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Abstract
Industry 4.0 promotes highly automated mechanisms for setting up and operating flexible manufacturing systems, using
distributed control and data-driven machine intelligence. This paper presents an approach to reconfiguring distributed
production systems based on complex product requirements, combining the capabilities of the available production
resources. A method for both checking the “realisability” of a product by matching required operations and capabilities,
and adapting resources is introduced. The reconfiguration is handled by a multi-agent system, which reflects the distributed
nature of the production system and provides an intelligent interface to the user. This is all integrated with a self-adaptation
technique for learning how to improve the performance of the production system as part of a reconfiguration. This technique
is based on a machine learning algorithm that generalises from past experience on adjustments. The mechanisms of
the proposed approach have been evaluated on a distributed robotic manufacturing system, demonstrating their efficacy.
Nevertheless, the approach is general and it can be applied to other scenarios.

Keywords Reconfiguration · Capabilities · Multi-agent systems · Machine learning · Assembly

1 Introduction

Modern manufacturing is characterised by a large number
of product variants, decreasing product life cycles and
shorter time to market. The flexibility of mass customisation
is combined with the low unit cost typical of mass
production [15]. In order to be competitive, manufacturers
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have designed reconfigurable systems that can adapt quickly
to changing market demands and maintain the desired
quality of service [21, 22].

Because of their complexity, advanced manufacturing
systems are difficult to maintain and update, requiring
highly skilled engineers and a considerable time and cost.
To address this problem, self-adaptive systems have been
long investigated. These systems are able to adjust their
behaviour dynamically and autonomously, in order to cope
with internal or external changes (e.g. dynamic workloads,
component failures) [6, 7]. In addition to the manufacturing
domain, self-adaptive behaviour has been studied in many
other areas, including software engineering, distributed
artificial intelligence, fault-tolerant systems, biologically
inspired computing and control systems, with various
software solutions [8].

This paper addresses the reconfiguration problem in highly
flexible manufacturing systems, where multiple product
variants can be produced. While some product variants
are anticipated when the production system is initially set
up, others can be introduced in the future as requirements
evolve. A reconfigurable production system is a dynamic
system that can be adapted to accommodate physical and
logical changes and deal with unanticipated product variants
and market demand. We present an approach to specifying
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product requirements and capabilities of a distributed
production system, along with a method to match them. We
consider, in particular, “plug and produce” systems, where
individual production resources can be added or removed
dynamically, prompting a system reconfiguration managed
by a multi-agent system (MAS).

The MAS enables the reconfiguration of the production
system when the requirements or the available capabilities
change. The MAS consists of a number of intelligent agents
distributed across the production system at various levels. A
resource agent is associated with each physical resource that
can individually offer some basic capability. As resources
are added to the system, their capabilities are combined to
form more complex ones. The MAS is aware of the full
set of available capabilities and is capable of recognising
if certain product requirements can be safely met by the
production system. The MAS can both tell if the production
system can produce a product and, if that is the case, how
its resources can be organised to enable production.

Together with the MAS, a machine learning technique
is introduced to provide the MAS with knowledge to adapt
the production system as part of the reconfiguration pro-
cess. This technique consists of capturing the changes
made by system integrators, evaluating them in terms of
performance and generating adaptation knowledge for
future reconfigurations. Such adaptation knowledge is used
by the MAS to propose the most suitable reconfigura-
tion options when, e.g. multiple resources offer the same
capabilities, or further adjustments are required to fully
integrate the various resources and reach the desired produc-
tion objectives. In this way, the MAS learns from humans
and, at the same time, generate new knowledge that is
utilised by humans, harmonising human-machine interac-
tion.

The proposed framework was evaluated on a robotic
assembly system, showing that it can effectively support
a reconfiguration process. Our framework offers several
advantages over similar approaches. It provides not only
a method for modelling requirements and capabilities, but
also procedures for aggregating capabilities and matching
them against requirements. These procedures are imple-
mented in a MAS for the reconfiguration of highly dynamic
production systems (plug and produce), which do not have
a predefined architecture. The hierarchical and distributed
organisation of the MAS offers the required level of flexi-
bility for such systems. The reconfiguration process lever-
ages the self-adaptive behaviour of the production system,
emerging from the knowledge acquired through learning
from past adaptation experience. As a result, human inter-
vention of system integrators is minimised, reducing recon-
figuration time and cost. Although our framework can be
applied to other production systems with different man-
ufacturing processes or products, a more comprehensive

evaluation is required. In some cases, the application of the
framework may not be feasible because of, for example
prohibitive logistics costs in geographically distributed pro-
duction environments or incompatible information models
in large supply chains.

Adaptation experience is also useful to analyse the per-
formance at the system level and make decisions when there
are multiple solutions meeting the production requirements.
Any conflicting performance goals arising from different
subsystems can be resolved through the MAS hierarchy
using higher-level adaptation experience. Note that our
approach does not involve agent-mediated auctions, which
may be difficult to define for heterogeneous resources at
multiple levels in dynamic reconfigurable systems.

