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Abstract

Background and Purpose: Drug-induced reduction of the rapid delayed rectifier

potassium current carried by the human Ether-à-go-go-Related Gene (hERG) channel

is associated with increased risk of arrhythmias. Recent updates to drug safety

regulatory guidelines attempt to capture each drug's hERG binding mechanism by

combining in vitro assays with in silico simulations. In this study, we investigate the

impact on in silico proarrhythmic risk predictions due to uncertainty in the hERG

binding mechanism and physiological hERG current model.

Experimental Approach: Possible pharmacological binding models were designed for

the hERG channel to account for known and postulated small molecule binding

mechanisms. After selecting a subset of plausible binding models for each compound

through calibration to available voltage-clamp electrophysiology data, we assessed

their effects, and the effects of different physiological models, on proarrhythmic risk

predictions.

Key Results: For some compounds, multiple binding mechanisms can explain the

same data produced under the safety testing guidelines, which results in different

inferred binding rates. This can result in substantial uncertainty in the predicted tor-

sade risk, which often spans more than one risk category. By comparison, we found

that the effect of a different hERG physiological current model on risk classification

was subtle.

Conclusion and Implications: The approach developed in this study assesses the

impact of uncertainty in hERG binding mechanisms on predictions of drug-induced

proarrhythmic risk. For some compounds, these results imply the need for additional

binding data to decrease uncertainty in safety-critical applications.

K E YWORD S

binding mechanism, CiPA, hERG, mathematical modelling, proarrhythmic risk, safety
pharmacology, torsade

1 | INTRODUCTION

The human Ether-à-go-go-Related Gene (hERG) encodes the pore-

forming alpha subunit of the ion channel KV11.1 that conducts

Abbreviations: AP, action potential; APD90, action potential duration at 90% repolarisation;

CiPA, Comprehensive in-vitro Pro-arrhythmia Assay (www.cipaproject.org); HEK293, human

embryonic kidney cell line 293; hERG, human Ether-à-go-go-Related Gene; RMSD, root

mean square difference.
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IKr (Sanguinetti et al., 1995). The hERG channel is highly susceptible to

blockage or functional inhibition by a variety of pharmaceutical small

molecules (Sanguinetti & Tristani-Firouzi, 2006; Vandenberg et al.,

2012), we simply refer to these as ‘compounds’ throughout. Reduc-
tion of the rapid delayed rectifier potassium current, IKr, can lengthen

the action potential (AP), which is associated with increased risk of

cardiac arrhythmias, including Torsade de Pointes (Curran et al., 1995;

Heist & Ruskin, 2010), although this risk is strongly modulated by

multichannel block (Mirams et al., 2011). In vitro studies including

hERG are part of the regulatory guidelines for proarrhythmic risk

assessment of novel compounds (ICH, 2005). Recently, the Compre-

hensive in-vitro Proarrhythmia Assay (CiPA) initiative and updates of

regulatory guidelines consider a more nuanced characterisation of a

drug's proarrhythmic potential, by combining in vitro assays for

multiple ion channels with in silico simulations. For hERG, this

approach examines the details of each compound's binding mecha-

nism, particularly the degree to which each compound is trapped

(cannot unbind) when the channel closes (ICH, 2022; Li et al., 2019;

Sager et al., 2014).

The inner cavity of the hERG channel is its principal drug com-

pound binding site (Mitcheson, 2008). The molecular structure of the

channel suggests that compounds only bind when channels are not

closed (Butler et al., 2020), consistent with the observation that most

of the compounds do not bind at negative (resting/repolarised) mem-

brane potentials when hERG channels are in a nonconducting closed

state (Li et al., 2017). After binding to the channel, compounds may

also unbind when channels are in different states and/or at different

voltages (Mitcheson et al., 2000; Thouta et al., 2018). However, the

unbinding process for some compounds can be impeded when

the channels close, and the compounds remain bound, or ‘trapped’
within the central cavity (Mitcheson et al., 2000; Stork et al., 2007;

Thouta et al., 2018; Windisch et al., 2011), such as bepridil (Pareja

et al., 2013) and dofetilide (Milnes et al., 2010), as opposed to, for

example, cisapride (Milnes et al., 2010) and verapamil (S. Zhang et al.,

1999), which unbind when the chancels close. According to the modu-

lated receptor hypothesis, the difference in affinity determines the

preferential binding of a compound to one of the states (Carmeliet &

Mubagwa, 1998; Hille, 1977; Hondeghem, 1987; Hondeghem &

Katzung, 1977), and its special case, the guarded receptor hypothesis,

suggests the possibility compounds bind to a particular state only

(Starmer & Courtney, 1986; Starmer et al., 1990, 1991). Both of these

have been applied to computational (in silico) models of hERG binding

(Gomis-Tena et al., 2020; Lee et al., 2017; Thurner et al., 2014; Veroli

et al., 2013).

To capture all the possible consequences of state-dependent

binding for a new compound within in silico models, all the above

possibilities for drug binding to hERG should be considered. How-

ever, this raises the question of whether one size fits all—does the

hERG binding model used in CiPA (Li et al., 2017) account for all the

binding properties of interest, and do the model parameters reflect

the underlying binding mechanisms? Furthermore, how sensitive is

the proarrhythmic risk classification metric to any uncertainty in the

binding mechanisms and also the underlying physiological hERG

model (i.e., the description of channel gating in the absence of

compounds)?

In this study, we propose a method for considering a wide range

of drug/ion channel binding models for hERG and rule out those that

do not plausibly fit the available experimental data, resulting in an

ensemble of models for each compound. The ensemble represents

uncertainty in each compound's hERG binding mechanism. We then

apply this method to the CiPA v1.0 validation study (Li et al., 2019)

and examine how robust risk classifications are to this uncertainty in

hERG binding mechanism. The same approach can be used whenever

fitting drug binding data to ensure that we do not ignore this impor-

tant source of uncertainty.

2 | METHODS

In this study, we designed a set of possible pharmacological binding

models for the hERG channel that account for the known or postu-

lated binding mechanisms (which we will describe in Sections 2.1 and

2.2). These models were calibrated to voltage-clamp electrophysiology

data under the Milnes et al. (2010) protocol (Section 2.3.1) from Li

et al. (2017, 2019), and plausible binding models that can explain the

data well were selected (Section 2.3.2). We then used these binding

models with different hERG physiological models to calculate the

‘CiPA v1.0’ risk metrics to assess the possible impact of different

hERG binding mechanisms on such predictions (Section 2.4).

