Contactless manipulation has become an area of increased study over the last 10 years. New experimental techniques have been developed in a wide variety of disciplines, including: analytical chemistry14–16, material sciences17–19, pharmacy20–22 and micro-assembly23–24. Many contactless manipulation experiments rely upon a family of techniques classified as acoustic levitation. Acoustic levitation uses ultrasonic transducers to create a pressure field that applies acoustic radiation forces to suspend objects in a gaseous medium25. It has been shown that intricate, readily tuneable pressure fields can be constructed by using an array of small ultrasonic transducers25,26, allowing for manipulation of multiple objects in three dimensions. The discovery that an array of ultrasonic transducers can create customisable acoustic levitation systems has led to a resurgence in the study of non-contact manipulation using acoustic levitation techniques27–29.

In addition to these and other attractive features of acoustic levitation30, the method also has some drawbacks. From the earliest experiments, acoustically-levitated objects were observed to have a tendency to oscillate, attributed to the response of the acoustic field to the presence of the object22,23. Objects may also start to rotate spontaneously due to streaming flows in the surrounding gas generated by the high pressure sound waves24–26, though techniques to mitigate these effects and control the rotation have been demonstrated recently28,29. These same streaming flows may also be problematic in studies of liquid droplets, where the air flow affects heat and mass transfer non-uniformly at the droplet’s surface28 and also sets up flows within the droplet29. Acoustically-levitated liquid droplets are often deformed into oblate-like shapes30,31; this typically occurs when the diameter of the droplet is on the same order as the acoustic wavelength. These characteristics, which are usually undesirable (though occasionally exploited31), are avoided in similar experiments using diamagnetic levitation (e.g. Ref. 32). Diamagnetic materials experience a repulsive force when placed in a static, spatially-varying magnetic field. A wide variety of solids and liquids, including water and organic material (including biological), can be levitated in a magnetic field of sufficient strength and gradient (e.g. Refs. 33–40); typically a field of order 10 T is required, though levitation of graphite can be achieved using much weaker fields (e.g. Ref. 41). In contrast to the oscillating surface forces applied in acoustic levitation, diamagnetic levitation applies a constant body force that counteracts the force of gravity throughout the levitated object at the molecular level, and so closely mimics the weightless conditions on board an orbital or parabolic flight, or in a drop tower. Diamagnetically-levitated liquid droplets attain a spherical shape, due to the fact that surface tension forces dominate over the residual net body forces (~ 0.01 g) that stabilize the levitation.

On the other hand, the options to manipulate multiple objects magnetically are limited. Diamagnetic levitation allows for the levitation of multiple spatially-separated objects simultaneously if the objects have unique ratios of magnetic susceptibility to density. This differs from acoustic levitation where multiple acoustic ‘traps’ can be created for a particular material by manipulating the acoustic field. The creation of multiple traps for a single material is also possible using diamagnetic levitation, by manipulating the shape of the strong magnetic field, but this is technically more challenging than manipulating an acoustic field and correspondingly more restrictive.

