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Abstract
There is conflicting evidence as to whether Porifera (sponges) or Ctenophora (comb jellies) comprise the root of the 
animal phylogeny. Support for either a Porifera-sister or Ctenophore-sister tree has been extensively examined in the 
context of model selection, taxon sampling, and outgroup selection. The influence of dataset construction is com-
paratively understudied. We re-examine five animal phylogeny datasets that have supported either root hypothesis 
using an approach designed to enrich orthologous signal in phylogenomic datasets. We find that many component 
orthogroups in animal datasets fail to recover major lineages as monophyletic with the exception of Ctenophora, 
regardless of the supported root. Enriching these datasets to retain orthogroups recovering ≥3 major lineages re-
duces dataset size by up to 50% while retaining underlying phylogenetic information and taxon sampling. Site- 
heterogeneous phylogenomic analysis of these enriched datasets recovers both Porifera-sister and Ctenophora-sister 
positions, even with additional constraints on outgroup sampling. Two datasets which previously supported 
Ctenophora-sister support Porifera-sister upon enrichment. All enriched datasets display improved model fitness 
under posterior predictive analysis. While not conclusively rooting animals at either Porifera or Ctenophora, we 
do see an increase in signal for Porifera-sister and a decrease in signal for Ctenophore-sister when data are filtered 
for orthologous signal. Our results indicate that dataset size and construction as well as model fit influence animal 
root inference.
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Introduction
Animals comprise five major phyla: Bilateria, Cnidaria, 
Placozoa, Ctenophora, and Porifera (Halanych 2004; King 
and Rokas 2017). There remain a number of conflicting hy-
potheses regarding the evolutionary history of the animals. 
Primary among these is the placement of either Porifera 
(sponges) or Ctenophora (comb jellies) as the sister to 
all other animals (fig. 1; King and Rokas 2017). Porifera pos-
sess rudimentary epithelia and neural-like signaling while 
lacking muscle cells or a complete digestive system (King 
and Rokas 2017; Nielsen 2019). Ctenophora exhibit more 
complex morphology, for example a nervous system and 
true tissues, but possess different epithelial organization 
from other animals (King and Rokas 2017; Belahbib et al. 
2018; Nielsen 2019). Although both phyla lack more- 
derived innovations found in Cnidaria and Bilateria, 
some sponges possess microRNA-like machinery and 
ctenophore genomes may retain phylum-specific copies 
of genes (Wheeler et al. 2009; Pastrana et al. 2019; Pett 

et al. 2019). The “Porifera-sister” hypothesis, which places 
sponges as sister to all other animals, has been the trad-
itionally accepted view of animal evolution based upon 
morphological and molecular observations (Halanych 
2004; Pisani et al. 2015; King and Rokas 2017; Fernández 
et al. 2019; Nielsen 2019; fig. 1). Since the advent of 
large-scale phylogenomics, several studies have supported 
an alternative “Ctenophora-sister” hypothesis where cte-
nophores are placed sister to all other animals (Dunn 
et al. 2008; Philippe et al. 2009; Ryan et al. 2013; Moroz 
et al. 2014; Chang et al. 2015; King and Rokas 2017; fig. 1).

Recent studies arguing in favor of either hypothesis have 
focused on the use of models which assume homogeneous 
or heterogeneous site evolution processes (Francis and 
Canfield 2020). “Site-homogeneous” models assume simi-
lar amino acid equilibrium frequencies among partitions 
of a data matrix (Moran et al. 2015; Li et al. 2021). 
“Site-heterogeneous” models allow for heterogeneity in 
amino acid equilibrium frequencies across sites (Moran 
et al. 2015; Li et al. 2021). Both approaches have 
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advantages and disadvantages. Site-homogeneous parti-
tioned approaches can be readily implemented in 
maximum-likelihood frameworks, but may be vulnerable 
to long-branch attraction (LBA) artifacts (Li et al. 2021; 
Redmond and McLysaght 2021). Site-heterogeneous ap-
proaches better reflect actual sequence evolution, but cur-
rent implementations in Bayesian frameworks are 
computationally expensive. When applied in animal phylo-
genomics site-homogeneous approaches invariably re-
cover a Ctenophora-sister tree (Borowiec et al. 2015; 
Chang et al. 2015; Pisani et al. 2015; Whelan et al. 2015, 
2017; Simion et al. 2017; Laumer et al. 2018, 2019), whereas 
site-heterogeneous approaches have shown support for ei-
ther Ctenophora-sister (Borowiec et al. 2015; Chang et al. 
2015; Whelan et al. 2015, 2017; Laumer et al. 2018, 2019; 
Li et al. 2021) or Porifera-sister (Pisani et al. 2015; Feuda 
et al. 2017; Simion et al. 2017; Kapli and Telford 2020; 
Redmond and McLysaght 2021). It has been shown that 
site-heterogeneous support for Porifera-sister may be de-
pendent on data recoding strategies, selection of outgroup 
taxa, or the number of frequency classes afforded by site- 
heterogeneous models (Feuda et al. 2017; Whelan and 
Halanych 2017; Kapli and Telford 2020; Li et al. 2021). 
Alternative approaches based on gene content have sup-
ported Porifera-sister (Pett et al. 2019), and a recent study 
found that the removal of a small fraction of sites from one 
animal dataset recovered a monophyletic Ctenophora + 
Porifera root (“Paranimalia”) under multiple models of 
evolution (fig. 1; Francis and Canfield 2020).

The influence of individual gene families (or 
orthogroups) within animal datasets on root inference is 
comparatively underexplored. Gene loss, gene duplication, 
and genome duplication events have occurred extensively 
across animals (Dehal and Boore 2005; Meyer and Van de 

Peer 2005; Fernández and Gabaldón 2020; Guijarro-Clarke 
et al. 2020). Both sponges and ctenophores have under-
gone gene loss after their divergence from other animals 
(Belahbib et al. 2018; Pett et al. 2019), and Ctenophora 
are thought to possess faster-evolving genomes than other 
animals (Pick et al. 2010; Philippe et al. 2011; Feuda et al. 
2014). These factors can complicate ortholog detection 
within the animals and may contribute to conflicting pla-
cements of Porifera and Ctenophora (Pett et al. 2019; 
Glover et al. 2019; Deutekom et al. 2020; Fernández and 
Gabaldón 2020). Some studies have examined the effect 
of different classes of sequences on animal root inference 
(Philippe et al. 2011; Nosenko et al. 2013; Whelan et al. 
2015). Most animal phylogeny datasets are constructed 
from combinations of genomic and transcriptomic data 
using automated/semi-automated ortholog detection pi-
pelines, and include rigorous protocols to remove 
orthogroups which may lead to LBA or compositional het-
erogeneity (CH) artifacts (Whelan et al. 2015, 2017; Simion 
et al. 2017; Laumer et al. 2018, 2019).

Ortholog misidentification has been shown to have a 
substantial impact on final species tree inference within 
the animals (Brown and Thomson 2017; Siu-Ting et al. 
2019; Natsidis et al. 2021). Assessment of internal congru-
ence within these datasets (i.e., the ability of individual 
orthogroups to recover internal relationships in a tree) 
has only been applied in limited instances (Simion et al. 
2017). One approach to reducing artifacts arising from 
ortholog detection is to assess the ability of orthologs to 
recover uncontroversial relationships within a species 
tree. Such assessment has previously been applied in simi-
lar conflicts within Lissamphibia lineages prone to hidden 
paralogy, where paralogous genes are misidentified as 
orthologous (Siu-Ting et al. 2019). For datasets 

FIG. 1. Overview of alternative hypotheses for the root of animals. Topologies shown describe the two major hypotheses for animal rooting 
(Porifera-sister and Ctenophore-sister), alongside an alternate hypothesis consisting of a monophyletic Porifera + Ctenophora-sister root 
(“Paranimalia”). Topologies for Porifera- and Ctenophora-sister roots as described in King and Rokas (2017). Nomenclature and topology for 
Paranimalia root as described in Francis and Canfield (2020). All silhouettes obtained from Phylopic (http://phylopic.org). Placozoa silhouette 
(Trichoplax adhaerens) by Oliver Voigt under a Creative Commons licence CC BY-SA 3.0; Bilateria silhouette (Mus musculus) by David Liao under 
a Creative Commons licence CC BY-SA 3.0 and Porifera silhouette (Siphonochalina siphonella) by Mali’o Kodis, photograph by Derek Keats 
(http://www.flickr.com/photos/dkeats/) under a Creative Commons licence CC BY 3.0. Filozoa outgroup (Capsaspora owczarzaki), Cnidaria sil-
houette (Medusazoa sp.), and Ctenophora silhouette (Hormiphora californensis) under public domain.
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constructed to answer questions of placement of deeper 
nodes in a tree (e.g., Porifera-sister vs. Ctenophora-sister), 
it may be prudent to ask whether these datasets can re-
cover at least a proportion of these nodes themselves 
(Doolittle and Brown 1994; Hime et al. 2021; Smith and 
Hahn 2021).