2 Background and related work

A number of paradigms have been introduced to enable
rapid system changes and offer high levels of flexibil-
ity, reconfigurability and adaptability in manufacturing
systems. While flexible manufacturing systems provide a
“built-in” flexibility to handle anticipated product variants
and mid-volume, mid-variety production needs, reconfig-
urable manufacturing systems provide more scalability by
using modular equipment that be changed or integrated to
meet new production requirements [13]. In holonic and
agent-based manufacturing systems, autonomous and col-
laborative entities, called respectively holons and agents, are
used for distributed problem solving and intelligent control
of manufacturing systems [23, 37]. Many of these systems
are based on the PROSA reference architecture [36] and
are implemented using the JADE agent platform [5]. Agent-
based negotiation and auction protocols have been used to
design mechanisms for coordination and resource alloca-
tion in, e.g. supply chain management [42], multi-project
time-cost trade-off problems [24], virtual enterprises [38].

In the “manufacturing as a service” business model,
manufacturing companies seek cost-effective production by
outsourcing production processes. The benefits include not
only an increased capacity, shorter lead times and more
competitive prices for highly customised products, but also
access to the latest technological innovations without the
need to purchase equipment outright, which would become
obsolete in a few years’ time [16, 44]. Cloud manufac-
turing is a service-oriented manufacturing paradigm which
employs cloud computing technology to offer customisable
manufacturing services. Cloud manufacturing-as-a-service
(CMaaS) platforms virtualise physical resources as services
in the cloud [26], supporting decision-making tasks such
as service composition [1, 43], selection and schedul-
ing [39, 45]. Despite significant research efforts, there are
still implementation challenges. For example, middleware
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for decentralised architectures for connecting client and
service providers and reducing their technological and intel-
lectual burden is presented by [18]. The implementation of
a cloud manufacturing system using Industrial Internet of
Things technologies to tackle real-time data acquisition is
discussed by [25].

Various government-backed strategic initiatives that pro-
mote the digitalisation of manufacturing share the same
goals and design principles underlying these paradigms.
These initiatives include the German Industries 4.0 [20], the
European EFFRA Roadmap [14] and the US DMDII Strate-
gic Plan 2018 [12]. Holonic manufacturing has had a signif-
icant influence on Industry 4.0 [11], in which decentralised
decision-making is an integral part. Self-adaptive behaviour
was investigated, for example in assembly systems as part
of the Evolvable Assembly Systems project [7]. Adaptation
of assembly systems, including plug-and-produce systems,
is discussed by [3, 31–33]. Learning and adaptation dur-
ing the ramp-up phase of assembly systems is analysed
by [34]. A Function-Behaviour-Structure methodology for
self-adaptive reconfigurable assembly systems is presented
by [30]. Formal approaches and algorithms for checking
whether a given product can be assembled with a certain
class of resources and how to organise the selected resources
are described by [9, 10].

A lot of work related to capability management is based
on ontologies, focusing especially on the modelling aspects,
but arguably not giving sufficient attention to the com-
putational ones. An OWL-based manufacturing resource
capability ontology that supports the inference of com-
bined capabilities is presented by [19]. Ontology-based
approaches to the reconfiguration of manufacturing systems
are introduced by [2, 27]. The top-down and bottom-up
searches of [27] share some similarities with our presen-
tation. Problem decomposition in cooperative distributed
problem solving is the focus of [35]. Production capabilities
are also called skills in the literature. For example, tax-
onomies of sensorial skills for assembly lines are analysed
by [17]. A definition of skills as an extension of the product-
process-resource concept is presented by [29]. Perhaps the
work that is the closest to ours is [3], where a multi-agent
system for reconfiguring a plug-and-produce assembly sys-
tem is presented. Although that approach provides a repre-
sentation of capabilities and product specifications, it only
touches upon the matching problem and does not address
learning or adaptability problems.

3 Production capabilities and product
specification

A capability is an abstract description of what a production
resource can do, expressed as the goal of an operation. By

production resource, or simply resource, we mean a physical
resource that can be “plugged in” to the system as part of a
reconfiguration process, such as a robot, an end effector, a
pick-and-place module or an inspection device. A capability
does not define how the production resource carries out the
associated operation, but only what the operation achieves.
For example, typically a robot has the capability to move an
object. This can be expressed as MOVE(point), where MOVE

is the operation and point is a parameter specifying a 3D or
2D point where the robot can move.

To expand this example, an assembly robot with a
parallel gripper as end effector also has the following two
additional capabilities: GRASP(closingWidth), to grasp a
part by closing the gripper (setting the width of the gripper
fingers to closingWidth), and RELEASE (openingWidth), to
release the part by opening the gripper (setting the width of
the gripper fingers to openingWidth). These two capabilities
could also be associated with the gripper itself, in particular
if the gripper is an individual resource that can be replaced
or used in another robot.

Each parameter has an associated range of admissible
values. For example, in the case of point, the range of
admissible values depends on the workspace of the robot,
i.e. the set of points that can be reached by the end effector
of the robot. Parameters can also have the form of compound
terms, that is they can be expressed as function of other
parameters, values or other compound terms. For example,
the capability of a robot that can move only along X and Y

at a fixed Z = z0 could be expressed as MOVE(Point(X, Y,
z0)). Figure 1 shows the grammar of the capability language
in BNF form. A capability is represented by the nonterminal
symbol 〈capability〉. Product specifications will also be
defined in terms of capabilities.

