 as required.

Remark 2. In the literature, there are several ways to construct couplings for proving the existence of
contractivity. For example, in the curvature setting, the framework of weighted Riemannian manifolds
is now part of a broader one for CD-spaces (see e.g., Sturm (2006a,b)). In this context, the existence
of contractive couplings was treated by Kuwada (2010), von Renesse and Sturm (2005). In particular,
the Kuwada duality theorem (see Kuwada (2010), Theorem 2.2), in conjunction with the implication
of contractivity of the heat flow under Curvature-Dimension condition, implies the existence of a con-
tractive coupling such as in the proof of Corollary 1 in von Renesse and Sturm (2005). The coupling
we construct here, in addition to proving the required contractivity, will also be employed in the Sup-
plementary Material to study certain stochastic vector fields along the paths 𝑋𝑥,𝑡 and 𝑌𝑦,𝑡 , which play
important roles in obtaining the Stein factors.

4. Solution to the Stein equation and Stein factors

We are now ready to turn our attention to the Stein equation

ℎ(𝑥) − E [ℎ(𝑋)] = 𝐿𝜙 𝑓ℎ (𝑥), (16)

where ℎ belongs to a suitable class of real-valued test functions on 𝑴. Using the distance process
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) for a pair of diffusions (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) constructed above, in this Section we determine the
solution 𝑓ℎ to the Stein equation (16) and examine its properties.

4.1. The solution 𝒇𝒉

Let

H0 := {ℎ ∈ C0 (𝑴) | ℎ is Lipschitz with 𝐶0 (ℎ) <∞}. (17)
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Proposition 1. Let 𝑴 be a complete and connected Riemannian manifold. Assume that the Bakry-
Emery curvature criterion (A1) holds for a constant 𝜅 > 0 and that 𝑋 is a random variable on 𝑴 with
distribution 𝜇𝜙 such that E [𝜌(𝑋, 𝑥)] <∞ for some 𝑥 ∈ 𝑴. For every ℎ ∈ H0 the function

𝑓ℎ (𝑥) :=
∫ ∞

0

{
E [ℎ(𝑋)] − E

[
ℎ(𝑋𝑥,𝑡 )

]}
d𝑡 (18)

is (i) well-defined; (ii) Lipschitz with constant 𝐶0 ( 𝑓ℎ) 6𝐶0 (ℎ)/𝜅.

Remark 3. If 𝑴 = R𝑚, Ric(𝑢, 𝑢′) + Hess𝜙 (𝑢, 𝑢′) = Hess𝜙 (𝑢, 𝑢′). Thus, Proposition 1(ii) recovers the
corresponding result in Mackey and Gorham (2016), as the constant 2𝜅 here corresponds to constant
𝑘 there. Moreover, the result of Proposition 1(ii) is equivalent to that of Proposition 6.1 in Thompson
(2020).

Proof. Let (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) be the pair of diffusions in Theorem 2 with ℓ = 1, starting from (𝑥, 𝑦). Then,
both 𝑋𝑥,𝑡 and 𝑌𝑦,𝑡 satisfy (2). Since 𝜇𝜙 is the invariant measure for 𝑌𝑡 , using the Lipschitz property of
ℎ and Theorem 2, ����∫ ∞

0

{
E [ℎ(𝑋)] − E

[
ℎ(𝑋𝑥,𝑡 )

]}
d𝑡

����
=

����∫ ∞

0

∫
𝑴

{
E

[
ℎ(𝑌𝑦,𝑡 )

]
− E

[
ℎ(𝑋𝑥,𝑡 )

]}
d𝜇𝜙 (𝑦) d𝑡

����
6 𝐶0 (ℎ)

∫ ∞

0

∫
𝑴

E
[
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 )

]
d𝜇𝜙 (𝑦) d𝑡

6 𝐶0 (ℎ) E [𝜌(𝑋, 𝑥)]
∫ ∞

0
𝑒−𝜅𝑡 d𝑡 <∞.

This proves that 𝑓ℎ is well-defined. Now, for any 𝑥, 𝑦 ∈ 𝑴,

| 𝑓ℎ (𝑦) − 𝑓ℎ (𝑥) | 6
∫ ∞

0

��E [
ℎ(𝑌𝑦,𝑡 )

]
− E

[
ℎ(𝑋𝑥,𝑡 )

] ��d𝑡
6 𝐶0 (ℎ)

∫ ∞

0
E

[
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 )

]
d𝑡

6 𝐶0 (ℎ)𝜌(𝑥, 𝑦)
∫ ∞

0
𝑒−𝜅𝑡 d𝑡 =

1
𝜅
𝐶0 (ℎ)𝜌(𝑥, 𝑦).

The next result shows that the function 𝑓ℎ defined by (18) solves the Stein equation for the probability
measure 𝜇𝜙 .

Theorem 3. Assume that 𝑴 is a complete and connected Riemannian manifold and that Bakry-Emery
curvature criterion (A1) holds for a constant 𝜅 > 0. Let 𝑋 be a random variable on 𝑴 with distribution
𝜇𝜙 such that E [𝜌(𝑋, 𝑥)] < ∞ for some 𝑥 ∈ 𝑴. For ℎ ∈ H0, the function 𝑓ℎ in (18) solves the Stein
equation (16).
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Remark 4. When 𝑴 = R𝑚 this result recovers the result by Mackey and Gorham (2016); in partic-
ular, E

[
𝐿𝜙 𝑓ℎ (𝑋)

]
= 0. On the other hand, the Bakry-Emery curvature criterion (A1) implies certain

restrictions on the probability measures to which we can apply Theorem 3. For example, as noted in
Example 1(i), one cannot apply it to von Mises-Fisher distributions on the circle. In this case, using
direct integration by parts, for probability measures 𝜇𝜙 with 𝑋 ∼ 𝜇𝜙 on 𝑆1, the function

𝑔ℎ (𝑥) = 𝑐(𝜙)𝑒𝜙 (𝑥)
{
𝑎 +

∫ 𝑥

−𝜋
(ℎ(𝑦) − E [ℎ(𝑋)]) d𝜇𝜙 (𝑦)

}
,

for a constant 𝑎, solves the Stein equation ℎ(𝑥) −E [ℎ(𝑋)] = 𝑔′
ℎ
(𝑥) − 𝜙′(𝑥) 𝑔ℎ (𝑥) associated with first-

order Stein operator 𝐴𝜙𝑔 − 𝜙𝑔 = 𝑔′ − 𝜙′ 𝑔 (see Lewis (2021)).

Proof. Let 𝑋𝑥,𝑡 be a diffusion starting from 𝑥 and satisfying (2). Since the corresponding semigroup
{𝑃𝑡 | 𝑡 > 0} is strongly continuous on C0 (𝑴) and 𝐿𝜙 is the infinitesimal generator of 𝑋𝑥,𝑡 , we have

(𝑃𝑡ℎ) (𝑥) − ℎ(𝑥) = 𝐿𝜙

(∫ 𝑡

0
E

[
ℎ(𝑋𝑥,𝑠)

]
d𝑠

)
for ℎ ∈ C0 (𝑴) (Ethier and Kurtz, 1986, Prop. 1.5). However, for ℎ̃(𝑥) = ℎ(𝑥) + 𝑎 where 𝑎 ∈ R, ℎ̃(𝑥) −
E

[
ℎ̃(𝑋)

]
= ℎ(𝑥) − E [ℎ(𝑋)]. Then, by taking 𝑎 = E [ℎ(𝑋)] and noting 𝐿𝜙 (𝑎) = 0, we can also write

the above as

(𝑃𝑡ℎ) (𝑥) − ℎ(𝑥) = −𝐿𝜙

(∫ 𝑡

0

{
E [ℎ(𝑋)] − E

[
ℎ(𝑋𝑥,𝑠)

]}
d𝑠

)
. (19)

Now, take (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) to be the pair of diffusions, starting from (𝑥, 𝑦), as Theorem 2 with ℓ = 1.
Since 𝑌𝑡 satisfies (2), the fact that 𝜇𝜙 is the invariant measure of 𝑌𝑡 gives that��E [ℎ(𝑋)] − (𝑃𝑡ℎ) (𝑥)

�� = ����∫
𝑴

{
E

[
ℎ(𝑌𝑦,𝑡 )

]
− E

[
ℎ(𝑋𝑥,𝑡 )

]}
d𝜇𝜙 (𝑦)

����
6 𝐶0 (ℎ)

∫
𝑴

E
[
𝜌(𝑌𝑦,𝑡 , 𝑋𝑥,𝑡 )

]
d𝜇𝜙 (𝑦) 6𝐶0 (ℎ) E [𝜌(𝑋, 𝑥)] 𝑒−𝜅𝑡 ,

where the last inequality follows from Theorem 2 and where 𝐶0 (ℎ) is the Lipschitz constant for ℎ.
Thus,

lim
𝑡→∞

(𝑃𝑡ℎ) (𝑥) = E [ℎ(𝑋)] .

On the other hand, the result of Theorem 2 implies that we may apply the Dominated Convergence
Theorem to obtain that, as 𝑡 →∞, the right hand side of (19) tends to −𝐿𝜙 𝑓ℎ (𝑥), so that

ℎ(𝑥) − E [ℎ(𝑋)] = 𝐿𝜙 𝑓ℎ (𝑥)

as required.

4.2. Stein factors

In the literature, Stein factors refer to bounds on solutions 𝑓ℎ of the Stein equation (16). A direct
consequence of Proposition 1 and Theorem 3 is that 𝑓ℎ defined by (18) is differentiable and 𝐷 𝑓ℎ is
bounded.
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Proposition 2. Under the conditions of Theorem 3, 𝐷 𝑓ℎ exists and

sup
𝑥∈𝑴

‖𝐷 𝑓ℎ (𝑥)‖𝑜𝑝 6𝐶0 (ℎ)/𝜅

where 𝑓ℎ is defined by (18).

We will see later in Section 5.1 that the bound on 𝐷 𝑓ℎ given above suffices to bound the Wasserstein
distance between the probability measure 𝜇𝜙 and another 𝜇𝜓 ∝ 𝑒−𝜓 . However, for bounding more
general integral (semi-)metrics, bounds on first- and second-order derivatives of 𝑓ℎ , known as Stein
factors, are needed.

Accordingly, denote by Ric♯
𝜙

the tensor equivalent to Ric + Hess𝜙 in the sense that, for any 𝑥 ∈ 𝑴,
and for any 𝑢, 𝑢′ ∈ 𝑇𝑥 (𝑴)

〈Ric♯
𝜙
(𝑢), 𝑢′〉 = Ric(𝑢, 𝑢′) + Hess𝜙 (𝑢, 𝑢′). (20)

Recall that (see O’Neill (1983))

Hess𝜙 (𝑢, 𝑢′) = 〈𝐷𝑢 (∇𝜙), 𝑢′〉 , (21)

and that, in terms of a (local) frame field 𝑒1, · · · , 𝑒𝑚,

Ric(𝑢, 𝑢′) =
𝑚∑︁
𝑖=1

〈𝑅(𝑢, 𝑒𝑖)𝑒𝑖 , 𝑢′〉,

where 𝑅 denotes the Riemannian curvature tensor. Thus, it is possible to express Ric♯
𝜙

explicitly in
terms of the frame field as

Ric♯
𝜙
(𝑢) =

𝑚∑︁
𝑖=1

𝑅(𝑢, 𝑒𝑖)𝑒𝑖 + 𝐷𝑢 (∇𝜙). (22)

We can define the Lipschitz constant for Ric♯
𝜙

in a similar way to the definition of the Lipschitz constant
given in (1). Let

H1 := {ℎ ∈ C0 (𝑴) ∩ C1 (𝑴) | 𝐶0 (ℎ) <∞, 𝐶1 (ℎ) <∞}. (23)

Proposition 3. Assume that the conditions of Theorem 3 hold. Assume further that Ric♯
𝜙

is Lipschitz

with finite Lipschitz constant 𝐿 (Ric♯
𝜙
). For every ℎ ∈ H1 with 𝑓ℎ defined in (18), 𝐷 𝑓ℎ is Lipschitz with

constant

𝐶1 ( 𝑓ℎ) 6𝐶1 (ℎ)
1

2𝜅
+𝐶0 (ℎ)

𝐿 (Ric♯
𝜙
)

2𝜅2 .