We have examined the effects of dataset incongruence 
on conflicting animal root hypotheses, using an approach 
to enrich orthologous signal as implemented in the soft-
ware clan_check (Siu-Ting et al. 2019). We re-examined 
five previously published animal datasets which have 
variously supported either a Porifera-sister or Ctenophora- 
sister root (table 1; Chang et al. 2015; Whelan et al. 2015, 
2017; Simion et al. 2017). We find that for all but one of 
these datasets, component orthogroups overwhelmingly 
recover Ctenophora as a monophyletic clan when ≥2 
ctenophore taxa are present, unsurprising given their 
long stem branch and short internal branches. By contrast, 
<10% of orthogroups across all datasets recover a mono-
phyletic Porifera and <50% recover monophyletic Cnidaria 
or Bilateria. Filtering these datasets to retain orthogroups 
which recover ≥3 clans reduces dataset size by up to 
50% while retaining taxon sampling and underlying phylo-
genetic information. We then reconstructed an animal 
phylogeny for each dataset using the site-heterogeneous 
CAT-GTR+G4 model as implemented in PhyloBayes-MPI. 
We find that filtered datasets exhibit improved model 
fit under posterior predictive analysis (PPA) relative to 
original datasets, while maintaining sufficient amino 
acidsubstitution and transition rate information. As for 
the animal root, we recover both Porifera-sister and 
Ctenophora-sister trees across the five datasets examined 
and across additional analyses restricting outgroup sam-
pling. Notably, two datasets previously demonstrated to 
support Ctenophora-sister instead support Porifera-sister 
after such reanalysis. This study does not conclusively re-
solve the animal root—this was not our objective, but 
we do see an increase in signal for Porifera-sister and a de-
crease for Ctenophore-sister with our ortholog enrich-
ment filter. Our findings illustrate the importance of 
assessing ortholog suitability and dataset congruence in 
animal phylogeny and may indicate that smaller enriched 
datasets contain sufficient information to reconstruct 
complex evolutionary histories while facilitating better 
model fit than larger datasets.

Results
Lack of Orthologous Signal at Major Nodes  
in Animal Datasets
The five animal phylogeny datasets analyzed in this study 
were chosen to reflect competing animal root hypotheses, 
and differences in taxon sampling and dataset construc-
tion approaches (table 1; supplementary table S1, 
Supplementary Material online; Chang et al. 2015; 
Whelan et al. 2015, 2017; Simion et al. 2017; Siu-Ting 
et al. 2019). The latter can also be observed by the relative 
lack of overlap in human gene content across all five 

datasets (Francis and Canfield 2020; supplementary fig. 
S1, Supplementary Material online). We filtered these da-
tasets to enrich for orthologous signal at major animal 
nodes using an approach implemented in the software 
clan_check (Siu-Ting et al. 2019). Clan_check takes user- 
defined sets of taxa and tests gene trees on their ability 
to recover these sets as clans sensu Wilkinson et al. 
(2007), provided that ≥2 taxa from a set are present in a 
tree (Wilkinson et al. 2007; Siu-Ting et al. 2019; fig. 2A). 
This approach has previously been demonstrated to im-
prove resolution of problematic nodes within the 
Lissamphibia (Siu-Ting et al. 2019). We defined six groups 
to test as clans: the five major animal phyla and an add-
itional clan of all outgroup taxa for each dataset. As 
Placozoa was solely represented by Trichoplax adhaerens in 
each dataset, in practice we assessed orthologous signal of 
five clans in our study. For the Chang et al. (2015) and 
Simion et al. (2017) studies, the original datasets were ob-
tained for analysis and are henceforth referred to as 
“Chang2015” and “Simion2017” (table 1). For the two 
Whelan et al. (2015, 2017) studies, the datasets chosen 
were those presented in the main text of each paper: 
Dataset 10 for Whelan et al. (2015) and Metazoa_ 
Choano_RCFV_strict for Whelan et al. (2017)
(supplementary information, Supplementary Material
online). Additionally, Dataset 20 from Whelan et al. 
(2015) was chosen as it has been used in other animal 
phylogenomics studies (Feuda et al. 2017; Li et al. 2021). 
These datasets are henceforth referred to as “Whelan 
2015_D10”, “Whelan2015_D20”, and “Whelan2017_ 
MCRS” (table 1).

Clan_check analysis indicates a lack of orthologous sig-
nal for deeper relationships within animal phylogeny data-
sets (fig. 2B). In four of the five datasets analyzed, 86–98% 
of component orthogroups recover Ctenophora as a clan. 
This contrasts with recovery of the remaining three animal 
clans; <10% of orthogroups can recover Porifera, ∼9–30% 
can recover Cnidaria, and ∼19–26% can recover Bilateria. 
While outgroup composition varies across these four data-
sets, ∼26–38% of orthogroups recover an outgroup clan 
separate from the remaining animal taxa. One exception 
to this trend is the lower proportion of Ctenophora recov-
ery observed in the Whelan2017_MCRS dataset, where 
48% of orthogroups have <2 ctenophores present and 
35% lack any ctenophores whatsoever. There is also 
greater recovery of the outgroup clan across 
Whelan2017_MCRS (∼73%) compared to the other data-
sets, a reflection of Choanoflagellate-only outgroup sam-
pling in Whelan2017_MCRS. Table 2 indicates the 
number of clans (excluding Placozoa) recovered by 
each dataset; nearly three quarters of orthogroups across 
all five datasets cannot recover >2 defined clans.

The Effect of clan_check Filtering on Animal 
Phylogeny Datasets
We retained orthogroups that could recover ≥3 clans de-
fined in our clan_check analysis for downstream analysis 

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/1/m
sac276/6989790 by guest on 04 April 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac276#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac276#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac276#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac276#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac276#supplementary-data
https://doi.org/10.1093/molbev/msac276


McCarthy et al. · https://doi.org/10.1093/molbev/msac276 MBE

(table 2). Applying this filter reflects a reasonable assump-
tion that orthogroups of sufficient sampling and quality 
should be capable of recapitulating most major internal re-
lationships within a species tree. This filter retained be-
tween 17% and 33% of orthogroups from the original 
datasets and 25–52% of the original dataset size (tables 
1, 2, and 3), while retaining taxon sampling distribution 
across each major clan (supplementary fig. S2, 
Supplementary Material online). The filtered datasets 
also display similar or reduced levels of data heterogeneity 
relative to the original datasets (supplementary fig. S3 and 
table S2, Supplementary Material online) and similar distri-
butions of gene ontology categories (supplementary table 
S3, Supplementary Material online), with some exceptions 
that can be attributed to dataset construction approaches.

We assessed the impact of clan_check filtering on data-
set construction using PhyKIT, which performs several 
sequence- and tree-based evaluations of phylogenetic in-
formation and potential biases (Steenwyk et al. 2021). 
For each dataset, we evaluated phylogenetic information 
across orthogroups which passed or failed our clan_check 
filter using seven criteria following Steenwyk et al. (2021)
(fig. 3). Orthogroups which passed our clan_check filtering 
exhibit significantly higher alignment lengths and numbers 
of parsimony informative and variable sites (Wilcoxson 
test, P ≤ 0.05)—all measures associated with higher- 
quality phylogenetic information (Shen et al. 2016). 
Mean bipartition support, or internal branch support, is 
also significantly improved in orthogroups that passed 
our clan_check filter (fig. 3). Other metrics, such as long 
branch score or treeness divided by relative compositional 
variability, show no significant difference before or after 

clan_check filtering in most datasets—indicating that 
there is still heterogeneity present in these datasets (fig. 3).