To use our framework, a common taxonomy with a
shared terminology for all the capabilities and product spec-
ifications is necessary. Otherwise, if the same capability
was expressed in different ways, the various occurrences
would not match, as it will be explained, and would be con-
sidered different. Although a shared terminology may not
seem feasible in a large supply chain, there are approaches
to facilitate its definition and use, utilising mind maps
or concept maps, visual editors and language translators,
such as the one presented by [32]. This allows non-expert
users to benefit from a framework like ours using visual
and textual representations closer to the natural language,
hiding the implementation details on the actual knowl-
edge representation. Another important aspect of capability
representation languages that requires further attention is
the balance between expressiveness and computational
complexity. In general, the more expressive a language, the
higher the computational complexity for reasoning using
the language, as investigated, for example in the context of
description logics [4].
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Fig. 1 BNF grammar of the
capability language. The
nonterminal symbols are in
angle brackets, whereas the
terminal symbols (lexical
tokens) are in quotes or italic

3.1 Complex capabilities

The capabilities of one or more resources can be com-
bined to form complex capabilities. For example, com-
bining the previous capabilities of the assembly robot,
we can define the capability PICKANDPLACE (point1,
point2, closingWidth, openingWidth) as the sequence
MOVE(point1), GRASP(closingWidth), MOVE (point2) and
RELEASE(openingWidth). This means that the robot can
pick a part from point1, by closing the gripper to width clos-
ingWidth, and then place it to point2, by opening the gripper
to width openingWidth. A complex capability is represented
by 〈capability-definition〉 in the grammar. The symbol “:=”
is used for specifying a name for a complex capability. It
is not possible to define complex capabilities recursively.
Therefore, the name of a complex capability being defined
cannot occur on the right side of “:=”. Capabilities that are
not defined as composition of other capabilities are called
atomic. Each resource of a production system has a set of
atomic capabilities.

An atomic capability can be implemented in different
ways. For example, GRASP could be implemented differ-
ently by different robots and even the same robot could have
different implementations if multiple types of grippers were
available. A production system can have multiple resources
with the same capabilities or with some capabilities in com-
mon. For example, in an assembly system there could be two
identical robots performing simultaneously the same assem-
bly steps on different parts, therefore requiring the same
capabilities. Also, there could be two different robots per-
forming different steps on the same part, still using some
shared capabilities.

3.2 Hierarchical relationships

The capability PICKANDPLACE that we defined relies on
the use of a parallel gripper and, as a result, it has the
parameters closingWidth and openingWidth. However, other
types of grippers could be used as well to carry out a pick-
and-place operation, for example a magnetic or a vacuum
gripper. For this reason, this definition of PICKANDPLACE

may be too restrictive. The capabilities of a magnetic or
vacuum gripper do not specify the parameters closingWidth
and openingWidth. For example, assuming that no other
parameter is required, the capabilities of a magnetic gripper
could simply be expressed as MAGNETICGRIPPERGRASP()
and MAGNETICGRIPPERRELEASE().

To overcome this problem on the generality of capa-
bilities, hierarchical relationships between capabilities can
be defined, similarly to classes in object-oriented pro-
gramming languages. Let us rename the capabilities of
a parallel gripper GRASP as PARALLELGRIPPERGRASP

and RELEASE as PARALLELGRIPPERRELEASE. The capa-
bilities PARALLELGRIPPERGRASP and MAGNETICGRIP-
PERGRASP can be defined as capabilities derived from a
more general capability GRASP. This means that a resource
that offers either the capability PARALLELGRIPPERGRASP

or MAGNETICGRIPPERGRASP, also offers the capability
GRASP. In other words, if a resource can grasp an object
with a parallel or magnetic gripper, then we can say it
can grasp an object and we can use it to assemble a prod-
uct that requires the GRASP capability. Similarly, PARAL-
LELGRIPPERRELEASE and MAGNETICGRIPPERRELEASE

can be derived from RELEASE. The hierarchical rela-
tionship between two capabilities is indicated using the
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“:” symbol. The notation A : B means that A derives
from B.

Based on these considerations, a more general def-
inition of PICKANDPLACE would specify PICKAND-
PLACE(point1, point2) as the sequence of capabilities
MOVE(point1), GRASP(), MOVE(point2) and RELEASE().
Such definition has the advantage that it does not impose the
use of a particular type of gripper, if that is not necessary.

3.3 Product specification

A product specification consists of the sequence of
operations required to manufacture a product, including
quality inspection. These operations are defined in terms
of capabilities and can specify a value for the parameters
of the capabilities. For example, an operation that uses the
aforementioned capability PICKANDPLACE to move a part
from the point (10, 10, 5) to the point (60, 15, 5) using a
closing gripper width of 3 cm and an opening gripper width
of 5 cm is PICKANDPLACE((10, 10, 5), (60, 15, 5), 3, 5).
If the value of a certain capability parameter is irrelevant
for a product operation, or can be determined by the
implementation, a variable can be used instead. A product
specification is represented by 〈product-specification〉 in the
grammar.

4Multi-agent system

The reconfiguration of a production system is handled by
a MAS. Given a product specification, the MAS is able
to determine if, with the resources currently available, the
production system can produce that product and, if that
is the case, how the resources can be organised to enable
production. The MAS includes the following three types of
agents:

PA (Production Agent) - An agent of this type manages
the configuration process of a (sub)-system based on the
product specification and the available resources.

CA (Capability Agent) - An agent of this type manages
the capabilities of a (sub)-system. This agent determines
if a certain complex capability can be realised using the
capabilities available in the (sub)-system.

