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We introduce a new consensus-based optimization (CBO) method where an interacting
particle system is driven by jump-diffusion stochastic differential equations (SDEs). We
study well-posedness of the particle system as well as of its mean-field limit. The major
contributions of this paper are proofs of convergence of the interacting particle system
towards the mean-field limit and convergence of a discretized particle system towards the
continuous-time dynamics in the mean-square sense. We also prove convergence of the
mean-field jump-diffusion SDEs towards global minimizer for a large class of objective
functions. We demonstrate improved performance of the proposed CBO method over
earlier CBO methods in numerical simulations on benchmark objective functions.
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1. Introduction

Large-scale individual-based models have become a well-established modeling tool
in modern social science, natural science and engineering, with applications includ-
ing social networks, crowd dynamics, epidemics, pedestrian motion, collective
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animal behavior, swarm robotics and molecular dynamics, among many others (see
e.g. Refs. 2L 4L [7, @ and 26). Through the iteration of basic interactions forces found
in nature and society such as attraction, repulsion, alignment, flocking, swarming,
synchronization, polarization, fragmentation, competition and cooperation, these
complex systems exhibit a rich self-organization behavior (see e.g. Refs. [0, [10] 12|
(17, 36}, [44] and [50).

Over the last decades, individual-based models have also entered the field of
global optimization and its many applications in operations research, control, engi-
neering, economics, finance and machine learning. In many applied problems aris-
ing in the aforementioned fields, the objective function to be optimized can be
non-convex and/or non-smooth, disabling the use of traditional continuous/convex
optimization technique. In such scenarios, individual-based metaheuristic models
have been proven surprisingly effective. Examples include genetic algorithms, ant
colony optimization, particle swarm optimization, simulated annealing, etc. (see
Refs. [15], 20, and and the references therein). These methods are proba-
bilistic in nature which set them apart from other derivative-free algorithms 18
Unlike many convex optimization methods, metaheuristic algorithms are relatively
simple to implement and easily parallelizable. This combination of simplicity and
effectiveness has fueled the application of metaheuristic in complex engineering
problems such as shape optimization, scheduling problems and hyper-parameter
tuning in machine learning models. However, it is often the case that metaheuristics
lack rigorous convergence results, a question which has become an active area of
research B30 BT

In Ref. [46], the authors introduced an optimization algorithm which employs an
individual-based model to frame a global minimization

min f(z),

where f(z) is a positive function from R? to R, as a consensus problem. In
this model, each individual particle explores the energy landscape given by f(z),
broadcasting its current value to the rest of the ensemble through a weighted
average. This iterated interaction generates trajectories which flock towards a
consensus point corresponding to a global minimizer of f(z), hence the name
Consensus-Based Optimization (CBO). We refer to Refs. and [51] for the two
recent surveys on the topic. The dynamics of existing CBO models are governed
by stochastic differential equations (SDEs) with Wiener noise ™13 B8 Hence, we
can resort to a toolbox from stochastic calculus and stochastic numerics to per-
form analysis of these models. This amenability of CBO models to theoretical as
well as numerical analysis differentiates them from other agent-based optimization
algorithms.

In this paper, we propose a new CBO model which is governed by jump-diffusion
stochastic differential equations. This means randomness in the dynamics of the
proposed CBO model comes from Wiener process as well as compound Poisson



Math. Models Methods Appl. Sci. 2023.33:289-339. Downloaded from www.worl dscientific.com
by 82.19.165.199 on 07/28/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Consensus-based optimization via jump-diffusion SDEs 291

process. The following are the main contributions of this paper:

(i) We prove well-posedness of the interacting-particle system and of its mean-field
limit driven by jump-diffusion SDEs and convergence of the mean-field SDEs
to the global minimum. The approach to study well-posedness and convergence
to the global minimum is similar to Ref. [I1] but adapted to the jump-diffusion
case with time-dependent coefficients.

(ii) The major contribution of the paper is that we prove mean-square convergence
of the interacting particle system to the mean-field limit when the number of
particles, N, tends to oo, i.e. for all ¢ € [0, T,

lim sup E|XL(t) — X' (t)*=0, (1.1)

N—ooj=1,. N
where X4 represent interacting particles (see (ZII))) and X° denote their
mean-field limit (see (ZI2))). This also implies convergence of the particle sys-
tem towards the mean-field limit in 2-Wasserstein metric. Let us emphasize
that we prove this result for quadratically growing objective function. We
also study uniform in N convergence of the implementable discretized par-
ticle system towards the jump-diffusion SDEs as the discretization step, h,
goes to 0.

(iii) It is illustrated in the presented numerical experiments that the addition of
jumps to the particle system leads to more effective exploration of the energy
landscape. This is particularly relevant when a good prior knowledge of the
optimal solution for initialization of the CBO is not available.

As was highlighted in Remark 3.2 of Ref. 11l and Remark 2 of Ref. 24| it is
not straightforward to prove mean-square convergence of the CBO particle system
towards its mean-field limit, even after proving uniform in N moment bounds of
the solutions of the SDEs driving particles system. Convergence results of this type
have been proved for special cases of compact manifolds (see Ref. for compact
hypersurfaces and Ref. [35] for Stiefel manifolds) and globally Lipschitz continuous
objective functions. In this case, not only the objective function is bounded but also
particles are evolving on a compact set. Under the assumptions on the objective
function as in our paper, in the diffusion case weak convergence of the empirical
measure of CBO particle system to the law of the corresponding mean-field SDEs is
proved in Refs. [30l and [38 exploiting Prokhorov’s theorem. In Ref. 24, the authors
proved convergence in probability of the CBO particle system with diffusion to the
mean-field limit.

A propagation of chaos result in the weak sense for non-linear jump-diffusions,
with globally Lipschitz coefficients, has been studied in Refs. 2§ and 29l The authors
of Ref. proved convergence of the particle system driven by Lévy noise in 2-
Wasserstein distance for one-sided Lipschitz drift coefficient in spatial variable but
uniformly Lipschitz in measure. The mean-square convergence has also been estab-
lished in Ref. 21l for locally Lipschitz drift coefficient in measure, bounded diffusion
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coefficient and particular choice of the jump coefficient. Here we prove L? conver-
gence of the CBO particle system to the mean-field SDEs where drift, diffusion
and jump coefficients are locally Lipschitz in measure. We consider quadratically
growing locally Lipschitz objective function defined on R%. We note that our con-
vergence results hold for the earlier CBO models™ 13 B8 a5 well. Although our main
focus is on CBO models and the global optimization problem, our work also con-
tributes to the currently very active research in mean-filed SDEs and their particles
approximations.

Furthermore, practical implementation of the particle system corresponding to a
CBO model needs a numerical approximation in the mean-square sense. We utilize
an explicit Euler scheme to implement the proposed jump-diffusion CBO model.
This leads to the question whether the Euler scheme converges to the CBO model
taking into account that the coefficients of the particle system are not globally Lip-
schitz and the Lipschitz constants grow exponentially when the objective function
is not bounded. At the same time, the coefficients of the particle system have linear
growth at infinity. In the case of jump-diffusion SDEs, earlier works either showed
convergence of the Euler scheme in the case of globally Lipschitz coefficients?? or
proposed special schemes in the case of non-globally Lipschitz coefficients with
super-linear growth, e.g. a tamed Euler scheme I8 Here we prove mean-square con-
vergence of the Euler scheme and we show that this convergence is uniform in the
number of particles IV, i.e. the choice of a discretization time-step h is independent
of N. Our results can be utilized for the earlier CBO models T 13 B8

In Sec.[2 we first present a review of existing CBO models and then describe the
proposed jump-diffusion CBO model. We also formally introduce mean-field limit
of the new CBO model. In Sec. Bl we focus on well-posedness of the interacting
particle system behind the new CBO model and its mean-field limit. In Sec. @, we
discuss convergence of the mean-field limit towards a point in R, which approxi-
mates the global minimum, convergence of the interacting particle system towards
the mean-field limit, and convergence of the implementable discretized particle sys-
tem towards the continuous-time particle system. We present results of numerical
experiments in Sec. Bl to compare performance of our model and the existing CBO
models.

