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Casimir-Polder interactions of S-state Rydberg atoms with graphene
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We investigate the thermal Casimir-Polder (CP) potential of 87Rb atoms in Rydberg nS-states near single-
and double-layer graphene, and briefly look into the lifetimes near graphene-hexagonal boron nitride (hBN)
multilayered structures. The dependence of the CP potential on parameters such as atom-surface distance,
temperature, principal quantum number n, and graphene Fermi energy are explored. Through large-scale
numerical simulations, we show that, in the nonretarded regime, the CP potential is dominated by the nonresonant
and evanescent-wave terms which are monotonic, and that, in the retarded regime, the CP potential exhibits
spatial oscillations. We identify that the most important contributions to the resonant component of the CP
potential come from the nS-nP and nS-(n − 1)P transitions. Scaling of the CP potential as a function of the
principal quantum number and temperature is obtained. A heterostructure comprising hexagonal boron nitride
layers sandwiched between two graphene layers is also studied. When the boron nitride layer is sufficiently
thin, the CP potential can be weakened by changing the Fermi energy of the top graphene layer. Our study
provides insights for understanding and controlling CP potentials experienced by Rydberg atoms near single-
and multilayer graphene-based van der Waals heterostructures.
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I. INTRODUCTION

The development of ultracold-atom physics as platforms
for chip-based matter wave manipulation [1], high-accuracy
time-keeping systems [2,3], quantum computing, and sim-
ulation [4–7] is an active research field. Understanding
atom-surface interactions is essential for achieving near-
surface atom trapping, as required for the operation of
microfabricated atom chips. There is a substantial body of
research on trapping ground-state atoms in metallic-wire-
based atom chips [8–14] as well as on the interactions of
ground-state atoms with various structures of metallic and
perfect conductors [15–17]. A conclusive review of atom-
surface physics can be found in Ref. [18]. It is known that
metallic-wire-based atom chips generate spatially rough trap-
ping potential due to imperfections in the wires [19–23], high
Johnson-noise currents, and strong Casimir-Polder (CP) at-
tractive interactions between the atoms and the chip, causing,
for example, tunneling losses [18,24,25]. In order to enhance
the functionality of such atom chips, different materials are
needed for the current-carrying wires. Recent studies have
shown that two-dimensional (2D) materials could offer de-
sirable properties for overcoming the limitations of using
metallic conductors as current-carrying wires [20,26].

There is also enduring interest in the technological applica-
tions of 2D materials, including graphene, for display devices
[27], flexible sensors [28–30], photo detectors [31–35],
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vertical field-effect transistors [36,37], and atom chips [26].
New properties and methods of cooling or patterning 2D ma-
terials have been studied [38–46]. As current-carrying wires
in atom chips, graphene has desirable electronic properties:
it has a very low density of electronic states, high carrier
mobility, and a linear band structure with zero band gap in
the vicinity of the Dirac points [47], which leads to John-
son noise and CP attraction far below those typically found
for metallic conductors on bulk substrates [19,20,26,48]. Im-
portantly, smooth trapping potentials can be obtained using
graphene. For example, graphene made from a helium-ion
beam lithography technique has edge roughness of order 5 nm
[21], while the surface roughness of graphene encapsulated
in hexagonal boron nitride (hBN) is on the order of 12 pm
[49]. The coupling of atoms with graphene’s surface plasmons
might be tuneable via changing the Fermi energy of graphene
as the plasmon frequency is proportional to the fourth root of
its electronic density [43,50–53]. Previous studies have shown
that this could be used to tailor the CP interactions of atoms
trapped near graphene [44,54–63].

In recent years, the study of interactions between Ryd-
berg atoms and surfaces has attracted much attention. Such
studies could help us understand the atom-surface interac-
tion for highly excited atomic states, and open new quantum
technological applications [64], for example, by integrating
Rydberg atoms with condensed matter quantum materials like
graphene. Rydberg atoms are highly excited atoms with a
large principal quantum number, i.e., n � 1. The size of Ry-
dberg atoms is proportional to n2, and can be a micron when
n ∼ 90, resulting in weakly bound valence electrons and high
electric polarizability, which in turn causes strong interactions
with nearby surfaces [65]. The lifetime associated with spon-
taneous emission, i.e., at 0 K, is proportional to n3 and has
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been reported to be a few hundred microseconds [66]. The
long lifetime of Rydberg states allows us to exploit Rydberg
atoms for quantum computing and simulation [67,68]. Atomic
transition frequencies between adjacent Rydberg states are
typically in the microwave-terahertz regions, which are in the
same window as thermal energies at room temperature; Ryd-
berg atoms interact resonantly with thermal photons, leading
to enhanced CP interactions compared to ground-state atoms
[69]. Strong coupling between Rydberg atoms and surface
plasmon polaritons or surface phonon polaritons have also
been studied both experimentally and theoretically [70–73].
There have been previous studies of the CP interactions of
excited two-level or realistic Rydberg atoms near mirrors,
metallic and dielectric surfaces, and metamaterials [74–94], as
well as investigations of the CP interactions of a laser-driven
atom and a surface [95]. The CP interactions between excited
molecules or ions and metallic or dielectric bodies have also
been studied [82,96,97]. However, CP interactions between
Rydberg atoms and 2D nanostructures such as graphene have
not been fully explored. To the best of our knowledge, the
Rydberg atom-graphene interaction has only been studied in
Ref. [98], which focuses on the zero-temperature limit and
shows that graphene can shield the CP force emanating from
a metallic substrate when graphene-substrate distances are
larger than 4 µm.

Integrating Rydberg atoms with graphene could lead to
promising quantum devices [99–101]. In this work, we focus
on investigating the CP interactions of a 87Rb atom in Rydberg
nS states with graphene. Two notable features, which are not
found in ground-state atoms in the zero-temperature limit,
emerge: stimulated atomic transitions due to thermal photons
give rise to resonant interactions, which can be further distin-
guished into attractive and repulsive potentials, and the large
sizes of Rydberg atoms give rise to quadrupole interactions at
short atom-surface distances.

The paper is organized as follows. In Sec. II, we provide
the quantum field theoretical description of the CP potential
for atoms in Rydberg states and a brief description of Ry-
dberg atoms. In Sec. III, we first compare the CP potential
of a 87Rb atom in Rydberg states near a suspended single
layer of graphene whose conductivity is described by the
local Kubo model, and a 1-µm-thick gold sheet whose optical
properties are described by the Drude model. We also consider
another model of graphene, with the results presented, which
includes nonlocal effects such as the existence of graphene
surface plasmons. In Sec. IV, we present detailed calcula-
tions of the CP potential of single-layer graphene, which
allow us to see various characteristics of Rydberg atoms
near graphene that are different from those of ground-state
atoms, especially effects arising from resonant interactions.
In Sec. V, we find simple fitted empirical functions, which
capture the scaling of the CP potential with principal quantum
number and the temperature dependence of the interaction.
Finally, in Sec. VI, we extend our study to graphene-based
van der Waals heterostructures comprising two layers of
graphene separated by air or hBN. This allows us to change
the spacing between the graphene layers and change their
chemical potentials in order to tune the interactions between
the trapped atoms and the heterostructures. We conclude in
Sec. VIII.