RA (Resource Agent) - An agent of this type represents
a production resource and is the interface between the
MAS and the control system of the resource. When the
capabilities of a resource are required for the manufacture
of a product, the associated RA configures the resource
accordingly by setting up the appropriate parameters or
control logic.

DA (Deployment Agent) - An agent of this type deploys
a RA when the associated resource is plugged into the
system.

The MAS has a hierarchical structure. A PA is the
root of the tree; CAs, DAs and RAs are the leaves, and
other PAs are intermediate nodes. For example, Fig. 2
illustrates the structure of the MAS used in the experimental
evaluation. The PA that is the root of the tree is responsible
for the manufacture of the product using the entire MAS
and production system. A PA that is an intermediate
node is responsible for the manufacture (or inspection)
of a subassembly using the agents of the MAS that are
underneath it in the tree and the associated production
resources. These resources represent a subsystem of the full
production system, that is a part of the system that can
accomplish one or more production tasks independently of
the rest of the system, using its own capabilities.

4.1 Capability management

Each PA has an associated CA, which is aware of the
capabilities of the (sub)system controlled by the PA. The
CAs associated with PAs that control directly RAs (i.e.
without intermediate PAs) combine the atomic capabilities
provided by the RAs to create complex capabilities.
The CAs above these CAs in the hierarchy combine
these complex capabilities, with possibly other atomic
capabilities, to create further complex capabilities, and
so on up to the root. The CA associated with the PA
of the root node is aware of the full capability set
of the entire production system. This is the bottom-up
approach to combining capabilities, which starts from
atomic capabilities and creates more and more complex
capabilities until the full set is built.

Another one is the top-down approach, which starts from
the product specification. For each operation, starting from
the root, PAs are queried recursively in a depth-first search
to find out if any of them can offer a (complex) capability
that matches the operation. When a PA is queried, the
following cases can be distinguished:

1. The required capability can be offered directly by the
PA by combining the atomic capabilities of its child
RAs;

2. The required capability cannot be created by combining
the atomic capabilities of the PA’s child RAs.

(a) If there is one or more child PAs, then these are
queried recursively.

(b) If there is no child PA, then the required capability
cannot be offered by the PA.
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PA

PA

CA RADA

CA RADA

RARA

PA

CA RADA RA

Fig. 2 The structure of the MAS used in the experimental evaluation. There are two levels of PAs: the two PAs below the root PA control the two
subsystems below them (in coloured boxes). The resources of the subsystem on the left are two robots and a tool changing rack. The resources of
the subsystem on the right are two inspection devices. The resource immediately below the root PA is a transport system to move parts between the
two subsystems

On the one hand, the bottom-up approach has the
advantage that all the complex capabilities are built from
the atomic ones as soon as a physical change takes place,
that is a resource is plugged in or out. However, the
generated capabilities will not necessarily all be used to
implement a product specification. On the other hand, the
top-down approach has the advantage that only a subset of
all the available capabilities is actually created, based on
what is required to implement a product specification. New
capabilities built this way can be stored to speed up future
searches. The downside of this approach is that PAs may be
queried multiple times for different operations.

If the same capability is offered by multiple PAs or
RAs, we do not differentiate its multiple occurrences at this
stage. Therefore, in a top-down search, once a PA that can
offer a capability that matches the operation of the product
specification being considered is found, the search can stop.
In Section 6, we will see how to select among multiple
options using performance estimates and experience-based
learning.

This structured approach to capability management and
production is very general. Nonetheless, note that produc-
tion systems rarely need a MAS with more than 2 or 3
levels of PAs and CAs. Also, note that the MAS structure is
dynamic, since resources can be added or removed and the
corresponding RAs created or destroyed. Upon deployment,
a RA informs its PA parent of its capabilities, which, in turn,
informs the associated CA. When a resource is removed, the
set of available capabilities must be updated.

The choice between the bottom-up and top-down
approaches depends on the number of capabilities that can
be potentially generated and the dynamics of the MAS. As
a rule of thumb, if the atomic capabilities can lead to a
large number of complex capabilities or if the MAS is very
dynamic, then the top-down approach can be more efficient.
Otherwise, if there are not many complex capabilities and

the MAS structure does not change very often, then the
bottom-up approach may be the best option.

4.2 User interaction

As part of a reconfiguration process, the user selects
through a human-machine interface a product variant to
be manufactured. The product specification of the selected
product variant is sent to the root PA, who determines if
the product specification can be realised with the resources
currently available in the production system. The MAS is
not visible to the user, who, therefore, does not need to
know about its inner workings. See Fig. 3 for the operations
and actors involved when making a physical change and
reconfiguring a system.

The user is informed about the outcome of the realis-
ability check performed by the MAS. If the product spec-
ification can be realised, its operations are allocated to the
resources that offer the corresponding capabilities and pro-
duction can begin. Otherwise, in case of failure, the user is
informed about which operations of the product specifica-
tion cannot be implemented and why. The user is presented
with the missing capabilities, either atomic or complex. For
complex capabilities, the missing constituent capabilities can
be indicated. However, note that a complex capability can,
in general, be created in a number of different ways, using
different sets of capabilities. This is a recursive process that
ends when all the missing atomic capabilities are provided.

