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Abstract 14 

Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown.  15 

Here, we aimed to determine whether triggering reactivation in sleep could facilitate this 16 

process. We paired abstraction problems with sounds, then replayed these during either 17 

slow wave sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation 18 

in 27 human participants (19 female).  This revealed performance improvements on 19 

abstraction problems which were cued in REM, but not problems cued in SWS. Interestingly, 20 

the cue-related improvement was not significant until a follow up retest one week after the 21 

manipulation, suggesting that REM may initiate a sequence of plasticity events that requires 22 

more time to be implemented. Furthermore, memory-linked trigger sounds evoked distinct 23 

neural responses in REM, but not SWS.  Overall, our findings suggest that targeted memory 24 

reactivation in REM can facilitate visual rule abstraction, although this effect takes time to 25 

unfold. 26 
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visual reasoning task, event-related potentials, P300.  29 

   30 



 

2 
 

Significance Statement 31 
 32 
The ability to abstract rules from a corpus of experiences is a building block of human 33 

reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we 34 

can manipulate this process actively and which stage of sleep is most important. Targeted 35 

Memory Reactivation (TMR) is a technique which employs re-exposure to learning-related 36 

sensory cues during sleep in order to enhance memory consolidation. Here, we show that 37 

TMR, when applied during REM sleep, can facilitate the complex recombining of information 38 

needed for rule abstraction. Furthermore, we show that this qualitative REM-related benefit 39 

emerges over the course of a week after learning, suggesting that memory integration may 40 

require a slower form of plasticity. 41 

  42 
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Introduction 43 

Abstraction, or the process of formulating generalized ideas or concepts by extracting 44 

common qualities from specific examples, is a core component of fluid intelligence (Welling, 45 

2007). Sleep has been suggested to play an active role in rule abstraction (for reviews see 46 

(Chatburn et al., 2014; Lerner and Gluck, 2019)).  For instance, some experimental 47 

paradigms which probe rule abstraction such as statistical learning of tone transition patterns 48 

have been shown to benefit from slow wave sleep (SWS) (Durrant et al., 2011, 2013, 2016), 49 

whereas others, like the weather prediction task, seem to benefit from rapid eye movement 50 

sleep (REM)(Barsky et al., 2015).  Rule-learning related neural patterns have even been 51 

shown to reactivate in the rat medial prefrontal cortex during SWS (Peyrache et al., 52 

2009).  However, the mechanisms supporting abstraction in sleep are unknown.  It is unclear 53 

if one specific sleep stage is more important, and whether the benefit stems from memory 54 

reactivation or other types of processing in sleep.   55 

Targeted memory reactivation (TMR) is a method for explicitly controlling memory 56 

reactivation in the sleeping brain (Oudiette and Paller, 2013).  In TMR, sounds that have 57 

been simultaneously paired with recently learned material during wake are softly re-58 

presented during subsequent sleep to trigger reactivation of the associated memories and 59 

boost consolidation.  TMR is most commonly applied during non-REM (NREM) sleep, where 60 

it is known to strengthen memories (Rasch et al., 2007; Rudoy et al., 2009; Antony et al., 61 

2012), but has also been linked to qualitative changes, such as the emergence of explicit 62 

knowledge of formerly implicit memories (Cousins et al., 2014). There is currently a debate 63 

in the literature regarding whether or not memories can be reactivated during REM sleep 64 

using TMR, with some studies reporting null findings (Rasch et al., 2007; Hu et al., 2020), 65 

and others reporting significant effects (Sterpenich et al., 2014; Hutchison et al., 2021; 66 

Picard-Deland et al., 2021). The present study aims to address this issue within the realm of 67 

rule abstraction, since the question of whether TMR can also boost this skill, in addition to 68 

memory consolidation, remains to be answered. It is also unclear whether rule abstraction 69 
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would benefit most from reactivation in SWS or in REM, given the proposed role of these 70 

sleep stages in memory restructuring (Landmann et al., 2015) and generalisation (Lewis and 71 

Durrant, 2011; Sterpenich et al., 2014; Pereira and Lewis, 2020).  One study did apply SWS 72 

TMR to an abstraction task and suggest a benefit, but the lack of a non-cued control makes 73 

the results difficult to interpret (Batterink and Paller, 2017). Another study showed no effect 74 

of SWS TMR on generalisation (Witkowski et al., 2021), while in a third study, such 75 

stimulation appeared to produce a deficit in abstraction (Hennies et al., 2017). Nonetheless, 76 

SWS has been linked to positive effects in numerous abstraction-related tasks (see (Lerner 77 

and Gluck, 2019) for a review).  78 

In the current report, we address the above questions by using TMR to reactivate rule 79 

abstraction problems in SWS and REM, with different problems cued in each stage. We 80 

used a visual abstraction task called the Synthetic Visual Reasoning Task (SVRT)(Fleuret et 81 

al., 2011) which requires participants to abstract rules that define ‘families’ of abstract visual 82 

patterns through trial and error exposure.  For example, in the problem depicted in Figure 1, 83 

the rule is that each image contains two identical shapes.  In training, participants are shown 84 

a series of images and asked to categorise them as belonging to the family in question or 85 

not.   They are given feedback on each correct/incorrect categorisation.  Each family of 86 

shapes is associated with a consistent reference image.  At test, participants have to 87 

indicate whether or not a given sample image follows the same rule as the reference image 88 

for that particular problem. Because the impacts of TMR can last for up to a week(Hu et al., 89 

2015), and may even amplify across this period(Groch et al., 2017), we re-tested our 90 

participants one week after the TMR manipulation. 91 

 92 

 93 

 94 

 95 
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 96 

Materials and Methods  97 

Participants 98 

Healthy young adults (mean age 22 years old, range = 19 – 30 years) were recruited online 99 

and through advertisements on the university campus to take part in this study. Participants 100 

filled out an online screening form and were excluded if: they had any diagnosed sleep, 101 

neurological or psychiatric disorders, were taking psychoactive medication, travelled more 102 

than two time zones or engaged in regular shift work in the two months prior to the 103 

experiment. Participants reported a regular sleep cycle over a four-week period prior to the 104 

experiment and were instructed to abstain from alcohol (24h) and caffeine (12h) prior to 105 

each visit to the laboratory, as well as daytime napping. Data from 27 individuals (19 106 

females) were collected and used for behavioural analyses. One participant was excluded 107 

from the ERP analyses since, due to technical difficulties, no EEG triggers were recorded 108 

during TMR (n = 26).  All participants signed informed consent and received monetary 109 

compensation for their participation. This study was approved by the ethics committee of the 110 

School of Psychology of Cardiff University. 111 

Experimental design 112 

The experiment was conducted according to a within-subject design (see Figure 1). 113 