Remark 5. As noted in Remark 3, if 𝑴 = R𝑚, 〈Ric♯
𝜙
(𝑢), 𝑢′〉 = Hess𝜙 (𝑢, 𝑢′). Then, since Hess𝜙 =

𝐷2𝜙, 𝐿 (Ric♯
𝜙
) =𝐶2 (𝜙). Thus, Proposition 3 recovers the corresponding result in Mackey and Gorham

(2016). On the other hand, the result of Proposition 3 differs from the corresponding Proposition 6.2 in
Thompson (2020): in theirs, the relationship between the constant 𝑐1 obtained and those given in the
assumptions is not specified; using our notation, the upper bound for 𝐶1 ( 𝑓ℎ) there would depend only
on 𝐶0 (ℎ) while ours depends on both 𝐶0 (ℎ) and 𝐶1 (ℎ).
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Proof. The proof uses Lemmas 4 and 5 given in Appendix B of Supplementary Material. For any
𝑥 ∈ 𝑴 and 𝑣 ∈ 𝑇𝑥 (𝑴), consider the vector field 𝑣𝑥𝑡 along the path 𝑋𝑥,𝑡 which solves the differential
equation

𝐷𝑣𝑥𝑡

d𝑡
= −1

2
Ric♯

𝜙
(𝑣𝑥𝑡 ) (24)

with 𝑣𝑥0 = 𝑣, where 𝑋𝑥,𝑡 is the solution to (2). It is known that, for any fixed 𝑡 > 0 and under the
given condition for ℎ, 𝑁𝑠 = 𝐷 E

[
ℎ(𝑋𝑋𝑥,𝑠 ,𝑡−𝑠)

]
(𝑣𝑥𝑠 ) is a local martingale for 0 6 𝑠 6 𝑡 (see Thalmaier

(1997)). Since

|𝑁𝑠 | 6 ‖𝐷 E
[
ℎ(𝑋𝑋𝑥,𝑠 ,𝑡−𝑠)

]
‖𝑜𝑝 |𝑣𝑥𝑠 | 6𝐶0 (ℎ) |𝑣𝑥𝑠 |,

using Lemma 4 (Appendix B of Supplementary Material) with 𝑞 = 1, we see that E [|𝑁𝑠 |] <∞. Hence,
𝑁𝑠 is in fact a martingale on [0, 𝑡], and so E [𝑁0] = E [𝑁𝑡 ], which in turn gives

𝐷 E
[
ℎ(𝑋𝑥,𝑡 )

]
(𝑣) = E

[
𝐷ℎ(𝑋𝑥,𝑡 ) (𝑣𝑥𝑡 )

]
.

(See also Thompson (2020, Theorem 11.2), where the 𝑍 there corresponds to −2∇𝜙 here.) Thus, from
the definition of 𝑓ℎ , the Dominated Convergence Theorem and Theorem 2, it follows that, for any
𝑣 ∈ 𝑇𝑥 (𝑴),

𝐷 𝑓ℎ (𝑥) (𝑣) =
∫ ∞

0
𝐷 E

[
ℎ(𝑋𝑥,𝑡 )

]
(𝑣) d𝑡 =

∫ ∞

0
E

[
𝐷ℎ(𝑋𝑥,𝑡 ) (𝑣𝑥𝑡 )

]
d𝑡. (25)

Now, consider the pair of diffusions (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ), starting from (𝑥, 𝑦), in Theorem 2 with ℓ = 2. First,
by applying the Hölder inequality, Theorem 2 and Lemma 4 (Appendix B of Supplementary Material),
we have that

E
[����(𝐷ℎ(𝑋𝑥,𝑡 ) −Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

𝐷ℎ(𝑌𝑦,𝑡 )
)
(𝑣𝑥𝑡 )

����]
6 𝐶1 (ℎ) E

[
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) |𝑣𝑥𝑡 |

]
6𝐶1 (ℎ)𝜌(𝑥, 𝑦) |𝑣 | 𝑒−2𝜅𝑡 .

(26)

Moreover, writing 𝑣
𝑦
𝑡 for the solution of (24) with the underlying path 𝑋𝑥,𝑡 replaced by 𝑌𝑦,𝑡 and with

the initial condition 𝑣
𝑦

0 = Π𝛾𝑥,𝑦 (𝑣), and denoting Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑣𝑥𝑡 ) by �̃�𝑥𝑡 , we also have

E
[��(𝐷ℎ(𝑌𝑦,𝑡 ) (�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 )

) ��] 6𝐶0 (ℎ) E
[���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��] 6𝐶0 (ℎ)
𝐿 (Ric♯

𝜙
)

2𝜅
𝜌(𝑥, 𝑦) |𝑣 | 𝑒−𝜅𝑡 , (27)

where the second inequality follows from Lemma 5 (Appendix B of Supplementary Material) with
𝑞 = 1.

Finally, noting that Π𝛾𝑥,𝑦 (𝐷 𝑓ℎ (𝑦)) (𝑣) = 𝐷 𝑓ℎ (𝑦) (Π𝛾𝑥,𝑦 (𝑣)), together with (25), (26) and (27), im-
plies that

| (𝐷 𝑓ℎ (𝑥) −Π𝛾𝑥,𝑦𝐷 𝑓ℎ (𝑦)) (𝑣) | = |𝐷 𝑓ℎ (𝑥) (𝑣) − 𝐷 𝑓ℎ (𝑦) (Π𝛾𝑥,𝑦 (𝑣)) |

6
∫ ∞

0

��E [
𝐷ℎ(𝑋𝑥,𝑡 ) (𝑣𝑥𝑡 ) − 𝐷ℎ(𝑌𝑦,𝑡 ) (𝑣𝑦𝑡 )

] ��d𝑡
6

∫ ∞

0
E

[����(𝐷ℎ(𝑋𝑥,𝑡 ) −Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

𝐷ℎ(𝑌𝑦,𝑡 )
)
(𝑣𝑥𝑡 )

����] d𝑡
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+
∫ ∞

0
E

[��𝐷ℎ(𝑌𝑦,𝑡 ) (�̃�𝑥𝑡 − 𝑣
𝑦
𝑡 )

��] d𝑡

6

𝐶1 (ℎ)
1

2𝜅
+𝐶0 (ℎ)

𝐿 (Ric♯
𝜙
)

2𝜅2

 𝜌(𝑥, 𝑦) |𝑣 |,

i.e. 𝐷 𝑓ℎ is Lipschitz with the required constant.

The argument in Remark 5 regarding the case when 𝑴 = R𝑚 can be extended to the case when 𝑴
has constant Ricci curvature, which implies that the bounds in Mackey and Gorham (2016) continue to
hold for such 𝑴. This gives the following corollary.

Corollary 1. Assume that the conditions of Theorem 3 hold. Assume further that 𝑴 is Ric flat and 𝜙

has finite Lipschitz constant 𝐶2 (𝜙). Then, for every ℎ ∈ H1 and 𝑓ℎ as defined in (18), 𝐷 𝑓ℎ is Lipschitz
with constant

𝐶1 ( 𝑓ℎ) 6𝐶1 (ℎ)
1

2𝜅
+𝐶0 (ℎ)

𝐶2 (𝜙)
2𝜅2 .

The curvature of the manifold plays a more explicit role in the Lipschitz constant for 𝐷2 𝑓ℎ . To see
this, define the tensor d★ 𝑅 by

d★ 𝑅(𝑢, 𝑣) = −tr𝐷 .𝑅(·, 𝑢)𝑣.

Then d★ 𝑅 satisfies

〈d★ 𝑅(𝑣1, 𝑣2), 𝑣3〉 = 〈(𝐷𝑣3Ric♯) (𝑣1), 𝑣2〉 − 〈(𝐷𝑣2Ric♯) (𝑣3), 𝑣1〉.

Noting that 𝑅(∇𝜙) (𝑢, 𝑣) = 𝑅(∇𝜙, 𝑢)𝑣, to simplify notation, we also define

𝑅
♯

𝜙
= d★𝑅 + 𝐷Ric♯

𝜙
+ 𝑅(∇𝜙). (28)

The bound on 𝐷 𝑓ℎ requires restriction to the smaller and smoother class H1; the same is required when
bounding 𝐷2 𝑓ℎ . Let

H2 := {ℎ ∈ C0 (𝑴) ∩ C2 (𝑴) | 𝐶0 (ℎ) <∞, 𝐶1 (ℎ) <∞, 𝐶2 (ℎ) <∞}. (29)

Proposition 4. Assume that the conditions of Theorem 3 hold and that

𝜒1 = sup
𝑥∈𝑴

‖𝑅♯

𝜙
‖𝑜𝑝 (𝑥) and 𝜒2 =𝑚 sup

𝑥∈𝑴
‖𝑅‖2

𝑜𝑝 (𝑥)

are both finite, where 𝑅
♯

𝜙
is defined by (28). Further, assume that Ric♯

𝜙
, 𝑅♯

𝜙
and 𝑅 are all Lipschitz with

finite Lipschitz constants 𝐿 (Ric♯
𝜙
), 𝐿 (𝑅♯

𝜙
) and 𝐿 (𝑅) respectively. For every ℎ ∈ H2 with 𝑓ℎ defined in

(18):

(i) If 𝜒2 = 0, 𝐷2 𝑓ℎ exists and is Lipschitz with constant

𝐶2 ( 𝑓ℎ) 6
1

3𝜅
𝐶2 (ℎ) +

3
4𝜅2𝐶1 (ℎ)𝐶2 (𝜙) +𝐶0 (ℎ)

(
1

4𝜅2𝐶3 (𝜙) +
3

4𝜅3𝐶2 (𝜙)2
)
.
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(ii) If 𝜒2 > 0 and 𝜅 > 1/2, then 𝐷2 𝑓ℎ exists and is Lipschitz with constant

𝐶2 ( 𝑓ℎ) 6 𝐶2 (ℎ)
1

3𝜅
+𝐶1 (ℎ)


𝐿 (Ric♯

𝜙
)

2𝜅2 + 4
8𝜅 − 1

(
𝜒2

1 + 2𝜒2
4𝜅 + 1

)1/2
+ 𝐶0 (ℎ)

2𝛽
2𝜅 − 1

where

𝛽2 =
𝛽1

4𝜅 + 1
+ 𝛽2

3𝜅 + 1
+ 𝛽3

2𝜅 + 1
,

with

𝛽1 = 2𝑚𝐿 (𝑅)2 + 1
2
𝐿 (𝑅♯

𝜙
)2 +

𝜒2
1 + 6𝜒2
4𝜅 + 1

𝐿 (Ric♯
𝜙
)2,

𝛽2 =
𝜒1
𝜅

𝐿 (Ric♯
𝜙
) 𝐿 (𝑅♯

𝜙
),

𝛽3 =
1
𝜅2

(
𝜒2

1
2

+ 2𝜒2

)
𝐿 (Ric♯

𝜙
)2.