What is already known

• Compounds interact with the hERG channel with differ-

ent state dependence and trapping properties.

• Proarrhythmic risk depends on the degree of trapping in

the CiPA in silico modelling predictions.

What does this study add

• For many compounds, multiple binding mechanisms are

consistent with data gathered under the CiPA guidance.

• Risk predictions are sensitive to these hERG binding

mechanisms but more robust to gating model.

What is the clinical significance

• Clinical risk predictions for some compounds vary

between plausible hERG binding mechanisms.

• Narrowing down plausible binding mechanisms will be

needed to reduce this source of uncertainty.

2 LEI ET AL.
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2.1 | hERG physiological models

The basic physiological models of hERG describe the drug-free control

of voltage-dependent gating behaviour for the rapid delayed rectifier

potassium current (IKr) at physiological temperature and conditions.

Two physiological models are used in this study, with the transition

rates following pi expðpjVÞ, where pi and pj are physiological model

parameters taken from the literature. The first one, physiological

model A, used in CiPA studies is shown in Figure 1a and is a six-state

Markov model with two inactivated closed (IC) states, two closed

(C) states, an inactivated (I) state, an open (O) state, and transition

rates a1 to a7 and b1 to b7 (Dutta et al., 2017; Li et al., 2017). The sec-

ond model, physiological model B, is a symmetric four-state model

(Figure 1b) with transition rates k1 to k4, which is equivalent to a

Hodgkin & Huxley-style model with one activation gate and one inac-

tivation gate (the 37�C average model in Lei, Clerx, Beattie,

et al., 2019; Lei, Clerx, Gavaghan, et al., 2019).

2.2 | Pharmacological binding models for hERG

To account for various known or proposed mechanisms for com-

pounds binding to the hERG channel, a set of pharmacological binding

models was designed as shown in Figure 2. The hERG physiological

model is indicated in black, with common states I and O shown

(on the right-hand side of each model from Figure 1), with dots repre-

senting the rest of either model.

In Figure 2, Model 1 represents a compound that can bind to both

open (O) and inactivated (I) states, the drug is not trapped in the bind-

ing pocket, and the open and inactivated states share the same bind-

ing and unbinding rates (shown in the same colour). The binding rate

is assumed to be proportional to the drug concentration ½D� raised to

the power of a Hill coefficient, n, and the association rate constant is

kon; the unbinding rate is assumed to be a constant koff. Model 2

allows binding only to the open state; the inactivated version of

Model 2 (Model 2i) allows binding only in the inactivated state, using

the guarded receptor hypothesis (Escobar et al., 2022; Lee et al.,

2019). We have not observed any evidence that existing drugs bind at

the resting potential (≈80 mV) when the channel is closed, therefore

we have excluded binding models that bind only to the closed state.

Model 3 is a variant of Model 1 where transition between the

compound-bound states are also allowed, and happen at the same

rate as the (unbound) O⇌ I transitions.

Models 4 to 5i are the trapped equivalents of Models 1 to 2i,

where the trapping component is indicated in grey, a ‘mirror image’ of
the hERG physiological model with the same transition rates to admit

the possibility of channels closing and preventing unbinding from CD

or ICD states (not shown in the schematics) corresponding to C and

IC in the drug bound channels. Model 6 relaxes the mirror trapping

component of Model 4 by allowing an extra degree of freedom with a

trapping rate factor ktrap multiplying the original transition rate.

Models 7 to 10 allow an extra degree of freedom compared to

Models 1, 3, 4, and 6 by assuming independent binding and unbinding

rates for open and inactivated states—the modulated receptor

hypothesis—whilst enforcing microscopic reversibility by specifying

rates indicated by an asterisk as a function of the other rates in the

closed loop (Colquhoun et al., 2004). Model 11 introduces indepen-

dent trapped states for the open and inactivated compound-bound

states with transition rates ktrap and kuntrap, which is inspired by a com-

bination of the ‘intermediate encounter complex’ model in Windley

et al. (2016) and the Li et al. (2017) model.

Model 12 is taken from Li et al. (2017). Here, rather than the drug

binding rate being linearly proportional to ½D�n, instead it saturates,

and this is represented using a Hill equation:

Hill ½D�jEC50,nð Þ¼ ½D�n
½D�nþECn

50

, ð1Þ

where EC50 is a half maximal effective concentration, that is, when

½D� ¼EC50, the binding rate is half of its maximum rate. Note that the

binding rate parameter for Model 12 has a unit of ms�1, so we denote

it as k̂on to differentiate it from kon in the other binding models (which

have units of ms�1 �nM�n). Model 12 is the same model (equations) as

the CiPAv1.0 model proposed by Li et al. (2017)—the reference model

for this study—but in Model 12 we will refit parameters. We also com-

pare with the reference CiPA v1.0 parameters separately.

When [D] � EC50, Model 12 reduces to the usual linear binding

rate, kon½D�n; we consider this case separately as Model 13.

Furthermore, Models 12 and 13 assume the untrapping rate

follows a sigmoid function of the membrane voltage XðVÞ¼
1þ exp ðV1=2; trap�VÞ=6:789� �� ��1

instead of the voltage dependence

of the control condition which would involve a mirror image of the

F IGURE 1 The base physiological models
of the hERG channel considered in this study
under drug-free conditions. (a) A six-state
model from Li et al. (2017) and Dutta et al.
(2017) with the states renamed to match
their respective physical states. (b) A
symmetric four-state model from Beattie
et al. (2018) and Lei, Clerx, Beattie, et al.
(2019). The models are used as the hERG
model for studying drug effects.
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hERG physiological model. Transition rates from ID! I are set by

microscopic reversibility (indicated with an asterisk in Figure 2); they

also assume a fixed trapping rate ktrap ¼3:5�10�5 ms�1, with

V1=2; trap altering the degree of trapping (Li et al., 2017).