In this letter, we demonstrate combining techniques from both acoustic and diamagnetic levitation to manipulate the position of liquid droplets, drawing on the strengths of each method. The force of gravity is compensated throughout the droplets by applying a vertical diamagnetic body force using a superconducting magnet, providing a simulation of weightlessness. Then, acoustic radiation forces are used to position the droplets. Since diamagnetic rather than acoustic forces provide gravity compensation in this case, the acoustic power required in these experiments is much smaller than that of a purely acoustic levitator. We further show that it is possible to reproduce the locations of the levitated droplets in simulations, calculating the magnetic and acoustic fields. Acoustic levitation has been combined with magnetic fields before, to study active matter levitated in liquids, but in those studies the magnetic field was used to provide propulsion (e.g. Ref. 42).
rather than for balancing the force of gravity. We used a custom-built 18.5 T superconducting solenoid magnet (Cryogenic Ltd., London), with a room temperature, 58 mm-diameter vertical bore, to levitate water droplets diamagnetically in air at room temperature and atmospheric pressure. The existence of a stable equilibrium levitation point for diamagnetic material in a solenoid magnet has been discussed in detail before35. This point lies on the central axis, approximately 11 cm above the centre of the solenoid in our magnet, depending on the solenoid current, I. The magnetic field strength at the geometric centre of the solenoid was maintained at a constant $B_0/I = 17.4$ T for all experiments in this letter. The bore was fitted with a custom, 3d-printed PLA ring of inner diameter 39 mm, outer diameter 57 mm and height 20 mm, see figure 1a,b. This ring contained two 10 mm diameter ultrasonic transducers (CamdenBoss CTD40K1007T), of the type used in the multi-emitter acoustic levitator, ‘TinyLe43.’ The transducers were positioned diametrically opposite each other and aligned along a horizontal axis such that their faces were perpendicular to the edge of the ring, as shown in figure 1. The transducers were wired in parallel, driven in-phase, and connected to a function generator (Stanford Research DS345), which was used to drive the transducers with frequencies of 37–40 kHz and up to a maximum peak-to-peak voltage, V_{pp}, of 20 V. The ring was fitted in the bore of the magnet such that the central horizontal plane of the ring intersected with the stable equilibrium levitation position of a diamagnetically levitated water droplet (fig. 1a). The sound pressure level close to the bore axis at $V_{pp} = 20$ V was ~ 110 dB, obtained from the force balance between the radial magnetic and acoustic forces in equilibrium, and from simulation. The operation of the transducers, despite containing some ferromagnetic material, was not affected by the presence of the strong magnetic field. Images were taken using a camera sited away from the magnet, using a 45° mirror placed several centimetres above the levitating droplets, at the mouth of the bore, to avoid influencing the acoustic field.

An atomiser was used to spray a fine mist of distilled water above the magnet, which then descended into the magnet bore. With the acoustic transducers switched off, the mist of droplets coalesced as one larger droplet at the stable levitation point. When a voltage was applied to the transducers and the experiment repeated, the mist coalesced into several well-separated droplets, each levitating in stable equilibrium. Fig.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{a) Diagram of the experimental set-up inside the superconducting magnet bore. The two ultrasonic transducers are aligned along an axis, \textit{x}, perpendicular to the vertical bore axis, \textit{z}. Dashed lines represent the magnetic field lines. b) Image showing the 3d-printed PLA ring used to mount the transducers in the magnet bore. c) Line of eight droplets of diameters 0.4–3.0 mm (30 nl–14 µl) levitating in the bore of the magnet, with position controlled by the acoustic-transducers.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{a) Slice through the calculated magnetogravitational potential, $U_{mg}(x,y,z)$, in the $y = 0$ plane. The coordinates x,y,z are as defined in fig. 1, the location of the local minimum in U_{mg} (blue circle) defines their origin. b) Slice through the calculated total potential $U_{total}(x,y,z)$, which is the sum of U_{mg} and the acoustic potential $U_{acoustic}$, in the $y = 0$ plane. Blue circles indicate the local minima. N.b.: whereas U_{mg} is cylindrically symmetric about the z axis, U_{total} is not. c) Slice through $U_{total}(x,y,z)$ in the $z = 0$ plane. The locations of the minima closest to the bore axis lie on this plane; the others lie at slightly higher z as shown in the centre panel. The superposed photograph shows water droplets levitating at local minima in U_{total}.}
\end{figure}
The acoustic field inside the magnet bore was calculated using our open-source software FreeFem. The simulations show that the addition of the acoustic field modulates the potential energy density, U_{total}, giving rise to multiple potential minima, "wells", along the x-axis. Unlike U_{mag}, U_{acoustic} is not cylindrically symmetric about the z (solenoid) axis. Figure 2b shows U_{total} in the $y = 0$ plane. Blue circles indicate the positions of each well. The two central wells lie on the x-axis, i.e. on the line passing through the centres of the two acoustic transducers. The vertical, z, location of each well increases approximately as x^4, increasing to $z = 3$ mm for the wells farthest from the axis, at $|x| = 17$ mm. This variation in height results from the shape of U_{mag}, in particular an octupole contribution to U_{mag}. Figure 2c shows U_{total} in the $z = 0$ plane, and includes a photograph of levitating droplets taken from an angle looking down the bore (i.e. down the z axis), superposed on the contours. By varying the peak-to-peak voltage V_{pp} applied to the transducers we were able to adjust the horizontal (x) positions of the levitating droplets. The montage of photographs in figure 3 shows the horizontal position of two levitated water droplets close to the solenoid axis as a function of V_{pp}. In this particular experiment, the droplet farthest from the axis had a diameter of 1.19 ± 0.05 mm and the droplet closest to the axis was larger, with a diameter of 1.93 ± 0.05 mm (the measurement uncertainty reflects the resolution of our optical set-up). Note that, since the total potential en-
ergy density, U_{indat}, is independent of volume, the positions of the stable equilibrium points are independent of the volume of the droplets. When the transducers were driven with $V_{pp} = 20.0$ V, the smaller droplet levitated with its centre at $x = 7.21 \pm 0.03$ mm and the larger levitated with its centre at $x = 2.16 \pm 0.03$ mm. The levitation of both was stable. Decreasing V_{pp} from 20 V to 15 V, the position of the smaller droplet decreased from $x = 7.21$ mm to 6.85 ± 0.03 mm, while the position of the larger droplet decreased slightly from $x = 2.16$ mm to 2.06 ± 0.03 mm. On decreasing V_{pp} below 15 V, we observed that the smaller of the two droplets lost equilibrium, as the depth of the local potential well was reduced to zero, and ‘fell’ toward the larger of the two, coalescing with it. On decreasing V_{pp} further, from 14 V to 8 V, the equilibrium position of the centre of the remaining large droplet decreased from $x = 2.06$ mm to 1.50 ± 0.03 mm. Below $V_{pp} = 8$ V, this droplet also lost equilibrium and ‘fell’ radially, finding a new equilibrium on the solenoid axis. The equilibrium positions obtained from simulation and experiment are shown together in figure 3, for comparison.