Throughout the paper, C' is a floating constant which may vary at different
places. We denote (a - b) as dot product between two vectors, a,b € R%. We will
omit brackets () wherever it does not lead to any confusion.

2. CBO Models: Existing and New

In Sec. 2] we review the existing CBO models. In Sec. Z2] we introduce a new
CBO model driven by jump-diffusion and discuss potential advantages of adding
jumps to CBO models which are confirmed by numerical experiments in Sec.[Bl The
numerical experiments of Sec. Bl are conducted using the Euler scheme presented in

Sec.
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2.1. Review of the existing CBO models

Let N € N denote the number of agents with position vector, X4 () € R?, i =
1,..., N. The following model was proposed in Ref.

dX§ (1) = —B(Xi () — Xy ) H (F(X5 () — F(Xy7 (1)dt
V20| X5 () — XOT @) dwi(t), i=1,...,N, (2.1)

where H¢ : R — R is a smooth regularization of the Heaviside function, W¢(t),
i =1,...,N, represent N-independent d-dimensional standard Wiener processes,
B>0,0>0and X3/ (t) is given by

§ SN X (Ows (X (1)
Xa,f ) — i=1 I
v SN wi (X (1)

(2.2)

with w$ (z) = exp (—af(z)), a > 0.

Each particle X}, at time ¢ is assigned an opinion f(X7%(¢)). The lesser the value
of f for a particle, the more is the influence of that particle, i.e. the more weight is
assigned to that particle at that time as can be seen in ([Z2)) of the instantaneous
weighted average. If the value f(X % (¢)) of a particle X% at time ¢ is greater than the
value f (X]C\“,’f (t)) at the instantaneous weighted average X Io\‘,’f (t) then the regularized
Heaviside function forces the particle X% to drift towards X'Jo\‘/f . If the opinion of
ith particle matters more among the interacting particles, i.e. the value f(X%(t))
is less than f(X{(t)), then it is not beneficial for it to move towards X]C\“,’f. The
noise term is added to explore the space R? and to avoid non-uniform consensus.
The noise intensity induced in the dynamics of the ith particle at time ¢ takes
into account the distance of the particle from the instantaneous weighted average,
)_(]C\“,’f (t). Over a period of time as the particles start moving towards a consensus
opinion, the coefficients in ([Z]) go to zero.

One can observe that the more influential opinion a particular particle has,
the higher is the weight assigned to that particle in the instantaneous weighted
average (Z2)). Based on this logic, in Ref. [I1], the authors dropped the regularized
Heaviside function in the drift coefficient and the model ([ZII) was simplified as
follows:

dX} (1) = =B(X§ (8) — X7 (8))dt + V20| X}y () — X7 (1)[dW (1),
i=1,...,N (23)

with 8, o, X%/ as in @) and @3).

The major drawback of the consensus-based models ([2.J]) and (Z3]) is that the
parameters § and o are dependent on the dimension d. To illustrate this fact, we
replace X'Jo\‘/f in @3) by a fixed vector V € R? Then, using Ito’s formula, we
have

%]E|X}V(t) V2= (-28+2dEX4#) -V}, i=1,...,N. (2.4)
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As one can notice, for particles to reach the consensus point whose position vector is
V, one needs 23 > do?. To overcome this deficiency, the authors of Ref. T3 proposed
the following model which is based on component-wise noise intensity instead of
isotropic noise used in ([ZI)) and (Z3):

X (8) = =B(Xi(t) = X/ ())dt
+V20 Diag(X i (t) — X2l (#)dWi(t), i=1,...,N, (2.5)

where 3,0 and Xﬁ’f are as in (1) and ([Z2)), and Diag(U) is a diagonal matrix
whose diagonal is a vector U € R?. Now, if we replace X']O\‘,’f by a fixed vector V
and then use Ito’s formula for (ZI), we get

d

—2BE|XN () — VI + 0’E) (XN(t) — V)3

d .
—E| XK (t) = V]?
ZEIX (1) - V] _
J=1
= (=28+0HE|X(t) - V|?, i=1,...,N, (2.6)
where (X4 (t) — V); denotes the jth component of (X4 (t) — V). It is clear that in
this model, there is no dimensional restriction on 8 and o.
Other CBO models® B4 are based on interacting particles driven by common
noise. Since the same noise drives all the particles, the exploration is usually not
effective. They are not scalable with respect to dimension and typically less effective

than the CBO models (1)), (Z3)), (Z3) and the model introduced in Sec. This
fact is demonstrated in experiments in Sec.

2.2. Jump-diffusion CBO models
Let us consider the following jump-diffusion model:

dX} (1) = =B()(X} (t) — X (8))dt + V20 (t) Diag(X}y (t) — Xn(t)dW' (1)

+(t) Diag( X5 (™) — Xn(t™))dJ(t), i=1,...,N (2.7)
with
N'(t)
Tty =>" 7, (2.8)
j=1
where N%(t), i =1..., N are N-independent Poisson processes with jump intensity
ANand Zi = (Zi,,..., Z} ;)" areiid. d-dimensional random variables denoting jth

jump by ith particle and Z; ~ Z. We denote the [th component of the vector Z
by Z;. We assume that the components Z; of Z are also i.i.d. random variables
distributed as

Z ~ 2, (2.9)

where Z is an R-valued random variable whose probability density is given by
p=(2) such that E(Z) = [, #p.(2)dz = 0. We also denote the probability density
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of Z as p.(z) = H;lzl p=(z1). Note that E(Z) is a d-dimensional zero vector, since
each Z; is distributed as Z. The Wiener processes W'(t), the Poisson processes
Ni(t),i=1,...,N, and the jump sizes Z are assumed to be mutually independent
(see further theoretical details concerning Lévy-driven SDEs in Ref. [3]). Also, 5(t),
o(t),~(t) are continuous functions and

YN X (et K@)
TSN el (X))

1=

Xn(t) = (Xy(@),..., X§ (1) : (2.10)
with o > 0. Note that we have omitted a and f of )_(](\l,’f in the notation used in (7))
for the simplicity of writing.

We recall the meaning of the jump term

/O +(s) Diag(X*(s™) — X (s~ ))dJ (s)

N*(t)
= D (7)) Diag(X'(7;) = Xn (7)) Z},

j=1
where Tj’f denotes the time of jth jump of the Poisson process N*(t). Thanks to the
assumption that E(Z) = 0 (which in turn implies E(Z};) = 0, j = 1,..., N'(t),
i=1,...,N, 1l =1,...,d), the above integral is a martingale, and hence (sim-
ilarly to Ito’s integral term in (27))) it does not bias trajectories of X4 (t),
i=1,...,N.

The jump diffusion SDEs (27 are different from ([23) in the two ways:

e The SDEs (7)) are a consequence of interlacing of Ito’s diffusion by jumps arriv-
ing according to the Poisson processes whose jump intensity is given by A.

e We take () as a continuous positive non-decreasing function of ¢ such that
B(t) = B >0ast — oo, o(t) as a continuous positive non-increasing function
of t such that o(t) — o > 0 as t — oo and y(¢) as a continuous non-negative
non-increasing function of ¢ such that v(t) -~y > 0 as t — oo.