We also examined the effect of our clan_check filtering 
on the overall gene- (gCFs) and site concordance factors 
(sCFs) in each dataset, using methods implemented in 
IQTREE (Nguyen et al. 2015; Minh et al. 2020). For a given 
branch in a species tree, these factors represent the per-
centage of gene trees or alignment sites in a dataset con-
taining or supporting that branch for all gene trees or 
sites “decisive” for that branch,—that is those capable of 
accepting or rejecting that branch (Minh et al. 2020). 
gCFs in some respects recapitulate the results of our clan_ 
check analysis. For example, in the Chang2015 dataset, we 
observe 8 orthogroups recovering a Porifera clan out of 
200 orthogroups containing ≥2 sponges (fig. 2B)—the 
branch representing the ancestral Porifera node is given 
a gCF of 4 (8/200) in our concordance analysis of the 
same dataset (supplementary fig. S4, Supplementary 
Material online). Comparing the original and filtered data-
sets, we observe an increase in gCFs across most branches 
in the filtered datasets—as would be expected given the 
reduction in the number of orthogroups in the latter 
(supplementary figs. S4–S8, Supplementary Material on-
line). sCF analysis indicates more incremental change be-
tween original and filtered datasets, which reflects that 
our approach filters on the gene-level as opposed to the 
site-level (supplementary figs. S4–S8, Supplementary 
Material online). The sCFs of many deep branches in 
both original and filtered datasets are below 50%, suggest-
ing that there is substantial conflicting signal for deeper 
animal relationships present in these datasets at the site- 
level. Notably, the sCF of the Ctenophora branch is 

Table 1. Animal Phylogeny Datasets Used.

Study Dataset chosen # 
Taxa

# OGs # Sites Rooting in original 
study

Model(s) used in 
original study

Data availability

Chang 
et al. 
(2015)

Chang2015 77 200 51,940 Ctenophora-sister ML partitioning 
CAT

https://treebase.org/ 
treebase-web/ 
search/study/ 
summary.html?id = 
17743

Whelan 
et al. 
(2015)

Whelan2015_D10 (“Dataset 10”) 70 210 59,733 Ctenophora-sister ML partitioning 
CAT-GTR+G4 
(other 
datasets)

http://dx.doi.org/10. 
6084/m9.figshare. 
1334306.v3

Whelan 
et al. 
(2015)

Whelan2015_D20 (“Dataset 20”) 70 178 47,632 Ctenophora-sister ML partitioning 
CAT-GTR+G4 
(other 
datasets)

http://dx.doi.org/10. 
6084/m9.figshare. 
1334306.v3

Simion 
et al. 
(2017)

Simion2017 97 1,719 401,632 Porifera-sister ML partitioning 
Jack-knifed 
CAT+G4

https://github.com/ 
psimion/SuppData_ 
Metazoa_2017

Whelan 
et al. 
(2017)

Whelan2017_MCRS 
(“Metazoa_Choano_RCFV_strict”)

76 127 49,388 Ctenophora-sister ML partitioning 
CAT-GTR+G4

http://dx.doi.org/10. 
6084/m9.figshare. 
4484138.v1

Table includes the number of taxa and orthogroups sampled per dataset, the number of sites across the entire dataset and information as to the phylogenetic approaches and 
rooting for each dataset in each original study (note: other datasets in Whelan et al. (2015) were analyzed under CAT-GTR+G4). The datasets chosen column includes our 
nomenclature for each dataset and, for studies with multiple datasets, which dataset was selected. 
OGs, orthogroups; ML, maximum-likelihood; CAT, CAT mixture model; GTR, generalized time reversible model; G4, discrete gamma distribution with four categories.
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consistently higher (∼70–75%) than other major animal 
nodes across all original and filtered datasets 
(supplementary figs. S4–S8, Supplementary Material
online).

Improved Model fit Observed in Datasets Filtered 
Using clan_check
Phylogenomic reconstruction of each enriched animal da-
taset was performed using PhyloBayes-MPI under a 
CAT-GTR+G4 model, running two independent chains 
for at least 10,000 iterations or in the case of 
Simion2017_filtered, at least 7,500 iterations (table 3; 
Lartillot and Philippe 2004; Lartillot et al. 2013). Visual 
and quantitative assessment of chain convergence of 
each run indicated that all parameters had acceptably 
converged, with exceptions in Chang2015_filtered 
and Simion2017_filtered (table 3; supplementary figs. 
S9–S13, Supplementary Material online; supplementary 

information, Supplementary Material online). We assessed 
model fitness for each filtered dataset using five PPA sta-
tistics implemented in PhyloBayes-MPI (Lartillot et al. 
2013). Each statistic tests a model’s ability to accommo-
date site- or branch-heterogeneity by comparing observed 
values from phylogenomic datasets with data simulated 
under the model. This comparison is computed as a 
|Z|-score, with the null hypothesis that the model ad-
equately estimates these preferences. |Z| < 2 indicates ad-
equate model fitness, whereas |Z| > 5 indicates strong 
rejection of the null hypothesis (Feuda et al. 2017; 
Lartillot 2020). PPAs for each filtered dataset were com-
pared with PPAs for the original dataset, which were ob-
tained from Feuda et al. (2017) for Chang2015 and 
Whelan2015_D20 or generated from additional 
PhyloBayes-MPI runs for all other datasets.

In line with reductions in dataset size and enrichment of 
phylogenetic information, PPAs for each filtered dataset 
indicate improved fit to CAT-GTR+G4 over the original 

A

B

FIG. 2. (A) Simplified illustration of clan_check approach to assessing congruence. In unrooted trees a “clan”, sensu Wilkinson et al. (2007), is 
analogous to monophyletic groups or clades in rooted trees. Clan_check assesses whether user-defined “incontestable” clans are violated in 
a set of unrooted gene trees. These “incontestable” clans can be thought of as phylogenetic relationships that should be recapitulated by 
gene trees to the exclusion of all other taxa if ≥2 taxa representing that relationship are present. In our study, we refer to clans which are 
not violated as “recovered” and clans which are violated as “not recovered”. In the example given, the relationship A + B + C + D is considered 
incontestable within a rooted species tree (left) and is assessed across a group of unrooted gene trees (right). In the first gene tree (top right), A + 
B + C + D is recovered as a clan because A + B + D group together to the exclusion of E and F. In the second gene tree (middle right), A + B + C + D 
is not recovered as a clan as no bipartition exists in which those taxa group to the exclusion of E and F. In the third gene tree (bottom right), A + B 
+ C + D cannot be recovered as a clan as only taxon A is present in the gene tree. (B) Clan_check results for five animal phylogeny datasets. 
Stacked bar plot representing proportions of orthogroups per dataset which can recover/cannot recover/do not contain enough taxa (two 
or more) to recover a given clan from five animal clans defined in this study excluding the singleton clan Placozoa. Numbers of orthogroups 
in each of the three categories per clan given inside bars, values less than 8 not shown. OGs, orthogroups.
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datasets (fig. 4A). Datasets constructed with strict paralogy 
and/or heterogeneity filtering criteria, particularly 
Whelan2015_D20 and Whelan2017_MCRS, show smaller 
improvements relative to other datasets (fig. 4A). Of 
note is the substantial improvement in scores for 
PPA-MAX, which tests for adequate modeling of 
maximal compositional heterogeneity, observed for 
Chang2015_filtered and Whelan2017_MCRS_filtered 
(|Z| < 2). This may reflect the reduction of compositional 
outliers inferred from comparing RCFV values in 
original and filtered datasets (supplementary fig. S3, 
Supplementary Material online). Overall, CAT-GTR+G4 fails 
to adequately model most compositional heterogeneity in 
filtered animal datasets despite the improvements in PPA 
results (fig. 4A; supplementary fig. S26, Supplementary 
Material online). This is in line with observations by Feuda 
et al. (2017), although the same authors demonstrated 
CAT-GTR+G4 displays substantially better model fitness 
than site-homogeneous approaches.