Remark 6. Note that, 𝜒2 = 0 corresponds to 𝑴 being a flat manifold, such as a Euclidean space,

a cylinder or a flat torus. Consequently, 𝜒1 = 𝐿 (Ric♯
𝜙
) = 𝐶2 (𝜙) and 𝐿 (𝑅♯

𝜙
) = 𝐶3 (𝜙). Our result thus

recovers the corresponding bound given in Mackey and Gorham (2016) for R𝑚, where 𝐿𝑖 , 𝑀𝑖 (ℎ) and
𝑘 in Mackey and Gorham (2016) correspond respectively to 𝐶𝑖−1 (𝜙), 𝐶𝑖−1 (ℎ) and 2𝜅 here. Our result
establishes that their upper bound also holds for general complete and connected flat manifolds.

On the other hand, if 𝑴 is locally symmetric, we have 𝐷𝑅 = 0. Then, it follows from (21) and (22)
that 𝐿 (Ric♯

𝜙
) = 𝐿 (𝐷𝑢 (∇𝜙)) =𝐶2 (𝜙) and 𝐿 (𝑅♯

𝜙
) = 𝐿 (𝐷 (Ric♯

𝜙
)) =𝐶3 (𝜙). As symmetric manifolds are

locally symmetric, this will hold for a class of familiar manifolds, such as spheres, hyperbolic spaces,
projective spaces and the space of positive definite symmetric matrices. Pertinently, the upper bound
for 𝐶2 ( 𝑓ℎ) in Proposition 4 when 𝜒2 = 0 is not the limit, as 𝜒2 → 0, of that for 𝜒2 > 0. In addition, we
need an extra requirement for 𝜅 when 𝜒2 > 0.

Proof. The proof uses Lemmas 4, 5, 6 and 7 given in Appendix B of Supplementary Material. Consider
the vector field 𝑉 𝑥

𝑡 along the path 𝑋𝑥,𝑡 which satisfies the stochastic covariant Itô equation

𝐷𝑉 𝑥
𝑡 = 𝑅(Ξd𝐵𝑡 , 𝑢

𝑥
𝑡 )𝑣𝑥𝑡 −

1
2

{
𝑅
♯

𝜙
(𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) + Ric♯

𝜙
(𝑉 𝑥

𝑡 )
}

d𝑡 (30)

with 𝑉 𝑥
0 = 0, where Ξ is defined in (4), 𝑅♯

𝜙
and Ric♯

𝜙
are defined by (28) and (20) respectively, and

where 𝑢𝑥𝑡 and 𝑣𝑥𝑡 are the solutions of (24) both with the underlying path 𝑋𝑥,𝑡 and with the initial
conditions 𝑢𝑥0 = 𝑢 and 𝑣𝑥0 = 𝑣 respectively. It is known that, for ℎ satisfying the given conditions, 𝑁 ′

𝑠 =

𝐷2 E
[
ℎ(𝑋𝑋𝑥,𝑠 ,𝑡−𝑠)

]
(𝑢𝑥𝑠 , 𝑣𝑥𝑠 ) +𝐷 E

[
ℎ(𝑋𝑋𝑥,𝑠 ,𝑡−𝑠)

]
(𝑉 𝑥

𝑠 ) is a local martingale for 0 6 𝑠6 𝑡, for any fixed
𝑡 > 0 (Thompson, 2020, Lemma 11.3). Since

|𝑁 ′
𝑠 | 6 ‖ E

[
𝐷2ℎ(𝑋𝑋𝑥,𝑠 ,𝑡−𝑠)

]
‖𝑜𝑝 |𝑢𝑥𝑠 | |𝑣𝑥𝑠 | + ‖ E

[
𝐷ℎ(𝑋𝑋𝑥,𝑠 ,𝑡−𝑠)

]
‖𝑜𝑝 |𝑉 𝑥

𝑠 |
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6 𝐶1 (ℎ) |𝑢𝑥𝑠 | |𝑣𝑥𝑠 | +𝐶0 (ℎ) |𝑉 𝑥
𝑠 |,

it follows from Lemmas 4 and 6 (Appendix B of Supplementary Material) that E
[
|𝑁 ′

𝑠 |
]
< ∞ so that

𝑁 ′
𝑠 is in fact a martingale for 0 6 𝑠 6 𝑡. Thus E

[
𝑁 ′

0

]
= E

[
𝑁 ′
𝑡

]
, which implies that, for any fixed 𝑡 > 0

and 𝑢, 𝑣 ∈ 𝑇𝑥 (𝑴),

𝐷2 E
[
ℎ(𝑋𝑥,𝑡 )

]
(𝑢, 𝑣) = E

[
𝐷2ℎ(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 )

]
+ E

[
𝐷ℎ(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 )
]
.

Then, the definition of 𝑓ℎ , the Dominated Convergence Theorem and Theorem 2 together ensure that
𝐷2 𝑓ℎ exists and that, for any 𝑢, 𝑣 ∈ 𝑇𝑥 (𝑴),

𝐷2 𝑓ℎ (𝑥) (𝑢, 𝑣) =
∫ ∞

0

{
E

[
𝐷2ℎ(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 )

]
+ E

[
𝐷ℎ(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 )
]}

d𝑡. (31)

Now, we construct a pair of diffusions (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ), starting from (𝑥, 𝑦), as in Theorem 2. Since
we need to apply Lemmas 5 and 7 (Appendix B of Supplementary Material) to the processes related
to (𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) in the following proof, it is necessary to take the parameter ℓ in the construction of
(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) to be 6. As in the proof of Proposition 3, write 𝑢

𝑦
𝑡 and 𝑣

𝑦
𝑡 for the solutions of (24) with

the underlying path 𝑋𝑥,𝑡 replaced by 𝑌𝑦,𝑡 and with the respective initial conditions 𝑢𝑦0 = Π𝛾𝑥,𝑦 (𝑢) and
𝑣
𝑦

0 = Π𝛾𝑥,𝑦 (𝑣). Also, let �̃�𝑥𝑡 denote Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑢𝑥𝑡 ), and similarly for �̃�𝑦𝑡 and �̃�
𝑦
𝑡 . Then,

| (𝐷2 𝑓ℎ (𝑥) −Π𝛾𝑥,𝑦𝐷
2 𝑓ℎ (𝑦)) (𝑢, 𝑣) |

6
∫ ∞

0
E

[���𝐷2ℎ(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) − 𝐷2ℎ(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , 𝑣
𝑦
𝑡 )

���] d𝑡

+
∫ ∞

0
E

[��𝐷ℎ(𝑋𝑥,𝑡 ) (𝑉 𝑥
𝑡 ) − 𝐷ℎ(𝑌𝑦,𝑡 ) (𝑉 𝑦

𝑡 )
��] d𝑡.

(32)

Under the given conditions on ℎ, the first term on the right hand side of (32) can be estimated as∫ ∞

0
E

[���𝐷2ℎ(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) − 𝐷2ℎ(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , 𝑣
𝑦
𝑡 )

���] d𝑡

6
∫ ∞

0
E

[����(𝐷2ℎ(𝑋𝑥,𝑡 ) −Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

𝐷2ℎ(𝑌𝑦,𝑡 )
)
(𝑢𝑥𝑡 , 𝑣𝑥𝑡 )

����] d𝑡

+
∫ ∞

0
E

[���𝐷2ℎ(𝑌𝑦,𝑡 ) (�̃�𝑥𝑡 − 𝑢
𝑦
𝑡 , �̃�

𝑥
𝑡 )

���] d𝑡 +
∫ ∞

0
E

[���𝐷2ℎ(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , �̃�𝑥𝑡 − 𝑣
𝑦
𝑡 )

���] d𝑡

6 𝐶2 (ℎ)
∫ ∞

0
E

[
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) |𝑢𝑥𝑡 | |𝑣𝑥𝑡 |

]
d𝑡 +𝐶1 (ℎ)

∫ ∞

0
E

[
|�̃�𝑥𝑡 − 𝑢

𝑦
𝑡 | |�̃�𝑥𝑡 | + |𝑢𝑦𝑡 | |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |

]
d𝑡.

Similarly, for the second term on the right hand side of (32), we have that∫ ∞

0
E

[��𝐷ℎ(𝑋𝑥,𝑡 ) (𝑉 𝑥
𝑡 ) − 𝐷ℎ(𝑌𝑦,𝑡 ) (𝑉 𝑦

𝑡 )
��] d𝑡

6
∫ ∞

0
E

[����(𝐷ℎ(𝑋𝑥,𝑡 ) −Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

𝐷ℎ(𝑌𝑦,𝑡 )
)
(𝑉 𝑥

𝑡 )
����] d𝑡 +

∫ ∞

0
E

[��𝐷ℎ(𝑌𝑦,𝑡 )
(
�̃� 𝑥
𝑡 −𝑉

𝑦
𝑡

) ��] d𝑡

6 𝐶1 (ℎ)
∫ ∞

0
E

[
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) |𝑉 𝑥

𝑡 |
]

d𝑡 +𝐶0 (ℎ)
∫ ∞

0
E

[
|�̃� 𝑥

𝑡 −𝑉
𝑦
𝑡 |

]
d𝑡.
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By the Hölder inequality, Theorem 2 and Lemmas 4, 5, 6 and 7 (Appendix B of Supplementary
Material), it follows from the above estimations and from (32) that, if 𝜒2 > 0,

1
𝜌(𝑥, 𝑦) |𝑢 | |𝑣 |

���(𝐷2 𝑓ℎ (𝑥) −Π𝛾𝑥,𝑦𝐷
2 𝑓ℎ (𝑦)) (𝑢, 𝑣)

���
6 𝐶2 (ℎ)

1
3𝜅

+𝐶1 (ℎ)

𝐿 (Ric♯

𝜙
)

2𝜅2 +
(

2𝜒2 + 𝜒2
1

4𝜅 + 1

)1/2
4

8𝜅 − 1

 +𝐶0 (ℎ)
2𝛽

2𝜅 − 1

when 𝜅 > 1/2, as required.
If 𝜒2 = 0, we need to modify the above application of Lemmas 6 and 7 (Appendix B of Supplemen-

tary Material). This results in

1
𝜌(𝑥, 𝑦) |𝑢 | |𝑣 |

���(𝐷2 𝑓ℎ (𝑥) −Π𝛾𝑥,𝑦𝐷
2 𝑓ℎ (𝑦)) (𝑢, 𝑣)

���
6

1
3𝜅

𝐶2 (ℎ) +
3

4𝜅2𝐶1 (ℎ)𝐶2 (𝜙) +𝐶0 (ℎ)
(

1
4𝜅2𝐶3 (𝜙) +

3
4𝜅3𝐶2 (𝜙)2

)
.

This shows that 𝐷𝑑𝑓ℎ is Lipschitz with the required constant.

5. Application to bounding integral (semi-)metrics

A key application of Stein’s method is in obtaining upper bounds on an integral (semi-)metric
𝑑H (𝑋, 𝑍), with respect to some function class H , for an arbitrary random variable 𝑍 ∼ 𝜈. Exploit-
ing the characterising property of the operator 𝐿𝜙 ,

E [ℎ(𝑍)] − E [ℎ(𝑋)] = E
[
𝐿𝜙 𝑓ℎ (𝑍)

]
, ∀ℎ ∈ H ,

the task then reduces to obtaining a uniform upper bound on E
[
𝐿𝜙 𝑓ℎ (𝑍)

]
over functions 𝑓ℎ using the

Stein factors. The quantity 𝑑H is clearly a semi-metric and is a metric only if H separates points in the
set of signed measures on 𝑴.