Participants arrived in the evening (between 6 and 8pm) and were prepared for 114 

polysomnography recordings. Subsequently, participants performed a battery of pre-sleep 115 

cognitive testing. First, they performed the Image Familiarisation Task, where they passively 116 

saw all the images (either faces or landscapes) used in the SVRT. To ensure engagement, 117 

participants were instructed to press the space bar whenever a red dot appeared on the 118 

screen. After the Image Familiarisation Task, participants performed the Problem-Image 119 

Association Task, where they learned to associate each SVRT problem with a particular 120 

image of either a face or a landscape. These images were used to group the SVRT 121 
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problems into 2 categories (category 1: problems paired with faces, category 2: problems 122 

paired with landscapes). Next, participants performed the Synthetic Visual Reasoning Test 123 

(Fleuret et al., 2011), where they were required to categorize a series of samples from 16 124 

problems as either in-class (following the rule) or out of class (not following the rule) (see 125 

Extended Data Figure 1-1). Each problem was always presented in combination with a 126 

specific image from one of the two possible categories (faces or landscapes) and with a 127 

200ms sound. During training, participants learned through feedback and trial-and-error until 128 

they were able to correctly categorize the samples to 70% accuracy on each problem. 129 

During testing, they did not receive any feedback. The last task before sleep was the 130 

Problem-Sound Association Task, where participants were trained to recognize which sound 131 

had been paired with which problem, until they reached 100% accuracy. This task was 132 

introduced to guarantee that the effectiveness of TMR would not be compromised by a weak 133 

association between the sounds and their respective problems. 134 

Next, participants went to sleep while non-obtrusive brown noise was continuously played 135 

throughout the night. For targeted memory reactivation, each category (sets 1 and 2 of 136 

problems paired with faces or problems paired with landscapes) was assigned to a sleep 137 

stage (either SWS or REM). Assignment of categories to the sleep stages was 138 

counterbalanced across participants. Within each category, half of the problems were cued 139 

during sleep and the other half served as a non-cued control (subsets A and B). Assignment 140 

of sets 1A, 1B, 2A and 2B to each sleep stage and cueing condition was counterbalanced 141 

across participants (see below which SVRT problems were included in each set). The 142 

sounds paired with problems assigned to the cued condition were played at the onset of 143 

either SWS or REM, as well as new, control sounds, not previously presented to the 144 

participant. Upon awakening (day 1), participants performed the Image Familiarisation task 145 

again, were wired down, showered, and then were retested on the SVRT. A week later (day 146 

7) participants returned to the lab and were retested once again on the SVRT. Performance 147 
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on the SVRT was assessed by the accuracy at each time point, and by the accuracy change 148 

(difference across time points).  149 

All tasks were implemented in Matlab R2017b using Psychtoolbox 3 and displayed on a 150 

1920 x 1080-pixel computer monitor.  151 

Tasks 152 

Image familiarisation task 153 

This task consisted of 14 blocks of 8 trials (one per problem) for each one of the two 154 

categories (i.e. 8 faces and 8 landscapes, for a total of 16 different images), amounting to 155 

112 image presentations per category (224 in total). A variable inter-trial interval was set 156 

between 1 and 2 seconds. Participants were asked to press the space bar whenever a red 157 

dot appeared on the screen. The red dot was set to appear randomly once every 8 trials. 158 

The task was administered in the evening and again in the morning. 159 

Problem-Image Association task 160 

This task was designed to help participants learn to associate each SVRT problem and its 161 

corresponding sound with a particular image (either a face or a landscape). It consists of 2 162 

phases: learning and test. For each participant, the images and sounds were randomly 163 

assigned to the SVRT problems. During learning, participants performed 3 blocks of 16 trials 164 

(one per problem) where they passively viewed the reference representation of any given 165 

SVRT problem on the left-hand side of the screen and the image it was paired with (either a 166 

face or a landscape) in the centre of the screen, while the 2 second sound paired with that 167 

problem-image dyad was played. Participants were instructed to press the space bar if a red 168 

dot appeared on the screen. The red dot appeared randomly once per block. In the test 169 

phase, participants saw the reference representation in the centre of the screen and heard 170 

the same sound that had been paired with it during learning, but now trimmed to only 200 171 

ms. Next, two images appeared on the screen and the participant had to indicate which one 172 
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had been paired with that particular problem-sound dyad. The test was repeated until 173 

participants reached 75% accuracy.  174 

These two tasks, image familiarisation and problem-image association, were added to the 175 

experimental design in order to facilitate use of machine learning classification algorithms to 176 

detect replay. We performed extra checks to certify that image category was not influencing 177 

the SVRT task, see results.  178 

Synthetic Visual Reasoning Test (SVRT) 179 

The SVRT task requires participants to indicate whether or not a given sample image follows 180 

the same rule as the reference image for that particular problem (both sample and reference 181 

images were displayed simultaneously). The rule governing each problem had to be 182 

discovered through trial and error during training. We measured accuracy as the ability to 183 

correctly categorize sample images according to whether they followed, or broke, the rule for 184 

that problem (Figure 1). Feedback was given after each trial, informing participants whether 185 

or not their categorisation of the sample image was correct. For more examples of sample 186 

images and rules, please refer to Extended Data Figure 1-1. Each problem was presented in 187 

conjunction with a picture of a face or a landscape, to boost the chances of eliciting 188 

classifiable EEG patterns, as has been done for objects and scenes (Cairney et al., 2018), 189 

and for animals, tools, faces and buildings (Shanahan et al., 2018). Participants were trained 190 

on 16 categorization problems, half of which were subsequently used to test the impact of 191 

TMR in SWS (4 were cued in SWS and 4 were used as a control), and the other half (4 cued 192 

and 4 control) were used to test the impact of TMR in REM. 193 

The test phase consisted of 5 trials for each problem. Out of a pool of 200 images per 194 

problem, (100 following the rule and 100 not following the rule), 5 images were randomly 195 

selected for each test (pre-sleep, Day 1 and Day 7). 196 

During both training and test phases, a time limit for each response was set to 6 seconds, 197 

after which the next trial would start. After each block (i.e. problem) there was a 15 second 198 
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rest break. The order of problem presentation was randomized for each participant. Each 199 

trial began with the presentation of that problem’s reference representation on the left-hand 200 

side of the screen, the image it had been paired with (either a face or a landscape) in the 201 

centre for the screen, and the 200ms sound that these images were associated with. Then, 202 

the image to be categorized was displayed on the right-hand side of the screen. Participants 203 

were required to press 1 if the image to be categorized was in class (satisfied the rule) or to 204 

press 9 if it was out of class (did not satisfy the rule).  Performance on the SVRT was 205 

assessed by the change in accuracy overnight (post-sleep day 1 – pre-sleep), across the 206 

week (post-sleep day 7 – post-sleep day 1). Performance was not affected by the category 207 

of the image paired with each problem (i.e. face or landscape(all t-tests p > 0.4, 208 

uncorrected)).  209 

Problem-Sound Association task 210 

This task was designed to ensure that participants were able to correctly identify all sound- 211 

problem dyads introduced while performing the SVRT before sleep, which could otherwise 212 

compromise the effectiveness of TMR. Again, the reference representation was presented in 213 

combination with its corresponding face or landscape image. Next, two 200ms long sounds 214 

were played and the participant indicated which one had been paired with that problem-215 

image dyad. The test was repeated until participants reached 100 % accuracy. 216 

Stimuli 217 

All sounds were obtained from an online repository (www.freesound.org). Initial sounds (2 218 

seconds long; learning phase of the Sound-Problem Association Task) were trimmed into 219 