As a complementary analysis, we also assessed model 
fitness in animal datasets using the QMaker approach im-
plemented in IQTREE (Minh et al. 2020). Custom 

substitution matrices (Q) were generated for each original 
and filtered dataset using 50% of component orthogroups 
as a training set, and the fitness of each Q matrix was com-
pared with three empirical substitution matrices (LG, JTT, 
and WAG) across the other 50% of orthogroups as a test 
set (Minh et al. 2020). Q matrices were overwhelmingly se-
lected as the best-fit model for original and filtered data-
sets under Bayesian information criterion, in line with 
observations in the Minh et al. (2020) study across differ-
ent phylogenomic datasets (fig. 4B), and the proportions of 
orthogroups selecting Q in original and filtered datasets is 
broadly similar. Following a rule of thumb from Minh et al. 
(2020), the high proportions of support for each Q matrix 
across filtered test set indicate that filtered animal datasets 
may still contain sufficient information in terms of amino 
acid frequencies and transition rates to conduct phyloge-
nomic analysis, even for datasets <50 genes in size (fig. 4B).

CAT-GTR+G4 Reconstruction Can Recover Both 
Animal Root Hypotheses
All initial PhyloBayes-MPI runs except for Simion2017_ 
filtered converged in tree space upon generating posterior 

Table 2. Clan Recovery Across Five Animal Datasets Using clan_check.

Dataset OGs in original dataset # of OGs which recovered n number of clans (excluding Placozoa) OGs retained after clan_check filtering

n = 5 4 3 2 1 0

Chang2015 200 1 8 25 56 107 3 34
Whelan2015_D10 210 1 15 24 51 100 19 40
Whelan2015_D20 178 2 8 19 45 83 21 29
Simion2017 1719 25 125 307 583 625 54 457
Whelan2017MCRS 127 3 19 20 33 36 16 42

Table lists the number of orthogroups in each dataset, and then how many orthogroups within each dataset can recover n number of the defined clans given in figure 2. The 
numbers of orthogroups which recover ≥3 clans is emphasized in-table for n = 3–5, and the total number of orthogroups which passed this filter and were retained in our 
filtered datasets is given on the right. 
OGs, orthogroups.

Table 3. PhyloBayes-MPI CAT-GTR Reconstructions of Five Filtered Animal Datasets.

Dataset (Iterations per chain) # 
Taxa

# 
OGs

# Sites Tree convergence Conflicting 
bipartitions  

(diff > 0)

Divergent components  
(rel_diff < 0.3)

Root hypothesis

Chang2015_filtered (12,768/ 
14,720)

77 34 15,983 Maxdiff: 0.12 
Meandiff: 

0.00144368

10 Tree length (0.447) Ctenophora-sister

Whelan2015_D10_filtered 
(18,587/19,295)

70 40 15,125 Maxdiff: 0.234 
Meandiff: 

0.00375807

19 None Ctenophora-sister

Whelan2015_D20_filtered 
(12,258/12,418)

70 29 10,0016 Maxdiff: 0.204 
Meandiff: 

0.00281874

12 None Porifera-sister

Simion2017_filtered (8,776/ 
9,471)

97 457 152,324 Maxdiff: 1 
Meandiff: 
0.0104712

4 Log-likelihood (0.85), mean 
site entropy (0.73), alpha 
(0.76)

Porifera-sister

Whelan2017_MCRS_filtered 
(15,714/12,226)

76 42 22,820 Maxdiff: 0.038 
Meandiff: 

0.000906953

33 None Porifera-sister

Table includes the number of taxa and orthogroups sampled per filtered dataset, the number of sites across each dataset, details on the convergence/divergence of each set of 
runs in tree and component space, and supported root hypothesis. 
OGs, orthogroups; diff, discrepancy; maxdiff, maximum discrepancy observed across all bipartitions; meandiff, mean discrepancy observed across all bipartitions; rel_diff, 
relative discrepancy between chain components.
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consensus trees (maxdiff < 0.3) (table 3). For Simion2017_ 
filtered, lack of convergence was the result of divergence 
between chains in resolving internal branches within 
Choanoflagellata and Ctenophora which became fixed 
early in each chain (supplementary information, 
Supplementary Material online) and these divergences 
do not impact phylum-level reconstruction of the animal 
tree. Each filtered dataset recovered a tree which 
supported either the Porifera-sister or Ctenophora-sister 
hypothesis (fig. 5A; supplementary figs. S15–S19, 
Supplementary Material online). An alternative “Paranimalia” 
hypothesis (Porifera + Ctenophora sister to all other animals) 
was not recovered in this analysis (Francis and Canfield 2020).

In three of the five CAT-GTR+G4 reconstructions we per-
formed on filtered animal datasets, we recovered the same 
animal root as inferred in the original studies (fig. 5A; 
tables 1 and 3). The Chang2015_filtered and 
Whelan2015D10_filtered datasets both supported a 
Ctenophora-sister tree (supplementary figs. S15 and S16, 
Supplementary Material online; Chang et al. 2015; Whelan 
et al. 2015), and Simion2017_filtered supported a 
Porifera-sister tree (supplementary fig. S18, Supplementary 
Material online; Simion et al. 2017). Notably, 
Simion2017_filtered recovers a Porifera-sister tree with 

holozoan outgroups (Feuda et al. 2017; Simion et al. 2017). 
This contradicts assumptions that recovering Porifera-sister 
under CAT-GTR+G4 was dependent on restricting outgroup 
sampling to Choanoflagellates (Halanych et al. 2016; Li et al. 
2021). As for Whelan2015_D20_filtered and Whelan2017_ 
MCRS_filtered, we recovered a Porifera-sister tree for both 
datasets whereas the original datasets recovered 
Ctenophora-sister trees (fig. 5A; supplementary figs. S17 
and S19, Supplementary Material online; Whelan et al. 
2015, 2017). For Whelan2015_D20_filtered, there is notice-
ably poor support at the node separating Porifera from all 
other animals (PP = 0.55)—this may reflect gene-level 
discordance with the placement of Ctenophora next 
to the remaining animal phyla in the Bayesian tree 
(gCF = 0, sCF = 31) (supplementary figs. S6 and S17, 
Supplementary Material online). As with Simion2017_ 
filtered, this represents a Porifera-sister tree obtained under 
CAT-GTR+G4 analysis with larger outgroup sampling. For 
Whelan2017_MCRS_filtered, Porifera branch closest to the 
five Choanoflagellate outgroup taxa (supplementary fig. 
S19, Supplementary Material online). In total, two of the 
five datasets analyzed in this approach supported a 
Ctenophora-sister tree, and three supported a 
Porifera-sister tree (fig. 5A).

FIG. 3. Comparison of seven phylogenetic information criteria in orthogroups passing or failing clan_check filter. Sequence- and tree-based 
phylogenetic information was assessed using PhyKIT (Steenwyk et al. 2021). Alignment length: longer alignments are associated with stronger 
phylogenetic information; Mean bipartition support: higher values imply greater certainty in tree topology; Mean long branch score: lower values 
indicate less long branch attraction artifacts; Parsimony informative sites: higher number of sites associated with improved phylogenetic infor-
mation; Saturation: higher scores indicate less sequence saturation; Treeness by relative compositional variability (RCV): higher values indicate 
less susceptibility to composition bias; Variable sites: higher number of sites associated with stronger phylogenetic information content. Box plot 
representing distribution of values for each criterion in original and filtered dataset. Wilcoxson test results: ****P ≤ 0.0001, ***P ≤ 0.001, **P ≤ 
0.01, *P ≤ 0.05; ns, not significant.
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Overall, topologies are largely congruent between ori-
ginal and filtered trees for each dataset, with exceptions 
in some internal branches in major animal groups (see 
supplementary information, Supplementary Material on-
line for details on intraphylum relationships in these trees). 
Both Chang2015_filtered and Whelan2017MCRS_filtered 
fail to recover deuterostomes (Bilateria) as monophyletic, 
Whelan2015D10_filtered fails to resolve a singular node 
within demosponges (Porifera), and Simion2017_filtered 
deviates in the placement of stalked jellies within 
Cnidaria (supplementary information, Supplementary 
Material online). Statistical supports in the filtered phylo-
genies are congruent with the original phylogenies with 
slight variations in internal branch support, and each ma-
jor phyla and the relationships between phyla receives 
maximum or near-maximum support (supplementary 
information, Supplementary Material online). The minor 
changes observed in the filtered phylogenies are likely 
the results of unavoidable informational loss due to our fil-
tering approach, but the overall retention of major animal 
phyla and most internal relationships within these phyla 
indicate that this approach is phylogenetically sound.