5.1. Wasserstein distance between 𝝁𝝓 and 𝝁𝝍

The result of Theorem 3 in conjunction with the first-order bound in Proposition 2 can be used to obtain
an upper bound on the 1-Wasserstein distance between certain types of random variables. For this we
consider the function class

H1
≤1 := {ℎ ∈ C(𝑴) | ℎ is Lipschitz with 𝐶0 (ℎ) 6 1},

under which 𝑑H is a bonafide metric. The 1-Wasserstein distance between two random variables 𝑍1
and 𝑍2 on 𝑴 is then defined as

𝑑W (𝑍1, 𝑍2) := sup
ℎ∈H1

≤1

|E [ℎ(𝑍1)] − E [ℎ(𝑍2)] |.
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Theorem 4. Assume that the conditions of Theorem 3 hold. Let 𝑍 ∼ 𝜇𝜓 such that E [𝜌(𝑍, 𝑥)] <∞ for
some 𝑥 ∈ 𝑴, where 𝜓 satisfies (3) with some constant 𝜅′ > 0. Then

𝑑W (𝑍, 𝑋) 6 1
2𝜅

E [|∇(𝜓 − 𝜙) (𝑍) |] .

Proof. The proof pursues a similar argument to that of Proposition 4.1 of Mijoule, Reinert and Swan
(2019). Note first that

sup
ℎ∈H1

≤1

|E [ℎ(𝑍)] − E [ℎ(𝑋)] | = sup
ℎ∈H1

≤1∩C0 (𝑴)
|E [ℎ(𝑍)] − E [ℎ(𝑋)] |.

For ℎ ∈ H1
≤1 ∩ C0 (𝑴), we have by Theorem 3 that

E [ℎ(𝑍)] − E [ℎ(𝑋)] = E
[
𝐿𝜙 𝑓ℎ (𝑍)

]
.

On the other hand, the given assumption that 𝑍 ∼ 𝜇𝜓 , where 𝜓 satisfies (3), also implies that
E

[
𝐿𝜓 𝑓ℎ (𝑍)

]
= 0 for ℎ ∈ H1

≤1 ∩ C0 (𝑴). Noting that

𝐿𝜙 𝑓ℎ (𝑥) = 𝐿𝜓 𝑓ℎ (𝑥) +
1
2
〈∇𝜓(𝑥) − ∇𝜙(𝑥), 𝑓ℎ (𝑥)〉,

we obtain

E [ℎ(𝑍)] − E [ℎ(𝑋)] = 1
2

E [〈∇𝜓(𝑍) − ∇𝜙(𝑍),∇ 𝑓ℎ (𝑍)〉] ,

so that the result follows from Proposition 2.

Example 2. Assume that 𝑴 = 𝑆𝑚 and that all probability measures 𝜇𝜑 involved satisfy the condition

Hess𝜑 > (2𝜅 − (𝑚 − 1)) 𝑔,

for some 𝜅 > 0.

(i) The functions 𝜙 and 𝜓 corresponding to von Mises-Fisher distributions 𝑀 (𝑥1, 𝑐1) and
𝑀 (𝑥2, 𝑐2) are respectively −𝑐1 cos 𝜌(𝑥1, 𝑥) and −𝑐2 cos 𝜌(𝑥2, 𝑥). Then,

|∇(𝜓 − 𝜙) (𝑥) | = 𝑐∗ | sin 𝜌(𝑥∗, 𝑥) | 6 𝑐∗𝜌(𝑥∗, 𝑥) 6 𝑐∗ {𝜌(𝑥∗, 𝑥2) + 𝜌(𝑥2, 𝑥)} ,

where 𝑐∗ = |𝑐2𝑥2 − 𝑐1𝑥1 | and 𝑥∗ = (𝑐2𝑥2 − 𝑐1𝑥1)/𝑐∗. From the symmetry between 𝜙 and 𝜓, it
follows that the Wasserstein-1 distance 𝑑W between 𝑀 (𝑥1, 𝑐1) and 𝑀 (𝑥2, 𝑐2) is bounded:

𝑑W (𝑋1, 𝑋2) 6
|𝑐2𝑥2 − 𝑐1𝑥1 |

4𝜅

{
2∑︁
𝑖=1

(𝜌(𝑥∗, 𝑥𝑖) + E [𝜌(𝑥𝑖 , 𝑋𝑖)])
}
,

where 𝑋𝑖 ∼ 𝑀 (𝑐𝑖 , 𝑥𝑖).

(ii) The function 𝜓 corresponding to the Fisher-Watson distribution

𝑊 (𝑥1, 𝑥2, 𝑐1, 𝑐2) ∝ 𝑒𝑐1 〈𝑥1 ,𝑥 〉+𝑐2 〈𝑥2 ,𝑥 〉2
dvol(𝑥),
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where 〈𝑥1, 𝑥2〉 = 0, is −𝑐1 cos 𝜌(𝑥1, 𝑥) − 𝑐2 cos2 𝜌(𝑥2, 𝑥). If 𝜇𝜙 is the von Mises-Fisher distri-
bution 𝑀 (𝑥1, 𝑐1), then

|∇(𝜓 − 𝜙) (𝑥) | = 𝑐2 | sin(2𝜌(𝑥2, 𝑥)) |.

Hence, for 𝑋 ∼ 𝑀 (𝑥1, 𝑐1) and 𝑍 ∼𝑊 (𝑥1, 𝑥2, 𝑐1, 𝑐2),

𝑑W (𝑋, 𝑍) 6 𝑐2

2𝜅
E [| sin(2𝜌(𝑥2, 𝑍)) |] .

(iii) Let 𝑚 > 2 and 𝑴 = 𝑆𝑂 (𝑚) with the bi-invariant metric determined by 𝑔(𝐸1, 𝐸2)=− 1
2 tr(𝐸1𝐸2)

for skew-symmetric 𝐸1, 𝐸2. Assume that, for 𝑆 ∈ 𝑴, 𝜙(𝑆) = −𝑐 tr(𝑆0𝑆) with 𝑆0 ∈ 𝑆𝑂 (𝑚) and
that constant 𝑐 > 0. Then, 𝜇𝜙 is a von Mises-Fisher distribution on 𝑆𝑂 (𝑚). Since for any
skew-symmetric matrix 𝐸

lim
𝑡→0

𝜙(𝑆 𝑒𝑡𝐸 ) − 𝜙(𝑆)
𝑡

= −𝑐 tr(𝑆0𝑆𝐸),

we have that ∇𝜙(𝑆) = 𝑐√
2
𝑆{(𝑆0𝑆)> − 𝑆0𝑆}. This implies that

2
𝑐2 |∇𝜙(𝑆) |

2 = 〈𝑆{(𝑆0𝑆)> − 𝑆0𝑆}, 𝑆((𝑆0𝑆)> − 𝑆0𝑆)〉𝑆

= 〈(𝑆0𝑆)> − 𝑆0𝑆, (𝑆0𝑆)> − 𝑆0𝑆〉𝐼

= −tr
(
((𝑆0𝑆)> − 𝑆0𝑆)2

)
= 2(𝑚 − tr((𝑆0𝑆)2)).

If 𝑐 ∈ (0, (𝑚 − 2)/2), there is a 𝜅 > 0 such that the Bakry-Emery curvature criterion (A1)
holds, as seen in Example 1(iv). Then, if 𝑍 is a uniform random variable on 𝑆𝑂 (𝑚), 𝑆0𝑍 is
also a uniform random variable and so

𝑑W (𝑍, 𝑋) 6 𝑐

2𝜅
E

[√︃
𝑚 − tr(𝑍2)

]
.

5.2. Integral semi-metrics for general distributions

If ℎ ∈ H2, the result of Theorem 3, together with Propositions 3 and 4, enable us to bound E [ℎ(𝑍)] −
E [ℎ(𝑋)] for a more general random variable 𝑍 on 𝑴 as follows, where H2 is as defined in (29).

Corollary 2. Assume that the conditions of Proposition 4 hold. Assume further that 𝜙 is Lipschitz with
Lipschitz constants 𝐶𝑖 (𝜙), 𝑖 = 0,1. Then for every ℎ ∈ H2

|E [ℎ(𝑍)] − E [ℎ(𝑋)] | 6 𝜂E [𝜌(𝑍, 𝑋)] ,

where

𝜂 =𝑚𝐶2 ( 𝑓ℎ) +𝐶0 (𝜙)𝐶1 ( 𝑓ℎ) +𝐶1 (𝜙)𝐶0 ( 𝑓ℎ)

and where 𝐶𝑖 ( 𝑓ℎ) are bounded as in Propositions 3 and 4.
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Proof. It follows from a direct estimation of |E
[
𝐿𝜙 ( 𝑓ℎ) (𝑍)

]
| that

|E
[
𝐿𝜙 ( 𝑓ℎ) (𝑍)

]
| = |E

[ (
𝐿𝜙 ( 𝑓ℎ) (𝑍) − 𝐿𝜙 ( 𝑓ℎ) (𝑋)

) ]
|

6 |E [(Δ( 𝑓ℎ) (𝑍) − Δ( 𝑓ℎ) (𝑋))] |

+|E [〈∇𝜙(𝑍),∇ 𝑓ℎ (𝑍)〉 − 〈∇𝜙(𝑋),∇ 𝑓ℎ (𝑋)〉] |

6 𝑚𝐶2 ( 𝑓ℎ) E [𝜌(𝑍, 𝑋)]

+
���E [

〈∇𝜙(𝑍),∇ 𝑓ℎ (𝑍)〉 − 〈Π𝛾
𝑋,𝑍

∇𝜙(𝑋),∇ 𝑓ℎ (𝑍)〉
] ���

+
���E [

〈∇𝜙(𝑋),Π𝛾
𝑍,𝑋

∇ 𝑓ℎ (𝑍)〉 − 〈∇𝜙(𝑋),∇ 𝑓ℎ (𝑋)〉
] ���

6 {𝑚𝐶2 ( 𝑓ℎ) +𝐶0 ( 𝑓ℎ)𝐶1 (𝜙) +𝐶1 ( 𝑓ℎ)𝐶0 (𝜙)}E [𝜌(𝑍, 𝑋)]

as required.

A further simplification occurs when 𝑴 is compact.

Corollary 3. If 𝑴 is compact then, for any Lipschitz function on 𝑴 with 𝐶0 (ℎ) 6 1, any fixed 𝜖 > 0
and 𝑠 > 0, there exists a 𝑔 ∈ C2 (𝑴) with Lipschitz constants 𝐶𝑖 (𝑔), 𝑖 = 0,1,2, such that 𝐶0 (𝑔) 6 1 + 𝑠

and

|E [ℎ(𝑍)] − E [ℎ(𝑋)] | 6 2𝜖 +
{
𝑚𝐶2 ( 𝑓𝑔) +𝐶0 ( 𝑓𝑔)𝐶1 (𝜙) +𝐶1 ( 𝑓𝑔)𝐶0 (𝜙)

}
E [𝜌(𝑍, 𝑋)] .

Proof. Since 𝑴 is compact, any 𝑔 ∈ C∞ (𝑴) has bounded derivatives, and thus possesses finite Lip-
schitz constant 𝐶𝑖 (𝑔), 𝑖 = 0,1,2, . . . , 𝑘 for every 𝑘 . This ensures that Lipschitz constants 𝐶𝑖 ( 𝑓𝑔), 𝑖 =
0,1,2 of the Stein equation solution 𝑓𝑔 are finite.

