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Abstract  

Low homocysteine levels and B vitamin treatment are reported to protect against declining 

cognitive health. Both B vitamins and homocysteine are involved in the production of S-

adenosylmethionine, a universal methyl donor essential for the process of DNA methylation. 

We investigated the effect of a damaging coding variant within the DNA methyltransferase 

gene, DNMT3L (R278G, A/G) by examining B vitamin intake, homocysteine levels, cognitive 

performance, and brain atrophy in individuals in the VITACOG study of Mild Cognitive 

Impairment and the TwinsUK cohort. In the VITACOG study, individuals who received a two- 

year treatment of B vitamins and carried the G allele, showed better ‘visuospatial associative 

memory’ and slower rates of brain atrophy. In the TwinsUK study, improved ‘visuospatial 

associative memory’ was evident in individuals who reported regular vitamin intake and were 

A/A homozygotes. In silico modelling indicated that R278G disrupts protein interaction 

between DNMT3L and DNMT3A, affecting the DNMT3A-3L-H3 complex required for DNA 

methylation. These findings show that vitamin intake and genetic variation within DNMT3L 

interact to influence cognitive decline.  
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1. Introduction  

Dementia is one of the largest health problems facing medical science, with the worldwide 

prevalence set to triple within the next 30 years 1. Efforts to improve understanding of 

dementia aetiology and to identify early targets for intervention have led to growing focus on 

a prodromal stage of Alzheimer’s disease (AD) known as Mild Cognitive Impairment (MCI). 

The most commonly studied feature of MCI is the presentation of memory deficits greater 

than those expected in age-matched controls. Particular emphasis has been placed on 

visuospatial associative memory deficits, a characteristic feature of AD and MCI that is 

associated with early stage hippocampal dysfunction 2,3.  

 

One of the most established risk factors for dementia is an elevated level of homocysteine 

(Hcy), an α-amino acid that is essential to methionine metabolism within the one-carbon 

cycle (Figure 1A). In addition to the raised levels in individuals diagnosed with AD, 
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significantly high Hcy levels have also been reported in individuals with early stage MCI 4. A 

prominent feature of methionine synthesis and Hcy metabolism in the one-carbon cycle is 

the involvement of vitamins B6, B12, and B9 (folic acid). Importantly, B vitamin treatment has 

been shown to reduce Hcy levels in individuals with AD 5,6 and in a recent longitudinal study 

of MCI (VITACOG), B vitamin treatment was found to suppress regional and global brain 

atrophy as well as protect against general cognitive and semantic memory decline in 

individuals with high baseline Hcy 7-9. Proposed mechanisms by which B vitamins could 

protect against cognitive decline include mitigation of the neurotoxic effects of Hcy and the 

maintenance of methyl donation 10,11.  

 

DNA methylation is a covalent chemical modification of DNA associated with the regulation 

of transcription 12. This reversible biochemical process is also dependent on products 

generated during the metabolic cycling of methionine (Figure 1 A). It is now firmly 

established that the most studied DNA methylation modification, 5-methylcytosine (5mC), 

can be oxidised into further functionally distinctive modifications (5hmC, 5fC, 5caC) 13-15 and 

that intermediate modification states have been observed in neuronal cell populations in 

human adult brain16,17. The establishment, interaction, and conversion of DNA methylation 

modification is performed by a number of methyltransferases, demethylases and DNA 

interacting proteins referred to as “writers”, “erasers” and “readers”. Proteins from each of 

these groups have been implicated in various pathologies. For example, coding mutations 

within two DNA methyltransferase writer genes, DNMT1 and DNMT3A, are known to cause 

a familial form of dementia and an overgrowth syndrome with intellectual disability 

respectively 18,19. Whilst coding variants within a third methyltransferase gene, DNA 

methyltransferase 3 like, DNMT3L, have been associated with intelligence scores in 

childhood and in old age as well as reported to influence global methylation patterns 20,21.  

 

The DNMT3L protein is not a typical methyltransferase as it is catalytically inert. However, by 

forming a complex with DNMT3A and histone H3, it facilitates the regulation of 
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methyltransferase activity 22,23.  Although highlighted as important for de novo methylation 

and a role in imprinting during development, our new understanding of the reversible nature 

of the DNA methylome supports that DNMT3L may be important for DNA methylation 

throughout adult life. Indeed, DNMT3L is expressed during development and in adulthood in 

the human cortex, cerebellum, striatum, amygdala, thalamus and hippocampus; is highly 

expressed in the regions of the Cornu Ammonis within the adult hippocampus, 24,25  and is 

abundant in neuronal and glial cell types in human adult cerebral cortex 26.  