II. CASIMIR-POLDER POTENTIAL NEAR
PLANAR STRUCTURES

In this section, we will present a theoretical description
of the CP energy shift of highly excited Rydberg atoms near
planar layered structures. Considering only ultracold atoms in
Bose-Einstein condensates allows us to disregard the velocity-
dependent CP potential since the atoms are not moving at
a relativistic speed [102]. Further details of the formalism
used can be found in, for example, Refs. [87,103–105]. The
CP potential arises from the coupling between an atom and
the surrounding body-modified electromagnetic radiation, de-
scribed by the coupling Hamiltonian ĤAF. The interaction
Hamiltonian in the case of a Rydberg atom can be split into
dipole interactions (first term) and quadrupole interactions
(second term):

ĤAF = −d̂ · Ê(r0) − Q̂ • [∇ ⊗ Ê(r0)], (1)

where d̂ and Q̂ are the atomic dipole moment and quadrupole
moment operators, respectively, with Ê(r0) being the elec-
tromagnetic field at the position of the atom, r0, while •
denotes the Frobenius inner product and ⊗ the tensor prod-
uct. Following the results in Ref. [87], which showed that
the contribution from the quadrupole interactions was about
two orders of magnitude smaller than that from the dipole
interactions for the 32S and 43S states, in this paper, we will
neglect the quadrupole term in the following calculations. The
energy-level shift up to the second order, for an atom in state
|u〉 and the body-modified electromagnetic field in state |v〉, is
[87]

δEu = 〈u, v| ĤAF |u, v〉 +
∑

u′,v′ �=u,v

|〈u, v| ĤAF |u′, v′〉|2
Eu,v − Eu′,v′

, (2)

where Eu,v are the unperturbed energy eigenvalues of the
atom-field system: u and v are the quantum numbers of the
Rydberg state and the photon field, respectively. This energy
shift δEu can be expressed in terms of the Green’s tensor,
which can be decomposed into bulk and scattering parts. It
follows that the energy shift can be split into two components:
the position-independent self-energy (associated with the bulk
part of the Green’s tensor) similar to the Lamb shift and the
position-dependent component (associated with the scattering
part of the Green’s tensor), namely, the CP potential.

For an atom, at position r0 = (x0, y0, z0) in the planar
system shown in Fig. 1, in an incoherent superposition of
internal-energy eigenstates |u〉 (specified by the principal
quantum number n, the orbital angular momentum quantum
number l , the total angular momentum quantum number j,
and the z component of the total angular momentum quantum
number m) with probabilities pu as described by a density
matrix

σ̂ =
∑

u

pu |u〉 〈u| , (3)

the total thermal CP potential at an environment temperature
T can be written as [103,105]

UCP(r0) =
∑

u

puUu(r0),

Uu(r0) = U nres
u (r0) + U res

u (r0). (4)
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FIG. 1. Schematic diagram of a b-layer system, where each layer
is designated by index q = 1, 2, ..., b and is characterized by thick-
ness tq, permeability μq, and permittivity εq. An atom (red circle) is
located at r0 = (x0, y0, z0) in layer 1, which is vacuum. Note that, in
the Green’s-function calculations, all layers are infinitely extended in
the x–y plane, and that t1 and tb are also infinite.

Here, Uu(r0) is the position-dependent part of δEu, U nres
u (r0) is

the nonresonant potential due to virtual photons, and U res
u (r0)

is the resonant potential due to real thermal photons.
For the potentials due to dipole interactions, the nonreso-

nant term is given by [104]

U nres
u (r0) = μ0kBT

∞∑
a=0

′ξ 2
a [αu(iξa) • G(s)(r0, r0, iξa)], (5)

whereas the resonant term is given by

U res
u (r0) = − μ0

∑
k<u

[N (ωuk ) + 1]ω2
uk

× (duk ⊗ dku) • Re[G(s)(r0, r0, ωuk )]

+ μ0

∑
k>u

N (ωku)ω2
ku(duk ⊗ dku) • Re

× [G(s)(r0, r0, ωku)], (6)

where μ0 is the permeability of free space, kB is the Boltz-
mann constant, G(s) is the scattering Green’s tensor (see
Appendix A for details), and duk = 〈u| d̂ |k〉 is the dipole
matrix element. The atomic dipole polarizability as a function
of radiation frequency ω is defined as

αu(ω) = lim
ε→0+

1

h̄

∑
k �=u

(
duk ⊗ dku

ωku − ω − iε
+ dku ⊗ duk

ωku + ω + iε

)
,

(7)

with ωku = (Ek − Eu)/h̄ denoting the atomic transition an-
gular frequencies. The purely imaginary frequencies ξa =
2πkBTa/h̄, a = 0, 1, 2, ... are the Matsubara frequencies and
N (ω) = 1/[eh̄ω/(kBT ) − 1] is the average thermal photon num-
ber in accordance with Bose-Einstein statistics. Following the
separation of the scattering Green’s tensor into propagating-

TABLE I. Quantum defects for S, P, and D states of Rb atoms
[110].

State δ0 δ2

nS1/2 3.1311804 0.1784
nP1/2 2.6548849 0.2900
nP3/2 2.6416737 0.2950
nD3/2 1.34809171 −0.60286
nD5/2 1.34646572 −0.59600

wave and evanescent-wave components, the resonant term of
the CP potential can also be split into two components as well.

In our calculations, the binding energy of the Rydberg
series is given by En,l, j = −Ry/n∗2 [106], where Ry is
the Rydberg energy and n∗ = n − δn,l, j . Here, δn,l, j = δ0 +
δ2/(n − δ0)2 is the quantum defect [107] whose values for
87Rb are tabulated in Table I.

The electron wave function at position r with respect to
the ion core, ψ (r) = ψn,l, j,m(r), for the valence electron is
described by the Schrödinger equation[

− h̄2

2μ
∇2 − e2

4πε0r

]
ψ (r) = [En,l, j − V (r)]ψ (r), (8)

where h̄ is the reduced Planck’s constant, ε0 is the permittivity
of free space, e is the electronic charge, μ = Mme/(M + me)
is the reduced mass with M being the mass of ion core, me is
the electronic mass, r = |r|, and V (r) is a model potential as
given in Ref. [108], which accounts for the finite size of the
core at short range. Equation (8) can be separated into angular
and radial equations which yield, in standard notation, spher-
ical harmonics Yl,ml (θ, φ) and radial wave functions Rn,l, j (r)
as solutions, respectively. In this work, the radial wave func-
tions are calculated numerically using the tool provided in
Ref. [108] through Numerov’s method [109].

III. COMPARISONS BETWEEN MATERIAL MODELS

In this section, we will investigate how different conductiv-
ity models affect the CP potential. For graphene, we take the
Fermi energy and electron relaxation rate of graphene to be
EF = 0.1 eV and γ = 4 × 1012 s−1, respectively, correspond-
ing to typical values found both theoretically [111–114] and
in experiments [50], unless otherwise explicitly stated.