If the realisability check is not successful, based on past
experience (see Section 6), the MAS can suggest to the user
which resources can be plugged in in order to provide the
missing capabilities and complete the reconfiguration. The
MAS keeps a history of all the resources that have been used
and their capabilities. Therefore, if a missing capability was
provided in the past by a certain resource, the MAS can
suggest plugging in that resource.
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PA allocates tasks to 
child PAs (recursive)

A resource is 
plugged in

DA deploys RA

RA no�fies PA of its 
capabili�es and
PA no�fies CA

CA integrates new 
capabili�es

User selects 
product variant

PA:
Can product

specifica�on be
realised?

PAs allocate tasks 
to RAs

RAs control 
produc�on 
resources

PA no�fies user of 
missing (complex) 

capabili�es

PA queries child PAs for 
missing cons�tuent 

capabili�es

MAS suggests 
resources for 

missing capabili�es

A resource is 
plugged out

CA updates 
capabili�es

RA configures 
resource

Physical Change and Capabili�es Update Reconfigura�on

CA propagates 
changes (recursive)

yes no

Fig. 3 Sequence of operations performed by the MAS and the user when making a physical change and reconfiguring the system. Capabilities are
updated following the bottom-up approach

5Matching product specifications
and production capabilities

The root PA initiates the process of finding the capabilities
required for a product specification. The root PA queries
its associated CA for the capabilities available at the top
level (using either the bottom-up or top-down approaches)
and tries to match these against the operations of the
product specification. This matching process is similar to
“unification” in logic and consists of checking if the name
of an operation is the same as the name of a capability,
if the number and type of the parameters of the operation
and capability are the same and if the parameters match.
Parameters of capabilities match explicit values in the
product specification if their respective types are the same
and the values are within the ranges of the respective
parameters. This process is repeated for all the operations
part of the product specification.

The algorithm for matching an operation in a product
specification and a capability is illustrated in Fig. 4. The
output of the algorithm (variable S) is the “most general
unifier”, i.e. the most general set of variable substitutions
that “unify” the operation in the product specification
and the capability, if this is possible, or ⊥ otherwise. In
the algorithm, a variable is a placeholder for a term. A
substitution of a variable x with a term y is denoted by
x/y and means “replace x with y” where it is applied.
For example, the substitution closingWidth/3 applied to
GRASP(closingWidth) produces GRASP(3).

Terms to be unified are written in the form x
.= y

(potential equations). The algorithm starts with the potential

equation p
.= c in E, where p is a production operation

and c is a capability, and the empty set of substitutions
S. Equations can be added to or removed from E. The
algorithm terminates when either there is no equation to be
unified or there is an equation that cannot be unified. For
example, MOVE(Point(10, 10, Z1)) and MOVE(Point(X, Y,
Z)) can be unified by {X = 10, Y = 10, Z = Z1}, whereas
MOVE(Point(10, 10, 5)) and MOVE(Point(X, Y, 0)) cannot
be unified because 5 �= 0.

When the conditions “x is a variable” or “y is a variable”
are true the terms x or, respectively, y must not be contained
in the other term of the equation, since a variable cannot
be unified with a term that contains it. This occur check
is necessary for preventing infinite loops. For the sake of
simplicity, the check on the range is not illustrated.

6 Experience-based learning and adaptation

There may be multiple ways in which a product specification
can be realised in a production system if the same capability
is offered by multiple resources or subsystems. The MAS
is capable of identifying the best solution by learning from
previous experience in similar scenarios. For example, the
capability PARALLELGRIPPERGRASP(closingWidth) could
be offered by two resources using two different parallel
grippers. Regardless of which gripper is used, the capability
is exactly the same. Therefore, either resource can be used
to implement a product operation requiring that capability.
However, the data acquired in similar scenarios may indi-
cate that one of the two grippers is more reliable than
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Fig. 4 Algorithm for matching an operation p in a product
specification and a capability c. The output is the most general unifier
of p and c if it exists, ⊥ otherwise

the other, for example, in terms of accurate or repeatable
positioning.

In addition, as part of a reconfiguration, a series of
adjustments may be required to fully integrate the various
resources and reach the desired production objectives in
terms of quantity and quality. Plug-and-produce systems can
help to solve this problem by applying logical adaptations
autonomously with regard to, in particular, routing or
scheduling policies. However, human intervention may still
be required to perform mechanical changes that cannot be
made via software or to make complex decisions.

Machine learning can be used to analyse all these
changes and decisions made by the MAS or the user,
and identify which ones improved the performance of the
production system the most. Such knowledge on adaptations
will then enable the production system to make more
informed decisions autonomously or recommend changes
to the system integrator. Adaptation knowledge can be
generated and applied at either the system or subsystem
level. The system integrator is able to query the learning
system for the best changes that can be applied in a certain
context.

An approach to enhancing automatic adaptations using
system integrators’ knowledge consists of automatically

capturing and evaluating manual changes, and creating an
experience base that can then be used to generalise the
effect of individual adjustments and learn which changes
are useful. In future reconfigurations, when a resource for
which experience has been captured is plugged in, the
system will be able to recommend to the user which changes
to make, or even apply them autonomously.

This approach is in contrast to representing explicitly
such adaptation knowledge in a knowledge base. The
represented knowledge, for example could be in the form
of rules specifying which gripper to use and for which
part, when more than one option is available, or what
process parameters to set, when not specified in the
product specification. The advantage of this approach over
a manual construction of a knowledge base is twofold. First,
the adaptation knowledge is built dynamically from the
experience base, whenever needed, so the user does not have
to represent it explicitly or even keep it up-to-date. Second,
the adaptation knowledge can be generalised and applied to
new scenarios that have not been encountered before.