 

The findings from rodent studies indicate that de novo methylation and DNA 

methyltransferases are required for memory formation and synaptic plasticity. For example, 

pharmacological inhibition of DNMTs impairs LTP in the hippocampus and amygdala and the 

consolidation and reconsolidation of memory-associated neural plasticity 27-29. Similarly, 

Dnmt1 and Dnmt3a double knockout mice exhibit deficits in long term plasticity and memory 

as well a significant decreases in 5mC and 5hmC DNA methylation 30,31. Furthermore, 

restoring decreased expression levels of DNMT3a2 in the hippocampus of aged mice, 

rescued age-dependent cognitive impairment and produced a significant increase in global 

DNA methylation levels32 whilst in young mice, overexpression of DNMT3a2 induced 

memory enhancements and increased expression of plasticity related genes33. In mid-aged 

people, a decrease in cognition ability over a ten-year period was found to correlate with 

5mC levels in genes associated with neuronal survival 34. However, how DNA methylation 

regulates neuronal processes and memory or what other important factors may also 

influence changes in methylation, is not well understood.  

 

As DNA methylation is dependent upon methionine metabolism, we hypothesised that 

vitamin B intake and low Hcy levels might modulate cognitive decline by altering DNA 

methylation, and that particular coding mutations within DNA methylation genes may 

influence this interaction. Since many reported pathogenic mutations in DNMTS are ultra-

rare and segregate with disease in individual pedigrees, we choose to examine a common 
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(MAF > 0.10) missense variant located in DNMT3L (R278G; rs7354779) which has 

previously been linked to intelligence across the lifespan21. Three approaches were adopted. 

We examined the association between DNMT3L (R278G), Hcy levels, and cognitive 

performance and rates of whole brain atrophy in the VITACOG B vitamin treatment study of 

MCI. A follow-up study was conducted using a large non-MCI general population cohort, the 

TwinsUK cohort, which included self-reported vitamin intake and biochemical measurement 

of Hcy levels. Finally, we applied an in silico modelling approach to predict the functional 

impact of the DNMT3L R278G variant and other clinically relevant DNMT mutations, 

providing insight into the molecular mechanisms that link this variant with cognitive decline.  

 

2. Methods  

2.1 Subjects 

The VITACOG study, as part of the wider Oxford Project to Investigate Memory and Aging 

study, collected data from multiple cognitive tests, biochemical measurements, and magnetic 

resonance imaging in order to evaluate the impact of vitamin B treatment on MCI 

progression over a two year period. The treatment consisted of 0·8mg folic acid, 0·5mg 

cyanocobalamin (vitamin B12), and 20mg pyridoxine (vitamin B6) in contrast to a placebo 9. 

Participants were assessed when visited once at baseline and once after the 24 month 

treatment period was complete. The TwinsUK cohort is a longitudinal registry of British twins 

who have been continually assessed for a wide range of health and lifestyle factors. 

Baseline measurements were taken between 1992 and 2004 followed by multiple surveying 

sweeps and clinical visits.  

 

2.2 Phenotypic variables 

Demographic information used in the analysis of both cohorts is presented in Table 1. 

VITACOG cognitive test output measures were Hopkins Verbal Learning Test-Revised 

Delayed Recall Total score, Category Fluency Fruit & Vegetables Total score, Graded 

Naming Test Total score, Mini Mental State Examination Summary score, and Paired 
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Associates Learning Total Errors score. As VITACOG participants were measured twice 

during the study period, once at baseline and once after 24 months, change (∆) in cognitive 

performance was taken as the difference between the baseline and 24 month scores. 

TwinsUK cognitive test output measures were Paired Associates Learning Total Errors 

score, Delayed Matching to Sample Total Correct score, Pattern Recognition Memory Total 

Correct score, and Spatial Span Length score. Plasma (VITACOG) or serum (TwinsUK) 

homocysteine was divided into lower quartile/lower middle or upper middle/upper quartile 

Hcy values.  