Although we analyze the CBO model ([Z7) with time-dependent parameters, a
decision to take parameters time-dependent or not is problem specific. Note that
the particles driven by SDEs ([27)) jump at different times with different jump sizes
and jumps arrive according to the Poisson processes with the same intensity .

We can also write the jump-diffusion SDEs (Z.7)) in terms of the Poisson random
measure? as

dX}(t) = —B) (X} (t) — Xn(t))dt + V20(t) Diag(X i (t) — Xn(t))dW* (t)
+/Rﬂ(t) Diag(Xi (t7) — Xn(t7))2N*(dt, d2), (2.11)

where N'(dt,dz),i = 1,..., N, represent the independent Poisson random measures
with intensity measure v(dz)dt. Here v(dz) = Ap.(z)dz is a finite Lévy measure.
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Although for simplicity we introduced our model as ([27), in proving well-posedness
and convergence results we will make use of (ZIT]).

We can formally write the mean-field limit of the model ([Z7) as the following
McKean—Vlasov SDEs:

dX (t) = —B(t)(X(t) — X (t))dt + V20 (t) Diag(X (t) — X (t))dW (t)
+ () Diag(X (t7) — X (t7))dJ (t), (2.12)
where J(t) = Zj\[:(? Zj, N(t) is a Poisson process with intensity A and

—af(x) —af(X(1))
X(t) = XExo — Jga ze Lx(dr) _ E(X(t)e ) (2.13)
fRd efaf(:z:)‘CX(t) (d.’E) E(e—af(X(t)))
with Lx ) := Law(X (t)). We can rewrite the mean-field jump-diffusion SDEs ([Z.12))
in terms of the Poisson random measure as

dX (t) = —B(t)(X(t) — X (t))dt + V20 (t) Diag(X (t) — X (t))dW (t)

+ (1) /R Diag(X(£7) = X(t7))2N (dt, d2). (2.14)

2.2.1. Other jump-diffusion CBO models

Although the aim of the paper is it to analyze the CBO model (2I1]), we discuss
three other jump-diffusion CBO models of interest in this section.

Additional Model 1: Writing ([27) in terms of Poisson random measure suggests
that we can also consider a CBO model with an infinite activity Lévy process, e.g.
an a-stable process, to introduce jumps in dynamics of particles:

dX 4 (1) = —B(t) (X (t) — Xn(t))dt + V20 (t) Diag(X 5 (t) — Xn(t))dW*(t)
+ /Rd v(t) Diag(X & (t7) — Xn (7)) 2N (dt, dz), (2.15)

where the Lévy measure corresponding to N(dt,dz) can be infinite. However,
numerical approximation of SDEs driven by infinite activity Lévy processes is com-
putationally more expensive (see e.g. Refs. [I9 and [47)), hence it can be detrimental
for the overall CBO performance.

Additional Model 2: In the SDEs (21), the intensity of Poisson process A is con-
stant. If we take jump intensity as A(t), i.e. a function of ¢, then the corresponding
SDEs will be as follows:

dX 3 (t) = =Bt (X5 (t) — Xn(t))dt + V20(t) Diag( Xk (t) — Xn(t))dW(t)
+ Diag(Xi(t7) — Xn(t7))dJ (), i=1,...,N, (2.16)

where all the notation are as in (Z71) and (ZI0) except here the intensity of the
Poisson processes N*(t) is a time-dependent function A(t). It is assumed that A(¢) is
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a decreasing function such that A(t) — 0 as t — co. Also, in comparison with (27)),
there is no y(t) in the jump component of ([2I6). Note that the compound Poisson
process with constant jump intensity A is a Lévy process but with time-dependent
jump intensity A(t), it is not a Lévy process, rather it is an additive process. Additive
process is a generalization of Lévy process which satisfies all conditions of Lévy pro-
cess except stationarity of increments3? The SDEs ([2I6]) present a jump-diffusion
CBO model driven by additive process. The analysis of model (ZI6) follows simi-
lar arguments as used in the paper for the model (ZIJ), since the jump-diffusion
SDEs (2I0) can also be written in terms of the Poisson random measure with
intensity measure v;(dz)dt, where (v4)¢>0 is a family of Lévy measures.

Additional Model 3: In the model (ZTIT]), the particles have idiosyncratic noise,
which means they are driven by different Wiener processes and different compound
Poisson processes. Instead, we can have another jump-diffusion model in which the
same Poisson noise drives the particle system but Wiener processes stay different
and jumps sizes still independently vary for all particles. This means jumps arrive
at the same times for all particles, but particles jump with different random jump-
sizes. We can write this CBO model as

dX (1) = =B(t)(X i (t) — X (t))dt + V20 (t) Diag(X () — X (£))dW' (1)
+ /R (1) Diag(X () = X (7)2N (dt, d2). (2.17)

We compare performance of the jump-diffusion CBO models (I and [2ZI7) in
Sec.

2.2.2. Discussion

First, we will discuss dependence of the parameters 3(t), o(t), v(t) and A on dimen-
sion d. The independence and identical distribution of Z;, which denotes the Ith
component of Z, result in the non-dependency of parameters on dimension in the
similar manner as for the model (ZI)). We illustrate this fact by fixing a vector
V € R? and replacing X in (ZI)) by V, then using Ito’s formula and the assump-
tion made on p.(z), we have

SEIXY () = VI = ~280EIXN () — VI + o) Y E(XR () - V)3

+ /\/Rd E(|X&(t) =V +~(t) Diag(X & (t) — V)z|?

— XN () = V) ps(2)dz
= (=26(t) + o*(D)E|X () - VI

£ / P(EIDiag(Xi (1) — V)2 Ppa(2)dz
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= (=2B(t) + o*())E| X (t) - V|?

+A2(t Z/ (XN () V); Jl_Ipg (z1)d

= (=2B(t) + *(t) + W2 (OE(Z*)E|XG() - V|, i=1...,N.
(2.18)

We can choose (t), o(t), ¥(t), A and the distribution of Z guaranteeing that there is
at, > 0such that —23(t) +02(t) + \y2(t)E(Z?) < 0 for all t > ¢, and such a choice
is independent of d. It is clear from ([ZI8) that with this choice, E|X% () — V|2,
1=1,...,N, decay in time as t — oco.

In the previous CBO models, there were only two terms namely, the drift term
and the diffusion term. The drift tries to take the particles towards their instanta-
neous weighted average. The diffusion term helps in exploration of the state space
with the aim to find a state with better weighted average than the current one. The
model [27) contains one extra term, which we call the jump term. Jumps help in
intensifying the search in a search space and aid in avoiding premature convergence
or trapping in local minima. This results in more effective use of the interaction of
particles.

Moreover, the effect of jumps decays with time in (Z7]) by virtue of decreasing
~(t). The reason for considering the model (Z7]) where jumps affect only the initial
period of time is that we want particles to explore more space faster at the begin-
ning of simulation and as soon as the weighted average of particles is in a vicinity
of the global minimum, we do not want jumps to affect convergence of particles
towards that consensus point lying in a close neighborhood of the global minimum.
Therefore, time dependence of the parameters and degeneracy of the coefficients in
front of the noises help in exploiting the searched space.