The following subsections describe how experience is
captured and used to create adaptation knowledge. A
technique to rank and propose adaptations is presented.

6.1 Experience capture

We call experience the representation and evaluation of
changes made to the production system. Changes can be
viewed at various levels of granularity, from atomic changes
consisting of a single operation and affecting only one
process parameter, to composite changes involving multiple
parameters or operations. We refer to an atomic change as an
adjustment. An adjustment has the form (t, v) where t is the
type of adjustment (e.g. change of gripper type, change of
closing angle) and v is the value of the adjustment (e.g. new
gripper type, new closing angle). An experience instance is
the representation of an adjustment and its effect.

Experience can be captured at different levels in the
production system: for the whole system, for various sub-
systems or for a combination of system and subsystems. For
each (sub)system on which experience is captured, a perfor-
mance function is defined. A performance function is typ-
ically a function of subassembly quality or throughput and
is used to evaluate the effect of changes on the (sub)system.
The effect of an adjustment must be measurable by the
adopted performance function. Note that, in general, sub-
systems and their associate agents can exhibit conflicting
behaviours, in the sense that a performance increase in one
subsystem may cause a performance decrease in another
one. Although not investigated in this paper, it would be
interesting to analyse these relationships in some typical
scenarios and how they contribute to the overall system
performance. While it can be useful to initially focus on
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individual subsystems during an adaptation and use local
experience with the aim of increasing both subsystem and
overall system performance, performance is ultimately eval-
uated on the entire production system using global experi-
ence. From now on, by “machine” we will refer to either
the entire production system or the subsystem on which
experience is captured.

Machine states are represented by configuration or
process parameters and state information (e.g. cycle times,
inspection results) that characterise the state of the machine
at a certain point in time. We call all these values attributes.
We denote the set of attributes of the machine by A =
{a1, . . . , an} and the domain of attribute ai by Di , for 1 ≤
i ≤ n. A machine state s is a function

s : A →
n⋃

i=1

Di ∪ {null} (1)

that maps attributes to their corresponding values, such that:

s(ai) =
{

d ∈ Di if attribute ai is present in state s

null otherwise
(2)

When a new resource is plugged in, its attributes are added
to the machine state. When a resource is plugged out, its
attributes are removed from the machine state, so s will be
equal to null for these attributes. A performance function
f is a function of machine states f : S → [0, 1], where S

is the set of machine states, 1 is the maximum performance
and 0 is the minimum.

Sensor data generated by production resources is
collected by the associated RAs to derive state information.
This is embedded into state events that are distributed
to PAs up the MAS hierarchy. Adjustments are notified
through a different type of events, called adjustment events,
which trigger the experience capture process. A “publish-
subscribe” asynchronous communication mechanism is
employed, whereby RAs publish sensor data, i.e. make it
available, and PAs interested in it subscribe to it in order to
receive it. One or more PAs up the hierarchy can subscribe to
the events generated by the RAs below them, depending on
the levels at which experience and knowledge are generated.

An experience instance has the form (s1, a, s2), where:

– s1 is the machine state before a

– a is an adjustment
– s2 is the machine state after a

The state events received by a PA are stored in an event
base. When an adjustment event is received, the PA creates
a representation of the machine state before and after
the adjustment by querying the event base for the state
events generated just before and after that adjustment. The
performance function is calculated on both these states. If

the value of the performance function for s2 is higher than
that for s1, it means that a had a positive impact on the
performance in machine state s1.

6.2 Learning and adaptation

When adapting a machine, the experience acquired is used
to identify the best adjustment to perform in a certain
machine state. If we look at the best adjustment in a machine
state as the “class” of the machine state, this problem can be
expressed as a classification problem in machine learning. A
program (classifier) is built to classify instances based on a
given set of examples (training set). Each example contains
an input vector and a discrete output value that indicates
the class of the example. The classifier is able to predict
the correct class of instances that are not in the training set.
There exist a number of classification techniques, such as
artificial neural networks, instance-based learning, support
vector machines and decision trees (see, for example [28]).

In our problem, a machine state in which the user queries
the system for the adjustment to apply represents an instance
to be classified. The adjustment type corresponds to the
class of the instance. The initial states and adjustment
types of the experience instances of an experience base
represent the training set. Throughout an adaptation process,
the machine goes through various states which must be
classified, that is in which the best adjustment type must be
found. The associated adjustment value is also determined
by our framework.

6.2.1 Experience base search

Our learning technique is based on a variant of the K-nearest
neighbour algorithm (kNN). This algorithm searches for the
k instances in the training set that are nearest to a given
instance to be classified, using a certain distance measure.
This measure models the similarity between two instances,
in the sense that, the smaller the distance between them
is, the more similar they are supposed to be. The class
to be assigned to an instance is either the most common
among the k neighbours or is chosen by adopting some
voting scheme. In our technique, the search occurs in
the experience base and, in addition to similarity between
machine states, it uses performance estimates given by the
performance function calculated on the experience.