 

An annual rate of whole brain atrophy (ROA) was obtained for 156 individuals in the 

VITACOG cohort. In the original VITACOG study, high-resolution structural T1-weighted 

images were acquired at baseline and after 24 months and optimised FSL-VBM (voxel-

based morphometry) analysis was used to assess regional grey matter change across the 

duration of the study. The annualized ROA estimated from the baseline and 24 month total 

brain volume measurements, as reported by Smith et al., 2010 9,  was recoded into volume 

measured in mL and provided as a precalculated variable in the VITACOG dataset. Only 

participants with full imaging data were included in the atrophy modelling. 

 

2.3 Genotype data 

DNMT3L rs7354779 is an amino acid substitution from Arginine (codon AGG) to Glycine 

(codon GGG). In the forward strand the variant is A/G. However, in some genomic 

databases the bases on the reverse strand are listed (T/C) which explains some discrepancy 

in allele bases reported for this variant in the literature21. Genotyping of rs7354779 in the 

VITACOG cohort was conducted using Kompetitive Allele Specific Polymerase Chain 

Reaction (KASP) following the manufacturer’s recommendations. Primers were designed by 

LGC Genomics (extra material). Genotyping data was validated by Sanger sequencing. Next 

generation sequencing data for the TwinsUK cohort was accessed from the European 

Genome-phenome Archive (EGA; EGAD00001000194 & EGAD00001000741) following a 
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data access agreement with the UK10K project. Only one individual per twin pair was 

assessed to avoid a genetic twinning effect, i.e. using non-independent related samples. 

BAM files were visualised using IGV to confirm sequencing read depth quality over the 

variant region.  

The Minor allele frequency (MAF) of rs7354779 in a large European (Non-Finnish) general 

population is 0.26 35. Owing to the minor allele frequency of the rarer G allele in the current 

VITACOG study (MAF: 0·24) and TwinsUK study (MAF: 0·25), individuals identified as 

carrying either one (heterozygous, A/G) or two (homozygous, G/G) copies of the DNMT3L 

R278G minor allele were grouped as G carriers.  

2.4 Statistical analysis 

Principal Component Analysis (PCA) was used to identify the major sources of variance 

within the select performance outcome variables. PCA was applied to ∆cognitive scores in 

VITACOG and to cognitive data in TwinsUK. Components with an eigenvalue > 1 were 

retained. This led to the identification of two derived factors from VITACOG, reflective of 

‘visuospatial associative memory’ and ‘verbal semantic memory’. A factor reflecting 

‘visuospatial associative memory’ was also identified in TwinsUK alongside a second derived 

factor reflecting ‘visual scanning’ performance. As this ‘visual scanning’ factor was not 

identified in VITACOG and hence not consistent with the VITACOG study performance data, 

this derived factor was not included in subsequent analyses. Correlation coefficient matrices 

for the cognitive tests and derived factors are presented in extra material.  

 

Univariate and repeated general linear models were used for the analysis of demographic, 

biochemical and cognitive data, with post-hoc Bonferroni correction for multiple comparisons 

and student’s t-test where applicable. Missing data was omitted from statistical modelling by 

specifying missing values within SPSS. In the VITACOG cohort, a significant interaction 

between age and performance in ‘visuospatial associative memory’ was observed and 

hence age was included as a covariate in subsequent analyses. Linear regression was 
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performed on the rate of whole brain atrophy. Covariates used in the atrophy modelling were 

age, baseline brain volume, baseline Hcy, baseline creatinine, and treatment group. 

Logarithmic transformation was applied to variables that did not demonstrate a normal 

distribution and geometric means presented. Cohen’s d estimates of effect size were 

included for group comparisons and r2 estimates of effect size were included for the atrophy 

modelling.  

 

2.5 In silico modelling 

Protein Data Bank files for the methyltransferases DNMT1, DNMT3A, and DNMT3L were 

accessed from the online Protein Data Bank repository or created from the canonical amino 

acid sequence using the RaptorX Structure Prediction tool (Table 2). In silico mutagenesis of 

amino acid residues was performed using PyMOL version 1.3, (Schrödinger, LLC). Default 

hydrogen, backbone, and rotamer options were retained to allow for consistent comparison 

of secondary structure changes such as hydrogen bond dynamics. The influence of clinically 

and non-clinically relevant genetic variants (DNMT1 Y495C, DNMT3A R749C, DNMT3L 

R271Q, DNMT3L H313Y, and DNMT3L R278G) on thermodynamic stability was measured 

using FoldX version 3.0 36. Models of mutant and wild-type (WT) variants were generated 

and changes in free energy (∆∆G) between the mutant and WT structures were calculated. 