Part of the debate surrounding the animal phylogeny 
root has focused on the effect of outgroup sampling 

strategies on root inference, particularly whether restrict-
ing outgroup sampling to Choanoflagellates induces either 
a Porifera-sister or Ctenophora-sister tree due to artifacts 
such as LBA (Halanych et al. 2016; Li et al. 2021). To exam-
ine how outgroup inclusion affects root inference for our 
filtered datasets, we repeated PhyloBayes-MPI runs for 
several datasets restricting outgroups to (1) Holozoans 
and Choanoflagellates (fig. 5B; supplementary figs. S20 
and S21, Supplementary Material online) and (2) 
Choanoflagellates-only (fig. 5C; supplementary figs. 
S22–S25, Supplementary Material online). For Holozoan + 
Choanoflagellate outgroup comparisons, Whelan2015_ 
D10_filtered and Whelan2015_D20_filtered were reanalyzed 
with fungal outgroups removed and compared with all pre-
viously filtered datasets except Whelan2017_MCRS_filtered 
which lacked Holozoan outgroup taxa (fig. 5B). These new 
filtered datasets (Whelan2015_D10_filteredHolo and 
Whelan2015_D20_filteredHolo) both support a Porifera- 
sister tree. Support at the node separating Porifera from 
Ctenophora is poor (PP = 0.55) in Whelan2015_D10_ 
filteredHolo, improving to PP = 0.88 in Whelan2015_ 
D20_filteredHolo (fig. 5B; supplementary figs. S20 and S21, 
Supplementary Material online). Comparing these two re-
stricted trees with Chang2015_filtered and Simion2017_ 

A B

FIG. 4. Illustration of assessment of model fit for (A) CAT-GTR+G reconstructions of original and filtered animal phylogeny datasets. Model fit 
assessed using posterior predictive analysis (PPA) as implemented in PhyloBayes-MPI. Two PPA statistics shown: mean amino acid diversity 
(PPA-DIV) and maximal compositional heterogeneity (PPA-MAX). Red arrows indicate the observed mean for each PPA calculated for original 
and filtered datasets. Blue ridgeline curves represent the range of values for each PPA estimated from the CAT-GTR+G model using 500 simu-
lated replicates, given a predicted mean and standard deviation estimated from PhyloBayes-MPI. |Z| represents the deviation of the predicted 
values from the observed value and hence the fit of the model to data, with the null hypothesis that the model adequately fits the data. |Z| < 2 
indicates adequate model fit for a given statistic, |Z| > 5 indicates inadequate model fit. PPA data for the original Chang2015 and 
Whelan2015_D20 taken from Feuda et al. (2017). PPA data for the remaining original datasets generated from single chain PhyloBayes-MPI ana-
lyses run for either ∼1,000 iterations (Simion2017) or ∼5,000 iterations (Whelan2015_D10, Whelan2017_MCRS). (B) Estimated empirical amino 
acid substitution models for original and filtered animal phylogeny datasets. Empirical amino acid substitution models (Q) estimated for original 
and filtered datasets using QMaker approach as implemented in IQTREE (Minh et al. 2020). Models estimated using 50% of orthogroups as 
training sets, and fit of Q models versus standard empirical models (LG, WAG, JTT) assessed across remaining 50% of orthogroups as test 
sets under Bayesian information criterion. Stacked bar plot representing proportions of best-fit models across test orthogroups in original 
and filtered animal datasets, numbers of orthogroups per category given in bars (values under 3 not shown). OGs, orthogroups.
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filtered, three datasets support a Porifera-sister tree and one 
supports a Ctenophore-sister tree. Finally, for 
Choanoflagellate-only outgroup comparisons, all datasets 
with the exception of Whelan2017_MCRS_filtered were 

reanalyzed with all non-Choanoflagellate outgroups re-
moved (fig. 5C; supplementary figs. S22–S25, 
Supplementary Material online). This time, three datasets 
support a Ctenophore-sister tree with high statistical support 

A

B

C

FIG. 5. (A) Bayesian CAT-GTR+G reconstructions of filtered animal phylogeny datasets. Posterior consensus trees generated from 
PhyloBayes-MPI runs using bpcomp with a burn-in of 5,000 iterations and sampling every 10 iterations up to 10,000 iterations (or 7,500 iterations 
for Simion2017_filtered). Posterior probabilities (PP) = 1 for all branches, unless indicated. All trees rooted at most distantly related outgroup in 
dataset: Ichthyosporea + Filasterea (Chang2015_filtered), Fungi (Whelan2015_D10_filtered and Whelan2015_D20_filtered), Ichthyosporea 
(Simion2017_filtered), or Choanoflagellata (Whelan2017_MCRS_filtered). (B) Bayesian CAT-GTR+G reconstructions of filtered animal phyl-
ogeny datasets with outgroup sampling restricted to Holozoa and Choanoflagellata. Whelan2017_MCRS_filtered not included in comparison 
due to only containing Choanoflagellata as outgroup taxa, Chang2015_filtered and Simion2017_filtered trees as in (A). Posterior probabilities 
(PP) = 1 for all branches, unless indicated. All trees rooted at most distantly related outgroup in dataset: Ichthyosporea + Filasterea 
(Chang2015_filtered) or Ichthyosporea (all other trees). (C ) Bayesian CAT-GTR+G reconstructions of filtered animal phylogeny datasets 
with outgroup sampling restricted to Choanoflagellata. Whelan2017_MCRS_filtered tree as in (A). Posterior probabilities (PP) = 1 for all 
branches, unless indicated. All trees rooted at Choanoflagellata. All silhouettes obtained from Phylopic (http://phylopic.org). Placozoa silhouette 
(Trichoplax adhaerens) by Oliver Voigt under a Creative Commons licence CC BY-SA 3.0; Bilateria silhouette (Mus musculus) by David Liao under 
a Creative Commons licence CC BY-SA 3.0 and Porifera silhouette (Siphonochalina siphonella) by Mali’o Kodis, photograph by Derek Keats 
(http://www.flickr.com/photos/dkeats/) under a Creative Commons licence CC BY 3.0. Filozoa outgroup (Capsaspora owczarzaki), Cnidaria sil-
houette (Medusazoa sp.), and Ctenophora silhouette (Hormiphora californensis) under public domain.
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(PP ≈ 0.85–1), whereas Simion2017_filteredChoano and the 
previously generated Whelan2017_MCRS_filtered trees sup-
port Porifera-sister (fig. 5C; supplementary figs. S22–S25, 
Supplementary Material online). Overall, our analyses show 
that enrichment for orthologs reduces support for 
Ctenophore-sister and increases support for Porifera-sister 
position.

Discussion
For this study, we chose animal phylogeny datasets 
that have supported either the Porifera-sister or 
Ctenophore-sister root hypothesis (fig. 1) and examined 
the effect of enriching orthologous signal on animal root 
inference. Assessing orthologous signal using clan_check 
(Siu-Ting et al. 2019) demonstrates that orthogroups in 
these datasets are largely capable of recovering monophy-
letic Ctenophora but struggle to recover other major ani-
mal groups (fig. 2B). This inconsistent orthologous signal 
could be due to several factors; hidden paralogy leading 
to ortholog misidentification, gene-species tree conflict 
arising from incomplete lineage sorting or divergent rates 
of sequence evolution driving incongruent gene trees, 
among others. Given the evolutionary timespan of the an-
imals, it is possible that a combination of these confound-
ing factors is diminishing orthologous signal in these 
datasets in differing proportions,—that is hidden paralogy 
may drive incongruence across the tree while incomplete 
lineage sorting may exacerbate that incongruence in differ-
ent parts of the tree. Further examination would be re-
quired to identify the driving factor(s) in this lack of 
signal outside of this conjecture.