As a consequence, the jump-diffusion noise and time-dependent coefficients in
the model (Z7]) may help in keeping the balance of exploration and exploitation
by interacting particles over a period of time. We will continue this discussion on
exploration and exploitation in Sec. B, where the proposed CBO model is tested.

2.2.3. Implementation

Let 0 = tg < -+ < t, = T be a uniform partition of the time interval [0, 7]
into n sub-intervals such that h := tp41 —tx, K = 0,....,n —1 and T" = nh. To
approximate ([Z71), we construct a Markov chain (Y3 (t)), k = 1,...,n, using the
following Euler scheme:

Yi(tret) = Ya(te) = B(tr) (Y (te) — Yn (tr))h + o(tr) Diag (Y3 (tx)
N*(tk+1)
— Y () AW (te) +y(ts) > Diag(Ya(ts) — Ya(t) Z],

J=N (1) +1
(2.19)
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where AW} (t,) = Wi(tgs1) — Witg), i =1,...,N, 1 =1,...,d are independent
random variables having Gaussian distribution with mean 0 and variance h, W/ (t) €
R denotes [th component of W(t), Zj’: € R denotes jth jump size of the ith particle,
Ni(t) are independent Poisson processes with jump intensity A and

N —af(Yy (1)

_ - ; e
Yn(t) = ; Vi (t) SRR (2.20)
To implement the discretization scheme, we initialize the N x d matrix Y at time
to = 0 and update it according to (ZI9) and ([Z20) at each iteration. We will
consider mean-square convergence of the scheme (ZI9) in Sec.

The Python code for the above numerical scheme is available on |githubl It uses
a matrix formulation of the corresponding algorithm to save memory and time in

computations.

3. Well-posedness Results

In Sec. Bl we discuss well-posedness of the interacting particle system (ZI1]) and
prove a moment bound for this system. In Sec. 32, we prove well-posedness of and
a moment bound for the mean-field limit ([2I4)) of the particle system (ZIT]).

3.1. Well-posedness of the jump-diffusion particle system

This section is focused on showing existence and uniqueness of the solution of (2IT]).
We first introduce the notation which are required in this section.

We denote xy = (zk,...,20)7 € RN x5 = Zilxé\[e—aﬂxﬁv)/
Zj.vzle’af(mfv), W(t) = (W),....Wy@®)", Fy(xn) = (Fy(xN)---,
FJJ\\,I(XN))T € RV with Fi(xy) = (2% — %y) € R? for all i = 1,...,N,
Gy(xy) = Diag(Fy(xy)) € RNDNd and J@t) = (JH#),..., IV (),

where J(t) is from (Z8) which implies fot v(s) Diag(F (X (57)))dJ(s)

fg Jga 7 (s) Diag(Fi (Xn(s7)))2N(ds, dz). Let us represent {(dz) as the Lebesgue
measure of dz, and for the sake of convenience we will use dz in place of £(dz)
whenever there is no confusion. We can write the particle system (ZIT]) using the
above notation as

dXn(t) = BOF N (X (t7))dt + V20 (£)Gx (X (t7))dW (t)
+y()GN (XN (t7))dI(t). (3.1)

In order to show well-posedness of ([B), we need the following natural assumptions
on the objective function f. Let

fm :=1inf f. (3.2)

Assumption 3.1. f,, > 0.
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Assumption 3.2. f : R? — R is locally Lipschtiz continuous, i.e. there exists a
positive function L(R) such that

[f(@) = f(y)] < L(R)|z —yl,
whenever |z, |y| < R, z, y € R, R > 0.

Assumption [3:2 is used for proving local Lipschitz continuity and linear growth
of Fiy and G, i=1,...,N. Let B(R) = {x € R? : |z| < R}.

Lemma 3.1. Under Assumptions Bl and B2 the following inequalities hold for
any N, yy € RN satisfying sup;_y __ n |z |, sup;_1, . v lyn| < R and for all
1=1,...,N:

7 7 i i C(R)
(1) [Fy(zn) — Fy(yn)| < ‘xN_yN|+N(1/2|mN Ynls
2) [F(zn)P < 2(lay P + [z [?),

where C(R) = ea(\flLoo(Bm))—fm))(l + aRL(R) + QRL(R)ea(\fILOO(Bm))—fm))_

Proof. We can write

[Fy(xn) = Fy(yw)l

N
<oy — v+ ( Z — yiy)e /)
ij e—af(@h) —
N o .
|3 pi(emel@h) - emarh)) )
i=1
1 1

+Z [yivleo i)

Using discrete Jensen’s inequality, we have

_ 1 o N ),
N i e W)
Using the above estimate and then the Cauchy—Bunyakovsky—Shwartz inequality
in (B3), we get the desired result. O

SN emal@) B SN el |

Theorem 3.1. Let the initial condition Xn(0) of the jump-diffusion SDEs (Z1)
satisfy E|Xn(0)]> < co and E|Z|? < oo, then the Nd-dimensional system (27
has a unique strong solution Xn(t) under Assumptions Bl and for each
N e N.
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Proof. Note that |Gy (xn) — Gy (yn)| = |[Fi(xn) — Fi(yn)| and for all i =

| PP x) = Fiya))=-(2)a

d

d
:/RdZ|FN xn ) — (Fa(yn)hil?lz)? sz 2;,)d
=1 k=1

d
= 3 I(F )t — (B (ya) |/\zl|2Hpg 2)d

=1 k=1
= |Fy(xn) = Fx(yn)"E(2)%,

where (Fj (xn)); means the [th component of d-dimensional vector Fi (xy) and 2
means the /th component of d-dimensional vector z. Therefore, from Lemma 3]
there is a positive function K(R) of R > 0 such that

[Fn(xn) = Fn(yn)l* + |Gn(xn) — G (yn)l?
N
3 [ IDiag(Fyew) — Pl (o)== ()d= < KRy =y
whenever |[xy|, |y x| < R. Moreover,
N
FGo) P+ G G + 3 [ [Ding(Fi(an )< (2)dz < e
i=1

where C' is some positive constant independent of |x|. Then the proof immediately
follows from Theorem 1 from Ref.

Consequently, by Lemma 2.3 from Ref. [I8, the following moment bound, pro-
vided E|X x5 (0)|*? < oo and E|Z|?" < oo, holds:

E sup [Xn(H)? < Cy, (3.4)
0<t<T
where C'y may depend on NV and p > 1. O

In the last step of the proof above, we highlighted that Cy may depend on N.
However, for convergence analysis in later sections, we need a uniform in N bound
for sup,_; n ]E(SUPte[o,T] | X% (®)[?), p > 1, which we prove under the following
assumptions (cf. Ref. [TT]).

Assumption 3.3. There exists a positive constant Ky such that

[f(2) = f(y)] < Kp(L+ |z] + [yl —y| for all 2,y € R
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Assumption 3.4. There is a constant K, > 0,
f(@) = fm < Ku(1 4+ |zf*) for all z € RY.
Assumption 3.5. There exist constants R > 0 and K; > 0 such that
f(@) = fm > Kj|2* for |z| > R.

As one can see, we need a stronger Assumption [3.3] compared to Assumption 3.2
to obtain a moment bound uniform in N. Assumptions 3.4 and are to make
sure that objective function f has quadratic growth at infinity.

From Lemma 3.3 in Ref. [I1], we have the following result under Assumptions 3.1l
and

N —af(zy) 1M
i |2 € i |2
;m\ W<L1+L2N;|x]\,| , (3.5)

where L1 = R? + Ly and Ly =2

I[((“ (1+ #’Rg) with R from Assumption

l

Lemma 3.2. Let Assumptions B and B3H3D be satisfied. Let p > 1,
sup;—; v E[X4(0)[* < 0o and E|Z|*P < oo. Then

sup E sup |Xi()|* < K,
i€{l,..,N} O0<t<T

where X (t) is from @II)) and K,, is a positive constant independent of N.