Variant influence on electrostatic surface potential was estimated using Adaptive Poisson-

Boltzmann Solver.  

 

2.6 Role of funding source 

The research was funded by the University of Nottingham. The funding source had no 

involvement with the study design, analysis and interpretation of data, the writing of, or 

decision to submit, the report for publication. 
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3. Results  

3.1 PCA-derived cognitive factors 

To assess domains of cognition that may be relevant to dementia progression, we performed 

PCA on the VITACOG and TwinsUK cognitive test outcome measures. The emergence of 

two derived factors reflective of ‘visuospatial associative memory’ and ‘verbal semantic 

memory’ provides particular clinical sensitivity to our analysis (Figure 1B). For instance, 

combined performance on the visuospatial associative PAL and GNT tests has been 

identified as the most accurate predictor of progression from questionable dementia to AD 

37,38, whilst performance on the verbal semantic HVLT-R and CF tests has been used to 

differentiate between amnestic MCI and non-amnestic MCI 39,40.  

 

3.2 B vitamins associated with reduced Hcy levels and slower brain atrophy 

We first sought to confirm the expected association of B vitamin treatment with Hcy levels 

and rates of brain atrophy (ROA). In line with previous work using the VITACOG cohort 9, B 

vitamin treatment significantly reduced Hcy levels by an average of 24.5% (p < 0·001) 

(Figure 1C) and ROA by an average of 28% (p = 0·003). This effect was particularly strong 

in those with upper quartile baseline Hcy, showing an average of 53·7% difference in ROA 

between treatment and placebo groups (Figure 1D).  However, B vitamin treatment was 

found to have no effect on ‘visuospatial associative memory’ or ‘verbal semantic memory’ 

performance regardless of baseline Hcy level. This finding contrasts with the significant 

association between B vitamin treatment and individual memory task performance in 

subjects with high Hcy previously reported in the VITACOG  study, underlining the distinction 

between our cognitive factors and the original cognitive tests 7. 

 

3.3 Influence of DNMT3L R278G, B vitamin treatment, and Hcy on cognitive 

performance in the VITACOG MCI cohort 

We then investigated the relationship between the DNMT3L R278G genotype, Hcy levels, 

and visuospatial associative and ‘verbal semantic memory’ performance. No influence of 
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DNMT3L R278G on Hcy levels or ROA was found. Performance in ‘visuospatial associative 

memory’ and ‘verbal semantic memory’ also did not differ between the DNMT3L R278G A/A 

homozygotes or G carriers.  

 

After inclusion of B vitamin treatment, the DNMT3L R278G genotype groups showed 

differences in ‘visuospatial associative memory’ and ‘verbal semantic memory’ performance. 

In the B vitamin treatment group, G carriers showed a trend towards improved ‘visuospatial 

associative memory’ compared to A/A homozygotes (A/A = -0·12, G carriers = 0·19, d = 

0·33, p = 0·06). The opposite was found for ‘verbal semantic memory’, with A/A 

homozygotes showing a marginally significant improvement compared to G carriers (A/A = 

0·16, G carriers = -0·19, d = 0·36, p = 0·043). In the placebo group, performance on both 

factors remained unaffected by genotype (Figure 2A). These findings demonstrate that B 

vitamin treatment had an influence on cognitive performance which was only evident with the 

DNMT3L R278G genotype. 

 

As individuals with the highest baseline Hcy levels gained the most benefit from the B 

vitamin treatment, we incorporated these Hcy measurements into the analysis of 

‘visuospatial associative memory’ and ‘verbal semantic memory’. Stratification by baseline 

Hcy revealed that the improved ‘visuospatial associative memory’ performance seen in 

treated G carriers became significant in those with upper quartile baseline Hcy (p = 0·014) 

(Figure 2B). No significant effects were seen for ‘verbal semantic memory’. This indicates 

that B vitamin treatment was associated with significantly improved cognitive performance in 

individuals with MCI, high levels of baseline Hcy, and the DNMT3L R278G minor allele.  