A. Graphene vs gold

We first consider a free-standing graphene monolayer,
which, from Fig. 1, can be modeled as a two-layer system,
in which the monolayer graphene is located at the interface
between layer 1 and layer 2. Its conductivity is modeled
by the local-conductivity formula and is not a function of
wave vector of impinging radiations (see Appendix B for the
description of the model). Note that throughout this paper,
we will refer to the distance between an atomic core and a
surface as the atom-surface distance. In Fig. 2, we consider
the CP potential in the nonretarded regime by choosing the
atom-surface distance to be z0 = 2 µm. For comparison, we
also show the CP potential for an atom near a 1-µm-thick
free-standing gold sheet in the same figure. The CP potential
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FIG. 2. CP potential energy calculated at z0 = 2 µm versus prin-
cipal quantum numbers for an 87Rb atom near a 1-µm-thick gold
sheet (dashed curve) and a suspended single layer of graphene (solid
curve). The CP potential of graphene is more attractive since its
resonant part is not as repulsive as that of gold. The temperature is
300 K.

of graphene is more attractive than that of gold. After investi-
gating the nonresonant and resonant parts separately, we have
found that the resonant part of graphene is not so repulsive as
that of gold.

B. Two models for monolayer graphene conductivity

When a quantum emitter such as a Rydberg atom is close
enough to a conducting surface, the in-plane wave vectors
associated with evanescent waves of the emitter can couple
to the surface plasmon polaritons (SPP). Therefore, we shall
consider full nonlocal conductivity, which is a function of
both frequency and wave vector of impinging radiations; more
details can be found in Appendix B and in, for example,
Ref. [113]. The comparison of the CP potentials for two
Rydberg states in the linear-log scale between the local con-
ductivity and the full nonlocal conductivity is shown in Fig. 3.
Apparently, we cannot see the differences between the two
models; they give consistent results in terms of magnitudes
and spatial dependence. Due to the excellent agreement be-
tween the two models, we will utilize the Kubo model for

FIG. 3. CP potential of an 87Rb atom from a graphene monolayer
modeled by full nonlocal conductivity (dashed curves) and Kubo
conductivity (solid curves). The curves of both models overlap in
this figure, but the potentials from the full nonlocal model are slightly
weaker (∼0.2%). The temperature is T = 10 K.

TABLE II. Three pairs of limits and their associated conditions
[104].

Limit Condition z T

Retarded z0ω−/c � 1 zω  z0 Tz  Tω

Nonretarded z0ω+/c  1 z0  zω Tω  Tz

Spectroscopic low-T kBT  h̄ω− zω  zT T  Tω

Spectroscopic high-T kBT � h̄ω+ zT  zω Tω  T
Geometric low-T kBT  h̄c/z0 z0  zT T  Tz

Geometric high-T kBT � h̄c/z0 zT  z0 Tz  T

shorter computational times in the following sections, unless
otherwise explicitly stated.

IV. CHARACTERISTICS OF THE CP POTENTIAL

In this section, we will explore the dependence of the CP
potential on atom-surface distances, temperature, and Ryd-
berg states. Since the resonant part of the CP potential in
Rydberg atoms is enhanced by thermal photons and is sig-
nificantly larger than in ground-state atoms, we will also
investigate in detail the contributions from individual atomic
transitions. This will provide insights into the characteristics
of the CP potential for Rydberg atoms.

A. Characteristic quantities

There are three pairs of characteristic quantities, of which
three are related to distances and the others to temperatures.
The first pair is the geometric distance z0 and the geometric
temperature, Tz = h̄c/(z0kB), which represents the thermal
energy of an electromagnetic wave whose wavelength is of
order z0 (c is the speed of light in vacuum). The second
pair of parameters is the spectroscopic length, zω = c/ω±,
which is the measure of the wavelength of the maximum
or minimum of the relevant atomic transition frequencies
ω± and the spectroscopic temperature Tω = h̄ω±/kB. The
last pair is the thermal length zT = h̄c/(kBT ) and the en-
vironment temperature T . For the two temperatures, 10 K
and 300 K, the thermal lengths are zT = 229 µm and zT =
7.6 µm, respectively. Comparing the geometric quantities
with the spectroscopic quantities allows us to determine the
retarded and nonretarded limits, and comparing the spectro-
scopic quantities with the thermal quantities allows us to
determine the spectroscopic high- and low-temperature limits.
Finally, comparing the geometric quantities with the thermal
quantities allows us to determine the geometric high- and
low-temperature limits as listed in Table II. It is impossible
to simultaneously realize the retarded, spectroscopic high-
temperature, and geometric low-temperature limit; the same is
true for the nonretarded, spectroscopic low-temperature, and
geometric high-temperature limit.

B. Scaling relations

Since the main focus of this work is on Rydberg atoms, we
will evaluate the scaling of the CP potential with respect to the
principal quantum number n in the nonretarded limit. After
performing numerical calculations for the related quantities,
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TABLE III. Scaling of the quantities associated with the CP
potential [115,116].

Quantity Power

Polarizability αu n7

Atomic transition frequencies ωuk n−3

Thermal photon number N (ωuk ) n3

Dipole moment duk n2

Green’s tensor G(s)(ωuk ) n6

we find that the atomic polarizability scales as n7, atomic
transition frequencies n−3, thermal photon number n3, dipole
moment n2, and Green’s tensor n6. These results are summa-
rized in Table III. The nonresonant term in the spectroscopic
high-temperature limit [as shown in Eq. (5)] follows the scal-
ing of the polarizability, while in the opposite low-temperature
limit, the Matsubara sum becomes so densely spaced that the
expression is well approximated by the zero-temperature case,
which scales as n4. The resonant term has four quantities that
scale with n and their combined contribution leads to a sum
of two terms: the temperature-dependent term follows an n7

power law, and the other, which is temperature independent,
follows an n4 power law. The scaling with n of the total CP
potential, U nres

u + U res
u , will be determined by the temperature.

These results for graphene are different from the perfectly
conducting plate case, in which the total CP potential is in-
variant across the entire temperature scale [104].

C. CP variations with atom-surface distances

Since the CP potential arises from the interaction between
atoms and electromagnetic waves, we can expect that the
behavior of the CP potential in space can be split into the
retarded and nonretarded regimes. Mathematically, the spatial
variation of the CP potential is determined by the Green’s
function. At small atom-surface distances the interactions
with the evanescent waves will dominate, and at large atom-
surface distances the interactions with propagating waves will
dominate. The Green’s function scales with a 1/z3

0 power law
in the nonretarded regime, and hence the same scaling is found
in the CP potential.