The existence of the requisite 𝑔 ∈ C2 (𝑴) is guaranteed by the result in Azagra et al. (2007) on
existence of a C∞ Lipschitz approximation of a Lipschitz function. By Theorem 1 in Azagra et al.
(2007), for every Lipschitz function ℎ on 𝑴 with Lipschitz constant 1 and for every 𝜖, 𝑠 > 0, there exists
a 𝑔 ∈ C∞ (𝑴) such that sup𝑥∈𝑴 |𝑔(𝑥) − ℎ(𝑥) | < 𝜖 with 𝐶0 (𝑔) 6 1+ 𝑠. Thus, by applying Corollary 2 to
𝑔, we have

|E [ℎ(𝑍)] − E [ℎ(𝑋)] |

6 |E [ℎ(𝑍)] − E [𝑔(𝑍)] | + |E [𝑔(𝑋]) − E [ℎ(𝑋)] | + |E [𝑔(𝑍)] − E [𝑔(𝑋)] |

6 2𝜖 + |E [𝑔(𝑍)] − E [𝑔(𝑋)] |

6 2𝜖 +
{
𝑚𝐶2 ( 𝑓𝑔) +𝐶0 ( 𝑓𝑔)𝐶1 (𝜙) +𝐶1 ( 𝑓𝑔)𝐶0 (𝜙)

}
E [𝜌(𝑍, 𝑋)] ,

as required.

Consider the function class

H2
≤1 = {ℎ ∈ C2 (𝑴) | ℎ is Lipschitz with 𝐶0 (ℎ) 6 1,𝐶1 (ℎ) 6 1,𝐶2 (ℎ) 6 1}.

Since

sup
ℎ∈H2

≤1

|E [ℎ(𝑍)] − E [ℎ(𝑋)] | = sup
ℎ∈H2

≤1∩C0 (𝑴)
|E [ℎ(𝑍)] − E [ℎ(𝑋)] | ,
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from Propositions 1, 3 and 4, as well as Corollary 2, the following result on the bound for the integral
(semi-)metric

𝑑𝐼 (𝑍, 𝑋) := sup
ℎ∈H2

≤1

|𝐸 [ℎ(𝑍)] − 𝐸 [ℎ(𝑋)] | ,

is immediate.

Theorem 5. Assume that the conditions of Proposition 4 hold, and that 𝜙 is Lipschitz with Lipschitz
constants 𝐶𝑖 (𝜙), 𝑖 = 0,1. Then, for any random variable 𝑍 on 𝑴,

𝑑𝐼 (𝑍, 𝑋) 6 𝜂∗ E [𝜌(𝑍, 𝑋)] ,

where, if 𝜒2 = 0,

𝜂∗ = 𝑚

{
1

3𝜅
+ 1

4𝜅2
(3𝐶2 (𝜙) +𝐶3 (𝜙)) +

3
4𝜅3𝐶2 (𝜙)2

}
+𝐶0 (𝜙)

{
1

2𝜅
+ 𝐶2 (𝜙)

2𝜅2

}
+𝐶1 (𝜙)

1
𝜅

while, if 𝜒2 > 0,

𝜂∗ = 𝑚


1

3𝜅
+
𝐿 (Ric♯

𝜙
)

2𝜅2 + 4
8𝜅 − 1

(
2𝜒2 + 𝜒2

1
4𝜅 + 1

𝑙

)1/2

+ 2𝛽
2𝜅 − 1


+𝐶0 (𝜙)


1

2𝜅
+
𝐿 (Ric♯

𝜙
)

2𝜅2

 +𝐶1 (𝜙)
1
𝜅
,

and where the constants 𝜒1 , 𝜒2 and 𝛽 are as in Proposition 4.

Supplementary Material

Auxiliary results
Appendix A contains a result on behaviour of the distance function around the first non-conjugate point
of the cut locus, which is used in the proofs in Section 3. Appendix B is devoted to estimation of certain
stochastic vector fields used in the proofs in Section 4.2.
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1. Appendix A

The following is unpublished work of Barden & Le (1997). It concerns the behaviour of the distance
function 𝜌 on 𝑴 ×𝑴 in a neighbourhood of (𝑥, 𝑦) when 𝑦 is a non-first-conjugate cut point of 𝑥. It
generalises a result of Barden and Le (1997), where similar behaviour was studied when one of the two
points in 𝑴 is fixed, and is used in proofs of Theorems 1 and 2.

Lemma 3. Given a point 𝑥 of a complete and connected Riemannian manifold 𝑴 and a point 𝑦 in the
non-conjugate part of the cut locus of 𝑥 (and hence also vice-versa), there is a neighbourhood N of
(𝑥, 𝑦) in 𝑴 ×𝑴, a maximal integer 𝑠 > 1, and finitely many smooth functions 𝜚𝑖 , 𝑖 = 1, · · · , 𝑠, on N
such that 𝜚𝑖 (𝑥, 𝑦) = 𝜌(𝑥, 𝑦) for 𝑖 = 1, · · · , 𝑠; the germs of 𝜚𝑖 at (𝑥, 𝑦) are uniquely defined, up to their
ordering, and, for all (𝑥′, 𝑦′) in N ,

𝜌(𝑥′, 𝑦′) = min
1≤𝑖≤𝑠

{𝜚𝑖 (𝑥′, 𝑦′)} .

The set

N𝑖 𝑗 = {(𝑥, 𝑦) ∈ 𝑴 ×𝑴 | 𝜚𝑖 (𝑥, 𝑦) = 𝜚 𝑗 (𝑥, 𝑦)}

is a co-dimension 1 submanifold of N meeting each slice {𝑥} ×𝑴 transversely, and the set of points of
N at which three or more of the 𝜚𝑖 are equal is a finite union of co-dimension 2 submanifolds, meeting
{𝑥} × 𝑴 transversely.

The germ of a function at a point 𝑥 is its equivalence class under agreement on a (variable) neigh-
bourhood of 𝑥.

Proof. Recall the result of Proposition 2 in Barden and Le (1997): for a fixed point 𝑥 ∈ 𝑴, its (first)
conjugate locus in its cut locus has co-dimension at least 2; and for 𝑦 in the non-conjugate part of the cut
locus of 𝑥 there are finitely many locally defined smooth functions each of whose value at 𝑦 is 𝜌(𝑥, 𝑦),
whose germ at 𝑦 is well-defined and such that the minimum of these functions on a neighbourhood of
𝑦 is the distance from 𝑥. These functions are induced by the radial distance in 𝑇𝑥 (𝑴) and were termed
‘radial functions’. They arise as follows. We let 𝑣1, · · · , 𝑣𝑠 ∈ 𝑇𝑥 (𝑴) determine the full set of minimal
geodesics 𝛾𝑖 (𝑡) = exp𝑥 (𝑡𝑣𝑖), 0 6 𝑡 6 1, from 𝑥 to 𝑦. The number 𝑠 of such geodesics will vary with
𝑦 but, outside the conjugate locus, is necessarily finite. We may choose neighbourhoods Ṽ𝑖 of 𝑣𝑖 in
𝑇𝑥 (𝑴) and V of 𝑦 in 𝑴 with each Ṽ𝑖 mapped diffeomorphically onto V by exp𝑥 . In particular, V

1
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will be sufficiently small not to meet the conjugate locus. Then the relevant smooth functions, which
were denoted by 𝜙𝑖 in Barden and Le (1997), are given by

𝜙𝑖 : 𝑉 −→ R+; 𝑦 ↦→
(exp𝑥

��
Ṽ𝑖

)−1
(𝑦)

 .
Now we consider the ‘full’ exponential map Exp which maps 𝑣 ∈ 𝑇𝑥 (𝑴) to (𝑥, exp𝑥 (𝑣)). If 𝜋 :

𝑴 ×𝑴 −→ 𝑴 projects onto the second factor, then 𝜋 ◦Exp
��
𝑇𝑥 (𝑴) = exp𝑥 . Thus Exp is a differentiable

mapping and, with respect to local coordinates on 𝑻𝑴 which are the product of those at 𝑥 on 𝑴 and
those in 𝑇𝑥 (𝑴), at any point 𝑣 in 𝑇𝑥 (𝑴), its derivative takes the form(

𝐼𝑑 ∗
0 𝐷 exp𝑥 (𝑣)

)
.

Thus Exp is non-singular at 𝑣 if and only if exp𝑥 is non-singular at 𝑣.
Then each 𝑣𝑖 has a neighbourhood Ñ𝑖 in 𝑻𝑴 such that Ñ𝑖 ∩𝑇𝑥 (𝑴) ⊂ Ṽ𝑖 and each of the restrictions

Exp|Ñ𝑖
is a diffeomorphism onto the same neighbourhood N of (𝑥, 𝑦) in 𝑴 ×𝑴. We may also choose

N sufficiently small that for all (𝑥′, 𝑦′) ∈ N any minimal geodesic from 𝑥′ to 𝑦′ is determined by 𝑣′

in some Ñ𝑖 ∩ 𝑇𝑥′ (𝑴). For otherwise there exists an infinite sequence of points (𝑥𝑛, 𝑦𝑛) in 𝑴 ×𝑴
converging to (𝑥, 𝑦) with minimal geodesics 𝛼𝑛 (𝑡) = exp𝑥𝑛

(𝑡𝑢𝑛), 0 6 𝑡 6 1, from 𝑥𝑛 to 𝑦𝑛 where 𝑢𝑛,
the initial tangent vector to 𝛼𝑛, is in 𝑇𝑥𝑛 (𝑴) but in no Ñ𝑖 . Then, since 𝛼𝑛 is minimal, the distance
‖𝑢𝑛‖ from 𝑥𝑛 to 𝑦𝑛 along 𝛼𝑛 is equal to 𝜌(𝑥𝑛, 𝑦𝑛), which converges to 𝜌(𝑥, 𝑦). So the sequence {𝑢𝑛}
is bounded and, without loss of generality, converges to 𝑢 say. However 𝛼𝑛 (1) = 𝑦𝑛 for all 𝑛 so 𝑦 =

lim
𝑛→∞

𝛼𝑛 (1) = exp𝑥 (𝑢) and as ‖𝑢‖ = 𝜌(𝑥, 𝑦), 𝑢 must be one of the 𝑣𝑖 . Hence the {𝑢𝑛} would eventually

lie in the corresponding Ñ𝑖 contrary to our hypothesis on the 𝑢𝑛. Thus, having chosen N sufficiently
small to avoid the finitely many such points (𝑥𝑛, 𝑦𝑛) it follows that, for all (𝑥′, 𝑦′) in U each minimal
geodesic 𝛾′(𝑡) = exp𝑥′ (𝑡𝑢′), 0 6 𝑡 6 1, from 𝑥′ to 𝑦′ has 𝑢′ in one of the sets Ñ𝑖 ∩ 𝑇𝑥′ (𝑴). Then
𝜌(𝑥′, 𝑦′) = ‖𝑢′‖ = 𝜚𝑖 (𝑥′, 𝑦′), where

𝜚𝑖 : N −→ R+; (𝑥′, 𝑦′) ↦→
(Exp

��
Ñ𝑖

)−1
(𝑥′, 𝑦′)


since Exp(𝑥′, 𝑢′) = (𝑥′, 𝑦′). Hence, for all (𝑥′, 𝑦′) in N , 𝜌(𝑥′, 𝑦′) = min

1≤𝑖≤𝑠
𝜚𝑖 (𝑥′, 𝑦′) as required.

The remaining claims follow from those for the restrictions 𝜙𝑖 of 𝜚𝑖 to V𝑥 = ({𝑥} × 𝑴) ∩ N es-
tablished in Barden and Le (1997): since ∇𝑦 (𝜚𝑖 − 𝜚 𝑗 ) ≠ 0, we certainly have ∇(𝜚𝑖 − 𝜚 𝑗 ) (𝑥, 𝑦) ≠ 0
making N𝑖 𝑗 a co-dimension 1 manifold and, since it meets each V𝑥 in a co-dimension 1 manifold V𝑖 𝑗 ,
it must do so transversally. Similarly, it is not possible for ∇(𝜚𝑖 − 𝜚 𝑗 ) and ∇(𝜚𝑖 − 𝜚𝑘 ) to be linearly
dependent at points of N𝑖 𝑗 ∩N𝑖𝑘 since their components in V𝑖 𝑗 ∩V𝑖𝑘 are not. Thus, N𝑖 𝑗 and N𝑖𝑘 meet
transversally in a co-dimension 2 submanifold, transverse to each V𝑥 .