We also included two additional models: Models 0α and 0β, as

basic and standard ‘conductance block’ models for drug effects. We

consider an ‘all-state-blocker’ model that has binding and unbinding

rates, kon½D�n and koff, for all channel states. The degree of block is

then independent of state occupancy and is equivalent to having a

modulating fraction of unavailable channels or ‘b gate’ such that we

scale (multiply) the drug-free current by ð1�bÞ. b itself follows the

equation

db
dt

¼ kon½D�nð1�bÞ�koffb, ð2Þ

with an initial condition of b¼0 at the time a compound is first intro-

duced, we call this Model 0β. Model 0α is a simpler conductance

F IGURE 2 A set of pharmacological models representing different mechanisms of drug binding, where black (states I and O, and dots) is the
physiological model of the hERG channel in Figure 1. Dashed double arrows indicate the rate marked with an asterisk is set by microscopic
reversibility. Model 12 is identical to the pharmacological binding component in the CiPA v1.0 model.

4 LEI ET AL.
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scaling model which is derived by assuming Model 0β is an instanta-

neous process, that is, the degree of block b is set immediately to the

steady state of Equation (2):

b∞ ¼ kon½D�n
kon½D�nþkoff

¼ ½D�n
½D�nþkoff=kon

¼ ½D�n
½D�nþ ICn

50

: ð3Þ

The ratio koff=kon in Model 0β is known as the dissociation con-

stant and is equivalent to ICn
50 in the Hill equation in Model 0α. All the

binding model parameters that need to be calibrated on a compound-

specific basis are listed in Table 1.

2.3 | Data and statistical analysis

2.3.1 | Electrophysiology data

The voltage-clamp electrophysiology data were taken from the openly

available 28 compound CiPA training and validation studies (Li et al.,

2017, 2019) where manual patch-clamp experiments were performed

on HEK293 cells (CLS Cat# 300192, RRID: CVCL_0045) stably

expressing hERG1a subunit at 37�C—see Data Availability section.

Data were originally collected using a modified Milnes' protocol

(Milnes et al., 2010); the protocol had 10 sweeps measured with

10-ms time-point interval, and each repeat consisted of 1 s (with

leak step) at the resting potential (�80 mV), followed by a long

voltage step to 0 mV for 10 s, before returning to the resting

potential for 14 s. For the details of the experiments, please refer to

Li et al. (2017).

2.3.2 | Calibration of pharmacological binding
models

We calibrated/fitted each of the pharmacological binding models in

Figure 2 with each of the hERG physiological models in Figure 1

independently to the voltage-clamp electrophysiology data for each

compound. The available data have been normalised to the control

current, giving the fraction of unblocked current, which reveals the

change in current due to the drug binding. Furthermore, only the data

at the voltage step 0 mV (time interval 1.1–11 s) for the 10 sweeps

were used; the remaining data at the resting potential (�80 mV) will

have almost no current, giving little information about the drug bind-

ing. All models, except Model 0α, were calibrated by minimising the

root-mean-square difference (RMSD) of the percentage current

between the model output and the mean experimental data from

10 sweeps for four different concentrations of a compound, giving

4�10�990¼39600 data points for each compound. The optimisa-

tion was performed with logarithmic-transformed model parameters,

except V1=2; trap in Models 12 and 13. This allows a better search

across a wide parameter range, especially for the rate parameters. The

optimisation was performed using the covariance matrix adaptation-

evolution strategy (CMA-ES) algorithm (Hansen, 2006) in PINTS

(Clerx et al., 2019) and was repeated 10 times from different initial

guesses sampled from wide boundaries (kon, koff � ½10�7, 1�ms�1,

ktrap, kuntrap � ½10�9, 103�ms�1, k̂on � ½10�6, 109� ms�1 �nM�n,

ECn
50 � ½1, 109� nMn, V1=2;trap � ½0, 200� mV, and n� ½0:2, 2�) to ensure

we arrived at a global minimum. The calibration was repeated for all

28 compounds listed in Li et al. (2019).

Model 0α is a special case of Model 0β where drug binding

is approximated as instantaneously reaching steady state.

Therefore Model 0α should not be calibrated to transient experimen-

tal data. Hence, the parameters of Model 0α were directly taken as

the steady state of Model 0β—ICn
50 of Model 0α in Table 1 was calcu-

lated as the dissociation constant koff=kon of Model 0β, as Equation (3)

suggests.

However, since each pharmacological binding model in Figure 2

was designed to model a specific mechanism, not all the models are

expected to be able to describe all the compounds that were tested.

Therefore each calibrated binding model was assessed by comparing

its fitted RMSD to the RMSD of bootstrapped samples of the data

which were computed as follows: since each of 10 repeated

TABLE 1 The model parameters for all the binding models in Figure 2. The asterisk indicates the rate parameter was determined by
microscopic reversibility.

Model Binding parameters Trapping parameters

0α n IC50

0β, 1, 3, 4 n kon koff

2, 5 n kon;O koff;O

2i, 5i n kon; I koff; I

6 n kon koff ktrap

7 n kon;O koff;O kon; I koff; I

8, 9, 10 n kon;O koff;O kon; I ∗

11 n kon koff ktrap kuntrap

12 n k̂on koff EC50 V1=2,trap

13 n kon koff V1=2,trap

LEI ET AL. 5
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experiments at each concentration was independent, for one com-

pound across all four concentrations, there are 104 permutations. We

randomly selected (with replacement) one trace out of the ten avail-

able for each concentration to obtain a set of four traces for all con-

centrations; the RMSD of this set to the mean of the experimental

data was computed, giving the RMSD of a ‘bootstrapped’ data trace.

This process was repeated 1000 times to get a range of RMSDs based

on these bootstrapped samples of the data. This essentially compares

how well the models fit to the mean data relative to an individual data

trace's fit to the mean data, providing a compound-dataset-specific

measure of goodness-of-fit.

Although if the only source of error were normally distributed

noise, we could compare the model fits against the standard error

of mean, this would probably rule out all the models (including the

CiPA v1.0 model). Therefore, a more relaxed threshold was chosen

to allow for some degree of imperfection in our models of both

binding mechanisms and noise processes/artefacts in the data,

whilst still distinguishing between plausible and implausible binding

mechanisms. A pharmacological binding model was classified as a

plausible model if its RMSD was smaller than the maximum RMSD

of the bootstrap samples of the data or as plausible as the

CiPA v1.0 model if its RMSD was within 1:2� the RMSD of the ref-

erence model.