Proof. Let p be a positive integer. Using Ito’s formula, we have

[ XN = Xy (0)) - 2p1E/0 B XN ()72 (X (s) - (X (s) — X (s)))ds

V3 / () Xy ()PP~ (Xiy(s) - Diag(Xiy (5) — X (s))dW (s))
L p(p—1) / 02(5) X (3)] 2~ Ding (XY (5) — X (5)) Xy (5)ds

+2p / o ()| Xy (5)27~2|Diag (X (5) — Xn(s))[2ds

t
[ [ 0% +2(0) Ding(Xi(s7) = Xy(s )2
0 Jrd
— | X (sT) PP )N (ds, dz).
First taking supremum over 0 < ¢ < T and then taking expectation, we get

T
E sup |Xj ()] SE\X}V(O)IQ’WCE/ [ XN ()PP 2| X R () - (X (5)
0<t<T 0

— Xn(s))|ds + 2v/2pE sup
0<t<T

/O () [ X () 272 (X (5)
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- Diag(Xj (s) — Xn(s))dW'(s))
+E/ | X} (5)]*~*|Diag(X}y (s) — Xn(s) X (s)[*ds
0
T . . —
+CE [ [Xi (o) * Ding(X(5) - X (5) s
0
t . .
+CE sup [ [ (1X3(s7) () Ding(X(57)
o<t<T Jo JRd
— Xn(s7))2?P = | X} (7)) N (ds, d2).
(3.6)

To deal with the second term in (8], we use Young’s inequality and obtain

(XN ()72 X0 (s) - (XN () = X ()| < [XN ()P + | Xa ()P~ X (s)]
4p—1
2p

IN

. 1 -
% 2p 2p.
[ XN ()™ + —2p\XN(8)\

To ascertain a bound on | Xy (s)|?, we first apply Jensen’s inequality to |Xy(s)|?
to get

_ ) N e—af (Xi(s)
Xn(s))? =D Xn(s)

i=1

Zé_\le e—af (XL ()

oo (Xig(s))

SN eal G

N
<D XK
i=1

then using (&), we obtain [ Xy (s)[* < L1+ Ly~ Zf\il | X4 (s)|?, which on applying
the elementary inequality, (a+b)? < 2P~ (aP?+bP), a,b € R and Jensen’s inequality,
gives

N
_ 1 ,
[ Xn(s)|? < 2P (Lﬁ' + L§N§ :|X§v(8)l2p>‘
i=1

As a consequence of the above calculations, we get

Xi ()72 X (9) - (Xiy(9) = Kn(s))
N
< c<1 FIXROP 41> |X%V<s>|2p>, (37)

where C' is a positive constant independent of V.
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Using the Burkholder-Davis-Gundy inequality, we get

E sup

/ a(s)| X ()P~ (X (s) - Diag(Xy(s) — XN(S))dWi(s))’
o<t<T 0

1/2

T . . . — 2
< E(/O (o ()X N ()P~ (X (5) - (Xn(s5) = Xn(5)))) d8>

" 1/2
SCJE< sup IX&(t)Qp_1</O X}Q(S)—XN(S)IQd8> )

0<t<T

which on applying generalized Young’s inequality (ab < (ea?')/q1 + b42/(6‘J2/Q1 7),
€q1,q2 > 0,1/q1 +1/q2 = 1) yields

2\/§p]E sup

/ o(s)| X (s)[* (X (s) - Diag(Xp (s) — XN(S))dWi(s))‘
0<t<T 0

1 . T _ P
< -E sup | X&)% +CE(/ | X% (s) —XN(S)|2d8)
2 o<i<r 0
1 , T _
< —E sup X;V(t)|2P+CE(/ X;V(s)—XN(s)des), (3.8)
2 o<i<rT 0

where in the last step we have utilized Holder’s inequality.
Now, we move on to obtain estimates which are required to deal with the fourth
and fifth terms in ([B0]). Using Young’s inequality, we have

Ay 1= X () PP (X ()P — (X (5) - X (5)))?

IA

21X N (8)17 + 21 X (5) P72 X v ()2
4p —2

IN

, 9 _
[ XN (s) P + EIXN(S)IQP« (3.9)
In the same way, applying Young’s inequality, we obtain
Az = | X}y (s)[*~?|Diag(X i (s) — Xn(s))[*

< 2 XN ()P + 21X ()PP X ()]
4p — 2

. 2 _
< 21X )+ 1R () (3.10)

Following the same procedure based on (B3], which we followed to obtain the
bound B7), we also get

N
i 1 i
A+ Ay < C<1 + [ XN (o) + N Z |XN(S)|2p>a (3.11)

i=1

where C' is a positive constant independent of N.
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Tt is left to deal with the last term in (B.6]). Using the Cauchy-Bunyakovsky—
Schwartz inequality, we get

B[] (107 4 5 Ding (X (47) — K)o

— XN (sT)PP)N (ds, dz)

= ]EoiltlgT/o /R (2271 (|X i (s7)|* + |(s) Diag(Xi (s ™) — Xn(s7))2[??)

X (57 PP (s, d2)
< CE / / (X% ()27 + J7(s) Diag(Xy (s7) — Xne(s™))2[2) N (ds, dz)
— \CE / (X4 ()27 + [7(s) Ding(Xk () — X (5))2[*)p=(2)dzds
0o Jra

< CE / (X% ()7 + Xy () — () / [2Ppa(2)dz ) ds.

We have |X]ZV(3) —X'N(s)‘?p < 22p—1(|X]iV(S)|2p + ‘X’N(s)‘zp) < C(l + |X1iv(5)|2p n
% Zi\il | X% (5)|?P), and hence

B[] (1X0(57) 4 5 Dina(X(47) = K5 )of

— | XN (sT)PP)N (ds, dz)

T
gCE/ <1+XN \2”+—Z|XN |2P> s, (3.12)
0

where C' > 0 does not depend on N.

Using (B0), B, @ID) and @I2) in @8, we get

1 . )
SE sup [ XN ()P < E[X(0)[*
0<t<T

T
+oE [ <1+|XN ()P + 5 Z|XN )
0

and

T
E sup |X;'\,(t)\2p32]E|X;'\,(0)|2P+C]E/ <1+ sup | X (u)[?
0<t<T 0 0<u<s

+ = Z sup | Xi(u 2p>ds

O<u<s
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Taking supremum over {1,..., N}, we obtain

sup E sup |[XL(H)|* <2 sup E|X§(0)]%
i=1,.,N 0<t<T i={1,...,N}

yeeny

T

+C 1—1-/ sup E sup |X4(u)*ds |,
0 =1,...N 0<u<s

which gives the required result for positive integers p by applying Gronwall’s lemma

(note that we can apply Gronwall’s lemma due to (34])). We can extend the result

to non-integer values of p > 1 using Holder’s inequality. O

3.2. Well-posedness of the mean-field jump-diffusion SDFEs

In this section, we first introduce Wasserstein metric and state Lemma which
is crucial for establishing well-posedness of the mean-field limit. Then, we prove
existence and uniqueness of the McKean—Vlasov jump-diffusion SDEs (Z12) in
Theorem 3.2

Let D([0, T]; R?) be the space of R? valued cadldg functions and P,(R%), p > 1,
be the space of probability measures on the measurable space (R?, B(R?)) such
that for any p € Pp(R?), [pu|z|Pu(dz) < oo, and which is equipped with the
p-Wasserstein metric

Wy(u,9) :=  inf — ylPr(de, dy) |
2 (10,0) ﬂeh%,m< L o=t y>>

where [[(u, 9) is the set of couplings of 1,9 € P,(R%)52
Let 1 € P2(RY) with [,, |z[*u(de) < K. Then, using Jensen’s inequality, we
have
o0 fra F(@)n(dz) s/ =) ()
Rd
and the simple rearrangement together with Assumption B.4] gives

e~ fm
fRd e*af(m),u,(dx)

where C'x > 0 is a constant. We will also need the following notation:

h _ Jrawe” TP p(da)
Jra e @ p(d) ’

< Ut F@D)F) < oK fra (U l2ulds) < o (3.13)

(3.14)

where p € Py(R9).
The next lemma is required for proving well-posedness of the McKean—Vlasov
SDEs (Z14)). Its proof is available in Ref. [11] (see its Lemma 3.2).