As an example, Fig. 4(a) shows the variation of the
CP potential of the 15S state calculated versus z0. Note
that the wavelength of the 15S-14P transition, which is the
dominant transition in this case, is λ15S-14P ≈ 139 µm, and
that the two characteristic lengths are zω ≈ 22 µm and zT ≈
229 µm. The spatial variation of the nonresonant contribu-
tion is monotonic, similar to that of ground-state atoms. The
inset reveals the dominance of the nonresonant contribution
together with the resonant contribution due to evanescent
waves at distances much smaller than zω (below 6 µm). For
larger atom-surface separations, up to about zω, the posi-
tive contribution from the resonant term (evanescent wave)
dominates. From z0 ∼ λ15S-14P/2 onward, the resonant term
due to the propagating-wave interactions comes into play and
the CP potential oscillates around zero. This is considered
as the retarded regime, in which the CP potential exhibits
oscillatory behavior determined by the dominant atomic tran-
sition frequencies: the wavelength of the spatial oscillation

FIG. 4. (a) The total CP potential (solid black curves), the non-
resonant contribution (dashed red curve), the resonant contribution
due to evanescent waves (diamond-marked curve), and the resonant
contribution due to propagating waves (asterisk-marked curve) of
87Rb in the 15S state versus z0 at T = 10 K. The characteristic
wavelength λCP is measured from the first full cycle appeared after
the atom-surface distance exceeds half the wavelength of the nearest
downward atomic transition (15S-14P transition in this case). The
parameters are zω = 21.6 µm and zT = 229 µm. (b) Characteristic
wavelengths versus n for T = 10 K and T = 300 K. Also shown are
the half wavelengths of the nearest downward (dashed green curve)
and upward (dashed black curve) atomic transitions calculated versus
principal quantum numbers. An increase in temperature pushes λCP

away from λnS-(n−1)P/2 due to an increase in thermal photons (see
discussion in Sec. IV D).

of the CP potential λCP is roughly half the wavelength of
the dominant transition frequencies, λnS-nP and λnS-(n−1)P, as
shown in Fig. 4(b). The oscillation starts when the atom-
surface distance is approximately half the aforementioned
atomic transition wavelengths. For low − n states, the domi-
nant transition frequencies are high, and the CP potential starts
to oscillate at relatively short atom-surface distances around
100 µm; for high-n states, the dominant transition frequencies
are low with corresponding wavelengths of a few millimeters.

In order to quantify how each state |k〉 in Eq. (6) contributes
to the total resonant CP potential, we consider a relative
contribution Rres, which is defined as the absolute value of
each term (specified by k) divided by the summation of the
absolute value of all terms in Eq. (6). The relative contribu-
tions of the four adjacent energy states of the same system
at z0 = 2 µm, 10 µm, and 69 µm together with Rres for the
13P and 14P states are shown versus atom-surface distances
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FIG. 5. Relative contributions of the four adjacent energy states
to the resonant term for an 87Rb atom in the 15S state (T = 10 K,
zω ≈ 22 µm) at z0 = (a) 2 µm, (b) 10 µm, and (c) 69 µm; (d) Rres

versus atom-surface distances. Wavy-faced red and solid green bars
indicate negative and positive contributions, respectively. We can see
that the signs of Rres for each transition change with distance, and at
the distance of λCP, the positive and negative contributions from both
the nonresonant and resonant terms cancel each other out, resulting
in an overall zero potential as shown in Fig. 4. Note that, at this
temperature, the contribution from the 15S-15P upward transition is
very small due to the lack of thermal photons.

in Fig. 5. Since we know that the nonresonant potential is
monotonic, the underlying mechanics of the oscillations of
the CP potential must originate from the resonant term. The
signs of the individual contributions alter with distances and
at some points the positive and negative contributions cancel
out each other, resulting in a negligible potential. We can
also see that zω  zT , indicating that this is the spectroscopic
low-temperature regime. As a result, the contributions from
all upward atomic transitions are negligible due to the lack of
thermal photons.

D. Temperature and Rydberg state dependence

Thermal effects on the CP potential of ground-state atoms
and molecules depend on the dominant atomic transition
frequencies, which determine the nonretarded and retarded
types: the near-surface (order of µm) CP potentials of
molecules are likely to be nonretarded and hence insensitive
to temperature as the dominant transition frequencies are low
(∼1 × 1013 rad/s), while the CP potentials for ground-state
atoms are strongly retarded and thus greatly affected by tem-
perature since the dominant transition frequencies are high
(∼1 × 1015 rad/s) [69,117,118].

The conductivity of graphene depends on temperature.
There is an explicit linear temperature dependence in the non-
resonant potential—see Eq. (5). The temperature dependence
for the resonant term, Eq. (6), is embedded in the thermal pho-
ton distribution function, where N (ωuk ) ≈ kBT/h̄ωuk as long
as h̄ωuk/kBT  1, i.e., the spectroscopic high-temperature
limit. On the other hand, there are five quantities that depend
on the principal quantum number as mentioned in Sec. IV B.

FIG. 6. (a) Variations of the total CP potential (solid black line),
nonresonant CP potential (dotted blue curve), and resonant CP poten-
tial (dashed red curve) with principal quantum number, calculated at
fixed distance z0 = 10 µm. The characteristic temperatures are T =
10 K with Tz = 229 K, which indicate that the systems are in the ge-
ometric low-temperature limit. The nonresonant term is proportional
to n7, while the total CP potential is approximately proportional to n4.
(b) The total CP potential versus temperature, calculated for the 40S
state at z0 = 5 µm (Tz = 458 K and Tω ≈ 3 K: nonretarded regime).
The CP potential is proportional to T .

Figure 6 shows the variations of the CP potential with (a) prin-
cipal quantum number, calculated at z0 = 10 µm (T = 10 K,
Tz = 229 K: geometric low-temperature limit), and (b) tem-
perature, calculated for the 40S state at z0 = 5 µm (Tz = 458 K
and Tω ≈ 3 K: nonretarded limit). In Fig. 6(a), the nonreso-
nant potential scales with n7. Adding the resonant potential,
the total CP potential approximately obeys an n4 power law.
In Fig. 6(b), we can see that the CP potential changes linearly
with temperature. The reason is that the dominant transi-
tion energies of Rydberg atoms between two nearest energy
states, (n − 1)P and nP, are small compared to the thermal
energy kBT , which makes the condition h̄ωuk/kBT  1 so the
average photon number is reduced to N (ωuk ) ≈ kBT/h̄ωuk ,
confirming a linear relation with T as shown in Fig. 6(b). Note
that in this case, according to Eqs. (5) and (6) and Table III,
the total CP potential is now proportional to n7.