Siu-Ting et al. (2019) also highlight that the use of tran-
scriptomic data alongside genomic data in datasets like 
those examined in this study may exacerbate these arti-
facts, as transcriptomes may reflect time- and tissue- 
dependent complements of a genome as opposed to the 
full genome itself. Recent studies comparing “phylotran-
scriptomic” trees with phylogenomic trees have found 
comparable phylogenetic resolution in both, but only 
where transcriptomic data is of sufficient quality and sam-
pling consistency which may be lineage-dependent 
(Cheon et al. 2020; Spillane et al. 2021). Improving assem-
bly quality and the gradual standardization of data assem-
bly protocols may help to reduce these errors in future 
studies (Cheon et al. 2020).

More broadly, inherent challenges in ortholog detection 
on kingdom-wide level may have some influence on the 
lack of orthologous signal we observed at major animal 
nodes (Natsidis et al. 2021). This is not to suggest that 
the datasets analyzed here have been mismanaged, as 
many have either been manually curated or strictly filtered 
to remove sources of common phylogenetic errors such as 
LBA or compositional bias (Chang et al. 2015; Whelan et al. 
2015, 2017; Simion et al. 2017). Rather, in constructing da-
tasets intended to resolve deep nodes such as the animal 
root, it may be prudent to also assess genes on their ability 
to recover deeper relationships within a larger species tree. 

In one of the datasets we reanalyzed (Simion2017), internal 
dataset congruence was inferred from the percentage of 
bipartitions that were identical in individual gene trees 
and a corresponding species tree (Simion et al. 2017). By 
comparison, our approach in effect functions as a filter 
on congruence at individual nodes in gene trees using in-
formation derived from a species tree rather than compar-
ing all bipartitions. For an analysis of deep nodes within a 
species tree, the ability of gene trees to recapitulate deeper 
relationships may be more relevant than their ability to re-
capitulate relationships closer to the tips.

Reconstructing animal phylogenies from these filtered da-
tasets under a Bayesian CAT-GTR+G4 model recovered ei-
ther Porifera-sister and Ctenophora-sister trees. No tree 
recovered the “Paranimalia” hypothesis, where a monophy-
letic Porifera + Ctenophora clade branch sister to all other 
animals. Francis and Canfield (2020) recovered Paranimalia 
from another dataset from Whelan et al. (2015) under 
maximum-likelihood and CAT-GTR+G4 analysis after re-
moving sites which strongly favored either Porifera-sister or 
Ctenophora-sister, even though these sites comprised <2% 
of the full dataset. It is worth noting that the authors recov-
ered the Paranimalia tree as part of a larger study addressing 
data management and interpretation in phylogenomic ana-
lysis, and several of the issues highlighted in their study 
(Francis and Canfield 2020) are relevant to this study.

Our assessment of model fit using PPA shows that fil-
tered animal datasets display consistently improved fit 
to CAT-GTR+G4 over their original counterparts 
(fig. 5A). This reflects the reduction in dataset size that 
our approach entails, but as PPA-MAX and RCFV analysis 
suggests our approach may indirectly reduce some data 
heterogeneity artifacts (fig. 5A; supplementary fig. S3, 
Supplementary Material online). As |Z| < 2 for many PPA 
statistics estimated in this study, there are still issues re-
garding data heterogeneity across animals datasets even 
with this relative improvement in fit (fig. 4A; 
supplementary fig. S26, Supplementary Material online; 
Feuda et al. 2017). Though CAT-GTR+G4 better 
accommodates heterogeneity across sites than site- 
homogeneous approaches, it is not designed to accommo-
date heterogeneity across branches (Lartillot and Philippe 
2004). Given the faster rates of evolution observed in dif-
ferent animal lineages (e.g., Ctenophora), this is undoubt-
edly a major stumbling block in accurately reconstructing 
animal evolutionary history (Jékely et al. 2015). Models 
which can better accommodate branch heterogeneity 
have existed for some time, but generally require compu-
tation costs infeasible on the scale of datasets analyzed 
here (Foster 2004; Blanquart and Lartillot 2008; Moran 
et al. 2015). The limits of current analysis using software 
like PhyloBayes-MPI can be observed in previous animal 
studies through the removal of taxa or alternative data 
management approach being necessary to facilitate recon-
struction (Simion et al. 2017; Whelan et al. 2017). Larger 
datasets are not guaranteed to resolve outstanding phylo-
genetic conflicts any better than smaller datasets (Philippe 
et al. 2011; Franco et al. 2021). It may be more appropriate 
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to prioritize smaller datasets with more careful, higher- 
quality gene/taxon sampling. Our complementary assess-
ment of model fitness using the QMaker approach in 
IQTREE may provide some indication of the feasibility of 
smaller phylogenomic datasets (fig. 4B; Minh et al. 2020).

In two of the five filtered phylogenies we reconstructed 
under CAT-GTR+G4, we recovered a different root to that 
recovered by the original dataset (fig. 5A). When we re-
peated this analysis for several datasets with different out-
groups removed, we still found that it was possible to 
recover both Porifera-sister and Ctenophora-sister trees 
in varying proportions (fig. 5B and C). Our findings indicate 
that at the very least it is possible to recover Porifera-sister 
trees under CAT-GTR+G4: (1) without applying data re-
coding techniques and (2) with either Choanoflagellate 
or non-Choanoflagellate outgroups. This contradicts 
with previous assumptions that Porifera-sister could only 
be recovered under recoding techniques or with certain 
approaches to outgroup inclusion (Halanych et al. 2016; 
Li et al. 2021; Hernandez and Ryan 2021; Giacomelli et al. 
2022). While this study does not examine the merits or 
otherwise of data recoding, it appears a reasonable re-
course to handling data heterogeneity if applied carefully. 
As for outgroup inclusion, we contend that the animal 
portions of these datasets may be as much of an influence 
on rooting the animal tree of life as the outgroup portions. 
In this regard, the repeated recovery of the Ctenophora 
clan at greater numbers than other animal groups in all 
but one dataset analyzed here merits some further exam-
ination, although it should not be correlated with ultimate 
root inference (fig. 2B). The elevated congruence of 
Ctenophora across these datasets is likely a reflection of 
faster sequence evolution among the comb jellies 
(Moroz et al. 2014), making it more likely that ctenophore 
taxa branch together among gene trees. This can also be 
observed by the long branch leading to Ctenophora in 
each phylogeny generated in this study (fig. 5). It is beyond 
the scope of the study to assess why this might be the case, 
but it may be prudent to examine whether this strong con-
gruence is a fair reflection of actual animal evolution or 
some unexpected bias in ortholog detection or some other 
step in phylogenomic dataset construction.

The question of whether the animal tree should be 
rooted at Porifera or Ctenophora remains to be resolved. 
It may be the case that we are approaching the limit of 
our ability to resolve this conflict with current approaches 
to dataset construction and sequence evolution modeling. 
With this in mind, we are cautious not to assert the legit-
imacy of one rooting over the other given our findings and 
the uncertainty that remains within the field (King and 
Rokas 2017). From a morphological perspective, the 
Porifera-sister hypothesis has been assumed to be the 
more parsimonious hypothesis as it requires fewer evolu-
tionary changes to have occurred over the course of 
time (Nielsen 2019). Other morphological characteristics 
may contradict this assumption however (Telford et al. 
2016), and other evolutionary trends such as the inde-
pendent evolution of neurons in Ctenophores and 

Cnidaria + Bilateria are thought to be equally possible un-
der both hypotheses (Francis et al. 2017). There are other 
outstanding issues in animal phylogenomics, such as the 
placement of Cnidaria. Many phylogenomic studies, in-
cluding those reassessed in this study, support Cnidaria + 
Bilateria over previous hypotheses grouping Cnidaria and 
Ctenophora together (Zapata et al. 2015; King and Rokas 
2017). Two recent studies incorporating greater sampling 
of placozoan transcriptomes have supported grouping 
Cnidaria and Placozoa together (Laumer et al. 2018, 
2019). Similarly, the position of Placozoa within animals 
has yet to be fully resolved (Laumer et al. 2018). In some 
instances, protein sequence data alone may not be suffi-
cient for resolution of problematic nodes; additional 
sources of information such as microRNA data have 
been required to resolve relationships within reptiles and 
placental mammals (Field et al. 2014; Tarver et al. 2016). 
Rare genomic events such as gene fusion/fission data 
may prove resourceful in clarifying some of the deeper ani-
mal relationships (Leonard and Richards 2012; Jékely et al. 
2015). Future work should seek to continue to refine cur-
rent approaches whilst embracing new and complemen-
tary datatypes and methods.