200ms long sounds using the software Audacity. A pool of sounds was used for each 220 

category (faces/landscapes), from which sounds were randomly selected and assigned to a 221 

specific SVRT problem.  For faces, generic object sounds were used and for landscapes, 222 

generic nature sounds were used, such as a bird chirping or the wind blowing. For each 223 

category (faces or landscapes) a group of 12 similar but easily distinguishable sounds was 224 
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selected and from this pool, 8 sounds were randomly paired with an image and used in the 225 

SVRT task while the remaining 4 sounds were used as controls during TMR. Sounds for 226 

faces and landscapes were matched in duration, and all were played at the same volume 227 

within each participant. 228 

The images of faces were obtained from the Karolinska Directed Emotional Faces (KDEF) 229 

(Lundqvist et al., 1998). Only faces of females with a neutral facial expression at a straight 230 

angle were chosen. The images of landscapes were obtained from an online repository 231 

(www.freeimages.com). All images were edited into grayscale and resized (faces: 325 x 435 232 

pixels; landscapes: 435 x 325 pixels) using the software GIMP. 233 

TMR protocol 234 

Audio cues were embedded in brown noise in order to decrease the likelihood that the TMR 235 

sounds would elicit an arousal. Brown noise was played throughout the entire night while the 236 

cues were only presented when SWS or REM was identified online by the experimenter. 237 

Both stimuli (audio cues and brown noise) were played through loud speakers placed behind 238 

the participant’s bed. The sound volume was manually adjusted for each participant before 239 

sleep according to their comfort level. Each cue (either experimental, e.g. paired with a 240 

learned rule or control, with no rule associated) was played twice in a row before the next 241 

cue was played. All cues were played 4 seconds apart from each other. One loop of cueing 242 

consisted of all 8 cues (4 control and 4 experimental) played twice (16 sound presentations). 243 

The order of cue presentation was randomized at each iteration of the loop. A total of 14 244 

loops was played in each sleep stage (corresponding to approximately 15 min of cueing), 245 

adding up to 28 repetitions of each individual sound and 112 cueing events in each condition 246 

(control or experimental). Even though SWS usually occupies a larger proportion of the night 247 

than REM (and would thus allow for an extended cueing time), we wanted to ensure that we 248 

would be able to deliver the same amount of cueing in both sleep stages, and therefore we 249 

opted for limiting cueing to ~ 15 min. Cueing was initiated in the first episode of SWS and 250 

REM and was interrupted whenever an arousal or sleep stage transition was identified. In 251 
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one participant, only 7 out of the 14 loops of REM cueing were completed, due to short sleep 252 

duration (n = 1) and in another participant only 8 out of the 14 loops of SWS cueing were 253 

completed, due to light sleep throughout the night (n = 1). These participants were not 254 

excluded from any analyses. Note that cueing varied between participants, depending on 255 

whether or not they obtained ~15 min of uninterrupted SWS and REM, such that for some 256 

cueing was finished within the first NREM-REM cycle while for others additional cycles were 257 

needed. No significant correlations were found between number of cues delivered in SWS or 258 

REM and subsequent performance (all p > 0.1). Following offline sleep scoring, cueing 259 

accuracy (calculated as the percentage of cues delivered in the intended sleep stage) was 260 

determined: 94.44 % for SWS and 93.72 % for REM. Regarding continuity (i.e. whether or 261 

not TMR was completed within on sleep cycle, SWS TMR was continuous for 19 participants 262 

out of 26 participants and REM TMR was continuous for 1 out of 26 participants only. This is 263 

to be expected, since we initiated REM TMR at the onset of the first REM episode, which 264 

tends to be very short and our entire cueing procedure required at least 15 min to complete, 265 

if uninterrupted. Given this distribution of the data, it is not possible to estimate if the TMR 266 

effect differed depending on whether cueing was continuous or discontinuous. 267 

EEG recordings and sleep analysis 268 

EEG was recorded using BrainVision software during the Image Familiarisation task (in the 269 

pre-sleep evening and morning of post sleep day 1) and during sleep. Recordings were 270 

made at 500 Hz from 22 scalp locations on the standard 10/20 layout (Fz, F3, F4, FC1, FC2, 271 

FC5, FC6, Cz, C3, C4, CP5, CP6, Pz, P3, P4, P7, P8, PO3, PO4, Oz, O1 and O2), 272 

referenced to the mastoids. Impedances were kept below 5 kΩ. Electrooculogram (EOG) 273 

and electromyogram (EMG) signals were also recorded from electrodes next to each eye 274 

and 2 electrodes on the chin, respectively. Sleep scoring was accomplished using the 275 

guidelines from the American Association of Sleep Medicine (AASM, v. 2.5), within a 276 

custom-made script implemented in Matlab. Offline scoring was performed by two 277 
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independent raters, blind to when cueing occurred, achieving an 88% agreement rate. 278 

Discrepancies were resolved by one of the raters.  279 

Spindles and slow oscillations were detected from all channels using the SpiSOP toolbox 280 

version 2.3.8.3 (available at https://www.spisop.org/), with the spindle detection algorithm 281 

based on (Molle et al., 2002). Centre frequencies of fast and slow spindles were visually 282 

determined for each participant and used to define the finite impulse response (FIR) filter 283 

(center frequency 13.29Hz (std: 0.69)). The root mean square (RMS) of the filtered signal was 284 

computed using a 0.2s time window and smoothed by a moving average of another 0.2s 285 

window. Any event that surpassed the 1.5 SD of the RMS signal was considered a candidate 286 

spindle. To fit the spindle detection criteria, the candidate events had to last between 0.5s 287 

and 3s.  Because we had no apriori hypothesis about specific channels, all correlations were 288 

made with the average across channels. 289 

Similarly slow oscillation detection is based on (Mölle et al. 2002) but also see (Ngo et al. 290 