We note that, although all 𝑠 functions 𝜚𝑖 take the value 𝜌(𝑥, 𝑦) at (𝑥, 𝑦), as (𝑥′, 𝑦′) varies in N
certain of the 𝜚𝑖 will take values greater than 𝜌(𝑥′, 𝑦′). In particular for points (𝑥′, 𝑦′) where 𝑦′ is not
in the cut locus of 𝑥′, precisely one will take this value. When 𝑦′ is in the cut locus of 𝑥′ then at least
two, but not necessary all, of the functions 𝜚𝑖 take the value 𝜌(𝑥′, 𝑦′).
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2. Appendix B

This Appendix investigates certain properties of the stochastic vector fields

𝐷𝑣𝑥𝑡

d𝑡
= −1

2
Ric♯

𝜙
(𝑣𝑥𝑡 ) (1)

and

𝐷𝑉 𝑥
𝑡 = 𝑅(Ξd𝐵𝑡 , 𝑢

𝑥
𝑡 )𝑣𝑥𝑡 −

1
2

{
𝑅
♯

𝜙
(𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) + Ric♯

𝜙
(𝑉 𝑥

𝑡 )
}

d𝑡 , (2)

where Ξ is as defined in equations (4) and (7) in the main paper, and

𝑅
♯

𝜙
= d★𝑅 + 𝐷Ric♯

𝜙
+ 𝑅(∇𝜙). (3)

These properties play an important role in our study of the derivatives of 𝑓ℎ in Section 5. One of the
main tools which will repeatedly be used here is the Hölder inequality.

First, we have the following bound related to the 𝑣𝑥𝑡 defined by (1).

Lemma 4. Assume that 𝑴 is a complete and connected Riemannian manifold and that the Bakry-
Emery curvature criterion (A1) is satisfied for a constant 𝜅 > 0. Then, the vector field 𝑣𝑥𝑡 defined by (1)
satisfies

E
[
|𝑣𝑥𝑡 |𝑞

]
6 |𝑣 |𝑞𝑒−𝑞𝜅𝑡

for any 𝑞 > 1.

The special case for 𝑞 = 2 of this result was given in Thalmaier (1997).

Proof.

d|𝑣𝑥𝑡 |2 = 2
〈
𝑣𝑥𝑡 , −

1
2

Ric♯
𝜙
(𝑣𝑥𝑡 )

〉
d𝑡 = −

{
Hess𝜙 (𝑣𝑥𝑡 , 𝑣𝑥𝑡 ) + Ric(𝑣𝑥𝑡 , 𝑣𝑥𝑡 )

}
d𝑡.

Regarding |𝑣𝑥𝑡 |𝑞 as a function of |𝑣𝑥𝑡 |2, it follows that, for 𝑞 > 1,

E
[
|𝑣𝑥𝑡 |𝑞

]
= |𝑣 |𝑞 − 𝑞

2

∫ 𝑡

0
E

[
(Ric(𝑣𝑥𝑠 , 𝑣𝑥𝑠 ) + Hess𝜙 (𝑣𝑥𝑠 , 𝑣𝑥𝑠 )) |𝑣𝑥𝑠 |𝑞−2

]
d𝑠.

Thus, using the Bakry-Emery curvature criterion (A1), we have that

dE
[
|𝑣𝑥𝑡 |𝑞

]
6 −𝑞𝜅E

[
|𝑣𝑥𝑡 |𝑞

]
d𝑡,

so that the required inequality follows.

Now, for 𝑥, 𝑦 ∈ 𝑴 and 𝑣 ∈ 𝑇𝑥 (𝑴), let 𝑣𝑥𝑡 be as given in (1) and let 𝑣𝑦𝑡 be the solution to (1) with
the underlying path 𝑋𝑥,𝑡 replaced by 𝑌𝑦,𝑡 and with the initial condition 𝑣

𝑦

0 = Π𝛾𝑥,𝑦 (𝑣), where 𝑌𝑦,𝑡 is
constructed as in the proof of Theorem 2 with ℓ = 2𝑞 for each fixed 𝑞 > 1 specified in the following
Lemma and where, as earlier, 𝛾𝑥,𝑦 denotes a minimal geodesic from 𝑦 to 𝑥 and Π𝛾𝑥,𝑦 denotes the
parallel transport from 𝑇𝑦 (𝑴) to 𝑇𝑥 (𝑴) along 𝛾𝑥,𝑦 .
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Lemma 5. Assume that 𝑴 is a complete and connected Riemannian manifold and that the Bakry-
Emery curvature criterion (A1) is satisfied for a constant 𝜅 > 0. If Ric♯

𝜙
is Lipschitz with Lipschitz

constant 𝐿 (Ric♯
𝜙
) then, for 𝑞 > 1,

E
[����Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑣𝑥𝑡 ) − 𝑣
𝑦
𝑡

����𝑞] 6 ©«
𝐿 (Ric♯

𝜙
)

2𝜅
ª®¬
𝑞

𝜌(𝑥, 𝑦)𝑞 |𝑣 |𝑞𝑒−𝑞𝜅𝑡 .

Proof. As in the proof of Proposition 4, for any 𝑢𝑡 ∈ 𝑇𝑋𝑥,𝑡
(𝑴), let �̃�𝑡 denote Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑢𝑡 ). Then,

from (1), it follows that

d |�̃�𝑥𝑡 − 𝑣
𝑦
𝑡 |2 = −

〈
�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 , Ric♯

𝜙
(𝑌𝑦,𝑡 ) (�̃�𝑥𝑡 )) − Ric♯

𝜙
(𝑌𝑦,𝑡 ) (𝑣𝑦𝑡 )

〉
d𝑡

−
〈
�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 , Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(
Ric♯

𝜙
(𝑋𝑥,𝑡 ) (𝑣𝑥𝑡 )

)
− Ric♯

𝜙
(𝑌𝑦,𝑡 ) (�̃�𝑥𝑡 )

〉
d𝑡.

By the Bakry-Emery curvature criterion (A1) and the assumption on Ric♯
𝜙

, this gives that

d
���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��2 6 −
(
Ric + Hess𝜙

)
(�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 , �̃�

𝑥
𝑡 − 𝑣

𝑦
𝑡 ) d𝑡

+|�̃�𝑥𝑡 − 𝑣
𝑦
𝑡 |

����Ric♯
𝜙
(𝑋𝑥,𝑡 ) (𝑣𝑥𝑡 ) −Π−1

𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(
Ric♯

𝜙
(𝑌𝑦,𝑡 )

)
(𝑣𝑥𝑡 )

���� 𝑑𝑡
6 −2𝜅 |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |2 d𝑡 + 𝐿 (Ric♯

𝜙
) |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 | |𝑣𝑥𝑡 | 𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 ) d𝑡.

For 𝑞 > 1, treating
���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��𝑞 as a function of
���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��2, we have that

d
���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��𝑞 6 −𝜅 𝑞 |�̃�𝑥𝑡 − 𝑣
𝑦
𝑡 |𝑞 d𝑡 + 𝑞

2
𝐿 (Ric♯

𝜙
) |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |𝑞−1 |𝑣𝑥𝑡 | 𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 ) d𝑡. (4)

We now consider the cases 𝑞 = 1 and 𝑞 > 1 separately.

(𝑖) If 𝑞 = 1, (4) simplifies to

d
���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��6 −𝜅 |�̃�𝑥𝑡 − 𝑣
𝑦
𝑡 | d𝑡 + 1

2
𝐿 (Ric♯

𝜙
) |𝑣𝑥𝑡 | 𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 ) d𝑡.

Thus, after taking expectations on both sides, the Hölder inequality, Theorem 2 and Lemma 4 together
give that

d E
[���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��] 6 −𝜅E
[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |

]
d𝑡 + 1

2
𝐿 (Ric♯

𝜙
) 𝜌(𝑥, 𝑦) |𝑣 | 𝑒−2𝜅𝑡 d𝑡.

Hence,

d
(
𝑒𝜅𝑡 E

[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |

] )
6

1
2
𝐿 (Ric♯

𝜙
) 𝜌(𝑥, 𝑦) |𝑣 | 𝑒−𝜅𝑡 d𝑡,

so that

E
[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |

]
6

1
2𝜅

𝐿 (Ric♯
𝜙
) 𝜌(𝑥, 𝑦) |𝑣 | 𝑒−𝜅𝑡
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as required.

(𝑖𝑖) For 𝑞 > 1, we use similar arguments to those in (𝑖) above. First, applying the Hölder inequality,
Theorem 2 and Lemma 4, we obtain from (4) that

dE
[���̃�𝑥𝑡 − 𝑣

𝑦
𝑡

��𝑞 ] 6 − 𝜅 𝑞 E
[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |𝑞

]
d𝑡

+
𝑞 𝐿(Ric♯

𝜙
)

2
E

[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |𝑞

]1−1/𝑞 E
[
|𝑣𝑥𝑡 |2𝑞

]1/(2𝑞)
E

[
𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 )2𝑞

]1/(2𝑞)
d𝑡

6 − 𝜅 𝑞 E
[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |𝑞

]
d𝑡 + 𝑞

2
𝐿 (Ric♯

𝜙
) 𝜌(𝑥, 𝑦) |𝑣 |E

[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |𝑞

]1−1/𝑞
𝑒−2𝜅𝑡 d𝑡.

Then, writing 𝑦𝑡 =
{
E

[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |𝑞

]}1/𝑞 , the above gives that

d𝑦𝑡 6 −𝜅 𝑦𝑡 d𝑡 + 1
2
𝐿 (Ric♯

𝜙
) 𝜌(𝑥, 𝑦) |𝑣 | 𝑒−2𝜅𝑡 d𝑡.

As in (𝑖), it follows that

𝑦𝑡 6
1

2𝜅
𝐿 (Ric♯

𝜙
) 𝜌(𝑥, 𝑦) |𝑣 | 𝑒−𝜅𝑡 ,

as required.

We now turn to the vector field 𝑉 𝑥
𝑡 defined by (2), recalling that, if 𝜒2 = 0, then 𝜒1 =𝐶2 (𝜙).

Lemma 6. Assume that 𝑴 is a complete and connected Riemannian manifold of dimension 𝑚 and that
the Bakry-Emery curvature criterion (A1) is satisfied for a constant 𝜅 > 0. Assume further that

𝜒1 = sup
𝑥∈𝑴

‖𝑅♯

𝜙
‖𝑜𝑝 (𝑥) and 𝜒2 =𝑚 sup

𝑥∈𝑴
‖𝑅‖2

𝑜𝑝 (𝑥)

are both finite, where 𝑅
♯

𝜙
is defined by (3). Then, for 𝑞 > 2,

E
[
|𝑉 𝑥

𝑡 |𝑞
]
6


(
𝐶1 (𝜙)

2𝜅

)𝑞
|𝑢 |𝑞 |𝑣 |𝑞𝑒−𝑞𝜅𝑡 if 𝜒2 = 0(

2(𝑞 − 1)𝜒2 + 𝜒2
1

4𝜅 + 1

)𝑞/2

|𝑢 |𝑞 |𝑣 |𝑞𝑒𝑞 (1/4−𝜅)𝑡 if 𝜒2 > 0.