Conclusion
We examined orthologous signal across five phylogenomic 
datasets designed to resolve the root of the animal phyl-
ogeny as either Porifera-sister or Ctenophora-sister. 
Regardless of which root a dataset originally supported, 
we find orthogroups in these five datasets largely recover 
a monophyletic Ctenophora but violate most other major 
animal groups. We show that retaining orthogroups which 
can recover ≥3 major uncontroversial clans in each dataset 
reduces dataset size while retaining underlying phylogen-
etic information and taxon sampling. Bayesian CAT-GTR 
+G4 reconstruction of these filtered datasets recovers 
both root positions, in some cases supporting a different 
root from the original dataset. Further analysis of these da-
tasets with outgroup restrictions applied also recovers 
both roots. Datasets enriched for orthologs generally ex-
hibit better fit to the CAT-GTR+G4 model relative to 
the original datasets, although some data heterogeneity re-
mains. Our findings do not definitively resolve the root of 
animals, but indicate that dataset size and construction 
can influence root inference as has been previously de-
monstrated for model selection and outgroup selection. 
These findings highlight areas of improvement in current 
animal phylogenomics such as dataset composition and 
modeling of data heterogeneity, which may help to resolve 
this elusive aspect of animal evolutionary history.

Methodology
Animal Phylogeny Dataset Selection
Five published datasets were chosen based on their differ-
ing approaches to dataset construction and support for 
different animal root hypotheses (Chang et al. 2015; 
Whelan et al. 2015, 2017; Simion et al. 2017). Many of these 
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datasets have previously been analyzed in other animal 
phylogeny studies (Pisani et al. 2015; Feuda et al. 2017; 
Shen et al. 2017). Details for each selected dataset are pro-
vided in table 1, and further information on taxon sam-
pling and construction strategies for each dataset is 
provided in supplementary information, Supplementary 
Material online.

Gene Content Overlap Across Animal  
Phylogeny Datasets
Gene content overlap across the five selected animal data-
sets was inferred following Francis & Canfield (2020). 
Where present, human sequences were extracted from 
all orthogroups from each dataset and queried against 
20,386 human sequences from Swiss-Prot using BLASTp 
(e-value = 1×10−4) (Camacho et al. 2009; Francis and 
Canfield 2020; The UniProt Consortium 2021). The se-
quence identifier of each top hit per seed sequence was ex-
tracted for each dataset, and was used to generate a 
presence–absence matrix for human Swiss-Prot sequence 
hits across all four datasets. This matrix was visualized 
as a UpSet plot representing overlap between datasets 
using the R package UpSetR (supplementary fig. S1, 
Supplementary Material online; Conway et al. 2017, R 
Core Team 2021).

Orthogroup Alignment and Tree Reconstruction
Component orthogroups were extracted from their data-
sets using available partition information. Best-fit align-
ments for each orthogroup were chosen using the 
following procedure: 

• Each orthogroup was first aligned using three differ-
ent multiple sequence alignment software: MUSCLE, 
MAFFT, and PRANK (Katoh et al. 2002; Edgar 2004; 
Löytynoja 2014). For MUSCLE and PRANK, the default 
parameters were used for sequence alignment, and 
for MAFFT, the most-appropriate alignment strategy 
was automatically selected using the “−auto” flag.

• The mutual distance between each pair of alignment 
methods (i.e., MUSCLE vs. MAFFT, MUSCLE vs. 
PRANK, PRANK vs. MAFFT) was assessed using 
MetAl with the default dpos metric which accounts 
for positional information of gaps in sequence align-
ments (Blackburne and Whelan 2012). A pair of align-
ments with a MetAl score of <0.15 were judged to be 
in mutual agreement, whereas a pair with a MetAl 
score of >0.15 were judged to be mutually discordant.

• If any pair of alignments were judged to be mutually 
discordant by MetAl, the column-based normalized 
mean distance of amino acid similarity across all sites 
in all three alignments was calculated using norMD, 
and the alignment with the highest similarity score 
was selected for orthogroup tree reconstruction 
(Thompson et al. 2001; Muller et al. 2010; Webb 
et al. 2017). Otherwise, if all three alignment methods 
were in mutual agreement, the best-fit alignment was 
randomly selected.

Maximum-likelihood (ML) reconstruction was per-
formed for each alignment using IQTREE with automated 
model selection via ModelFinderPlus and 100 non-
parametric bootstrap replicates (Nguyen et al. 2015; 
Kalyaanamoorthy et al. 2017).

Filtering Animal Phylogeny Datasets  
Using clan_check
clan_check examines whether user-defined sets of taxa 
group together as a “clans” sensu Wilkinson within a set 
of unrooted orthogroup trees (Wilkinson et al. 2007; 
Siu-Ting et al. 2019; fig. 2A). Orthogroups may then be ex-
cluded from data matrices based on their corresponding 
tree’s inability to recover a set proportion of these clans 
subject to the user’s own criteria (Siu-Ting et al. 2019). 
We defined six “uncontroversial” clans to be tested across 
all orthogroups trees: the five major animal phyla 
(Bilateria, Cnidaria, Ctenophora, Porifera, and Placozoa) 
and a 6th clan containing all remaining outgroup 
taxa. Clan composition varied between datasets, except 
Placozoa which was always represented solely by 
Trichoplax adhaerens (supplementary table S1, 
Supplementary Material online). Datasets were filtered to 
retain orthogroups which could recover ≥3 clans (Siu-Ting 
et al. 2019; table 2). Filtered data matrices were constructed 
from these orthogroups using SCaFOs and TREE-PUZZLE 
with the default parameters (Schmidt et al. 2002; Roure 
et al. 2007). Orthogroups which failed our clan_check filter 
were retained for comparative analysis of phylogenetic infor-
mation as detailed below.

Comparison of Original and Filtered Animal 
Phylogeny Datasets
Several small-scale analyses were performed to assess the 
effect of clan_check filtering on taxon sampling, intrinsic 
phylogenetic information, and the predicted biological 
composition of each dataset. These analyses are described 
below.

Taxon Sampling
The distribution of taxa per clan in orthogroups passing or 
failing our clan_check filter were visualized for each data-
set as boxplots using the R package ggplot2, with signifi-
cance assessed using Wilcoxson tests (P < 0.05) 
(Wickham 2009; supplementary fig. S2, Supplementary 
Material online).

Data Heterogeneity, Branch Length and Relative 
Compositional Frequency
Wilcoxson tests (P < 0.05) were performed in R (R Core 
Team 2021) to assess differences in branch length and 
compositional heterogeneity in orthogroups passing or 
failing our clan_check filter, using information taken 
from IQTREE runs (Siu-Ting et al. 2019; supplementary 
table S2, Supplementary Material online). Relative com-
positional frequency values (RCFV), another measure of 
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compositional bias, were calculated per orthogroup for 
each dataset using BaCoCa (Zhong et al. 2011; Kück and 
Struck 2014). The distribution of RCFV values across 
orthogroups passing or failing our clan_check filter was 
visualized using ggplot2, with significance assessed 
using a Wilcoxson test (P < 0.05) (Wickham 2009; 
supplementary fig. S3, Supplementary Material online). 
Chi-squared tests for compositional homogeneity across 
all datasets and their component orthogroups were per-
formed using p4 (Foster 2004).

Gene Ontology Categories
Predictive sequence annotation of all human sequences 
from each animal dataset was performed using 
InterProScan (Jones et al. 2014). Gene ontologies (GOs) 
were extracted for sequences from orthogroups passing or 
failing our clan_check filter in each dataset. GOs were 
grouped into three major categories—“Cellular 
Component”, “Molecular Function”, and “Biological 
Process”—using the Python package GOATools 
(Klopfenstein et al. 2018). Pearson’s chi-square tests of inde-
pendence (P < 0.05) was performed in R (R Core Team 2021) 
between GO categories in orthogroups passing or failing the 
clan_check filter for each dataset (supplementary table S3, 
Supplementary Material online; Siu-Ting et al. 2019).