Lemma 3.3. Let Assumptions Bl and B3H3A hold and there exists a constant
K >0 such that [|z|*u(dz) < K and [ |y[*9(dy) < K for all p,9 € Ps(R?), then
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the following inequality is satisfied:
X4~ X7 < CWa(p9),
where C' > 0 is independent of p and 9.
Theorem 3.2. Let Assumptions Bl and hold, and let E|X(0)[* < oo
and [o.|z|*p-(2)dz < oo. Then, there exists a unique non-linear process X €

D([0, T);RY), T > 0, which satisfies the McKean—Viasov SDEs (Z14)) in the strong
sense.

Proof. Let v € C([0, T]; R?%). Consider the following SDEs:
0X, (t) = —B(E) (X, () — o(t))dt + o (2) Diag(X,.(t) — v(£))dW (¢)

() /R Diag(X, (t7) — o(6) 2N (dh, dz) (3.15)

for any t € [0, T.

Note that v(t) is a deterministic function of ¢, therefore the coefficients of SDEs
(BI3) only depend on x and t. The coefficients are globally Lipschitz continuous
and have linear growth in x. The existence and uniqueness of a process X, €
D([0, T); RY) satisfying SDEs with Lévy noise ([3.15) follows from pp. 311-312 in
Ref. Bl We also have [y, [2[*Lx, ) (dz) = E|X,(1)[* < sup,eom EIX, ()" < K,
where K is a positive constant depending on v and 7" and Lx, (;) represents the law
of X,(t).

We define a mapping

T : C([0,T);RY) — C([0,T;RY), T(v) = X,, (3.16)
such that
To(t) = X, (t) = E(Xv(t)efaf(Xu(t)))/E(efocf(Xu(t)))

— / l'e_af(x)["’xv (t) (dl‘)/ / e_af(ﬁ)‘CX’u ) (dw) — X»eru(t) (t)7
R4 R4

where the last equality is due to (B.14).
Let 0 € (0,1). For all t,¢t + 6 € (0,7T), Ito’s isometry provides

t+48
E|X,(t+6) — X, (t)]* < C’/t E| X, (s) — v(s)|*ds

t46
+C/ / E| X, (s) — v(s)]?|2|*p(2)dzds < O,
t Rd
(3.17)
where C' is a positive constant independent of §. Using Lemma and (BI7), we

obtain
[ Xo(t 4 6) — Xy (1) = [ XX (4 6) — X500 (8)] < CWa(Lx, (148), Lx, (1)

1/2

< C(E|X,(t+0) — Xu(0)?) "/ < Clo]' 2,
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where C' is a positive constant independent ¢. This implies the Holder continuity
of the map t — X, (t). Therefore, the compactness of T follows from the compact
embedding C%2 ([0, T]; R?) — C([0, T]; RY).

Using Ito’s isometry, we have

2

Emum2<4ﬁxumﬁ+ﬂézmmxx@—MQMs

2

+@/ ) Diag(X,(s) — v(s))dW (s)

)

—I—E’ / 5) Diag(Xo(s) — o(s))2N (ds, d=)

<ca + [ B - (o) s

<CQ+Kmme+v@W@) (3.18)

where C' is a positive constant independent of v. Moreover, we have the following
result under Assumptions [B.I] and B3H30 (see Lemma 3.3 in Ref. [IT)):

| X (8)]> < Li + LoE| X, (1), (3.19)

where L; and Ly are from (B.3). Consider a set S = {v € C([0,T|;R?) : v =
€Tv, 0 < e < 1}. The set S is non-empty due to the fact that T is compact (see
the remark after Theorem 10.3 in Ref. 27)). Therefore, for any v € S, we have the
corresponding unique process X, (t) € D([0,T]; R?) satistying ([(.15), and Lx, @)
represents the law of X, (t), such that the following holds due to (BI9):

[v(s)[> = €|Tu(s)> = €[ X, () < (L1 + LE|X, (s)[) (3.20)

for all s € [0,T]. Substituting (20) in BI])), we get

E|X,(1)]* < C<1 + /Ot]E|XU(s)2ds>,

which on applying Gronwall’s lemma gives
EIX. (1) < C, (3.21)

where C'is independent of v. Due to (320) and (B21]), we can claim the boundedness
of the set S. Therefore, from the Leray-Schauder theorem (see Theorem 10.3 in
Ref. 27)) there exists a fixed point of the mapping T. This proves existence of the
solution of (ZI4).

Let v; and vy be two fixed points of the mapping T and let us denote
the corresponding solutions of BIH) as X,, and X,,. Using Ito’s isometry, we
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can get
t
E‘Xm (t) - Xu, (t)‘z < E[X,, (0) - Xu, (0)|2 + C/ <E|Xv1 (3) - Xu, (5)|2
0

+ [v1(s) — v2(s)?)ds. (3.22)
Note that S is a bounded set and by definition v; and vy belong to S. Then, we
can apply Lemma 3.3 to ascertain
[01(5) = va(s)* = | X, (5) = Koo (5)1* < OWa(Lx,, () L0y (5))
< CE|X,, (s) — Xu, (s)]*.

Using the above estimate, Gronwall’s lemma and the fact X, (0) = X,,(0) in (3:22)),
we get uniqueness of the solution of ([Z14). O

The strong existence and uniqueness of the mean-field SDEs (2.I4]) also implies
existence of the solution of the Fokker—Planck equation in weak sense (cf. Theo-
rem 3.1 in Ref. [I1)). This implication follows from application of Ito’s formula as
discussed below.

Let ¢ € CZ(R?). Applying Ito’s formula to ¢(X (¢)), where X (¢) is from ZI4),

we have

p(X (1) = ¢(X(0)) —/0 B(s)(Ve(X(s)) - (X(s) — X(s)))ds

—I—/OtUQ(s) .

J

5 02

d
(X(5) = X(5))] 5 0(X(5))ds

1

+/0 /Rd(‘P(X(S_) +7(s) Diag(X (s7) — X(s7))2)
— (X (s7)))N(ds, dz),

which on taking expectation and writing in the differential form becomes the
Fokker—Planck equation in weak sense:

DE(p(X(1) = ~BOE(VA(X (1) - (X(1) ~ X(1)

220 B (X(0) - XOF 5ael(X(1)
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This equation can be also written in the following compact form. For nota-
tional convenience, let p; = Lx), where X(t) is from (ZI4)). Define ,um as
Jga o(z)p" (dz) = Jga ¢(z+7(t) Diag(z — X#*)2) e (dx) for all ¢ € CZ(R?), where
X4t is from ([3I4). Then we can say, based on ([3.23), that u; € Py(R?) satisfies the
Fokker—Planck equation associated with ([2I4) in the weak sense for all ¢ € [0, 7]
(see e.g. Ref. [I):

a,ut zd:

A = o) (3.24)

2

;)
— (XH);)% ) + B(t ija— — (XH0);)pe)

One can notice that (324]) is a degenerate non-linear partial integral differential
equation.