Proof. Applying the Itô formula to |𝑉 𝑥
𝑡 |2, we have that

d |𝑉 𝑥
𝑡 |2 = 2 〈𝑉 𝑥

𝑡 , 𝑅(Ξd𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡 〉 + |𝑅(Ξd𝐵𝑡 , 𝑢

𝑥
𝑡 )𝑣𝑥𝑡 |2 −

〈
𝑉 𝑥
𝑡 , 𝑅

♯

𝜙
(𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) + Ric♯

𝜙
(𝑉 𝑥

𝑡 )
〉

d𝑡.

For 𝑞 > 2, write 𝑧𝑡 = E
[
|𝑉 𝑥

𝑡 |𝑞
]

and, treating |𝑉 𝑥
𝑡 |𝑞 as a function of |𝑉 𝑥

𝑡 |2, an application of the Itô
formula to |𝑉 𝑥

𝑡 |𝑞 yields

d𝑧𝑡 =
𝑞

2
E

[
|𝑉 𝑥

𝑡 |𝑞−2 ��𝑅(Ξd𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡

��2] − 𝑞

2
E

[
|𝑉 𝑥

𝑡 |𝑞−2
〈
𝑉 𝑥
𝑡 , 𝑅

♯

𝜙
(𝑢𝑥𝑡 , 𝑣𝑥𝑡 )

〉]
d𝑡

−𝑞

2
E

[
|𝑉 𝑥

𝑡 |𝑞−2
〈
𝑉 𝑥
𝑡 , Ric♯

𝜙
(𝑉 𝑥

𝑡 )
〉]

d𝑡
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+1
2
𝑞(𝑞 − 2) E

[
|𝑉 𝑥

𝑡 |𝑞−4〈𝑉 𝑥
𝑡 , 𝑅(Ξd𝐵𝑡 , 𝑢

𝑥
𝑡 )𝑣𝑥𝑡 〉2

]
so that, under the given conditions,

d𝑧𝑡 6
𝑞

2

{
𝜒1 E

[
|𝑉 𝑥

𝑡 |𝑞−1 |𝑢𝑥𝑡 | |𝑣𝑥𝑡 |
]
+ (𝑞 − 1) 𝜒2 E

[
|𝑉 𝑥

𝑡 |𝑞−2 |𝑢𝑥𝑡 |2 |𝑣𝑥𝑡 |2
]}

d𝑡 − 𝑞 𝜅𝑧𝑡 d𝑡. (5)

If 𝜒2 = 0, then 𝜒1 = 𝐶2 (𝜙). we apply the Hölder inequality with conjugate indices 𝑝′ = 𝑞/(𝑞 − 1)
and 𝑞′ = 𝑞, as well as Lemma 4, to (5) to get

d𝑧𝑡 6
𝑞

2
𝐶2 (𝜙) 𝑧1−1/𝑞

𝑡 E
[
|𝑢𝑥𝑡 |𝑞 |𝑣𝑥𝑡 |𝑞

]1/𝑞 d𝑡 − 𝑞𝜅𝑧𝑡 d𝑡 6
𝑞

2
𝐶2 (𝜙) |𝑢 | |𝑣 | 𝑧1−1/𝑞

𝑡 𝑒−2𝜅𝑡 d𝑡 − 𝑞𝜅𝑧𝑡 d𝑡.

Now, by letting 𝑤 = 𝑧1/𝑞 , we have

d𝑤𝑡 6
1
2

{
𝐶2 (𝜙) |𝑢 | |𝑣 | 𝑒−2𝜅𝑡 − 2 𝜅 𝑤𝑡

}
d𝑡

so that, as 𝑤0 = 0,

𝑤𝑡 6
1
2
𝐶2 (𝜙) |𝑢 | |𝑣 | 𝑒−𝜅𝑡

∫ 𝑡

0
𝑒−𝜅𝑠 d𝑠6

1
2𝜅

𝐶2 (𝜙) |𝑢 | |𝑣 | 𝑒−𝜅𝑡

as required.

When 𝜒2 > 0, we need to consider the cases 𝑞 = 2 and 𝑞 > 2 separately. First, we assume that 𝑞 = 2.
Then, by Hölder’s inequality and Lemma 4, it follows from (5) that

d𝑧𝑡 6 𝜒1 𝑧
1/2
𝑡 E

[
|𝑢𝑥𝑡 |4

]1/4 E
[
|𝑣𝑥𝑡 |4

]1/4 d𝑡

+𝜒2 E
[
|𝑢𝑥𝑡 |4

]1/2 E
[
|𝑣𝑥𝑡 |4

]1/2 d𝑡 − 2 𝜅 𝑧𝑡 d𝑡

6
1
2

(
𝑧𝑡 + 𝜒2

1 |𝑢 |
2 |𝑣 |2𝑒−4𝜅𝑡

)
d𝑡 + 𝜒2 |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡 d𝑡 − 2 𝜅𝑧𝑡 d𝑡

=

{(
1
2
− 2 𝜅

)
𝑧𝑡 +

(
𝜒2

1
2

+ 𝜒2

)
|𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡

}
d𝑡.

(6)

This gives that

d
(
𝑒 (2𝜅−1/2)𝑡 𝑧𝑡

)
6

(
𝜒2

1
2

+ 𝜒2

)
|𝑢 |2 |𝑣 |2𝑒−(2𝜅+1/2)𝑡 d𝑡

so that

𝑧𝑡 6
𝜒2

1 + 2𝜒2
4𝜅 + 1

|𝑢 |2 |𝑣 |2𝑒−(2𝜅−1/2)𝑡

as required.

If 𝑞 > 2, let (𝑝′, 𝑞′) and (𝑝′′, 𝑞′′) be two pairs of conjugate indices such that 𝑝′ = 𝑞/(𝑞 − 1) and
𝑝′′ = 𝑞/(𝑞 − 2), so that 𝑞′ = 𝑞 and 𝑞′′ = 𝑞/2(> 1). Using these two pairs of conjugate indices, an
application of Hölder’s inequality to (5) gives

d𝑧𝑡 6
𝑞

2

{
𝜒1 𝑧

1/𝑝′
𝑡 E

[
|𝑢𝑥𝑡 |𝑞 |𝑣𝑥𝑡 |𝑞

]1/𝑞′ + (𝑞 − 1)𝜒2 𝑧
1/𝑝′′
𝑡 E

[
|𝑢𝑥𝑡 |𝑞 |𝑣𝑥𝑡 |𝑞

]1/𝑞′′} d𝑡 − 𝑞 𝜅 𝑧𝑡 d𝑡.
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Applying the Hölder inequality again, it follows from Lemma 4 that

d𝑧𝑡 6
𝑞

2
𝑧𝑡

{
𝜒1 𝑧

−1/𝑞
𝑡 |𝑢 | |𝑣 | 𝑒−2𝜅𝑡 + (𝑞 − 1) 𝜒2 𝑧

−2/𝑞
𝑡 |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡 − 2𝜅

}
d𝑡.

Letting 𝑤 = 𝑧2/𝑞 , the above then gives that

d𝑤𝑡 6
{
𝜒1 𝑤

1/2
𝑡 |𝑢 | |𝑣 | 𝑒−2𝜅𝑡 + (𝑞 − 1) 𝜒2 |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡 − 2𝜅𝑤𝑡

}
d𝑡

6
{
(1/2 − 2 𝜅) 𝑤𝑡 + ((𝑞 − 1) 𝜒2 + 𝜒2

1/2) |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡 } d𝑡,
(7)

yielding

𝑤𝑡 6
(
(𝑞 − 1) 𝜒2 + 𝜒2

1/2
)
|𝑢 |2 |𝑣 |2𝑒 (1/2−2𝜅)𝑡

∫ 𝑡

0
𝑒−(1/2+2𝜅)𝑠 d𝑠

as 𝑤0 = 0. Subsequently

𝑤𝑡 6
2 (𝑞 − 1) 𝜒2 + 𝜒2

1
4𝜅 + 1

|𝑢 |2 |𝑣 |2𝑒 (1/2−2𝜅)𝑡

so that the result follows.

It is possible, for the case 𝜒2 > 0, to bound E
[
|𝑉 𝑥

𝑡 |𝑞
]

in 6 differently. For example, if 𝑞 = 2, we can
replace the expression on the right hand side of the third inequality in (6) by

𝜒1
2

(
𝑧𝑡 + |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡

)
d𝑡 + 𝜒2 |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡 d𝑡 − 2 𝜅𝑧𝑡 d𝑡

and similarly, if 𝑞 > 2, replace the expression on the right hand side of the second inequality in (7) by{(
𝜒1 /2 − 2 𝜅

)
𝑤𝑡 + ((𝑞 − 1) 𝜒2 + 𝜒1 /2) |𝑢 |2 |𝑣 |2𝑒−4𝜅𝑡

}
d𝑡.

Then, following a similar analysis, we would obtain

E
[
|𝑉 𝑥

𝑡 |𝑞
]
6

(
2(𝑞 − 1)𝜒2 + 𝜒1

4𝜅 + 𝜒1

)𝑞/2

|𝑢 |𝑞 |𝑣 |𝑞𝑒𝑞 (𝜒1 /4−𝜅)𝑡 .

This feature also appears in the following Lemma. As the results of these two lemmas are used in the
proof of Proposition 4, the consequence of this is that we could bound the Lipschitz constant 𝐶2 ( 𝑓ℎ)
in that proposition differently.

We also need a version of Lemma 5 for 𝑉 𝑥
𝑡 and 𝑉

𝑦
𝑡 . For this, similarly to the definitions for 𝑣𝑥𝑡 and

𝑣
𝑦
𝑡 , for 𝑥, 𝑦 ∈ 𝑴 and 𝑣, 𝑢 ∈ 𝑇𝑥 (𝑴), let 𝑉 𝑥

𝑡 be as given in (2) and let 𝑉 𝑦
𝑡 be the solution to (2) with

the underlying path 𝑋𝑥,𝑡 replaced by 𝑌𝑦,𝑡 and with 𝑢 and 𝑣 there replaced by Π𝛾𝑥,𝑦 (𝑢) and Π𝛾𝑥,𝑦 (𝑣)
respectively, where 𝑌𝑦,𝑡 is constructed as in the proof of Theorem 2 with ℓ = 6 and where, as earlier,
𝛾𝑥,𝑦 denotes a minimal geodesic from 𝑦 to 𝑥 and Π𝛾𝑥,𝑦 denotes the parallel transport from 𝑇𝑦 (𝑴) to

𝑇𝑥 (𝑴) along 𝛾𝑥,𝑦 . Then, we have the following result, recalling that, if 𝜒2 = 0, then 𝜒1 = 𝐿 (Ric♯
𝜙
) =

𝐶2 (𝜙) and 𝐿 (𝑅♯

𝜙
) =𝐶3 (𝜙).
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Lemma 7. Assume that the conditions of Lemma 6 are satisfied. Assume further that Ric♯
𝜙

, 𝑅♯

𝜙
and 𝑅

are all Lipschitz with finite Lipschitz constants 𝐿 (Ric♯
𝜙
), 𝐿 (𝑅♯

𝜙
) and 𝐿 (𝑅) respectively. Then, if 𝜒2 = 0,

E
[����Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑉 𝑥
𝑡 ) −𝑉

𝑦
𝑡

����] 6 (
1

4𝜅
𝐶3 (𝜙) +

3
4𝜅2𝐶2 (𝜙)2

)
𝜌(𝑥, 𝑦) |𝑢 | |𝑣 | 𝑒−𝜅𝑡

while, if 𝜒2 > 0,

E

[����Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑉 𝑥
𝑡 ) −𝑉

𝑦
𝑡

����2] 6 (
𝛽1

4𝜅 + 1
+ 𝛽2

3𝜅 + 1
+ 𝛽3

2𝜅 + 1

)
𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2𝑒 (1−2𝜅)𝑡

where 𝛽𝑖 , 𝑖 = 1,2,3, are as given in Proposition 4.