 

3.4 DNMT3L R278G influences rate of brain atrophy 

To further substantiate the interaction between DNMT3L R278G and ‘visuospatial 

associative memory’ or ‘verbal semantic memory’, the relationship between these factors 

and yearly ROA measurements was investigated. A significant negative correlation between 



12 

 

‘visuospatial associative memory’ performance and ROA was observed for G carriers which 

increased after covariate adjustment (r2 = 0.420, p < 0·001) whilst this relationship remained 

absent in A/A homozygotes (r2 = 0·011, p = 0·336). In addition, a significant negative 

correlation between ‘verbal semantic memory’ performance and ROA was observed in A/A 

homozygotes which increased after covariate adjustment (r2 = 0·294, p < 0·001). This 

relationship remained absent in G carriers (r2 = 0·003, p = 0·652) (Figure 2C).  

 

These findings indicate that the DNMT3L R278G G carriers who showed improved 

‘visuospatial associative memory’ performance following B vitamin treatment had 

corresponding reductions in ROA. Similarly, A/A homozygotes who showed improved ‘verbal 

semantic memory’ performance following B vitamin treatment had analogous reductions in 

ROA (Figure 2C). Based on neurophysiology relevant to cognitive processing, it is expected 

that these findings would be driven by a slowing of hippocampal ROA for improved 

‘visuospatial associative memory’ in G carriers, and a slowing of frontal ROA for improved 

‘verbal semantic memory’ in A/A homozygotes. Previous region-specific imaging analysis 

using the VITACOG cohort supports our prediction about hippocampal ROA 8.  

 

3.5 Follow-up in TwinsUK cohort 

After establishing a relationship between the DNMT3L R278G genotype, one-carbon cycle 

components, and cognitive factors in the VITACOG cohort of MCI, we investigated this 

relationship in the TwinsUK non-MCI general population cohort. We have previously 

reported that self-reported regular vitamin intake (p < 0·001) and high serum B vitamin levels 

(p = 0·002) were associated with significantly lower levels of Hcy in the TwinsUK cohort. We 

also found that, whilst serum vitamin B12 and folate levels had no influence on cognition, 

self-reported regular vitamin intake was associated with significantly better ‘visuospatial 

associative memory’ performance41.  
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In line with the present VITACOG results, we found no association between the DNMT3L 

R278G genotype and Hcy levels. However, both A/A homozygotes and G carriers who self-

reported regular vitamin intake performed better on ‘visuospatial associative memory’, 

significantly so in the A/A homozygotes (Regular = 0·21, Not reported = -0·54, d = 0·76, p = 

0·001) (Figure 2D). This relationship between A/A homozygotes and ‘visuospatial 

associative memory’ is analogous to the relationship between G carriers and ‘visuospatial 

associative memory’ in the VITACOG cohort. However, as the allele associated with 

improved cognition is reversed, this indicates an allele-specific difference between the MCI 

and general population cohorts.  

 

Stratification by Hcy levels did not reveal any significant differences between A/A 

homozygotes and G carriers in the TwinsUK cohort, contrasting with the modulating role of 

Hcy in the VITACOG cohort. As the influence of B vitamin treatment was most significant in 

those with the highest levels of Hcy, we initially predicted that a critical level of Hcy must be 

reached before effects on cognition could be observed. However, the Hcy levels in the 

highest quartile were similar between VITACOG (17·1, SD = 3·4) and TwinsUK (16·8, SD = 

4). Thus, the genotype-dependent relationship between vitamin intake and Hcy levels for 

‘visuospatial associative memory’ appears to be more prominent in those with MCI disease 

compared to general population controls.   

 

3.6 In silico modelling of DNMT3L R278G 

Amino acid substitution prediction tools such as SIFT, PMUT, and MutationTaster 

characterised the DNMT3L R278G variant as ‘damaging’ and ‘disease causing’. To better 

understand the functional impact of the R278G variant, in silico modelling tools were used to 

investigate structural, thermodynamic, and electrostatic changes in the DNMT3L protein 

associated with this variant. To provide a clinical context to the modelling, we also assessed 

two methyltransferase variants reported to cause a neurodegenerative phenotype (DNMT1 

Y495C) and intellectual disability (DNMT3A R749C) respectively 18,19 as well as a 
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neighbouring variant within DNMT3L known to affect global methylation patterns (DNMT3L 

R271Q) and a control variant with no known clinical importance (DNMT3L H313Y) (Figure 

3A) 20.  