6.2.2 Distance function

Machine states can be seen as points in a multidimensional
space. The definition of the distance function between
machine states s1 and s2 must handle both numerical and
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categorical attributes. Therefore, we use the heterogeneous
euclidean-overlap metric [41]:

d(s1, s2) =
√√√√

n∑

i=1

(di(s1, s2))2, (3)

where di(s1, s2), for 1 ≤ i ≤ n, is the distance between s1

and s2 on attribute ai :

di(s1, s2)=

⎧
⎪⎪⎨

⎪⎪⎩

1 s1(ai)=null or
s2(ai)=null,

overlap(s1(ai), s2(ai)) ai is nominal,
rndiffi (s1(ai), s2(ai)) otherwise.

(4)

The function overlap is defined as 0 if its arguments are the
same, 1 otherwise. The function rndiffi (range normalised
difference) is defined as:

rndiffi (x, y) = |x − y|
max(ai) − min(ai)

, (5)

where max(ai) and min(ai) are, respectively, the maximum
and minimum values of ai observed in the training set.

As defined, the distance function is calculated on all
attributes of the two states. However, not all the attributes
have the same relevance and some may even be redundant.
Also, another potential issue is given by noisy attributes.
Various weight-setting methods are available to cope with
these issues [40].

6.2.3 Similarity-performance function

In order to find the best adjustment in a certain machine
state, we need to search the experience base for the expe-
rience instance with the most similar initial machine state
and the best adjustment, in terms of performance value of
the resulting machine state. Therefore, we combine the dis-
tance function with an estimate of the resulting performance
based on the acquired experience.

Let e = (s1, a, s2) be an experience instance, s be a
machine state and f be a performance function. We define
the similarity-performance function spf (e, s) as follows,
for f (s2) �= 0 [34]:

spf (e, s) = d(s1, s)

f (s2)
(6)

If f (s2) = 0, spf (e, s) is defined to be infinitely large.
The smaller the value of this function is, the better the
adjustment of the experience is expected to be in the state
being examined.

6.2.4 Voting and ranking

The similarity-performance function is used to rank adjust-
ments and, when k > 1, to define a voting scheme. For

each adjustment type, an adjustment value is also deter-
mined. The voting scheme (Fig. 5) ranks the adjustment
types among the k neighbours and calculates the adjustment
value associated with each of them.

Let f be a performance function and s be a machine state
to be classified. There are two cases to be considered:

k = 1 A ranked list of adjustments for s is generated by
sorting the experience instances by spf (e, s) in ascend-
ing order. The experience instance with the smallest value
of spf (e, s) contains the the recommended adjustment.

k > 1 A class is selected among those of the k neighbours
using the voting scheme of Fig. 5. Selecting the most
common class is not a good approach because this class
tends to be the most frequent in the training set. A typical
approach is to assign a weight to each neighbour, given

Fig. 5 Algorithm for the voting scheme for ranking adjustments when
k > 1. The input is experience instances e1, . . . , en (k ≤ n), a
machine state s, a performance function f . The output is a ranked list
of adjustments (ti , vi ) (i ≤ m ≤ k)
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by the distance of the neighbour from the machine state
to classify. In our problem, we use spf to calculate
the weights (line 1 in Fig. 5), as we want to include
the effect of the corresponding adjustment on system
performance. Let e1, . . . , ek be the k experience instances
with the smallest values of spf (line 2). The weight w(ei)

assigned to ei is defined as:

w(ei) = spf (ek, s) − spf (ei, s)

spf (ek, s) − spf (e1, s)
(7)

These are calculated in line 3. The instances e1, . . . , ek

are grouped by class (line 4) and the weights of the
instances of each class are summed up (lines 5–6).
The adjustment types are ranked by the sum of their
weights, in descending order (line 9). The recommended
adjustment type t is the class with the largest sum
of weights. The adjustment value for t is given by
the weighted mean (using w(ei) as weights) of the
adjustments values of the instances among e1, . . . , ek

having adjustment type t (line 7).

7 Experimental evaluation

The proposed framework was evaluated on a reconfigurable
manufacturing system for assembling detent hinges used
in the cabin of trucks (Fig. 6). The production system
includes two 6-axis robots, a tool changing rack for holding
grippers, an inspection station and a shuttle system for
loading/unloading the parts and taking them to the robots
and inspection station. The detent hinge consists of two
hinge leaves; up to three balls and springs that are placed in
a cylindrical slot inside the leaves; a metal pin to lock the
leaves and a retainer to keep the balls and springs inside the
slot. The production system can be reconfigured for making

Fig. 6 Reconfigurable production system for assembling detent hinges

different product variants with, e.g. one, two or three balls
and springs, depending on the desired detent force. Both
robots can pick tools from the rack, which is located in a
shared workspace. The tools include vacuum suction and
two-finger grippers of various sizes. The inspection station
performs a visual check of the hinge to verify its integrity
and a mechanical check of the detent force.

The control architecture is distributed and the multi-agent
system reflects this structure. Each production resource
(robot, shuttle system, inspection station) is controlled
by a PLC. In case of failure of one of the two robots,
the production system can be reconfigured to allocate all
the assembly tasks to the other robot. Similarly, if an
additional robot was added to the system, the assembly tasks
could be redistributed among the three robots. The atomic
capabilities of the production system include grasping and
realising capabilities for the various vacuum suction and
two-finger grippers, “move to” capabilities for the robots
and the shuttle system, a visual check and a detent force
check for the inspection station. Although the same grasping
capability can be offered by multiple tools, some tools are
more suitable than others for certain tasks. The experience-
based learning technique can help choose the most suitable
tool.