2013). Prior to the actual detection, the signal is high pass filtered (IIR by default) then low 291 

pass filtered (FIR) to contain frequency components observed in slow oscillations in a 292 

specified band (0.3 to 3.5 Hz). Then all the time intervals with consecutive positive-to-293 

negative zero crossings are marked. Only intervals with durations corresponding to a 294 

minimum (set to 0.5Hz) and maximum (set to 1.11Hz) slow oscillation frequency are 295 

considered as putative slow oscillations. The threshold for negative peaks is set to 1.25 and 296 

for negative to positive peaks amplitude was also set to 1.25 (default parameters).  297 

 298 

EEG pre-processing 299 

First, the data was high-pass filtered at 0.3 Hz and low-pass filtered at 35 Hz. Then, the 300 

continuous EEG was epoched into trials from 1 s before to 3 s after sound cue onset (since 301 

the cues were 4 s apart). Noisy channels were repaired by interpolating data from 302 

neighbouring electrodes and trials containing arousals or movement artefacts (as 303 
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determined during sleep scoring) were removed. Finally, any remaining noisy trials were 304 

manually removed following visual inspection. The number of trials included in the final 305 

analysis for each participant, sleep stage and condition are presented in Extended Data 306 

Figure 2-3. 307 

Baseline correction was performed on the single trial level using the entire trial length [-1 3] 308 

(Grandchamp and Delorme, 2011). Trials were then separated into conditions (control and 309 

experimental) and sleep stages (SWS and REM). One participant was excluded from all 310 

analyses, since they did not have EEG triggers during TMR (final n = 26).  311 

EEG analysis 312 

Event-related potentials (ERPs) analyses were carried out in Fieldtrip (Oostenveld et al., 313 

2011) (available at: http://www.fieldtriptoolbox.org/).  ERPs were calculated for each 314 

condition and sleep stage, and compared within subjects and between conditions, across all 315 

channels, within a time window from 0 to 2000ms (not averaged).  316 

ERPs of control and experimental sounds were compared using Monte-Carlo cluster 317 

permutation tests, corrected for multiple comparisons (Maris and Oostenveld, 2007). The 318 

cluster alpha was set to 0.05 and 150000 randomizations were carried out for every test. 319 

Clusters were considered significant at p < 0.025 (two tailed). Similar parameters were set-320 

up for time-frequency analysis for each frequency band of interest: theta (4 to 8Hz), spindles 321 

(9 to 15Hz) and low-beta (12.5 to 16Hz). More specifically, the time-frequency cluster 322 

permutation analysis was calculated using the average across trials for each participant in 323 

the window of interest (0 to 2s). The statistical analysis was performed for experimental vs 324 

control sounds in SWS, REM and also for their interaction (SWS difference vs REM 325 

difference, where difference was calculated as experimental minus control sounds) for each 326 

frequency band. The minimum number of channels to form a cluster was set to 2, the 327 

number of randomisations set to 250000 and the cluster alpha at p=0.025 (two-tailed). 328 
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To determine whether stimulation lead to a change in spindles or slow oscillations, we 329 

calculated the number and duration of spindles and slow oscillations per condition 330 

(experimental and control sounds). We then compared these between conditions using a 331 

cluster permutation analysis. The cluster alpha was set to 0.05 and 250000 randomizations 332 

were carried out for every test. Clusters were considered significant at p < 0.025 (two tailed).  333 

Finally, we sought to detect memory reactivation after our TMR cues using an EEG 334 

classifier.  Thus, ERP values were used as features to feed a linear Support Vector Machine 335 

(SVM). To avoid overfitting, we used 5-fold validation repeated twice. As a performance 336 

metric we used the traditional accuracy but also area under the curve. The classification was 337 

performed separately for SWS and REM stages for each participant. Statistics were 338 

performed at a group level to check if for any above-chance time-cluster. No significant 339 

cluster was found for either of the performance metrics or for either sleep stage. 340 

Statistical analyses 341 

Performance change on the SVRT was compared using a repeated measures ANOVA with 342 

between-subjects factors sleep stage (SWS/REM), cueing condition (cued/non-cued) and 343 

session (overnight/across the week) as repeated factor. We ran an outlier analysis using the 344 

ROUT method (Q = 1%) and identified two outliers on the SWS cued group. Upon removal 345 

of these outliers, the results remained the same as those in Figure 2A, where no significant 346 

differences were found between overall performance change on SWS cued and non-cued 347 

problems (t (1,24) = 1.132, p = 0.269). 348 

Descriptive statistics (mean, standard deviation, standard error of the mean and confidence 349 

intervals) are presented in Figure Extended Data Figure 2-4 The combined performance 350 

change was compared between non-cued and cued conditions using paired t-tests. 351 

Pearson’s correlations were calculated between the combined performance change and the 352 

average number of slow oscillations and spindles in frontal, central and parietal derivations. 353 
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Data are presented as mean ± SEM and we report eta squared (ƞ2) and Cohen’s d as effect 354 

size estimates for significant findings.  355 

Statistical analyses of the behavioural data were conducted on JASP 0.10.2.0 while 356 

statistical analyses of EEG data were conducted on Matlab R2017b using the Fieldtrip 357 

toolbox (version 20190904). 358 

  359 
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Results 360 

TMR in REM improves rule abstraction 361 

We examined baseline performance (pre-sleep) using an ANOVA with the factors cueing 362 

condition (cued/non-cued) and Sleep stage (SWS/REM). No differences or interaction were 363 

found (smallest p=0.666).  Refer to Figure 2.B and Extended Data Figure 2-1a for full 364 

statistical details.  365 

To assess the impact of cueing, upon consolidation across a retention interval, we compared 366 

SVRT performance change (overnight accuracy change: post-sleep day 1 - pre-sleep; and 367 

across a week: post-sleep day 7 - post-sleep day 1) using a repeated measures ANOVA 368 

with factors sleep stage (SWS and REM), cueing condition (cued and non-cued), and 369 

retention interval (overnight and across a week post-sleep) as repeated measure. This 370 

showed a significant sleep stage*cueing condition interaction (F(1,26) = 6.091, p = 0.020, ƞ2 = 371 

0.013), with no other factor or interaction being significant (smallest p=0.128, Figure 2A, 372 

Extended Data Figure 2-1b). This indicates that cueing had different effects when applied in 373 

SWS and REM. To investigate this, we conducted a simple main effects test (sleep stages x 374 

cueing), which revealed better performance in the cued condition for REM than SWS (F(1,26)  375 

= 4.463, p = 0.044), with no differences between SWS and REM in the non-cued control 376 

condition (F(1,26)  = 0.774, p = 0.387; Figure 2A). This result could suggest that cueing 377 

benefited rule abstraction when delivered during REM sleep, but not SWS.   378 

To better understand this pattern of results, and also to gain statistical power, we next 379 

analysed each sleep stage separately using a 2-way ANOVA with factors cueing condition 380 