Theorem 3.3. Let Assumptions Bl and B3HZD are satisfied. Let p > 1,
E|X(0)]?P < 0o and E|Z|?P < oo, then

E sup [X(1)* < K,
0<t<T

where X (t) satisfies (Z14)) and K, is a positive constant.

Proof. Recall that under the assumptions of this theorem, Theorem 3.2l guarantees
existence of a strong solution X (¢) of (Z14]).

Let p be a positive integer. Let us denote 0 = inf{s > 0;|X(s)| > R}. Using
Ito’s formula and then taking suprema over 0 < t < T A i and expectations, we
obtain

TNOR
E sup |X(t)\2p < E\X(O)|2p + C’E/ |X(s)|2”*2|X(s) (X (s) — X(s))’ds
0<t<TAOR 0

+2V2pE  sup
0<t<TAOp

/0 o) X ()72 (X (s)

(Diag(X(s) ~ X)W (5)|
TNOR B

+C’E/O | X (5)|?P~*|Diag(X (s) — X (s)) X (s)|?ds
TNOR

+0E/ X(5)7* Ding(X(s) - X(s)ds

sup // (1X(57) + () Diag(X (s”)

U<t<T/\OR

= X(s7))2* — [X (sT) )N (ds, dz). (3.25)
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To deal with the second term in (23], we use Young’s inequality and ascertain
X (s)[P72| X (5) - (X(s) = X(5))] < C(X ()] + [ X (s)[*F). (3.26)

Using the Burkholder-Davis—Gundy inequality, we have

E  sup /OU(S)IX(S)Iz”Q(X(S)~(Diag(X(S)—X(S))dW(S)))’

0<t<TAOR

TAOR B /2
< E( / o2(5)|X ()| 2|X (5) — X<s>2ds>

TNOR 1/2
gcxa( sup X(t)|2”1</ X(s)—X(s)2d5> ) (3.27)
0<t<TNOR 0

We apply generalized Young’s inequality (ab < (ea®)/q: +092 /(e92/ 01 q5), €, q1, qo >
0,1/q1 + 1/q2 = 1) and Holder’s inequality on the right-hand side of ([B27])
to get

2\/§p]E sup
0<t<TAOg

/0 a(s)|X (5)]*"72 (X (s) - Diag(X (s) — X (s))dW (s)) ‘

1 TNOR _ p
<3E suwp X ()% + CE(/ X (s) — X(s)2d8>
0

0<t<TAOR

IA

TNOR
B sup X<t>|2P+CE</O (|X<s>|2p+|f<<s>2p>ds>'

2 0<i<TAOR
(3.28)
We have the following estimate to use for the fourth term in (3:20)):
| X (5)]*P~*Diag(X (s) — X (5)) X (s)] < C(IX(s)]* + |X(5)]*7).  (3.29)
We make use of Minkowski’s and Young’s inequalities to get
| X (5)[P7?|Diag(X (s) — X (s))* < 21X (s)*" + 2|X ()| X (s) ],
< CIX )P + X (s))F). (3.30)

Now, we find an estimate for the last term in (325). Using the Cauchy—
Bunyakovsky—Schwartz inequality, we obtain

v [ [ X067+ Ding(X(s7) ~ K574

O<t<TA9R

=X (sT)PP)N (ds, dz)
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27”1 2p ia, — X(s7))z|*
aw [ [ X ) Dias(X(57) - X(7)ef)

0<t<T/\9R

— X (s7)|*PN(ds, dz)
TNOR -
<CE [ [ (XG5 4 ) Ding(X(57) — X(s7)2 )N s, o).
0 Rd

Since [y Ja (X (s7)% + |7(s) Diag(X (s7) = X (s7))2|*)N (ds, dz) = A [§ Jgu X
(|X (s7)[?P+|v(s) Diag(X (s7)— X (s7))2|??)p.(2)dzds is a martingale, using Doob’s
optional stopping theorem (see e.g. Theorem 2.2.1 in Ref. [3)), we get

aw [ [ (X(7) +4(6) Diag(X(57) - Xl

U<t<T/\OR

X (s7) PPN (ds, d2)

TNOR

< CE / / X+ y(s) Ding(X(s) — X(s))2l)p (2)dzds
TNOR

< C’E/O (\X(s)\zp + \)_((s)|2p) (1 + /Rd zzppz(z)dz> ds

TNOR B
< CE/ (1X(3)]*P + | X (s)[*")ds. (3.31)
0
We have the following result under Assumptions B and B3H3H (see Lemma 3.3
in Ref. [T1):
|X (s)|? < Ly + LoE| X (s)]?, (3.32)

where Ly and Ly are from (B3]).
Substituting (20) and B2])-B32)) in (328) and using Holder’s inequality, we

arrive at the following bound:

TNOR _
E sup [X(H)* < 2E\X(0)|2p+CE/ (X (s)* + X (s)]P)ds
0<t<TNOR 0

TNOR
<C+CE/ (1+|X(s)|*" + E|X(s)|*")ds
<C+ C’/ sup | X (u)|*ds
U<u<s/\OR

and using Gronwall’s lemma, we obtain

E sup [X(1)*<C,
0<t<TAOR
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where C' > 0 is independent of R. Then, tending R — oo and applying Fatou’s
lemma give the desired result. O

4. Three Convergence Results

In Sec. ], we prove convergence of X (t), which is the mean-field limit of the
particle system (ZTIT]), towards the global minimizer of the considered optimization
problem. This convergence proof is based on the Laplace principle. In Sec. 2]
we prove convergence of the interacting particle system (ZII) to the mean-field
limit (ZI4) as N — oo. In Sec. B3] we prove uniform in N convergence of the Euler
scheme (ZI9) to (ZII)) as h — 0, where h is the discretization time step.

4.1. Conwvergence towards the global minimum

The aim of this section is to show that the non-linear process X (¢) driven by the
distribution dependent SDEs ([ZI2)) converges to a point z* which lies in a close
vicinity of the global minimum which we denote p,. To this end, we will first
prove that Var(t) := E|X (t) — E(X(t))|? satisfies a differential inequality which,
with particular choice of parameters, implies exponential decay of Var(t) as t — co.
We also obtain a differential inequality for M (t) := E(eo/ (X)),

The approach that we follow in this subsection is along the lines of Refs. [Tl
and I3l The main result (Theorem[LT]) of this subsection differs from Refs.ITland 13|
in two respects. First, in our model (2I1]), the parameters are time-dependent.
Second, we need to treat the jump part of ([2IT]).