 

DNMT3L forms a complex with DNMT3A and histone H3 in order to stabilise the methylation 

machinery and direct the addition of methyl groups to DNA. From structural modelling we 

discovered that the DNMT3L R278G variant resulted in the disruption of hydrogen bonds 

adjacent to one of the DNMT3A-3L interaction sites (Figure 3B & C). Similar disruption of 

secondary structure was also seen for the clinically associated DNMT1 Y495C and DNMT3A 

R749C variants. No disruption was seen for the nearby DNMT3L R271Q variant or the 

negative control variant. We quantified these observations by assessing changes in free 

energy (∆∆G) across available WT and variant protein models. Both DNMT3L R278G and 

the nearby R271Q resulted in a highly destabilising ∆∆G in the DNMT3A-3L-H3 complex 

model. These values were similar to the ∆∆G calculated for the clinically associated variants, 

whilst the negative control variant showed neutral ∆∆G (Supplementary 3).  

 

Examination of electrostatic surface potential indicated that the DNMT3L R278G variant 

resulted in a clear transition from positive to negative electrostatic potential stretching over 

the DNMT3A-3L interaction sites (Figure 3D). Similar patterns were seen for the clinically 

associated variants and the nearby DNMT3L R271Q variant. No observable change was 

seen for the non-clinically associated control variant. In combination, the in silico analyses 

supports that both structural and electrostatic perturbations may be caused by the DNMT3L 

R278G variant. Moreover, the proximity of these disruptions to the DNMT3A-3L interaction 

sites indicates a potential impact on the DNMT3A-3L protein complex.  
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4. Discussion 

 

A meta-analysis of cohort studies supports the hypothesis that there are beneficial effects of 

B vitamin intake on risk for dementia 42. However, a role for epigenetic mechanisms as a 

driving underlying biological mechanism and identification of genetic markers to predict 

response, are yet unexplored.  In this study we report a relationship between one-carbon 

cycle components, the DNMT3L R278G genotype and specific domains of cognitive 

performance. Following B vitamin treatment, G carriers with MCI in the VITACOG study 

performed better on ‘visuospatial associative memory’ whilst A/A homozygotes performed 

better on ‘verbal semantic memory’. These relationships were matched by corresponding 

changes in whole brain ROA. In the TwinsUK general population cohort, A/A homozygotes 

with regular vitamin intake performed better on ‘visuospatial associative memory’. 

 

Our findings suggest a model in which healthy middle age DNMT3L R278G A/A 

homozygotes who regularly take vitamins demonstrate better ‘visuospatial associative 

memory’ performance. However, once individuals decline to MCI levels, B vitamins confer a 

benefit in ‘visuospatial associative memory’ for G carriers with high levels of Hcy (Figure 4). 

The fact that the S-adenosylmethionine:S-adenosylhomocysteine (SAM:SAH) ratio is 

dependent on Hcy removal in the cycle, and an altered SAM:SAH ratio disrupts methyl 

donation and thus DNMT activity 43,44, may explain why genotype-dependent cognitive 

benefit was most striking in MCI individuals with the highest Hcy levels. 

 

DNMT3L differs from classic methyltransferase proteins in that it is catalytically inert. It has a 

role in direct regulation of methyltransferase activity by forming a complex with DNMT3A, 

stabilising the active site where DNA binding occurs and attenuating uneven methylation 

caused by flanking sequence bias 22,45. DNMT3L has also been reported to interact with 

histone H3K4 and to co-operate with histone-specific enzymes 23,46. Our in silico modelling 

provides support for the influence of the DNMT3L R278G variant on the interaction of 
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DNMT3L with DNMT3A and histone H3. The disturbance of the DNMT3A-3L-H3 complex 

could result in widespread differential 5mC, 5hmC, 5fC and 5caC methylation patterns. In 

addition, we have shown that the R278G A/G is a CpG dinucleotide site and that the degree 

of 5mC and 5hmC methylation varies dependent upon the R278G genotype (unpublished 

data), which might also contribute to changes in gene expression. Base-resolution oxidative 

methylation and RNA sequencing techniques, possibly in combination with targeted 

epigenomic CRISPR technologies, will be needed to assess the true impact of this variant on 

the DNA methylome and RNA transcriptome 47. 