(cued and non-cued) and retention interval (overnight and across a week post-sleep). For 381 

SVRT problems cued in SWS, there was no effect of cueing, session or interaction between 382 

these (smallest p=0.198). For problems cued in REM sleep however, we found a significant 383 

cueing effect (F(1,26) = 7.930, p = 0.009, ƞ2 = 0.019), indicating that performance 384 

improvements were superior for cued problems, compared to non-cued problems. There 385 
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was no effect of session or cueing*session interaction (smallest p=0.231). To further 386 

understand the origin of the cueing effect in REM sleep we performed a paired t-test (cued 387 

vs non-cued) on accuracy at each session (Pre-sleep, post-sleep day1 and post-sleep day 388 

7), Figure 2B and Extended Data Figure 2-3 for full statistical results. Accuracy was superior 389 

for REM cued problems, as compared to non-cued (t(26) = 3.357, p = 0.002, Cohen’s d = 390 

0.646) only at Post-sleep day 7.   391 

Overall, these findings suggest that reactivating problems during REM leads to a significant 392 

advantage in rule knowledge after seven days and nights.  393 

 394 

Event-related potentials in REM differ between control and experimental sounds 395 

To examine neural processing associated with TMR cues, we plotted sound-evoked ERPs 396 

for each sleep stage of cueing (SWS and REM) and sound category (control and 397 

experimental) at Cz for illustration purposes, see Figure 3. Topographies showing the spatial 398 

distribution of significant channels over time are available in the (Figure 4 for all EEG 399 

channels).  We analysed a large time window (0–2000ms), which includes all known auditory 400 

event-related potentials (Winkler et al., n.d.) and has previously been associated with 401 

processing auditory stimuli in both NREM and REM sleep (Campbell and Muller-Gass, 402 

2011).  To determine whether the response to control and experimental sounds differed in 403 

each sleep stage, we performed a cluster analysis on the ERP amplitudes (all channels, not 404 

averaged). This revealed a significant difference between experimental (familiar) and control 405 

(new) sounds in REM sleep (cluster corrected for multiple comparisons, p=0.048), but not in 406 

the SWS (all p > 0.05). This negative cluster ranges from 228ms to 400ms. The elicitation of 407 

a larger ERP amplitude for new sounds than for familiar sounds demonstrates an ability to 408 

detect novelty.  Our observation of this response in REM but not SWS is in keeping with 409 

prior literature showing greater responsivity in REM compared to SWS (see(Ibáñez et al., 410 

2009) for a review). 411 
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To probe the data further, we performed a time-frequency analysis per sleep stage in the 412 

same time window (0-2000ms) choosing relevant frequency bands based on previous work 413 

on SWS: theta-band (4-8Hz) and spindle band (9-15Hz), and lower beta band (13-16Hz) for 414 

REM sleep. Cluster statistics revealed nothing significant for either frequency band or sleep 415 

stage (smallest p-value 0.052). Full list of results in Extended data Figure 4-1.  416 

 417 

Does cueing in each sleep stage interfere with consolidation of cueing in the other? 418 
 419 
Because we applied TMR in both SWS and REM (though stimulating different problems in 420 

each stage) we were interested to know whether TMR in REM might have obscured or 421 

interfered with the effects of TMR in SWS. In the case of direct interference, we might expect 422 

a negative correlation between the extent to which participants benefit from REM TMR and 423 

the extent to which they benefit from SWS TMR.  To test for this, we looked for a relationship 424 

between performance on problems cued in SWS and REM in two different ways, using 425 

overnight gain and using TMR cueing benefit.  Thus, we ran a correlation between overnight 426 

performance change (difference between post-sleep and pre-sleep) for problems cued in 427 

SWS and overnight performance change for problems cued in REM. This showed no 428 

correlation (r = -0.162, p = 0.420). Next, we calculated the cueing benefit (difference 429 

between performance on cued and non-cued problems) for SWS-related problems and 430 

REM-related problems at each session and across sessions, to check if TMR-related 431 

improvements in REM problems were obtained at the expense of cueing benefit in problems 432 

cued in SWS.  This showed no significant relationships (p > 0.05, uncorrected; Table 2).  433 

These results show that the extent of TMR related consolidation in REM doesn’t predict any 434 

specific deficit in the benefit accrued from equivalent cues in SWS.  435 

 436 

There is no relationship between time spent in non-manipulated REM sleep and 437 

performance on problems cued in SWS 438 
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It could be argued that successive TMR in SWS and REM might have curtailed the amount 439 

of non-manipulated REM available to further advance any consolidation processes initiated 440 

by TMR in SWS, thus disrupting any potential benefits from this manipulation. We inspected 441 

sleep architecture in relation to TMR and found that 25 out of 26 participants had a period of 442 

non-manipulated REM sleep after REM cueing had terminated: an average of 65.9 min 443 

(ranging from 24 min to 117.5 min). Furthermore, the amount of non-manipulated REM sleep 444 

in each participant was not correlated with performance on SWS cued problems on either 445 

post-sleep day 1 (r = 0.284, p = 0.160) or post-sleep day 7 (r = 0.166, p = 0.419). 446 

 447 

Relation between rule abstraction and NREM graphoelements 448 

Sleep architecture data from all 27 participants is presented in Table 1.  449 

Slow oscillations and sleep spindles are thought to mediate TMR-related benefits to memory 450 

consolidation(Schouten et al., 2017; Cairney et al., 2018; Göldi et al., 2019). In order to 451 

determine if the same was true for rule abstraction, we counted the number of slow 452 

oscillations and sleep spindles in NREM sleep for each participant and checked for 453 

correlations between each of these and the SVRT performance change for problems cued in 454 

SWS and REM, as well as the control non-cued problems for each sleep stage. In line with 455 

the observation that TMR in SWS did not improve rule abstraction, we found no correlation 456 

between performance on the SVRT task and either spindles or slow oscillations (all p >= 0.1, 457 

uncorrected, Table 4). 458 

Next, we wanted to determine whether TMR cueing altered spindles or slow oscillations in a 459 

way that related to subsequent changes in performance on our task.  We thus calculated the 460 

number and duration (samples) of spindles and slow oscillation in the 3 second epoch 461 

following TMR stimulation for each condition (experimental and control). No significant 462 

results were found for spindles (smallest p value=0.06, see topography in Figure 5). But two 463 

significant clusters were found for the number of SOs. One in the left hemisphere, t=-9.08 p 464 

value=0.007, and one on the right hemisphere (t=-6.50, p=0.012), see Figure 5. Both 465 
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indicated a higher number of SO after control than experimental sounds.  We then correlated 466 

the mean number of SOs detected in each cluster with behavioural performance change for 467 

items (cued in REM/SWS and non-cued for both stages) both overnight and over the 468 