The experiment was aimed at evaluating how the pro-
posed framework can support engineers in the reconfig-
uration process. The production system was reconfigured
to manufacture a new type of hinge with some geometri-
cal differences (dimensions and tolerances) and a different
detent force. Note that this new hinge type was not one of
the existing product variants, but a new product. The same
types of assembly operations were required and, therefore,
the atomic capabilities were the same. The same produc-
tion resources were also used, in particular the same set of
tools. However, the tools were not initially loaded on the
tool changing rack, so that the realisability check of the
MAS could be fully tested. The reconfiguration involved
selecting the appropriate tools and control logic programs
for the assembly operations, as well as setting parameters
such as robot speed, gripper pressure and pick-and-place
locations for the parts. Six engineers with comparable skills
and knowledge of the production system participated in the
experiment. The engineers were divided into two groups of
three each: one group (group 1) reconfigured the produc-
tion system without the support of the framework, whereas
the other one (group 2) reconfigured the production system
with the support of the framework.

The production system was first reconfigured by each of
the engineers of group 1, restoring the initial configuration
of the system for making the original product after each
engineer completed the process. All the changes made by
all the engineers of group 1 were recorded in an experience
base. The production system was then reconfigured by each
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of the engineers of group 2, using the MAS and the changes
recommended by the automated learning system based on
the experience base built by group 1. Similarly to group
1, the initial configuration of the production system for
making the original product was restored after each engineer
completed the process.

The performance of the production system was measured
using a performance function representing the production
quality in terms of number of good parts in the last 10
parts assembled. The target value for the performance
function was 95%. The reconfiguration processes carried
out by the engineers finished when this value was
reached. In order to evaluate the effect of a change
on the performance, after each change at least 5 parts
were assembled before examining the up-to-date value of
the performance function and making new changes. The
same performance function was used for calculating the
similarity-performance function for ranking the adjustments
of the experience instances captured in the experience base
built by group 1. Figure 7 shows the average value of the
performance function obtained by the two groups until the
target performance value was reached. Step 0 indicates the
start of the process, when no changes have been made and
no parts have been produced yet. Groups 1 and 2 reached
the target value, on average, in 18 and 13 steps, respectively.
Figure 8 shows the number of changes applied by the
engineers of group 2 divided in changes recommended by
the framework that were ranked first, other recommended
changes (not first-ranked) and any other changes not ranked
by the framework.

The evaluation indicates that the engineers of group 2
could reach the target value of the performance function
in fewer steps than those of group 1. Since each of the
various steps took a comparable time, this also means that
group 2 could reach the target value sooner. In general,
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other reconfiguration processes or systems may require
a more specific evaluation of reconfiguration time. The
performance increase of group 2 is faster and seems more
steady than group 1, especially at the beginning of the
process. This indicates that at the beginning, when no
tool was available and the realisability check of the MAS
failed, the MAS could identify and recommend to the
user suitable tools based on both the required capabilities
and the acquired experience. Figure 8 shows that the
engineers trusted the recommendations of the framework in
the majority of the cases and they also applied the first-
ranked change in the majority of these cases. When the
engineers did not apply any recommended change, they did
so because they thought that those changes were not relevant
or beneficial, or they could get better results by applying a
different change.

8 Conclusion

Reconfigurable systems share the design principles advo-
cated by the current technological trends in the manufactur-
ing industry and can offer the flexibility required to cope
with global market demands. The distributed and adap-
tive nature of agent-based systems makes them particularly
suitable for the software implementation of reconfigurable
systems that have a dynamic architecture not predictable
at design-time. This paper analysed reconfiguration and
adaptation problems, and presented an integrated data- and
capability-driven approach to address them effectively using
agents. The self-adaptive behaviour of the MAS is the result
of learning from past experience and is very useful for mak-
ing autonomous decision or recommendations to the user
when they have no prior knowledge.

Methods to represent and match product specifications
and production capabilities were introduced for determining
(1) whether a production system is capable of manufac-
turing a certain product in a particular configuration, (2)
how to reconfigure the resources to enable production and
(3) how to adapt the resources in the new configuration
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to achieve the best performance. Although product speci-
fications and capabilities can be quite complex, the repre-
sentation language offers simple, yet powerful mechanisms
to define them. This language is general and can be used
for a wide variety of production systems. The procedures
to aggregate capabilities and match them against product
requirements are also general, since they do not depend on
the specific product or production system, and can be easily
implemented as part of the MAS. However, a more rig-
orous analysis of the balance between expressiveness and
computational complexity of the language would be useful.

The experimental evaluation conducted on a reconfig-
urable assembly system indicates that the proposed frame-
work can successfully support engineers in accelerating a
reconfiguration process. Future research consists of apply-
ing the framework to different industrial test cases, man-
ufacturing processes and products by fully characterising
all its components (i.e. capabilities, products, adaptation
experience and performance of the production system) and
evaluating the effectiveness of the approach on a larger
scale. In particular, this includes an analysis of the time and
cost savings over manual reconfiguration and adaptation
processes. In some cases, the application of the framework
may not be cost-effective (e.g. geographically distributed
production environments due to logistics costs, large supply
chains with incompatible information models. In addition, it
would be useful to investigate the impact of local experience
and conflicting subsystem behaviours on overall system
performance.
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