2.4 | AP models, qnet, and torsade metric scores

To assess the impact of the choice of hERG binding model on

predictions of drug-induced proarrhythmic risk, we adapted the

approach used in Li et al. (2019). We used the optimised CiPA v1.0

AP model by Dutta et al. (2017) for predicting the effects on AP

due to different hERG binding mechanisms. The ‘dynamic hERG-

binding model’ in the AP model was replaced with one of the suc-

cessfully calibrated pharmacological binding models in Figure 2. To

account for multiple ion channel block effects, the Hill equation

characterised by the half-inhibition concentration (IC50) and the Hill

coefficient (n)—Model 0α—was used to model the drug effects on

three other currents, the fast sodium current (INa), the late sodium cur-

rent (INaL) and the L-type calcium current (ICaL), using their reported

median values.

The hERG physiological model can be either of the models shown

in Figure 1. However, to use the new Figure 1b hERG physiological

model in the CiPA v1.0 AP model, we recalibrated its IKr conductance,

in control (drug-free) conditions, by matching the AP duration at 90%

repolarisation (APD90) at 0.5-Hz pacing (stimulus amplitude �80 A/F

and 0.5-ms duration) at (quasi-)steady state after 1000 paces. We

obtained a new IKr conductance of 0.0912 pA/pF for the hERG physi-

ological model B in the AP model that resulted in the same APD90 as

the CiPA v1.0 model.

The hERG-binding-model-replaced-AP models were then used to

calculate the qnet metric and the proarrhythmic risk prediction. For

each model and compound, pacing at 0.5 Hz was initialised from the

steady state under control-conditions and continued for 1000 paces

after compound addition, at multiples of each compound's maxi-

mum therapeutic concentrations (Cmax ). The qnet metric was defined

as the net charge over one beat carried by IKr, INaL, ICaL, the transient

outward potassium current (Ito), the slow rectifier potassium current

(IKs), and the inwardly rectifying potassium current (IK1); this was

computed by integrating the sum of the six currents between

two consecutive stimuli (with time step 0.01 ms) using the trape-

zium rule. The proarrhythmic risk prediction was made using the

torsade metric score, defined as the mean qnet value averaged at

1� ,2� ,3� ,4�Cmax .

Finally, an ordinal logistic regression model (all-threshold variant,

Rennie & Srebro, 2005) was used to estimate the new drug-induced

proarrhythmic risk thresholds for low-, intermediate-, and high-risk

categories, using the torsade metric as the feature. The classifier was

trained with L2 regularisation using only the training compounds and

was solved with the L-BFGS-B algorithm in SciPy (Virtanen et al.,

2020). The two thresholds for separating (a) the low-risk category

from intermediate/high and (b) high from low/intermediate risks were

calculated using

Threshold 1¼ 1
β1

log e�βb0 �2e�βa0
� �

, ð4Þ

Threshold 2¼ 1
β1

log
e�βa0�βb0

e�βb0 �2e�βa0

 !
, ð5Þ

where βa0 and βb0 are the intercepts, and β1 the linear coefficient

(of the torsade metric), of the linear equations that map the torsade

metric through a logistic function to the cumulative probabilities of

the risk categories within the logistic regression model. Because

the action potential shape changes slightly with a different physiologi-

cal hERG model, then qnet at control and derived thresholds also

change. The metric values for each physiological model were normal-

ised using

Normalised xm ¼ xm�Threshold 2m

Threshold 1m�Threshold 2m
, ð6Þ

where x can be either qnet or the torsade metric score, and m denotes

the physiological model (either model A or B), such that the boundary

between high-risk and intermediate/low is at 0 and between low-risk

and high/intermediate is at 1 to facilitate comparison of classification

between physiological models.

2.5 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in https://www.guidetopharmacology.org, and

are permanently archived in the Concise Guide to PHARMACOLOGY

2021/22 (Alexander et al., 2021).
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3 | RESULTS

3.1 | Multiple binding mechanisms can explain the
same drug effects

All binding models (Figure 2) were calibrated to the experimental

data for each compound independently and compared against the

maximum RMSD for bootstrapped samples of the data. Figure 3

shows the calibrated binding models (left) and their RMSDs to the

mean experimental data (right) across all binding models, for three

example compounds: dofetilide (top), terfenadine (middle), and

verapamil (bottom). The percentage current plots in Figure 3

(left) show only the effect of the drug over time for the 10 pulses

of holding potential (0 mV) in the CiPA-Milnes protocol. Regardless

of the physiological models (A, squares and B, circles), the

results of the calibration of the binding models were similar. The

results of all the remaining compounds are shown in the Supporting

Information.

For dofetilide, a trapped drug (Milnes et al., 2010), all binding

models except the steady-state conductance scaling model

(Model 0α) were able to fit the calibration data, and so we cannot

unpick the binding mechanisms of this drug with these data. The

four grey horizontal lines in Figure 3 (left) are predictions of

Model 0α, the only implausible model for dofetilide. Model 0α was

the only model that showed no dynamics in the percentage current

plots as, by definition, it scales only the conductance of the model

so its effect on IKr must be constant over time. Another model

that lacked in the drug dynamics was Model 0β, the all-state binding

model, which marginally passed the RMSD check. Model 0β modelled

the drug effect with the b gate in Equation (2) that is independent

of channel state/voltage, producing a single exponential decay

over time—even during the long resting potential (�80 mV) of CiPA-

F IGURE 3 Calibration of the binding models and their RMSDs for three example compounds: dofetilide (top row), terfenadine (middle row),
and verapamil (bottom row). The left column shows the percentage current of the data (semitransparent line for the mean and highly-transparent
area showing � one standard deviation) and the calibrated binding models (solid, smooth lines) for all four concentrations used during calibration.
The right column shows the RMSD of all models compared to the RMSD of the bootstrap samples of the data (box-plot) and the reference model,
CiPAv1.0 (red star). Both physiological models A (green squares) and B (orange circles) are shown for comparison. The horizontal red dashed line
indicates the maximum RMSD of bootstrapped samples of the data. Grey lines/markers on each panel are the binding models that are ruled out
through the RMSD comparison (above the red dashed line)—implausible models.
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Milnes protocol (although not shown) when the channels were in

the closed state(s), resulting in the drop in current between pulses,

when the data show (if anything) a slight restoration of current

between pulses.