We now consider how the resonant contributions change
with the principal quantum number. In Fig. 7, we plot the
contributions of the intermediate states to the resonant parts of
the CP potential in the 25S, 30S, 35S, 40S, and 45S states for
the environment temperature T = 10 K. Note that the systems
are in the nonretarded limit, and the spectroscopic temperature
for the 25S state is approximately 14 K, slightly higher than
the environment temperature, whereas Tω ≈ 2 K for the 45S
state, indicating the spectroscopic high-temperature limit. We
can see that the contributions from the intermediate states |k〉
to the resonant parts also change when the principal quantum
number of the target state |u〉 changes. As shown in Fig. 7,
the (downward-transition) contributions from the intermedi-
ate states with energy levels below the target states [below
and including (n − 1)P state] get smaller as n increases and
vice versa for the intermediate states with higher energies
(i.e., upward-transition contributions), which is captured in
Fig. 7(f). In other words, the system approaches the spectro-
scopic high-temperature limit as n increases, resulting in an
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FIG. 7. The relative contributions of adjacent states to the reso-
nant parts of the CP potential at 5 µm for an 87Rb atom in [from (a) to
(e), respectively] the 25S, 30S, 35S, 40S, and 45S states. Wavy-faced
and solid bars indicate negative and positive contributions, respec-
tively. In this case, Tω ≈ 14 K for the 25S state and ≈2 K for the 45S
state, and Tz = 458 K, indicating the nonretarded limit. Comparing
the bar heights among the (n − 1)P states and among the nP states,
we can see that the contributions from states with energy levels below
the target states get smaller as n increases and vice versa for the
higher-energy states as shown in (f). The temperature is T = 10 K.

increase in the repulsive resonant potential. This behavior of
the resonant parts will affect the scaling of the CP potential
with n and also enhances the temperature dependence of the
upward-transition contributions, as we shall see in more detail
in Sec. V.

We now proceed to look in detail at how the resonant
contributions from the two nearest energy states change with
temperature. For the 20S state, there is a slight increase in the
positive contribution from the 20P state as T increases, while
the opposite happens to the 19P state, as shown in Fig. 8(a),
resulting in the evanescent-wave potential being more posi-
tive as T increases. Figure 8(b) shows the nonresonant and
resonant contributions due to evanescent and propagating
waves. The attractive contribution from the nonresonant part
is stronger than the repulsive resonant potential.

E. Effects of changing Fermi energy

In this section, we will investigate how the CP potential
of single-layer graphene depends on its Fermi energy, which
influences the conductivity of the graphene sheet and, hence,
its reflection coefficients and underlying Green’s tensor. We
expect stronger nonresonant contributions to the CP poten-
tial as we increase the Fermi energy since we are adding
more conduction electrons. Regarding the resonant part, the

FIG. 8. (a) Relative resonant contributions from the 19P and
20P states; (b) the nonresonant (solid black line), evanescent-wave
(dashed line), and propagating-wave (cross-marked line) components
of the CP potential for an atom in the 20S state at 5 µm (Tω = 35 K).
(a) shows that the positive contribution from the 20P state increases,
while the negative contribution from the 19P state decreases as T
increases, resulting in a more positive evanescent-wave potential as
T increases, as shown in (b).

dominant atomic transition frequencies of the atomic states
usually considered in this work are in the microwave-terahertz
spectral regions, which are small compared to the typical
Fermi energy. Consequently, as discussed in Appendix B, we
expect that graphene’s optical conductivity will be dominated
by the intraband-process term, which is almost linear in EF

and is a few orders of magnitude higher than the universal
AC conductivity of graphene σ0, as shown by solid lines in
Fig. 9. However, the CP potential does not vary linearly with
the Fermi energy as we can see in Fig. 10, where we show the
CP potential calculated at (a) z0 = 2 µm and (b) z0 = 10 µm
in the 30S state. In Fig. 10(a), at T = 100 K, the potential
peaks at EF = 0 eV, then decreases and plateaus as the Fermi
energy deviates from 0 eV. This is not the case for T = 200 K

FIG. 9. Real and imaginary parts of the optical conductivity of
graphene (see Appendix B), calculated at ω = 9.88 × 1011 rads−1,
which is the atomic transition frequency between the 30S and 30P
state for q = 0 (solid black curves), q = 0.01kF (dashed green
curves), and q = 0.05kF (dotted red curves). The Kubo (q = 0) con-
ductivity increases almost linearly as the Fermi energy increases. The
temperature is T = 0 K.
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FIG. 10. CP potential for a 87Rb atom in the 30S state calculated
versus Fermi energy EF at atom-surface distances (a) z0 = 2 µm
and (b) z0 = 10 µm for three different temperatures: 100 K (dashed-
dotted curve), 200 K (dashed curve), and 300 K (solid curve).

and T = 300 K: the potential then gets more attractive as
the doping level increases. In Fig. 10(b), all three curves
exhibit similar behaviors: the potential is the most attractive at
EF = 0 eV.

V. FITTED EMPIRICAL FUNCTIONS

In this section, we will fit empirical functions that follow
the power laws discussed in the preceding sections. Let us
begin by writing the CP potential in the form

UCP = −Cα

zα
0

, (9)

where Cα is a positive dispersion coefficient and α is a scaling
power to be evaluated.

A. Low-temperature limit

We first consider the nonretarded, spectroscopic low-
temperature limit in order to determine the scaling relation
of the CP potential that largely depends on the atom-surface
separation and on the principal quantum number. Figure 11
shows the CP potential at T = 10 K for (a) a 1-μm-thick
gold sheet, (b) graphene modeled by the Kubo conductivity,
and (c) graphene modeled by the full nonlocal conductivity.
Figure 11(d) shows the dispersion coefficients C3 versus the
principal quantum numbers. From the slopes of the CP poten-
tial in Figs. 11(a)–11(c), α is determined to be 3, and it follows
from the slopes of C3 in Fig. 11(d) that C3 ∝ n4 approximately.
To be more precise, assuming C3 = q1n4 + q2n3 (q1 and q2 are
coefficients), we find, for the gold sheet,

C3

(MHz µm3)
= (1.936 × 10−4)n4 − (1.893 × 10−3)n3,

(10)

for graphene modeled by the Kubo conductivity,

C3

(MHz µm3)
= (1.923 × 10−4)n4 − (1.840 × 10−3)n3,

(11)

FIG. 11. (a)–(c) CP potential calculated, versus atom-surface
separation, and plotted on a log-log scale for a 1-µm-thick gold sheet,
graphene modeled by the Kubo conductivity, and graphene modeled
by the full nonlocal conductivity, respectively. (d) Relations between
the dispersion coefficients C3 [obtained from Eq. (9)] and the princi-
pal quantum numbers of the atomic states considered, calculated at
z0 = 10 µm.

and for graphene modeled by the full nonlocal model,

C3

(MHz µm3)
= (1.924 × 10−4)n4 − (1.848 × 10−3)n3.

(12)

Alternatively, if we assume that C3 is proportional to a
single power of n, we find, for the gold sheet,

C3

(MHz µm3)
= (3.394 × 10−5)n4.397, (13)

for graphene modeled by the Kubo conductivity,

C3

(MHz µm3)
= (3.543 × 10−5)n4.385, (14)

and for graphene modeled by the full nonlocal model,

C3

(MHz µm3)
= (3.517 × 10−5)n4.387. (15)

We can see from the above equations that both the Kubo and
full nonlocal models give quantitatively similar results.