Evaluation of Phylogenetic Information
Assessment of information content and biases in each ori-
ginal dataset was performed using PhyKIT (Steenwyk et al. 
2021). Several metrics associated with phylogenetic infor-
mation quality, heterogeneity, and other biases were 
tested for all orthogroups and/or orthogroup trees in 
each dataset: alignment length, mean bipartition support, 
mean branch length, parsimony-informative sites, se-
quence saturation, variable sites, and treeness divided by 
relative compositional values (RCV) (Steenwyk et al. 
2021). Boxplot graphs comparing orthogroups which 
passed our clan_check filter with those that failed the filter 
were generated for each metric using ggplot2, with signifi-
cance assessed using a Wilcoxson test (P < 0.05) (Wickham 
2009; fig. 3).

gCF and sCF Analysis
gCF and sCF analysis was performed on original and fil-
tered animal datasets (Minh et al. 2020). For a given species 
tree T and a set of gene trees S, the gCF of each branch x in 
T can be calculated as the number of trees in S containing a 
branch concordant with x, divided by the number of trees 
in S decisive for x (i.e., trees that are capable of being either 
concordant or discordant with respect to x). Similarly, the 
sCF for each branch x in T is calculated as the number of 
sites in randomly sampled subalignments of a larger data 
matrix in concordance with x divided by the number of de-
cisive sites for x. gCF and sCF analysis was performed using 
all original and filtered phylogenies (with manual reso-
lution of some polytomies) using IQTREE (Nguyen et al. 
2015; Minh et al. 2020). The results of concordance factor 

analysis for each set of original and filtered dataset were 
visualized along the branches of each original and filtered 
phylogeny using ggtree, and the distribution of gCF versus 
sCF values per phylogeny were visualized as a scatterplot 
using ggplot2 (supplementary figs. S4–S8, Supplementary 
Material online; Wickham 2009; Yu et al. 2017).

Bayesian CAT-GTR+G4 Reconstruction of Filtered 
Datasets
Bayesian CAT-GTR+G4 reconstruction was performed 
using PhyloBayes-MPI with two independent chains and 
removal of constant sites (Lartillot et al. 2013). 
PhyloBayes-MPI was run for at least 10,000 iterations on 
both chains for four filtered datasets, and 7,500 iterations 
for Simion2017_filtered due to dataset size and computa-
tional limitations. Quantitative assessment of Bayesian 
chain covergence was performed using tracecomp with a 
burn-in of 5,000 iterations (table 3). Visual assessment of 
chain convergence was performed using two approaches 
derived from https://github.com/wrf/graphphylo (Francis 
2018). First, trace plots of both chains were generated 
and visually assessed for patterns of parameter conver-
gence using the plot_phylobayes_traces.R script from 
https://github.com/wrf/graphphylo (supplementary figs. 
S9–S13, Supplementary Material online). Second, all- 
versus-all pairwise Robinson-Foulds distances (Robinson 
and Foulds 1981) were calculated for all trees from each 
chain using RAxML and normalized RF distances were plot-
ted using scripts from https://github.com/wrf/graphphylo
and ggplot2 (Wickham 2009; Stamatakis 2014; 
supplementary fig. S14, Supplementary Material online).

Posterior consensus trees were generated using bpcomp 
with a burn-in of 5,000 iterations and sampling every 10 itera-
tions up to 10,000 iterations (or 7,500 iterations for 
Simion2017_filtered) (Lartillot et al. 2013). The same proced-
ure was repeated for all filtered animal datasets with add-
itional outgroup restriction: all datasets where outgroup 
sampling was restricted to Holozoa and Choanoflagellata 
(Whelan2015_D10_filteredHolo and Whelan2015_D20_ 
filteredHolo) and all datasets where outgroup sampling 
was restricted to Choanoflagellata (Chang2015_filtered 
Choano, Whelan2015_D10_filteredChoano, Whelan2015_ 
D20_filteredChoano, and Simion2017_filteredChoano). For 
all filteredHolo/filteredChoano datasets except Simion2017_ 
filteredChoano, PhyloBayes runs were performed up to 
10,000 iterations with posterior consensus trees generated 
as previously described. For Simion2017_filteredChoano, 
computational and time limitations restricted PhyloBayes- 
MPI analysis to approximately 3,500 iterations on both 
chains, with a posterior consensus tree generated using 
bpcomp with a burn-in of 1,500 iterations and sampling 
every 10 iterations. All phylogenies were visualized and anno-
tated using ggtree (Yu et al. 2017; fig. 5; supplementary figs. 
S15–S25, Supplementary Material online).

Assessment of Model Fit Using PPA
PPA was performed to assess model fit for each 
PhyloBayes-MPI run (Bollback 2002; Lartillot and Philippe 
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2004; Lartillot et al. 2013; Feuda et al. 2017). Five PPA sta-
tistics were tested; three (PPA-DIV, PPA-CONV, and 
PPA-VAR) assess modeling of site-specific heterogeneity 
(Lartillot et al. 2007; Feuda et al. 2017), and two 
(PPA-MAX and PPA-MEAN) assess modeling of lineage- 
specific heterogeneity (Blanquart and Lartillot 2008). 
Model fit was quantified by computing the absolute 
Z-score for each statistic on observed and simulated 
data, where |Z| represents standard deviations of the 
simulated data from the observed mean. For each statistic, 
|Z| < 2 indicated adequate model fit whereas |Z| > 5 indi-
cated that the model cannot adequately fit the data 
(Feuda et al. 2017; Lartillot 2020). PPA was performed 
for each run using the “–allppred” flag in readpb_mpi, 
with a burn-in of 5,000 iterations and sampling every 10 
iterations (Lartillot et al. 2013).

PPAs obtained from the filtered datasets were com-
pared with those for the original datasets to assess possible 
improvements in model fit arising from our clan_check 
filtering approach. PPA results for the original 
Chang2015 and Whelan2015_D20 datasets were obtained 
from Feuda et al. (2017). For Whelan2015_D10 and 
Whelan2017_MCRS, PhyloBayes-MPI analysis was per-
formed as above on a single chain run for at least 5,000 
iterations to generate enough potential replicates repre-
sentative of each dataset. PPA results were then obtained 
for these original datasets as previously described above, 
using a burn-in of 1,000 iterations and sampling every 10 
iterations. For Simion2017, a single chain was run for at 
least 1,000 iterations due to computational limitations 
and PPA results were obtained using a burn-in of 500 itera-
tions with sampling every 10 iterations. The observed 
mean, predicted mean, and standard deviation of each 
PPA statistic were used to generate ridgeline density plots 
using ggridges and ggplot2 (fig. 4A; supplementary fig. S26, 
Supplementary Material online; Wickham 2009).

Assessment of Model Fit Using Estimated  
Empirical Substitution Models
An alternative approach to assessing the effect of our 
clan_check filtering approach on model fit was conducted 
using the maximum-likelihood QMaker approach as im-
plemented in IQTREE, which facilitates the generation of 
empirical amino acid substitution models directly from 
phylogenomic data matrices (Nguyen et al. 2015; Minh 
et al. 2020). Custom substitution models were estimated 
for each original and filtered animal dataset using the fol-
lowing procedure: 

• For a given dataset, 50% of component orthogroups 
were grouped into a “training” set and the other 
50% were grouped into a “test” set.

• Initial best-fit models were estimated for each 
orthogroup in the training set from a candidate set 
of LG, WAG, and JTT with a single edge-linked tree 
across all orthogroups and rate heterogeneity limited 
to four categories (Duchêne et al. 2020).

• From these initial estimations, a joint time-reversible 
substitution matrix Q was estimated across all 
orthogroups in the training set.

Assessment of model fit was then ran for the “test” set 
of each original and filtered dataset in IQTREE, restricting 
model selection in ModelFinderPlus to Q, LG, WAG, and 
JTT (Kalyaanamoorthy et al. 2017; Minh et al. 2020). The 
best-fit model, according to Bayesian information criter-
ion, for each orthogroup in the test sets of all original 
and filtered datasets was tabulated and visualized as a 
stacked bar plot using ggplot2 (fig. 5B; Wickham 2009).

Supplementary Material
Supplementary information are available at Molecular 
Biology and Evolution online.

Data Availability
The data and scripts underlying this article are available in 
GitHub, at https://github.com/chmccarthy/ATOLRootStudy.
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