Proof. For simplicity, we write

𝑊𝑡 = Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑉 𝑥
𝑡 ) −𝑉

𝑦
𝑡 .

Then, an application of Itô formula to |𝑊𝑡 |2 gives that

d |𝑊𝑡 |2 = 2 〈𝑊𝑡 , Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅(Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡 )〉

−2 〈𝑊𝑡 , 𝑅(Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑦
𝑡 )𝑣

𝑦
𝑡 〉

+
����Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅(Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡 ) − 𝑅(Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑦
𝑡 )𝑣

𝑦
𝑡

����2
−〈𝑊𝑡 , Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅♯

𝜙
(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 )) − 𝑅

♯

𝜙
(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , 𝑣

𝑦
𝑡 )〉 d𝑡

−〈𝑊𝑡 , Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(Ric♯
𝜙
(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 )) − Ric♯
𝜙
(𝑌𝑦,𝑡 ) (𝑉 𝑦

𝑡 )〉 d𝑡.

(8)

Assume first that 𝜒2 ≠ 0. As in the proof of Lemma 5, for the third term on the right hand side of
(8), we have

|Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅(Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡 ) − 𝑅(Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑦
𝑡 )𝑣

𝑦
𝑡 |2

6 4 |𝑅(Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , �̃�
𝑥
𝑡 − 𝑢

𝑦
𝑡 )�̃�𝑥𝑡 |2 + 4 |𝑅(Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑦
𝑡 ) (�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 ) |2

+2 |𝑅(Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡 ) −Π−1

𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅(𝑌 𝑦
𝑡 )) (Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢

𝑥
𝑡 )𝑣𝑥𝑡 |2 d𝑡

6 4 𝜒2

(
|�̃�𝑥𝑡 − 𝑢

𝑦
𝑡 |2 |�̃�𝑥𝑡 |2 + |𝑢𝑦𝑡 |2 |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |2

)
d𝑡 + 2𝑚 𝐿 (𝑅)2𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 )2 |𝑢𝑥𝑡 |2 |𝑣𝑥𝑡 |2 d𝑡.

Thus, by Hölder’s inequality, Theorem 2, as well as Lemmas 4 and 5,

E
[
|Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅(Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑥
𝑡 )𝑣𝑥𝑡 ) − 𝑅(Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

Ξ(𝑋𝑥,𝑡 ) d𝐵𝑡 , 𝑢
𝑦
𝑡 )𝑣

𝑦
𝑡 |2

]
6 𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2

8 𝜒2
©«
𝐿 (Ric♯

𝜙
)

2𝜅
ª®¬

2

𝑒−4𝜅𝑡 + 2𝑚 𝐿 (𝑅)2𝑒−6𝜅𝑡
 d𝑡.
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Similarly, for the fourth term on the right hand side of (8),

−〈𝑊𝑡 , Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅♯

𝜙
(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 )) − 𝑅

♯

𝜙
(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , 𝑣

𝑦
𝑡 )〉

6 |𝑊𝑡 | |𝑅♯

𝜙
(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) −Π−1

𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅♯

𝜙
(𝑌𝑦,𝑡 )) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 ) |

+|𝑊𝑡 |
{
|𝑅♯

𝜙
(𝑌𝑦,𝑡 ) ((�̃�𝑥𝑡 − 𝑢

𝑦
𝑡 , �̃�

𝑥
𝑡 ) | + |𝑅♯

𝜙
(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , �̃�𝑥𝑡 − 𝑣

𝑦
𝑡 )) |

}
6 𝐿 (𝑅♯

𝜙
) |𝑊𝑡 | 𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) |𝑢𝑥𝑡 | |𝑣𝑥𝑡 | + 𝜒1 |𝑊𝑡 |

{
|�̃�𝑥𝑡 − 𝑢

𝑦
𝑡 | |�̃�𝑥𝑡 | + |𝑢𝑦𝑡 | |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |

}
.

(9)

Again, by Hölder’s inequality, Theorem 2, as well as Lemmas 4 and 5, we have

−E
[
〈𝑊𝑡 , Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅♯

𝜙
(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 )) − 𝑅

♯

𝜙
(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , 𝑣

𝑦
𝑡 )〉

]
6 𝐿 (𝑅♯

𝜙
) E

[
|𝑊𝑡 |2

]1/2
E

[
𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 )6

]1/6
E

[
|𝑢𝑥𝑡 |6

]1/6
E

[
|𝑣𝑥𝑡 |6

]1/6

+𝜒1 E
[
|𝑊𝑡 |2

]1/2
E

[
|�̃�𝑥𝑡 − 𝑢

𝑦
𝑡 |4

]1/4
E

[
|�̃�𝑥𝑡 |4

]1/4

+𝜒1 E
[
|𝑊𝑡 |2

]1/2
E

[
|𝑢𝑦𝑡 |4

]1/4
E

[
|�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |4

]1/4

6 𝜌(𝑥, 𝑦) |𝑢 | |𝑣 | E
[
|𝑊𝑡 |2

]1/2
𝐿 (𝑅♯

𝜙
) 𝑒−3𝜅𝑡 +

𝜒1 𝐿 (Ric♯
𝜙
)

𝜅
𝑒−2𝜅𝑡


6

1
2

E
[
|𝑊𝑡 |2

]
+ 1

2
𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2

(
𝐿 (𝑅♯

𝜙
) 𝑒−3𝜅𝑡 +

𝜒1
𝜅

𝐿 (Ric♯
𝜙
) 𝑒−2𝜅𝑡

)2

.

Finally, for the fifth term of the right hand side of (8),

− 〈𝑊𝑡 , Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(Ric♯
𝜙
(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 )) − Ric♯
𝜙
(𝑌𝑦,𝑡 ) (𝑉 𝑦

𝑡 )〉

6 −
(
Ric + Hess𝜙

)
(𝑊𝑡 , 𝑊𝑡 ) + |𝑊𝑡 | |Ric♯

𝜙
(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 ) −Π−1
𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(Ric♯
𝜙
(𝑌𝑦,𝑡 )) (𝑉 𝑥

𝑡 ) |

6 −2𝜅 |𝑊𝑡 |2 + 𝐿 (Ric♯
𝜙
) |𝑊𝑡 | |𝑉 𝑥

𝑡 | 𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 ).

(10)

With a similar argument to that above, we obtain that

−E
[
〈𝑊𝑡 , Π𝛾

𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(Ric♯
𝜙
(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 )) − Ric♯
𝜙
(𝑌𝑦,𝑡 ) (𝑉 𝑦

𝑡 )〉
]

6 −2𝜅 E
[
|𝑊𝑡 |2

]
+ 𝐿 (Ric♯

𝜙
) E

[
|𝑊𝑡 |2

]1/2
E

[
|𝑉 𝑥

𝑡 |4
]1/4

E
[
𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 )4

]1/4

6

{
−2𝜅 + 1

2

}
E

[
|𝑊𝑡 |2

]
+ 1

2

6𝜒2 + 𝜒2
1

4𝜅 + 1
𝐿 (Ric♯

𝜙
)2𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2𝑒 (1/2−4𝜅)𝑡

as 𝜒2 ≠ 0.
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Returning to (8), the above calculations imply that

dE
[
|𝑊𝑡 |2

]
6 𝛼E

[
|𝑊𝑡 |2

]
d𝑡

+𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2
(
𝛽∗1𝑒

−6𝜅𝑡 + 𝛽2𝑒
−5𝜅𝑡 + 𝛽3𝑒

−4𝜅𝑡 + 𝛽∗4𝑒
(1/2−4𝜅)𝑡

)
d𝑡,

where 𝛼 = 1 − 2𝜅, 𝛽∗1 = 2𝑚𝐿 (𝑅)2 + 𝐿 (𝑅♯

𝜙
)2/2, 𝛽∗4 = (𝛽1 − 𝛽∗1)/2 and 𝛽1, 𝛽2, 𝛽3 are as given in the

statement of the Lemma. Hence,

d
(
𝑒−𝛼𝑡 E

[
|𝑊𝑡 |2

] )
6 𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2

(
𝛽∗1𝑒

−6𝜅𝑡 + 𝛽2𝑒
−5𝜅𝑡 + 𝛽3𝑒

−4𝜅𝑡 + 𝛽∗4𝑒
(1/2−4𝜅)𝑡

)
𝑒−𝛼𝑡 d𝑡,

so that

E
[
|𝑊𝑡 |2

]
6 𝜌(𝑥, 𝑦)2 |𝑢 |2 |𝑣 |2

(
𝛽1

4𝜅 + 1
+ 𝛽2

3𝜅 + 1
+ 𝛽3

2𝜅 + 1

)
𝑒𝛼𝑡

as required.

If 𝜒2 = 0, then (8) gives

d |𝑊𝑡 | = − 1
2|𝑊𝑡 |

〈𝑊𝑡 , Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(𝑅♯

𝜙
(𝑋𝑥,𝑡 ) (𝑢𝑥𝑡 , 𝑣𝑥𝑡 )) − 𝑅

♯

𝜙
(𝑌𝑦,𝑡 ) (𝑢𝑦𝑡 , 𝑣

𝑦
𝑡 )〉 d𝑡

− 1
2|𝑊𝑡 |

〈𝑊𝑡 , Π𝛾
𝑋𝑥,𝑡 ,𝑌𝑦,𝑡

(Ric♯
𝜙
(𝑋𝑥,𝑡 ) (𝑉 𝑥

𝑡 )) − Ric♯
𝜙
(𝑌𝑦,𝑡 ) (𝑉 𝑦

𝑡 )〉 d𝑡.

Thus, from the above analysis (9) and (10) of the third and fourth terms respectively on the right hand
side of (8), it follows that

d |𝑊𝑡 | 6
1
2

{
𝐿 (𝑅♯

𝜙
) 𝜌(𝑋𝑥,𝑡 ,𝑌𝑦,𝑡 ) |𝑢𝑥𝑡 | |𝑣𝑥𝑡 | + 𝜒1

(
|�̃�𝑥𝑡 − 𝑢

𝑦
𝑡 | |�̃�𝑥𝑡 | + |𝑢𝑦𝑡 | |�̃�𝑥𝑡 − 𝑣

𝑦
𝑡 |

)}
d𝑡

+
{
−𝜅 |𝑊𝑡 | +

1
2
𝐿 (Ric♯

𝜙
) 𝜌(𝑋𝑥,𝑡 , 𝑌𝑦,𝑡 ) |𝑉 𝑥

𝑡 |
}

d𝑡.

Using the fact that, if 𝜒2 = 0, then 𝜒1 = 𝐿 (Ric♯
𝜙
) =𝐶2 (𝜙) and 𝐿 (𝑅♯

𝜙
) =𝐶3 (𝜙), we then have

d
(
𝑒𝜅𝑡 E [|𝑊𝑡 |]

)
6

1
2
𝜌(𝑥, 𝑦) |𝑢 | |𝑣 |

{
𝐶3 (𝜙) 𝑒−2𝜅𝑡 + 1

𝜅
𝐶2 (𝜙)2𝑒−𝜅𝑡

}
d𝑡

+ 1
4𝜅

𝐶2 (𝜙)2𝜌(𝑥, 𝑦) |𝑢 | |𝑣 | 𝑒−𝜅𝑡 d𝑡

yielding

E [|𝑊𝑡 |] 6
{

1
4𝜅

𝐶3 (𝜙) +
3

4𝜅2𝐶2 (𝜙)2
}
𝜌(𝑥, 𝑦) |𝑢 | |𝑣 | 𝑒−𝜅𝑡

as required.
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