The other two example compounds in Figure 3, terfenadine and

verapamil, had a weaker to no trapping tendency compared to dofeti-

lide; that is, current recovers significantly between 0 m V pulses, sug-

gesting unbinding rather than trapping at �80 mV. Interestingly, more

binding models failed to fit to the experimental data of these two

drugs. For terfenadine, a weakly trapped drug (Kamiya et al., 2008;

Stork et al., 2007; T. Yang et al., 1995) with slow binding rates

(Li et al., 2017), only Models 7 and 8 (variants of the independent

open and inactivated binding model) and Models 6 and 10–13 (vari-

ants of flexible-trapping models) were able to explain its drug effect as

well as the bootstrap samples of the data, although a few more non-

trapping models were merely marginally ruled out. For verapamil, a

nontrapped drug (S. Zhang et al., 1999), our approach successfully dis-

qualified all simple-trapping models (Models 4, 5, 5i, and 9), as well as

the conductance blocking and the all-state binding models (Models 0α

and 0β). However, it left the non-trapping models (Models 1–3, 7,

and 8) and the flexible-trapping models (Models 6 and 10–13) as plau-

sible candidates for the binding mechanism.

Figure 4 presents a summary of the binding models with physio-

logical model A, which gave plausible fits to the experimental data

and/or performed similarly to the CiPA v1.0 model (shown in light/

dark greens and both are considered as plausible models in subse-

quent analyses); a summary for those with physiological model B are

provided in the Supporting Information; the results were very similar

with only minor differences for cisapride, ibutilide, and loratadine.

We observed no obvious pattern between the proarrhythmic risk of

drugs and the type of binding models ruled implausible. A few more

nontrapped drugs were identified simply based on the ruling out of

the simple-trapping models (Models 4, 5, 5i, and 9) as in the case of

verapamil (Figure 3), such as cisapride (Milnes et al., 2010) and

droperidol (Stork et al., 2007; Windisch et al., 2011). For most of the

drugs, multiple binding models were able to explain the observed

drug effects using the experimental data collected through CiPA-

Milnes protocol.

3.2 | Inferred binding rates can be strongly
dependent on binding mechanism

Studying drug binding kinetics, such as the binding and unbinding rates,

is important for understanding the drug effects on the channels and

predicting behaviour in new situations. Figure 5 shows inferred binding

rate parameters kon, unbinding rates koff, and the Hill coefficients n of

the calibrated binding models. All binding models have kon, koff, and n,

apart from the conductance scaling model (Model 0α) which has only

two parameters IC50 and n (Table 1). Models 7–10 have independent

binding rates for the open and inactivated states, giving two kon

shown as empty (for open) and filled (for inactivated) markers; only

Model 7 has two (free) koff, shown in the same way, as Models 8–10

have closed-loop states which reduce one degree of freedom due to

microscopic reversibility (Figure 2). The CiPAv1.0 model is shown as

red stars; the two physiological models, A and B, are shown together

as squares and circles, respectively, and the observed results remained

similar regardless of the physiological model. The results for all the

remaining compounds are shown in the Supporting Information.

Taking verapamil as an example, the inferred binding rate parame-

ter kon was similar for most of the successfully calibrated binding

models (Figure 3). The two binding rate parameters kon;O (empty

marker) and kon,I (filled marker) for the plausible models—Models 7, 8,

and 10—were similar too, and their average roughly equalled kon of

the other models. The similarity suggested that the independence

assumption may be superfluous in this case, because if the two

inferred rates were the same, the models would be equivalent to

those without the extra degree(s) of freedom (Models 1, 3, and 6).

Similarly, the unbinding rates koff were similar for all binding models,

except the koff;O (empty marker) and koff;I (filled marker) in Model 6; all

of the inferred Hill coefficients n were within the range of 1.3–1.8. It

is worth noting that the koff of Model 12 and the CiPAv1.0 model

(the same binding model structure but under different calibration

schemes) shared similar inferred values for verapamil but their k̂on

were not shown due to different units.

For metoprolol, the inferred kon were heavily binding-model-

dependent, with a coefficient of variation (defined as the ratio of the

standard deviation to the mean, for the plausible models) of 607%, as

compared to 141% for verapamil. The other two parameters koff and n

were similar across the calibrated binding models. Unlike verapamil,

the inferred koff of Model 12 and the CiPAv1.0 model were inconsis-

tent, using the same set of experimental data but with different cali-

bration schemes; see also mexiletine in the Supporting Information.

The differences in the inferred parameters may raise questions about

the calibration data and the complexity of the model structure used,

leading to potential parameter unidentifiability issues (Whittaker

et al., 2020; see also Section 4).

3.3 | qnet with different binding mechanisms can
diverge

Thus far, we compared the binding models of hERG when calibrated

to voltage-clamp experimental data for various compounds. Here, we

show the results of our investigation on the impacts of these binding

models on APs and risk simulations (Section 2.4), whilst accounting

for multichannel effects, following Li et al. (2019). Figure 6 shows the

metric qnet at various Cmax levels for all binding models, with implausi-

ble models shown with dotted lines. The torsade metric decision

boundaries for the low-risk (green), intermediate-risk (blue) and high-

risk (red) categories in Li et al. (2019) (0.0689C/F and 0.0579C/F,

respectively) are indicated as dashed horizontal lines for reference.

Various degrees of qnet spread were observed across the binding

models for different compounds.

For example, diltiazem is a strong ICaL blocker relative to its

IKr effects, therefore the drug effect on APs measured through qnet

8 LEI ET AL.
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reflects mostly the drug block of ICaL and the effects of different

IKr binding models are insignificant. Nifedipine and verapamil are also

multi-channel blockers of ICaL and IKr, with similar block levels for each

current. However, the uncertainty in their resulting qnet predictions

were drastically different—nifedipine showed tight qnet predictions

across the binding models, whilst verapamil produced a wide spread.

F IGURE 4 Summary of the selected binding models with physiological model A for all compounds. A binding model (column) is
considered to be appropriate for a compound (row)—a plausible model—if coloured in green, where the RMSD of the model to the averaged
data is either smaller than the RMSD of the bootstrap samples of data or similar to the CiPA v1.0 model to the averaged data; it also shows
the models that are as plausible as the CiPA v1.0 model (darker green) but worse than the bootstrap samples of data. Model 12 is identical
to the pharmacological binding component in the CiPA v1.0 model. Compounds are sorted according to the training and validation lists, and
their proarrhythmic risks.
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Figure 6 (bottom row) also shows three more examples: dofetilide,

cisapride, and bepridil. These compounds are almost pure IKr channel

blockers at these concentrations. Again, they showed inconsistent

spread of qnet predictions from the plausible binding models, demon-

strating the importance of identifying the correct binding mechanisms

or at least narrowing down the possibilities.