B. Including temperature-dependent effects

In this subsection, we try to include the scaling law of
the CP potential with temperature in an attempt to find a
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FIG. 12. (a), (b) The CP potential and the dispersion coefficient
calculated versus temperature for a graphene monolayer modeled
by the Kubo conductivity; (c), (d) the polynomial coefficients of
the fitted empirical formula, Eqs. (16) and (17). The spacing of C3

follows an n4 power law, while its slope follows an n7 power law.
The atom-surface distance is z0 = 5 µm.

more complete fitted empirical formula which can describe
the CP potential of a 87Rb atom near a single graphene sheet
in the nonretarded regime and for various n. This is done
by calculating the CP potential versus temperature to obtain
the dispersion coefficient C3 as a function of temperature
T and principal quantum number n in the form of a linear
equation C3(n, T ) = p1(n)T + p2(n). Figures 12(a) and 12(b)
show the CP potential near graphene versus T for the 20S,
30S, and 40S states and its associated dispersion coefficient
C3. Figure 12(a) shows a linear relationship between the CP
potential and temperature. However, the slopes of the UCP(T )
and C3(T ) lines become steeper as n increases since the pos-
itive resonant contributions increase as n increases, as shown
in Fig. 7. The nonlinear relations between the coefficients, p1

and p2, and n are shown in Figs. 12(c) and 12(d). We can fit
them with polynomial equations of degree 7 and 4 as follows
(see Sec. IV B):

p1(n)

(MHz µm3/K )
= [−4 × 10−13n7 − 9.38 × 10−3], (16)

p2(n)

(MHz µm3)
= [1.866 × 10−4n4 − 1.614 × 10−3n3]. (17)

We may write the fitted empirical function for the CP
potential for graphene monolayer in the spectroscopic high-
temperature and nonretarded regime as

UCP(n, T, z0) = − p1(n)T + p2(n)

z3
0

. (18)

This equation captures the scaling of the CP potential with n
and T as discussed in Sec. IV D.

FIG. 13. The CP potential calculated by the general formula
(solid curves) and by the fitted empirical function Eq. (18) (dashed
curves) at (a) T = 10 K and (b) T = 300 K and their corresponding
relative differences (c), (d). The fitted function provides the least
accurate results for the 20S state with a relative error as high as 20%.

C. Accuracy of the fitted empirical functions

We now check the accuracy of our fitted empirical formula,
Eq. (18), compared with the general formula, Eq. (4), by plot-
ting the CP potential for atom-surface distances in the range
1–10 µm and calculating the relative values of the energy dif-
ferences. Figure 13 shows the CP potential calculated by the
general formula (solid blue curves) and the empirical formula
(dashed orange curves), together with their corresponding
relative differences, �U/|UCP|, at T = 10 K [Figs. 13(a) and
13(c)] and T = 300 K [Figs. 13(b) and 13(d)]. The empirical
formula provides the least accurate results for the 20S state
with a relative error as high as 20%. As for the other two
states, the relative error is far below 3%.

VI. HETEROSTRUCTURES CONTAINING TWO
GRAPHENE LAYERS

In this section, we study the CP potential of heterostruc-
tures containing two separated layers of graphene, which
provide a wider range of tuneable optical properties than
single-layer graphene (SLG) [119–121]. hBN is commonly
used to integrate with graphene to form complex structures;
we can use it, for example, as a substrate, a tunnel barrier
[122], or an encapsulating layer [49,123]. We can grow hBN
on graphene vertically [124] or laterally [125].

Let us consider a simple van der Waals (vdW) heterostruc-
ture comprising an hBN layer with permittivity εhBN = 3.58
[126] sandwiched between two graphene monolayers with
spacing d between them. Bare graphene layers (i.e., with-
out an hBN spacer) in vacuum will also be considered as
a comparison. Figure 14 shows the CP potential of the said
structures at T = 300 K and z0 = 2 µm for a 87Rb atom in
the 30S state. In Fig. 14(a), the spacing d is varied between
1 nm and 1 µm; the potential becomes more negative when
we increase the spacing between two graphene layers until
d ≈ 11 nm for the graphene-vacuum-graphene structure and
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FIG. 14. CP potential of a 87Rb atom in the 30S state (a) versus
the spacing d of heterostructures containing two graphene layers,
separated by vacuum and by hBN, and (b) versus z0 for a SLG
(dashed black curve) and a graphene-vacuum-graphene structure
with spacing d = 11 nm and d = 1 µm. The parameters are T =
300 K, EF = 0.1 eV, z0 = 2 µm, and εhBN = 3.58.

d ≈ 73 nm for the graphene-hBN-graphene structure, when
the potential gets less negative again. In Fig. 14(b), we show
that the potential of the structure containing two layers of
graphene approaches that of the single-layered one as d is
increased to 1 µm.

In order to show the relationship between z0 and d , in
Fig. 15 we plot the color map of the differences between
the CP potential of SLG and that of the graphene-vacuum-
graphene structure on a linear-log scale. We can see once
again that the behavior of the two-graphene-layered structure
approaches that of SLG as the spacing d increases and that the
atom effectively experiences the two-graphene-layered struc-
ture as SLG when the atom-surface distance is large enough.

Now let us consider how the CP potential changes when
we simultaneously vary the Fermi levels of the top and bot-
tom graphene layers. As a background, for a ground-state
atom near two layers of graphene, the CP potential generally
becomes more attractive as graphene sheets are electrically
doped [98]. Figure 16 shows the CP potential versus the Fermi
energies EF of the top and bottom layer of the graphene-
hBN-graphene structure for a 87Rb atom in the 30S state at
T = 300 K, taking z0 = 2 µm and d = 10 nm. We can see that

FIG. 15. Color map of the energy difference between the CP
potential of single-layer graphene and graphene-vacuum-graphene
structure with spacing d calculated versus z0 and d (on a linear-log
scale) for a 87Rb atom in the 30S state. The plot shows that the
behavior of the two layers of graphene approaches that of SLG as the
spacing d increases. The parameters are T = 300 K, EF = 0.1 eV.

FIG. 16. The CP potential calculated versus the Fermi energies
EF of the top and bottom layer for a 87Rb atom in the 30S state.
Here, we assume that an hBN slab is sandwiched between graphene
sheets. Surprisingly, the potential is not the weakest when both
layers are undoped. The parameters are T = 300 K, z0 = 2 µm, and
d = 10 nm.

in the middle of the color map where the Fermi energies of
both layers are zero, the potential is still stronger than in most
regions of the parameter plane. Moreover, it is very surprising
that the potential is the most attractive when EF of the top
layer is zero. This cannot simply be explained by considering
the conductivity alone; in addition, the nonresonant and reso-
nant terms are enhanced differently when the Fermi energies
are varied.