subsequent week and for both cued and non-cued items.  This revealed a significant positive 469 

relationship between both the right hemispheric cluster (Rho = .44, p=0.03) and the left 470 

hemispheric cluster (Rho = .42, p= 0.04), uncorrected.  Overall, these data appear to 471 

suggest that cueing with the experimental TMR tone lead to a reduction in SOs over these 472 

electrodes and this seems to be associated with TMR benefit, although the correlations do 473 

not survive correction for multiple comparisons. However, because we had no apriori 474 

hypothesis to this effect, and the correlations do not survive correction for multiple 475 

comparisons, we feel this should be treated with caution.  476 

 477 

Image category did not affect SVRT performance 478 
 479 
To determine whether being associated with the face/object sounds versus the 480 

landscape/nature sounds had any impact on behaviour, we directly compared performance 481 

on problems associated with faces and landscapes, irrespective of sleep stage or cueing 482 

condition. There were no differences in performance between the two. We conducted a two-483 

way repeated measures ANOVA on the raw accuracy values with the factors category: 484 

(faces and landscapes) and session: (pre-sleep, post-sleep day 1 and post-sleep day 7). 485 

There was no effect of category (F(1,26) = 0.362; p = 0.553; ƞ2 = 0.003) or session (F(1,26) = 486 

2.054; p = 0.139; ƞ2 = 0.007) , and no interaction (F(1,26) = 0.253 ; p = 0.778; ƞ2 = 0.001). The 487 

same analysis was conducted on the performance changes (overnight, over a week and 488 

overall change), with Greenhouse-Geisser sphericity correction. Similarly, no effect of 489 

category (F(1,26) = 0.365; p = 0.551; ƞ2 = 0.004) or session (F(1,26) = 0.610; p = 0.480; ƞ2 = 490 

0.004) was found, and there was no interaction (F(1,26) = 0.165; p = 0.729; ƞ2 = 0.002). We 491 

ran paired t-tests between the same time points in each category (e.g. Faces at pre-sleep vs 492 

Landscapes at pre-sleep). No differences were found (all p > 0.4, uncorrected). 493 
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 494 

Discussion  495 

This study shows that rule abstraction, one of the building blocks of human reasoning, can 496 

be facilitated by applying targeted memory reactivation during sleep.  Interestingly, when 497 

different problems were cued in SWS and REM within the same night, the problems cued in 498 

REM benefitted from offline rehearsal, shedding light on a possible role for previously 499 

detected reactivation during REM (Maquet et al., 2000; Louie and Wilson, 2001; Mainieri et 500 

al., 2019).  Furthermore, we found that REM TMR mediated facilitation of abstraction 501 

requires time to emerge, since cued problems have a significant advantage over non-cued 502 

problems one week after the manipulation.  This is important, because it joins a small but 503 

growing literature suggesting that some sleep-related memory benefits may require more 504 

than just one episode of sleep to emerge (Groch et al., 2017; Cairney et al., 2018).  505 

Abstraction underpins the ability to categorise items and generalize rules to new, never 506 

before seen exemplars.  This is a core component of fluid intelligence(Otero, 2017), and is 507 

particularly important when one is faced with a new problem that cannot be solved 508 

exclusively by prior knowledge. Our data appear to show a dissociation between REM and 509 

SWS, with TMR in the former but not the latter facilitating performance on a complex task 510 

requiring rule abstraction and pattern categorization. Un-manipulated SWS has been shown 511 

to be involved in both quantitative (Rasch and Born, 2013) and qualitative changes to 512 

recently encoded memories (Wagner et al., 2004; Lau et al., 2010; Durrant et al., 2011, 513 

2013; Wilhelm et al., 2013; Kirov et al., 2015), while REM has been suggested to be more 514 

involved with qualitative changes, such as forming unexpected links between different 515 

memories or concepts (Lewis et al., 2018). This possibility is supported by studies showing 516 

that REM duration predicts visual abstraction (Lutz et al., 2017), category learning (Djonlagic 517 

et al., 2009), lexical integration (Tamminen et al., 2017) and grammar learning (Batterink and 518 

Paller, 2017), all of which are highly integrative forms of memory.  Our finding with respect to 519 

REM is also in line with a recent review suggesting that abstraction of explicit rules based on 520 
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prior knowledge is often linked to REM sleep (Lerner and Gluck, 2019), and extends these 521 

ideas by providing clues to the underlying mechanisms of REM-dependent rule abstraction.  522 

In addition, one study demonstrated that TMR in SWS can actually impair the abstraction of 523 

grammar-like transition statistics(Hennies et al., 2017), suggesting that promotion of memory 524 

for specific episodes through reactivation in SWS may disrupt the abstraction of generalised 525 

statistics. Taken together with this literature, our findings suggest that REM TMR may have 526 

the capacity to directly promote abstraction. Supporting this, studies using REM TMR to 527 

investigate qualitative changes, such as the affective tone of emotional memories (Rihm and 528 

Rasch, 2015; Lehmann et al., 2016) and the generalization/integration of pictures with 529 

emotional content (Sterpenich et al., 2014), typically do find a benefit from REM TMR, as did 530 

our current study.  If abstraction-like processing turns out to be the main function of REM for 531 

memory, that could explain why most REM TMR studies have shown little or no benefit to 532 

memory consolidation (for a meta-analysis see (Hu et al., 2019)), since such studies typically 533 

assessed quantitative, rather than qualitative changes, and thus do not test abstraction.   534 

In the current study, while TMR in REM facilitated rule abstraction, TMR in SWS did not.  535 

Given this result, it might be tempting to conclude that TMR in SWS does not facilitate this 536 

kind of abstraction.  However, we cannot exclude the possibility that cueing problems in 537 

SWS triggered a consolidation process which would have facilitated abstraction, but which 538 

was disrupted by subsequent cueing in REM.  We ran several analyses to investigate this 539 

possibility and found that there is no relationship between the extent to which SVRT 540 

performance benefitted from cueing in REM and cueing in SWS.  We also found that the 541 

vast majority of participants had epochs of non-manipulated REM sleep after REM cueing 542 

had ceased, which presumably provided an opportunity for items that had been cued in SWS 543 

to continue their consolidation in REM as needed. Nonetheless, we still cannot rule out some 544 

kind of interference and thus remain cautious in our interpretation.  We therefore conclude 545 

only that REM TMR is sufficient to start a consolidation process which facilitates rule 546 
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abstraction and cannot draw conclusions about the impacts of SWS TMR on this process 547 

based on the current data alone. 548 

Regarding the timing of the TMR effects, our data suggest that the impact of TMR may 549 

continue to unfold for at least a week, with performance on cued and non-cued problems 550 

only becoming significantly different after that temporal delay. Notably, we did not test 551 

performance between days one and seven, so we do not know how quickly this process 552 

unfolds.  If qualitative changes in memory representations, such as abstraction, require 553 

longer periods of time to evolve (Sterpenich et al., 2014; Lutz et al., 2017), then they may 554 

escape detection by the commonly used 12 hour test-retest paradigm. Prior studies have 555 

considered longer test periods and have shown that TMR-related benefits sometimes 556 

disappear over a week (Shanahan et al., 2018), but can also persist over this period (Hu et 557 

al., 2015; Groch et al., 2017; Simon et al., 2018). Our current study builds on these reports 558 

by showing that the benefit to abstraction which was not significant at day one post-sleep 559 

became significant by day seven.  This is in keeping with a study of emotional processing, 560 

which showed that the impact of NREM TMR on emotional content was amplified across a 561 

week (Groch et al., 2017), and also with our own work on the serial reaction time task which 562 

shows that benefit from TMR can emerge after 10 days or more (Rakowska et al., 2021).   563 