Furthermore, in general, we also observed an increasing spread of

the qnet predictions from plausible binding models at higher Cmax

levels; verapamil is one of the most obvious examples. This phenome-

non showed the differences between the binding mechanisms were

amplified with higher concentrations of the drug, and at the top con-

centrations verapamil spanned all risk categories. However, the tor-

sade metric uses only 1–4�Cmax of qnet—the metric that was used to

train the classification model (ordinal logistic regression model) for

producing the decision boundaries of the risk categories, and we

examine risk predictions in this range in the next section.

3.4 | Binding mechanisms can result in substantial
uncertainty in torsade risk

Figure 7 (left) shows the torsade metric predictions of all binding

models with physiological model A for all compounds. The drugs are

sorted according to their proarrhythmic risk categories and are split

into training and validation lists (Li et al., 2019); the same decision

boundaries as Figure 6 are shown as dashed vertical lines, for the

low-risk (green), intermediate-risk (blue), and high-risk (red)

categories.

The torsade metric predictions for the same compound resulted in

a large variation—indicating high uncertainty in the proarrhythmic risk

prediction—due to different binding mechanisms. However, it is worth

emphasising that these plausible binding models were able to explain

the observed experimental data of the compounds either better than

the bootstrap samples of the data or as well as the CiPA v1.0 model,

therefore the acquired experimental data were not able to resolve the

resulting uncertainty. The reference model, CiPA v1.0, is shown as cir-

cles, and the conductance scaling model, Model 0α, is shown as

squares; unexpectedly, Model 0α, which had the worst performance

during the calibration process (Figure 4) and was ruled out in most

cases, did not cause any obvious outlying torsade metric prediction

(cf. the extreme RMSD values of Model 0α in Figure 3), and in fact it

was usually not the one giving the predictions at the extremes, showing

the nonlinearity in the relationship between the calibration and the tor-

sade metric prediction. Also, interestingly, the degree of variation

tended to be larger for drugs in higher proarrhythmic risk categories,

for both training and validation drugs, perhaps because hERG block

was more dramatic in these compounds (see Section 4).

The corresponding AP predictions for some of the drugs at

4�Cmax are shown in Figure 7 (right). In general, as expected, a strong

AP prolongation—longer AP duration—correlated with a high torsade

metric risk category: the shortest AP duration for the low-risk cate-

gory in green, followed by intermediate in blue, and then the longest

F IGURE 5 Binding rate parameters kon (top row), unbinding rates koff (middle row), and the Hill coefficients n (bottom row) of the calibrated
binding models for two example compounds: verapamil (left column) and metoprolol (right column). Both physiological models A (green squares)
and B (orange circles) are shown for comparison. Models 7–9 have independent binding and unbinding rates for open and inactivated states; filled

squares/circles are the rates for the inactivated states. The models in grey are implausible models. Model 12 is identical to the pharmacological
binding component in the CiPA v1.0 model (red star). k̂on is not shown for Model 12 and CiPAv1 due to different units.
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AP for high risk in red. The plausible binding models can result in met-

ric predictions with high uncertainty, even spanning multiple risk cate-

gories; for example, domperidone predictions span all three risk

categories.

3.5 | The effect of hERG physiological model on
risk classification is subtle

Finally, we compared the effects of the choice of the IKr physiological

model (Figure 1) in predicting the torsade risk classes. The ‘O'Hara-

Rudy CiPAv1.0' model (Dutta et al., 2017) had hERG physiological

model A replaced with physiological model B (solid lines; Lei, Clerx,

Beattie, et al., 2019; Lei, Clerx, Gavaghan, et al., 2019), the

IKr maximum conductance was re-calibrated to match the APD90 of

the CiPAv1.0 AP model (dashed lines), as shown in Figure 8a (blue

lines). The IKr within the two AP models, shown as orange lines,

reveals differences in the dynamics of the two hERG physiological

models. Although the total charge carried by the two IKr models is

similar (0.190C/F and 0.144C/F for models A and B, respectively),

physiological model B has a smaller current during the early phase of

the AP—depolarisation to plateau—and plays a more important role

during repolarisation. The two IKr physiological models show a similar

overall transition between the states (Figure 8a): starting from

mainly the closed state(s) to the inactivated state(s) during

depolarisation/plateau before occupying the open state and back to

the closed state(s).

For physiological model B, training the ordinal logistic

classification model to the torsade metric of the training drugs for all

the plausible binding models adjusted the risk category thresholds to

be 0.0584C/F and 0.0483C/F for separating the low-risk category

from intermediate/high and the high-risk category from intermediate/

low, respectively; the fitted ordinal logistic classifier parameters are

provided in Table S1. The shift in the boundaries was consistent with

the change in the net charge carried by physiological model B (and

alteration to AP shape, which also affects other currents), which

resulted in a new control value of qnet. The two new decision bound-

aries are used for physiological model B in Figure 8b,c.

In Figure 8b,c, to compare the differences in the metric predictions

between the two physiological models, the metrics predicted by each

model were normalised to its decision boundaries using Equation (6),

such that the normalised decision boundaries are 0 and 1 for both

models; the results for only physiological model B (without normalisa-

tion) are shown in Figure S25. Replacing the physiological model of

IKr still produced a similar trend for the drug risk categories, although

some of the drugs, such as bepridil and tamoxifen, were clustered

closer to the new decision boundaries. The observed differences

could result from the new IKr model, the choice of calibration protocol,

and the choice of the metric, all of which were designed for

CiPAv1.0.