Lastly, let us investigate how the CP potential depends
on the spacing d and on the Fermi energy of the top layer when
the Fermi energy of the bottom layer is fixed. Figure 17 shows
the CP potential of the graphene-vacuum-graphene structure
calculated versus the spacing d between the graphene layers
(in a logarithmic scale) and the Fermi energy EF of the top
layer when the Fermi energy of the bottom layer is set to 0 eV
at T = 300 K and z0 = 2 µm. We may divide the behavior

FIG. 17. The CP potential calculated (and plotted on a log-linear
scale) versus the spacing d between graphene layers and the Fermi
energy EF of the top layer for a 87Rb atom in the 30S state when the
Fermi energy of the bottom layer = 0 eV. For d below approximately
400 nm, the potential is the most attractive when EF = 0, then gets
weaker as EF moves away from 0 symmetrically. Thereafter, the
behavior starts to become similar to that of a single layer of graphene.
The parameters are T = 300 K, z0 = 2 µm.
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FIG. 18. Lifetimes of a 87Rb atom in the 30S state for (a) dif-
ferent numbers of graphene layers with EF = 0 eV; (b) an N =
100 structure with varied Fermi energies. It can be seen that the
lifetime increases as the number of graphene layers increase, and
increasing the Fermi energy also increases the lifetime. At certain
distances, the lifetimes of the multilayered structures can be longer
than that in vacuum; this is due to the oscillating characteristic of the
Green’s function. The parameters are T = 300 K, d = 0.35 nm, and
εhBN = 3.58.

of the CP potential landscape into three regimes: the first is
the SLG-like regime, in which the separation between the
two graphene layers is large. In this regime, the potential
becomes more negative when the Fermi energy is increased.
The second regime is when d ∼ 400–700 nm; the potential
then barely changes with Fermi energy. The third regime is
when d < 400 nm. In this regime, the potential is the most
attractive when EF = 0 eV.

VII. LIFETIME

In this section, we will briefly consider how the presence
of graphene multilayers affects the lifetime of a Rydberg
atom near it. The calculations can be applied to the case of
trapped atoms in the proximity of an atom chip. In addition
to a single-layer graphene, we will consider multilayered
structures consisting of N layers of graphene with hBN-
monolayer spacers (d = 0.35 nm). The multilayered structure
will have different reflection coefficients from a single-layer
graphene, and hence will affect the lifetime differently. The
body-induced transition rate for electric dipole transition from
state |u〉 to state |k〉 is given by [127]

�
dip
uk (r0) = ω2

uk

h̄ε0c
(duk ⊗ dku) • Im[G(r0, r0, |ωuk|)]

× {�(ωuk )[N (ωuk ) + 1] + �(ωku)N (ωku)}, (19)

where Im[G] is the imaginary part of the total Green’s func-
tion, which consists of the free-space and the scattering
Green’s functions, and �(ωuk ) is the Heaviside step function.
Summing over all states |k〉 will give us the total transition rate
of the atom in state |u〉, �(r0) = ∑

k �
dip
uk (r0), and the lifetime

is defined as 1/�(r0).
In Fig. 18, we show the lifetimes of a 87Rb atom in the 30S

state in vacuum and near single-layer graphene in comparison
with N = 10 and N = 100 structures. The lifetime for mono-
layer graphene is shorter than that in vacuum. However, the

lifetime increases with increasing N , and could be longer than
that in vacuum at certain distances. The lifetime plot of the
N = 100 structure is shown in Fig. 18(b): the Fermi energies
are varied from 0 to 0.4 eV. The lifetime is enhanced by the
increase in Fermi energy, and for EF = 0.4 eV, the lifetime is
longer than the lifetime in vacuum at atom-surface distances
bigger than 20 µm.

VIII. CONCLUSIONS

In summary, we have calculated and analyzed the CP
potential of a rubidium Rydberg atom positioned near single-
layer and double-layer graphene. These calculations used a
Green’s-function method in the framework of macroscopic
quantum electrodynamics. The optical conductivity of the
layer(s) was modeled by both the local Kubo equation and
a full nonlocal one. Together, the atomic electric polariz-
ability, the dipole matrix elements of the atom, and the
electromagnetic reflection coefficients of the surface layer(s)
determine the CP potential. Since Rydberg atoms have higher
electric polarizabilities, and their dipole matrix elements be-
tween adjacent atomic states exceed those of ground-state
atoms, their CP interaction with graphene-based multilayers
is enhanced.

We have shown that, at T = 300 K in the nonretarded
regime, the CP potential of monolayer graphene is more at-
tractive than that for a 1-µm-thick gold sheet for n between 30
and 50. Regarding the different models of graphene’s conduc-
tivity, the local and nonlocal models give essentially the CP
potential. In general, in the nonretarded limit, the CP potential
is determined by both the monotonic attractive nonresonant
potential and the evanescent-wave resonant potential. In the
retarded limit, the CP potential is dominated by the reso-
nant potential alone and spatially oscillates with a periodicity
that approximately equals the half wavelength of the nearest
downward transition at low temperature and the nearest up-
ward transition at high temperature. The spatial oscillations
in the CP potential start to occur when the atom-surface
separation begins to exceed these wavelengths. Thermal ef-
fects come into play when the thermal energy is resonant
with the atomic transition energies. In the nonretarded, spec-
troscopic low-temperature limit, the atomic transitions are
dominated by downward transitions, which give rise to an
attractive resonant potential. In contrast, in the spectroscopic
high-temperature limit, there are enough thermal photons to
stimulate upward transitions, resulting in a repulsive poten-
tial. The spectroscopic high-temperature limit can be easily
realized by increasing the principal quantum number even
below room temperature. Doping graphene generally results
in a more attractive CP potential at high temperatures.

Furthermore, we have investigated heterostructures con-
taining two graphene sheets with varying interlayer separation
and Fermi energies. We found that the effects of changing the
spacing and Fermi energies are interrelated. When the spacing
is small (d  1 µm), doping the top layer either positively or
negatively weakens the CP potential. By contrast, when the
spacing is large the behavior approaches that of single-layer
graphene.

Finally, we have also investigated the lifetime in the pres-
ence of graphene-hBN structures in the last section, and
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shown that the lifetime can be enhanced by increasing the
number of graphene layers and Fermi energies.

Possible future work could be done on multiple-layer
structures comprising graphene and other 2D materials. The
complex interference of electromagnetic waves within and
near such structures could greatly affect the resonant CP
potential. Studying the many-body effects of Rydberg atoms
near graphene-based heterostructures might also be interest-
ing since parameters such as the layer chemical potentials,
interlayer spacing, and/or the number and type of 2D layers
can be altered to manipulate the interaction with, and behavior
of, nearby trapped atoms.
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APPENDIX A: GREEN’S TENSOR

An electric field created by a radiating electric dipole can
be described by a classical Green’s tensor whose form for
planar multilayered systems is well known. When analyzing
the resonant part of the CP potential, it is useful to split the
equal-position scattering Green’s tensor into evanescent-wave
and propagating-wave components as follows [104,114]:

G(s)(r0, r0, ω) = G(s)
evan(r0, r0, ω) + G(s)

prop(r0, r0, ω). (A1)

The evanescent-wave component takes the form

G(s)
evan(r0, r0, ω) = 1

8π

∫ ∞

0
dκ⊥e−2κ⊥z0

×
[

Mαr (s)
s (k‖, ω) + c2

ω2
Mβr (s)

p (k‖, ω)