Building on a model of synaptic plasticity across brain states (Redondo and Morris, 2011; 564 

Seibt and Frank, 2019),  we have recently proposed a series of plasticity-related events that 565 

take place in both NREM and REM which could explain why the effect of sleep on memory 566 

consolidation may require extended periods of time before it becomes detectable (Pereira 567 

and Lewis, 2020). According to a recent framework (Seibt and Frank, 2019), neuronal 568 

ensembles associated with the task are tagged during wakeful encoding. During subsequent 569 

NREM reactivation, mRNAs or other Plasticity-Related Products (PRPs) are captured by 570 

these tagged synapses. Finally, in subsequent REM, these PRPs are translated into proteins 571 

which enable synapses to undergo intense remodelling. In light of our current results, we 572 

speculate that applying TMR in REM might potentially bypass the need for PRP capture in 573 



 

24 
 

NREM, instead promoting PRP capture and translation at task-related synapses. Given the 574 

time-consuming nature of these processes, multiple nights of sleep could be required before 575 

measurable behavioural effects emerge.  Of course, this does not explain why TMR cueing 576 

in SWS, which might reasonably be expected to result in extra PRP capture by task-related 577 

synapses, did not result in a behavioural benefit.  We can only speculate that such PRP 578 

capture is not sufficient in the case of our abstraction task.  Alternatively, it is also possible 579 

that cueing in REM subsequent to SWS somehow interfered with consolidation such that 580 

PRPs capture during SWS cueing were not subsequently translated. More work will be 581 

needed to disentangle such effects. 582 

Our ERP analysis complements our behavioural findings by revealing differential neural 583 

responses to experimental and control stimuli in REM, but not SWS. These differential 584 

responses were found between 228 to 400ms post cue onset, a time window during which 585 

auditory stimuli are known to be extensively processed in both NREM and REM sleep 586 

(Campbell and Muller-Gass, 2011) and which is also associated with the P300 component 587 

(Picton, 1992). The P300 is thought to reflect higher order cognitive processing related to 588 

selective attention and resource allocation, with its amplitude proportional to the amount of 589 

attentional resource recruited for scrutiny of a given stimulus (Ibáñez et al., 2009). The P300 590 

has also been detected during REM, with larger peak amplitudes occurring for rare sounds 591 

in the oddball paradigm (Cote and Campbell, 1999).  Our data mirror this result by showing 592 

that ‘new’ control sounds elicited greater P300 waves than ‘familiar’ task-related sounds. 593 

Interestingly, the P300 has been found in response to hearing one’s own name in REM 594 

sleep, but not in response to hearing another name.  This could indicate that some level of 595 

cognitive processing persists during REM (Bastuji et al., 2002). The fact that we observed a 596 

difference between familiar and unfamiliar P300 responses in REM but not in SWS, is 597 

therefore in keeping with the literature.  Other authors have interpreted such results as 598 

suggesting that stimuli are processed at a deeper, more cognitive, level during REM (see 599 

(Ibáñez et al., 2009) for a review).  600 
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 601 

Conclusion 602 

In sum, we found that TMR in REM is sufficient to benefit a visual reasoning task commonly 603 

used in the field of Artificial Intelligence (Fleuret et al., 2011; Ellis et al., 2015), but never 604 

before tested in a sleep study. Furthermore, ERPs suggested a deeper level of processing in 605 

REM than SWS, and behavioural findings suggest that the process started by TMR in REM 606 

requires more than one night of sleep to unfold. These findings open exciting new avenues 607 

for exploring TMR as a tool to enhance higher order cognitive functions such as abstraction, 608 

a core component of fluid intelligence and creativity. 609 
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 789 
 790 
 791 
 792 

Table 1. Sleep architecture (n = 27) 793 

Sleep variable Mean SEM 

TST (min) 490.3 10.5 
Sleep latency (min) 20.6 2.9 
WASO (min) 15.9 3.8 
Micro-arousals (#) 39.3 4.6 
NREM 1 (min) 33.5 3.0 
NREM 2 (min) 254.9 7.9 
SWS (min) 85.7 4.2 
REM (min) 100.3 4.9 
WASO (%) 3.2 3.2 
NREM 1 (%) 6.7 0.5 
NREM 2 (%) 52.0 1.2 
SWS (%) 17.7 0.9 
REM (%) 20.3 0.9 

                               Total sleep time (TST); Wake after sleep onset (WASO). 794 

 795 
  796 
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 797 
 798 
 799 
 800 
 801 

Table 2 – Correlations between Cueing Benefit* in REM and SWS 802 

Pearson’s r p† 
SWS Pre-sleep with REM Pre-sleep -0.205 0.304 
SWS Day 1 with REM Day1 -0.003 0.987 
SWS Day 7 with REM Day7 -0.147 0.465 
SWS Overnight with REM Overnight -0.086 0.669 
SWS Week with REM Week -0.207 0.300 
SWS Total with REM Total -0.338 0.085 

 803 

*cueing benefit = cued – non-cued; Overnight = Day 1 – Pre-sleep; Week = Day 7 – Day 1; 804 
Total = Day 7 – Pre-sleep; uncorrected †p-value. 805 

 806 

 807 

Table 3. Spindles and Slow Oscillations identified in epochs after control and 808 
experimental sounds 809 

  Number  Duration (samples)  

Spindles    

      Control 43.75 (2.01) 78.16 (0.28)  

      Experimental 43.63 (2.02) 77.20 (0.29)  

Slow Oscillations    

      Control 59.96 (2.17) 215.46 (1.64)  

      Experimental 56.39 (2.03) 221.03 (1.65)  

 810 

Table 3:  Spindles and slow oscillations summary, averaged across participants and 811 
channels separately for control and experimental epochs. Values within brackets indicates 812 
SEM.  813 