F IGURE 6 qnet, the net charge carried by currents active in plateau and repolarisation over one beat of AP (IKr, INaL, ICaL, Ito, IKs, and IK1) at
various multiples of Cmax for all binding models with six example drugs. Here, diltiazem, nifedipine, verapamil, dofetilide, cisapride, and bepridil are
shown, revealing a spectrum of behaviours from the binding models. Dashed horizontal lines indicate the decision boundaries for the low-risk
(green), intermediate-risk (blue), and high-risk (red) categories for the torsade metric score (average qnet at 1–4�Cmax ) in Li et al. (2019). The
implausible models are shown as transparent dotted lines, and the CiPA v1.0 model is shown as black dashed lines.
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F IGURE 7 The torsade metric predictions, the mean qnet of 1–4�Cmax , of all binding models with physiological model A for all compounds,
and the corresponding AP predictions for seven example drugs. (Left) Drugs are sorted according to their proarrhythmic risk categories. Dashed
vertical lines indicate the CiPA v1.0 decision boundaries for the low-risk (green), intermediate-risk (blue), and high-risk (red) categories. The
CiPAv1.0 model is shown as circles, and the conductance scaling model, Model 0α, is shown as squares. (Right) The AP predictions of dofetilide,
terfenadine, diltiazem, vandetanib, domperidone, pimozide, and nifedipine at 4�Cmax are shown, revealing a range of different behaviours from
the binding models, indicated with the same colour code as shown on the left. The plausible models are shown as coloured solid lines, the
implausible models as transparent dotted lines, and the CiPAv1.0 model as black dashed lines. The drug-free (control conditions) model is shown
as grey dotted lines.
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4 | DISCUSSION

In this study, we have designed a set of pharmacological binding

models for the hERG channel. After selecting a subset of plausible

binding models through calibration to the voltage-clamp

electrophysiology data under CiPA-Milnes protocol, we compared

their effects, as well as the effects of having different physiological

hERG models, on proarrhythmic risk predictions.

Our pharmacological hERG binding models accounted for most of

the plausible mechanisms by which a compound might bind to the

F IGURE 8 Comparisons of hERG physiological model B in predicting the qnet metric and the torsade metric with hERG physiological model A.
(a) Comparison of AP, IKr, and state occupancy using the two hERG physiological models A (dashed lines) and B (solid lines). (b) Normalised qnet
metric at different Cmax levels for all binding models with physiological models A (green) and B (orange) for one example of each risk category
prediction: dofetilide, terfenadine, and diltiazem. More compounds are shown in the Supporting Information. (c) Normalised torsade metric
predictions of all binding models with physiological models A (green) and B (orange) for all compounds. Dashed vertical/horizontal lines indicate
the normalised decision boundaries for the low-risk (green), intermediate-risk (blue), and high-risk (red) categories.
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hERG channel. The choice of these models has covered many of

the literature binding models of hERG. For example, our simple bind-

ing models (Models 2, 2i, and 7) and trapping models (Models 5, 5i,

and 9) are similar to models referred to as ‘unstuck’ and ‘stuck’,
respectively, in Gomis-Tena et al. (2020); Escobar et al. (2022).

Models 0α, 7 and 11 were used in Windley et al. (2016) to study the

effects of compounds such as cisapride.

In Figures 3 and 4, we demonstrated that our approach can be

used to distinguish some of the simpler binding mechanisms based on

the CiPA-Milnes protocol data for some compounds, such as terfena-

dine and verapamil; resulting in plausible binding mechanisms consis-

tent with the literature. It was also able to highlight certain similarities

between some compounds such as bepridil (Kamiya et al., 2006;

Pareja et al., 2013) and terfenadine (Stork et al., 2007) where only

flexible-trapping models were deemed plausible to explain the

observed data; indeed, studies with specifically designed voltage pro-

tocols consider these two compounds to be trapped slow-binders

(Kamiya et al., 2008). Also, our approach was able to highlight com-

pounds, such as tamoxifen, loratadine, and nitrendipine, where none

of the models (not even the CiPA 1.0 model) were able to fit the data

satisfactorily. On closer inspection (Supporting Information) the

data of loratadine, and nitrendipine showed a slight increase of the

(percentage) current over time during the 0 m V pulses, raising poten-

tial data quality issues (Lei, Clerx, et al., 2020; Montnach et al., 2021;

Raba, et al., 2013) or the need for methods to account for inadequacy

of the models (Lei, Ghosh, et al., 2020; Lei & Mirams, 2021) and/or

new (un)binding mechanisms to explain this observation; whilst for

tamoxifen, there was a more obvious data quality issue for one of the

concentrations. In Figure S26, we also included the results of fitting all

the binding models whilst assuming the Hill coefficient (number of

binding sites) to be n¼1. However, in this case, most of the binding

models failed to fit to many of the compounds—being classified as

implausible models—suggesting the importance of the extra degree of

freedom provided by the Hill coefficient in explaining these observa-

tions, although we do not eliminate the possibility of this having been

caused by some experimental artefact resulting in a drift/rundown

that the analysis approach mistakes for non-saturating or more

quickly/slowly saturating hERG block.

It may be better to think of our ‘plausible’ binding models as ‘not
implausible’, there is no evidence that any individual model is correct,

indeed by their nature some contradict others, it is just that they can-

not be ruled out yet based on the available data. It is desirable for the

calibration data to contain enough information to rule out as many

binding models as possible, in an ideal world leaving just a single plau-

sible model. But with the resulting ensemble at present, we can objec-

tively and quantitatively describe a compound's binding mechanism

instead of qualitatively classifying the compound as ‘trapped’, ‘bind-
ing to open state’, and so forth. However, we observed that the data

elicited under the CiPA-Milnes protocol, which was originally

designed to differentiate between trapped and nontrapped com-

pounds (Milnes et al., 2010), were not able to distinguish between all

the possible binding mechanisms, or indeed even whether trapping

occurs, for all compounds (Figure 3). This suggests the need for

designing better, richer experimental protocols for model calibration

and selection (Lei et al., 2023), for instance gathering data on block

onset at different voltages (Gomis-Tena et al., 2020; Lee et al., 2019),

and to overcome some of the difficulties in measuring fast time-

courses of block (Windley et al., 2017). Indeed a range of protocols

may needed for assessing fast- and slow-binding compounds that bind

via multiple mechanisms.

The model structure is not only useful for identifying the binding

mechanisms; the inferred model parameters, such as binding/unbinding

rates, for the plausible pharmacological binding model(s) can be used as

a proxy to quantitatively assess the binding behaviour and dynamics.

However, we showed that, with the limitations of the calibration data,

not all plausible models recover the same binding and unbinding rates,

although their ratios, the dissociation constants koff=kon of the models,

were more consistent (Figure 5 and Supporting Information). This

leads to a more complicated interpretation of the binding properties.