The use of acoustic levitation in areas such as analytical chemistry and biochemistry is growing, where it allows analysis of small volumes of liquid without the problems associated with the presence of container walls, such as adsorption and contamination of the analyte, or measurement interference (see, e.g., Ref. 51 and references therein). Recent further strides have been taken to extend the technique to enable contactless transport and processing of multiple levitated objects, which opens up many more applications including in biochemistry, pharmaceauticals and materials science (e.g., see, e.g., Refs. 52 and 53). Here we have demonstrated that, by combining techniques from diamagnetic and acoustic levitation, we can trap quiescent liquid droplets with volumes $\sim 10^{-8}$--10^{-3} L in a series of potential wells arrayed along a horizontal line, and that the location of these traps, and thus the droplets, can be varied precisely. By lifting the drops diamagnetically, the sound pressure levels were much reduced compared to those of an acoustic levitator: ~ 110 dB compared to 150--165 dB22,26,30, a greater than 100-fold reduction in the amplitude of the pressure. Consistent with this, we did not observe phenomena such as vibration of the droplets, deformation of their equilibrium shape, or instabilities in their position, which are characteristic of acoustic levitators22,26,30. Further experiments are planned to quantify the reduction in fluid flows within and surrounding the droplets using this set-up. We suggest that this technique may be useful in areas where particularly delicate handling of material is required, where control over the internal droplet flow is important or where evaporation and cooling by the oscillating air flow are problematic.

We note that many common techniques used in biochemical analysis are compatible with a strong magnetic field, such as fluorescence microscopy54, Raman spectroscopy55, and light scattering56.

The combination of acoustic and magnetic forces creates additional possibilities to manipulate the droplets: here, we demonstrated controlled contactless calectone of two droplets by varying the ratchet-like potential U_{indat}, using a relatively simple acoustic set-up consisting of two low-power transducers, a feat that otherwise requires large transducer arrays52,53. Droplets can also be moved vertically by adjusting the electric current in the solenoid. With the addition of more acoustic transducers, we anticipate that this flexibility will allow the creation of a system that can provide spatial positioning in three directions within the bore of the magnet.

SUPPLEMENTARY MATERIAL

See supplementary material for additional information about numerical simulations.

ACKNOWLEDGMENTS

We thank Dr. B. Turnbull for use of the high-resolution camera and S. Devlin for help with the design and printing of the PLA ring. This work was supported by a research grant from the Leverhulme Trust (Grant No. RPG-2018-363).

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available within the article and its supplementary material.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

All authors contributed equally to this work.

signal generator

transducer

3d printed ring

levitating droplets

magnet bore

x

y

z