]
,

(A2)

and the propagating-wave component takes the form

G(s)
prop(r0, r0, ω) = i

8π

∫ ω/c

0
dk⊥e2ik⊥z0

×
[

Mαr (s)
s (k‖, ω) + c2

ω2
Mβr (s)

p (k‖, ω)

]
,

(A3)

where z0 is the shortest distance between the surface and the
center of the atom, r (s)

s and r (s)
p are the Fresnel reflection

coefficients for the s- and p-polarized waves, respectively, and

κ⊥ =
(

k‖2 − μ1ε1
ω2

c2

)1/2

, k⊥ =
(

μ1ε1
ω2

c2
− k‖2

)1/2

,

(A4)

with k‖2 = k2
x + k2

y .
The tensors Mα and Mβ in Eqs. (A2) and (A3) are given

by

Mα =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠, (A5)

Mβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
κ⊥2 0 0

0 κ⊥2 0
0 0 2k‖2

)
for G(s)

evan,

(−k⊥2 0 0
0 −k⊥2 0
0 0 2k‖2

)
for G(s)

prop.

(A6)

APPENDIX B: GRAPHENE’S OPTICAL PROPERTIES

Conductivity models

In this section, we present two models for the opti-
cal conductivity of monolayer graphene: (i) based on local
Kubo conductivity σ Kubo(ω), which depends only on the
angular frequencies ω of the incident electromagnetic radia-
tions and ignores spatial dispersion in the graphene surface
[113,128,129], and (ii) using the full nonlocal conductivity
σ fnl(q, ω), which is derived from the Lindhard polarization
function in random-phase (RPA) and relaxation-time (RT)
approximations [113,130–132]. The latter takes into account
spatial dispersion by nonlocal causes when considering the
interactions of incident photons, surface plasmons with wave
numbers q, and graphene’s electrons.

The Kubo conductivity can be expressed as the sum of two
contributions: σintra (ω), which arises from intraband transition
processes of the electrons, and σinter (ω), which describes tran-
sitions between the conduction and valence bands; both terms
may be written as follows:

σintra (ω) = σ0

π

4

h̄γ − ih̄ω
[EF + 2kBT ln(1 + e−EF /kBT )],

(B1)

σinter (ω)=σ0

[
G(h̄ω/2) + i

4h̄ω

π

∫ ∞

0
dE

G(E ) − G(h̄ω/2)

(h̄ω)2 − 4E2

]
,

(B2)

in which

G(X ) = sinh
(

X
kBT

)
cosh

( EF
kBT

) + cosh
(

X
kBT

) , (B3)

where σ0 = e2/(4h̄) [133], γ is the electron relaxation rate in
graphene, EF is the Fermi energy, and T is the temperature of
the graphene layer.

As for the other model, the full nonlocal conductivity,
we start by providing the 2D polarizability in the RPA and
in the T = 0 K limit, P(q, ω) = Pre(x, y) + iPim(x, y), where
Pre(x, y) and Pim(x, y) are the real and imaginary parts, respec-
tively, and x = q/kF , y = h̄ω/EF , where kF = EF /h̄vF and
vF = 1 × 106 ms−1 are wave numbers and Fermi velocity, re-
spectively. The 2D polarizability in six regions of the (q, h̄ω)
space as depicted in Fig. 19 can be expressed as follows:

Region 1A:

Pre(x, y) = − 2t1, (B4)

Pim(x, y) = 1
4 t1t3[Ch(t5) − Ch(t4)], (B5)
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FIG. 19. Schematic diagram showing six regions in the (q, h̄ω)
plane of incident field, which are distinguished by electron-hole
excitation processes.

Region 2A:

Pre(x, y) = − 2t1 + 1
4 t1t3C(t5), (B6)

Pim(x, y) = − 1
4 t1t3Ch(t4), (B7)

Region 3A:

Pre(x, y) = − 2t1 + 1
4 t1t3[C(t4) − C(t6)], (B8)

Pim(x, y) = 0, (B9)

Region 1B:

Pre(x, y) = − 2t1 + 1
4 t1t2[Ch(t4) − Ch(t5)], (B10)

Pim(x, y) = 0, (B11)

Region 2B:

Pre(x, y) = − 2t1 + 1
4 t1t2Ch(t4), (B12)

Pim(x, y) = 1
4 t1t2C(t5), (B13)

Region 3B:

Pre(x, y) = − 2t1 + 1
4 t1t2[Ch(t4) − Ch(t6)], (B14)

Pim(x, y) = − π

4
t1t2, (B15)

where t1 = kF /π h̄vF , t2 = x2/
√

y2 − x2, t3 = x2/
√

x2 − y2,
t4 = (2 + y)/x, t5 = (2 − y)/x, t6 = (y − 2)/x. The auxiliary
functions are defined as follows:

Ch(a) = a
√

a2 − 1 − arccosh(a), (B16)

C(a) = a
√

1 − a2 − arccos(a). (B17)

FIG. 20. (a) Real and (b) imaginary parts of the 2D polarizability
of graphene, Pγ (q, ω) × h, plotted in four regions—1A, 2A, 1B and
2B—of the (q, h̄ω) plane. The units of the plots are s/m2. The
parameters are γ = 4 × 1012 s−1, EF = 0.1 eV.

The 2D polarizability described above only takes into
account intrinsic mechanisms for the decay of graphene sur-
face plasmons into electron-hole pairs. To include extrinsic
processes such as collisions with lattice defects or impurity
scattering, we extend the previous model by also including
scattering events within the relaxation-time approximation,
which allows us to express the 2D polarizability in the RPA-
RT approximation as follows:

Pγ (q, ω) = (1 + iγ /ω)P(q, ω + iγ )

1 + iγ /ω × P(q, ω + iγ )/P(q, 0)
. (B18)

The RPA-RT dielectric function can be written in terms of
the 2D polarization function as

εRPA−RT(q, ω) = εr − vqPγ (q, ω), (B19)

where εr is the relative permittivity of the medium in which
the graphene layer is embedded and vq = e2/2ε0q is the
Fourier transform of the Coulomb interaction. Additionally,
the longitudinal conductivity can also be written in terms of
the Lindhard polarizability:

σ fnl(q, ω) = ie2 ω

q
Pγ (q, ω). (B20)

Note that it is this quantity—the conductivity—that will be
inserted into our transfer-matrix calculations of the reflection
coefficients of graphene [134] when we calculate the CP po-
tential.

Figure 20 shows the real and imaginary parts of the 2D
polarizability of graphene, calculated using Eq. (B18). Note
that the imaginary part in these regions is always negative.

APPENDIX C: PERMITTIVITY OF METALS

In our calculations of the permittivity of gold, we adopt the
Drude model [135]:

εmetal(ω) = 1 − ω2
p

ω2 + i�Dω
, (C1)

where ω is the radiation angular frequency, and for gold, ωp =
1.35 × 1016 rad/s is the plasma frequency and �D = 17.13 ×
1012 s−1 is the electron scattering rate [136].
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