Without being able to identify the correct binding mechanism(s), we

would not be able to study the true binding/unbinding rates of the

compound. Moreover, for more complex pharmacological models, the

inferred parameters may even be subject to the calibration scheme

and procedure: For example, the inferred unbinding rate koff of

Model 12 and CiPA v1.0 were inconsistent (Figure 5), although our

Model 12 gives lower RMSDs (Supporting Information). The different

optimal parameters in CiPAv1.0 versus Model 12 fits could be due to

the use of a different objective function—there a tailored weighted

sum of squares of residuals, and based on fewer optimisation runs

which could perhaps make local rather than global optima more likely

(Li et al., 2017). We note that this is not the same as the unidentifiabil-

ity issue between, in our notation, k̂on and EC50 discussed in Li et al.

(2019), suggesting this is a difficult optimisation problem. Our findings

emphasise the need for careful design of experiments when parame-

terising complex models (Whittaker et al., 2020).

In Figure 4, we observed that constant instant conductance block

(Model 0α) was not classified as a plausible model for most of the

compounds, as we would expect, the goodness of fits were inade-

quate and poor (Figure 3). Yet, the torsade metric predictions by

Model 0α were not dissimilar to the other models (Figure 7; see

also Han et al., 2019; Mistry, 2019), which was likely due to the differ-

ence between using transient data (Milnes' protocol) and predicting

steady-state (qnet/torsade metric) conditions (Farm et al., 2023). How-

ever, we believe the torsade metric predictions of Model 0α were

acceptable only because of the steady-state nature of the metric. If

Model 0α were to be used to predict transient APs under certain

changes of conditions or pacing rates, then kinetic effects would be

neglected and bad predictions would likely result.

In Figure 7, we also noticed that the degree of variation tended

to be larger for drugs in higher proarrhythmic risk categories. This

phenomenon was thought to be due to the multichannel effects,

which either compensate for the effects of different hERG binding

mechanisms or make them insignificant. However, if our multiple-

binding-model approach was applied to other types of current, such

as ICaL, it may result in a similar level of uncertainty in their binding

mechanisms, leading (correctly) to a higher level of uncertainty in the
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risk predictions than we observed (Figure 7), particularly for compounds

that mainly block ICaL (e.g., diltiazem and nifedipine). Nonetheless, such

an observation also implies that it is likely to be most important to

determine the correct hERG binding mechanism when predicting

drugs with higher proarrhythmic risk. Also, given some of the risk pre-

diction spanned multiple risk categories, we advocate efforts to

reduce the uncertainty in binding model. Overall, the results highlight

the importance of the details of hERG binding mechanisms.

Furthermore, we have studied the effects of two different hERG

physiological channel gating models (Figure 1) on proarrhythmic risk

predictions. The CiPA v1.0 model uses hERG physiological model A

(Li et al., 2017), which was designed to closely match the IKr in O'Hara

et al. (2011) which itself was fitted to the native IKr of a cardiac

myocyte—composed of a mixture of hERG1a/1b channels or hetero-

tetramers (Jones et al., 2004; Sale et al., 2008) and any associated

(possibly still unknown) subunits and regulatory components, rather

than just hERG1a. In contrast, physiological model B was trained using

data from a cell line over-expressing hERG1a (Lei, Clerx, Beattie,

et al., 2019), which explains why the two models exhibit marked dif-

ferences in their predicted kinetics (Figure 8A). Since the drug-binding

calibration data were also gathered using hERG1a cell lines, we might

expect that physiological model B could capture the drug effects bet-

ter (as the open and inactive state occupancies available for binding

should match a hERG1a model's predictions better than a hERG1a/1b

model). Yet, since the CiPA v1.0 model and the torsade metric were

designed and optimised to work with physiological model A, we might

expect it to predict risk better. One could conceivably fit the hERG1a

binding data with physiological model B to obtain the binding parame-

ters, then apply these binding parameters to physiological model A to

predict changes to native IKr and therefore clinical risk. However,

fewer assumptions would be needed if one directly performed

voltage-clamp experiments on hERG1a/1b cell lines (Ríos-Pérez et al.,

2021) when calibrating pharmacological binding models, as com-

pounds with differing affinities for hERG1a and 1b have been

observed (Abi-Gerges et al., 2011).

We further note the potential of using computational methods for

studying molecular structural dynamics and relationships in drug bind-

ing, which may also provide insight into the binding mechanisms

(DeMarco et al., 2021; Munawar et al., 2019; P.-C. Yang et al., 2020).

In future, structural approaches could enhance our approach, in terms

of ruling out further binding mechanisms, particularly when all voltage-

dependent state structures for wild-type hERG1a and 1b are available

(Abi-Gerges et al., 2011; Maly et al., 2022; Y. Zhang et al., 2020).

Finally, to our knowledge, this is the first study that attempts to

address the question of whether we need a complex pharmacological

model that attempts to nest most/all of these binding mechanisms or

a set of multiple possible simpler pharmacological models to better

represent uncertainty in proarrhythmic risk predictions. In theory, if

parameter unidentifiability were not an issue, the two wings should

arrive at the same conclusion—for example, when modelling an

untrapped compound, the transition rates to the trapping component

of the complex model would approach zero, and the non-trapping

(simpler) model would be selected as the only plausible model.

However, it may be better to use simpler (fewer parameter) models

that can reproduce the underlying binding mechanism given the diffi-

culty of eliciting information-rich data for calibrating one-size-fits-all

complex binding models leading to potential parameter unidentifiabil-

ity issues (Whittaker et al., 2020), given the inevitable presence of

some model discrepancy (Lei, Ghosh, et al., 2020) and residual experi-

mental artefacts (Lei, Clerx, et al., 2020). Pragmatically, we would

suggest to select and use all the plausible simple models for predic-

tion as demonstrated here—a type of ensemble model prediction

which provides an estimate of uncertainty due to model discrepancy

(Murphy et al., 2007; Parker, 2013; Tebaldi & Knutti, 2007).

In conclusion, this study has developed an approach to analyse a

set of possible pharmacological small molecule binding models of

hERG that is effective in assessing their impacts, as well as the impact

of different physiological IKr models, on the proarrhythmic risk predic-

tions. Determining the details of binding mechanisms, perhaps

through the design of an improved calibration protocol, is crucial for

mitigating the induced, substantial uncertainty in risk predictions for

some compounds.
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