  814 
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Table 4:  Spindles and slow oscillations summary, averaged across participants and 815 
channels separately for control and experimental epochs. Values within brackets 816 

indicates SEM error. 817 

 818 
Sleep Stage Cueing 

Condition 
Oscillation  Pearson’s r p 

SWS 

Non-cued  Spindles (#)  0.008 0.97 

Sos (#)  -0.015 0.94 

Cued  Spindles (#)  0.118 0.56 

Sos (#)  0.148 0.46 

REM 

Non-cued Spindles (#)  0.324 0.10 

Sos (#)  0.231 0.25 

Cued Spindles (#)  -0.114 0.57 

Sos (#)  0.016 0.94 

          Slow Oscillations (Sos); Number (#). N = 27 819 

  820 
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Figure 1. Experimental design. A) Before sleep, participants learned to pair each image (a 830 

face or a landscape) with an SVRT problem and its associated sound (Problem-Image 831 

Association task). Next, they were trained and tested on the SVRT task, where they had to 832 

decide whether or not the test image followed the same rule as the reference image for any 833 

given problem, as shown in the upper panel in A. For example, in the problem shown here 834 

the rule is: each image contains two identical shapes(Fleuret et al., 2011), see Extended 835 

Data Figure 1-1 for another example. Immediately before sleep, participants were probed on 836 

their ability to recall which sound (speaker symbols) had been paired to which SVRT 837 

problem (Problem-Sound Association task). TMR was applied to different problems during 838 

REM and SWS during the night (see B). Finally, participants were retested on the SVRT 839 

both next morning (post-sleep day 1) and a week later (post-sleep day 7).  B) Representative 840 

hypnogram depicting the TMR protocol. During TMR in the night, sounds associated with 841 

four problems were replayed in SWS and sounds associated with four other problems were 842 

replayed in REM. Control sounds that had not been associated with any problems (new 843 

sounds) but instead served as controls for auditory responses were also replayed in both 844 

sleep stages. Cueing started with the first instance of SWS and REM and terminated once 845 

control and experimental sounds had been presented 28 times each (twice per loop, 14 846 

loops). 847 

 848 

Extended Data Figure 1-1 SVRT stimuli examples. Sample images from problem 1 (top 849 

panel) and problem 2 (bottom panel), that either follow the rule (on the left) or break the rule 850 

(on the right)(Fleuret et al., 2011). For problem 1 the rule is that: each picture contains two 851 

identical shapes. The squiggly lines were introduced as distractors (not a part of the rule), to 852 

increase the difficulty level. For problem 2 the rule is each image contains two shapes of 853 

different sizes, the smaller one inside the larger one, roughly centred. The black filling of the 854 

smaller shaped was added in some images as a distractor to increase the difficulty level. 855 

Other problems had rules relating, for example, to the number of identical shapes (pairs or 856 
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triplets), their position (mirrored or translated, touching or not touching, inside or outside one 857 

another, aligned or not aligned, etc.) or their arrangement (odd shape in the middle, bigger 858 

shape at the edge, etc.). 859 

 860 
 861 
Figure 2 –TMR in REM improves rule abstraction.  862 

A) SVRT accuracy change overnight (post-sleep day 1 – pre-sleep) and across the week 863 

(post-sleep day 7 – post-sleep day 1) is plotted for each sleep stage (SWS and REM) and 864 

cueing condition (non-cued and cued). A repeated measures ANOVA revealed a significant 865 

sleep stage*cueing condition interaction (p = 0.013) and a simple main-effects analysis 866 

showed better performance for problems cued in REM, as compared to problems cued in 867 

SWS (p = 0.044).  See Extended Data Figure 2-1. B) In SWS problems (left), there was no 868 

difference between cued and non-cued accuracy in any individual session (p > 0.3).  In REM 869 

problems (right) there was no difference between cued and non-cued conditions on day 1 (p 870 

= 0.550), but at day 7, accuracy was higher on cued compared to non-cued problems (p = 871 

0.002).  Mean and SEM are depicted, see also Extended Data Figure 2-2. See Extended 872 

Data Figure 2-3 for numbers of trials. 873 

 874 

Extended Data Figure 2-1a – SVRT accuracy at baseline (pre-sleep). ANOVA with 875 

Cueing (cued/non-cued) and Sleep stage (REM/SWS) as factors.  876 

Extended Data Figure 2-1b – TMR benefit. Repeated measures ANOVA on retention 877 

interval (overnight/week) and Cueing (cued/non-cued) and Sleep stages (SWS/REM). 878 

Shaded areas highlight significant results. Overnight benefit is calculated as the difference 879 

between Post-sleep day 1 and pre sleep and the week performance is calculated as the 880 

difference between both post sleep sessions (Day 7 – Day 1). 881 

Extended Data Figure 2-1c – TMR benefit post-hoc analysis. Paired t-test for REM 882 

conditions to understand the differences between cued and non-cued problems per session 883 

(Post-sleep Day1 and Day 7) and also the cueing benefit overnight (difference between Post 884 
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sleep Day1 and Pre-sleep), a week after (Post-sleep Day7 vs. Pre-sleep) and also the 885 

difference between Day 7 and Pre-sleep.  886 

Extended Data Figure 2-2:  Accuracy on the SVRT per group and session  887 

Extended Data Figure 2-3. Number of trials used per participant and condition 888 

 889 

 890 

Figure 3 – Event-related Potentials at Cz during Targeted Memory Reactivation.  Cz 891 

ERPs in SWS (blue top panel) and REM (red bottom panel) elicited by control (new) and 892 

experimental (task-related) sounds. The vertical dashed line at 0 indicates cue onset (200ms 893 

long). A cluster analysis revealed a significant difference between ERPs in response to 894 

control and experimental sound in REM between 228ms and 400ms (cluster corrected *p 895 

=0.048). Data are depicted as mean ± SEM (n = 26). 896 

 897 

Figure 4 – Spatial distribution of channels with a statistically significant difference 898 

between experimental and control sounds during REM. Data is displayed as the 899 

averaged difference (n=26) between experimental and control sounds ERPs in 20ms time 900 

bins. * Indicates the position of a significant channel.  The time-frequency cluster 901 

permutation analysis for these data is shown in Extended Data Figure 4-1. 902 

Extended Data Figure 4-1. Time-frequency cluster permutation analysis. When more than 903 

one cluster is present, the lowest p-value was selected. When no clusters are found is indi-904 

cated by (-). No statistically significant clusters were found.   905 

Figure 5:  Spindles and slow oscillations evoked by TMR. Top row shows the average of 906 

differences in spindles following experimental and control TMR cues, while the bottom line 907 

shows the same for slow oscillations. Durations are shown on the left and count is shown on 908 

the right. Blue colours indicating higher spindle duration/count for control than experimental. 909 

Significant clusters are highlighted with a white star.  910 