 

Changes to DNA methylation and histone modification patterns are known to occur in the 

hippocampus during memory formation and consolidation 48,49. Mnemonic processes can 

also be disrupted through inhibition of methyltransferase and demethylase proteins31.  

As cellular and neuronal plasticity and adult neurogenesis in the hippocampus have been 

proposed as a mechanism which contributes to an individual’s resilience to cognitive decline 

and dementia50,51, it is possible that DNMT3A-3L-H3 complex dynamics in key hippocampal 

pathways may contribute to such a mechanism.  The dynamic and reversible nature of 

methylation has made it an attractive target for pharmacological intervention, with particular 

success attributed to the use of methyltransferase inhibiting drugs in the treatment of cancer 

but also promising effects on hippocampal memory in rodent models 52,53.  

 

The use of cohort studies comes with inherent strengths and limitations. For example, 

variables are commonly collected during a number of surveys and hence are obtained at 

different time points in adulthood. In addition, studies exploring the relationship between 

vitamins and cognition have also highlighted the difficulties in making comparisons between 

qualitative measures of self-reported vitamin intake and the quantitative measure of serum 

vitamin levels 54.  It is possible that self-reported vitamin intake data acts instead as a proxy 

for other environmental factors. For example, individuals who report taking vitamin 

supplements may be more health-conscious and more likely to exercise regularly and 
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maintain a good diet - behaviour that is generally agreed to benefit cognition. Future studies 

to control for potential confounder issues should include longitudinal treatments with vitamins 

over time, the examination of lifestyle and health factors such as exercise and diet in healthy 

aged, mild cognitively impaired individuals, and in patients with high homocysteine and 

dementia.  

 

Our findings support a genotype-environment interaction that impacts upon cognitive 

function through altered epigenetic regulation. The involvement of DNA methylation and 

components of the methionine pathway provide a tangible molecular mechanism underlying 

this genotype-environment relationship. Pharmacological targeting of DNA 

methyltransferases has led to renewed discussion over the use of dietary supplements, as 

ingredients capable of methyltransferase inhibition are found in a number of fruits and 

vegetables, providing further reinforcement for the relationship between diet and cognitive 

health 55. These findings may also inform personalised medicine strategies, where combined 

assessment of genotype and Hcy levels could direct the use of B vitamin treatment in 

protecting against cognitive decline.  
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Figures and Tables  

 

 

Figure 1. Depiction of the one-carbon cycle, the derived cognitive factors, and the effect of B vitamins 

on homocysteine (Hcy) and rate of atrophy (ROA) I n the VITACOG study. Error bars indicate 1 

standard error.  

(A) Diagram of the associated methionine (yellow), folate (blue), and transsulfuration (grey) pathways 

within the one-carbon cycle, along with the involvement of DNMTs and DNA methylation (red). Areas 

of dietary influence are highlighted in green. 

(B) Principal component analysis resulted in two cognitive factors associated with aspects of cognitive 

decline, namely ‘visuospatial associative’ and ‘verbal semantic memory’.  

(C) In VITACOG, Hcy levels were significantly lower (***; p < 0·001) in those receiving B vitamin 

treatment (green) compared to those receiving the placebo (blue).  

(D) Significantly reduced ROA was also seen in treated individuals. The reduction in ROA is greatest 

in those with upper quartile Hcy (red) compared to those with lower and middle Hcy levels (orange).   
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Figure 2. Influence of DNMT3L R278G variant on cognition and ROA in the VITACOG study and on 

cognition performance in the TwinsUK cohort. Error bars indicate 1 standard error. 

(A) In VITACOG, B vitamin treatment resulted in DNMT3L R278G genotype-specific changes in 

‘visuospatial associative’ (ns; p = 0·06) and ‘verbal semantic memory’ (*; p = 0·043).  

(B) Vitamin B treated G carriers with upper quartile baseline Hcy showed significant improvement in 

‘visuospatial associative memory’ (*; p = 0·014). 

(C) Heatmaps portraying greater (red) and slower (yellow) ROA for DNMT3L R278G genotypes. G 

carriers present a significant negative correlation between ‘visuospatial associative memory’ and ROA 

whilst A/A homozygotes show a significant negative correlation between verbal semantic memory and 

ROA. Separating slower ROA by placebo (blue) or treatment (green) confirms that these genotype-

dependent relationships are more prominent in the treated individuals.  

(D) In the TwinsUK, A/A homozygotes who regularly took vitamin supplements showed significantly 

better ‘visuospatial associative memory’ performance (**; p = 0·001). 
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Figure 3. In silico analysis of the methyltransferase coding variants and DNMT3A-3L interaction 

modelling. 

(A) Summary of the variants examined and the results from the in silico analyses. 

(B) PBD models of the DNMT3A-3L complex with DNA in situ (left) and the DNMT3L protein (right). 

The R278 position is annotated (green) for both models. The interaction sites (purple for DNMT3L, 

teal for DNMT3A) for this complex are also highlighted.  

(C) DNMT3L R278G (green) results in the disruption of hydrogen bonds (yellow dashes) in proximity 

to the DNMT3A-3L interaction sites (purple). 

(C) The R278G variant (green) leads to a change from positive (blue) to negative (red) electrostatic 

surface potential over the DNMT3A-3L interaction sites (purple helices).  
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Figure 4. Model of the relationship between disease status, methionine pathway components, and 

the DNMT3L R278G variant with respect to cognitive performance. Beneficial (green arrow) or 

detrimental (red arrow) cognitive outcomes in ‘visuospatial associative memory’ are associated with 

interactions between vitamin intake, Hcy risk and the DNMT3L R278G genotype.  
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VITACOG 

 
TwinsUK 

 

 
Number  

 
271 

 
1870 

Sex:   

 Female 169 1870 

 Male 96 0 

Age at baseline 76·8 ± 4.9 * 

DNMT3L R278G:   

 A/A 150 996 

 G carrier 119 832 

ApoE4:   

 Non-carriers 183 - 

 Carriers 87 - 

Hcy levels (µmol/L) 12 ± 3·8 11·8 ± 4.1 

Vitamin treatment:   

 Treatment 132 - 

 Placebo 133 - 

 Left study prematurely 6 - 

Vitamin supplement intake:   

 Regular: - 941 

  B vitamins, yes? - 295 

  B vitamins, no? - 580 

 Not recorded - 559 

Vitamin levels:   

 Vitamin B12 (ng/L) - 593·5 ± 289·2 

 Folate (ng/mL) - 12·7 ± 6.2 

Cognitive scores:   

 HVLT-R Delayed Recall 7·6 ± 3·1  

 CF (Fruit & Vegetables) 20 ± 5.0 - 

 GNT 23·1 ± 4·2 - 

 MMSE Summary 28·2 ± 1·7 - 

 PAL Total Errors** 12·5 ± 10·9 19·8 ± 16·9 

 DMS Total Correct - 17·2 ± 1·8 

 PRM Total Correct - 21 ± 2·3 

 SSP Length - 5·6 ± 1·1 
 

 

Table 1. Demographic information for VITACOG and TwinsUK study cohorts. Where appropriate 

values are presented as mean ± 1 SD. 
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Hcy, Homocysteine; Hopkins Verbal Learning Test – Revised; CF, Category Fluency; GNT, Graded 

Naming Test; MMSE, Mini-Mental State Examination; PAL, Paired Associates Learning; DMS, 

Delayed Matching to Sample; PMS, Pattern Recognition Memory; SSP, Spatial Span.   

*Variables were taken at multiple time points in TwinsUK so there is no baseline age. 

**Although the PAL test was used in both cohorts, the PAL Total Errors score was available from 

VITACOG and the PAL Total Errors (adjusted) was available from TwinsUK accounting for the 

discrepant scores between the two cohorts.  
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Protein 
 

 
PDB name 

 
Source 

 
DNMT3L 

 
- 

 
RaptorX 

DNMT3A - RaptorX 
DNMT3A-3L 4U7P PDB 
DNMT3A-3L C terminus 2QRV PDB 
DNMT3A-3L-H3 4U7T PDB 
DNMT1 - RaptorX 
DNMT1 (351-1600) 4WXX PDB 
DNMT1 replication targeting sequence 3EPZ PDB 

 

 

 

Table 2. Protein models used for the in silico analysis. Protein Data Bank (PBD) files for 

methyltransferases were from the Protein Data Bank repository or created from the canonical amino 

acid sequence using the RaptorX Structure Prediction tool. 

 