Lemma 4.1. Under Assumptions Bl and B3HZEL the following inequality is sat-
isfied for Var(t) :

e—fm
%Var(t) < —(25(:5) — (20%(t) + M (DE|Z) (1 + ) >> Var(t). (4.1)

Proof. Using Ito’s formula, we have

| X (t) —EX(t)]> = |X(0) — EX(0)]* — 2/0 B(s)(X(s) —EX(s)) - (X(s) — X(s))ds
— t S) — S . S t0'2 S S) — X S 2 S
2/U(X() EX(s)) dEX(H-?/O (8)|X(s) — X(s)|°d
+2v3 /0 o(s)((X(s) — EX(s)) - Diag(X (s) — X (s))dW (s))

+/0 » {|X(s_) —EX(s7)+v(s)Diag(X(s™) — )_((s_))z|2

—|X(s7) — E(X(s_))|2}./\/(ds, dz).
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Taking expectation on both sides, we get

Var(t) = Var(0) — QE/O B(s)E((X(s) —EX(s))- (X(s) — X(s)))ds
+2/0 2 (5)E| X (s) — X (s)2ds
A [ [ 426) BIDiag(X (5) = X())2Pp.(2)) deds
0 R4

= Var(0)+/0 (—28(s) Var(s) + 20°(s)E|X (s) — X (s)|?

+ M2 ()E|Z)PE| X (s) — X (s)[?)ds, (4.2)
E((X(t) -EX(t)) - (EX(t) - X(t))) =0,
| X (t) — EX(t) 4+ Diag(X (t) — X (¢))z|?
= |X(t) —EX(t)[* + [Diag(X (t) — X (1))=[* + 2((X(t) — EX (1))
- Diag(X (t) — X(t))2),

/Rd ((X(t) —EX(t)) - Diag(X (t) — X (t))z)ps(z)dz = 0.

Moreover, [ou Y211 (X (1) = X(6)72Pps(2)dz = S (X (1) = X(0)F fpa 2 %
Hle p:(2i)dz = | X (t) — X (t)|*E|Z|?, since each component Z; of Z is distributed
as Z.
We also have
E|X(t) — X(t)]* = Var(t) + |[EX (t) — X (¢)|*. (4.3)
We estimate the term |E(X (¢)) — X (¢)|? using Jensen’s inequality as

EX(t)efoef(X(t))
T Ee—of(X(®)

2

EX(t) - X(1)2 = [EX (1)

2

el (X(1)
—|E <(]EX(t) - X(t))]Eie_af(X(t)J

2

— /Rd (EX(t) — )9 x ) (dx)

< [ [BX(0) - af*0x0 ()
R

e f(X(1)) e—ofm
—]E<|X(t)—E(X(t))Q]Ee_af(X(t))) < S Ve, (4

where Vx4 (dr) = e_af(")/E(e_af(x(t)))ﬁx(t) (dz) which implies [p. Vx )
(dz) = 1. Using {@3) and (@A) in [@2]) gives the targeted result. |
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To prove the main result of this subsection, we need an additional inequality,
which is obtained under the following assumption.

Assumption 4.1. f € C?(R?) and there exist three constants K, Ko, K3 > 0
such that the following inequalities are satisfied for sufficiently large «a:

(i) (Vf(x) =Vf(y)) - (z—y) > —Kilz —y]* for all z, y € R™.
(ii) a(g—:i)Q - % > —Ksforalli=1,...,dand z € R%
(iii) [Ef(x + Diag(x)2) — f(x)| < Ks|2]?E|Z]2,
where Z is a d-dimensional random vector and Z is a real-valued random
variable introduced in Sec.

We note that for f(x) = 1+ |z|?, z € R?, we have E|z + Diag(x)Z|? — |z|> =
E|Diag(z)Z|> = Zle E(x;Z;)%. However, each Z; is distributed as Z. Hence,
E|z + Diag(z)Z|* — |z|? = |z|*E|Z|?. The conditions (i) and (ii) are straightforward
to verify for 1 + |z|2. This implies the existence of a function satisfying the above
assumption. This ensures that the class of functions satisfying the above assump-
tion is not empty and is consistent with Assumptions B.I] and The most
important implication is that the above assumption allows f to have quadratic
growth at infinity which is important for several loss functions in machine learning
problems.

In Ref. [I1, the authors assumed f € C2?(R?), the norm of Hessian of f being
bounded by a constant, and the norm of gradient and Laplacian of f satisfying the
inequality, Af < co+c1|Vf|?, where ¢y and ¢; are positive constants. Therefore, in
Assumption [£1] we have imposed restrictions on f similar to Ref. [I1lin the essence
of regularity but adapted to our jump-diffusion case with component-wise Wiener
noise.

Lemma 4.2. The following inequality holds under Assumptions B
and ATt

%Mz(t) > —dae” I (B(t) Ky + 0% (t) Ko + M (t) K3E|Z|?) Var(t),  (4.5)

where the constants K1, Ko and K3 are from Assumption 1l

Proof. Using Ito’s formula, we get

e—af(X(t)):/O af(s)e X (VF(X () - (X(s) — X(s)))ds

# [ e Oy (6 - x(0);

Jj=1
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e <8f(X(8))>2 - oZIEO),,

Ox; @’
t
+// (e—af(X(s*)w(s)Diag(X(sw—X(s*))z)
0 R4

— e_af(X(‘()))/\f(ds7 dz).

Taking expectation on both sides and writing the equation in the differential form
yield

dEe” /X)) = af(O)E (eI XNV (X (1)) = V(X(1))) - (X(t) — X(1)))dt

S

d
+0?(HE e_af(X(t))Z<(X(t)— (t)?

2 (OF(X())\*  PF(X())
X (a ( oz, ) -« 8;5? ))) dt

T / ]E(e*af(X(tHv(t) Diag(X (t)—X (+))2) _ ewf(X(t))) p(2)dzdt,
Rd

where we have used the fact E[e */(XO)(V (X (t)) - (X(t) — X(1)))] = 0.
Note that [e=®/(#) — ¢=/W)| < qe=/m|f(z) — f(y)| which implies e~/(*) —
e~ W) > —qe=m|f(z) — f(y)|. Using Assumption Bl we get

dEe T (X1) > _qe=Im (B(t) K1 + 0 (t) Ko + M2 (t) K3E| Z[?)

x E|X (t) — X (t)|%dt.
From ([@3]) and [@4]), we have

E|X(t) — X ()2 < Var(t) + QMT

—afm e*afm
Var(t) S QW Var(t)
This implies

—afm

c ’ Var(t)dt,

M(t)

which is what we aimed to prove in this lemma. O

dM(t) > —2ae” I (B K1 + 0 (t) K2 + M2 () K3E|Z])

Our next objective is to show that E(X (t)) converges to z* as t — oo, where
x* is close to Tmin, i.e. the point at which f(z) attains its minimum value, f,.
Applying Laplace’s method (see e.g. Chap. 3 in Ref. and also Refs. [I1] and [46]),
we can obtain the following asymptotics: for any compactly supported probability
measure p € P(RY) with i, € supp(p), we have

aan;o (—é log (/]Rd e_af(’”)dp(x)) = fm > 0. (4.6)

*
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Based on the above asymptotics, we aim to prove that

1
o

fa) < fo+ T+ 0( 1),
where the function I'(or) — 0 as a — 0.
We introduce the following function:
2c 0l
M (0)
We choose a, 3(t), o(t), v(t), A, distribution of Z such that
(i) x(t) is a continuous function of time ¢,

X
(if) x(t) > 0 for all t > 0 and
(iii) x(¢) attains its minimum which we denote as Xmin.

X(t) = 28(t) — (20°() + XA (WEIZP) (1 +

We also introduce

K18+ K202(0) + K3)\2(0)E|Z|?
M? (O)Xmin

where 3 is introduced in Sec. and K, K5 and K3 are from Assumption A1l

The next theorem is the main result of this subsection. We will be assuming
that 7 < 3/4 which can always be achieved by choosing sufficiently small Var(0).

n = 4ae” ™ Var(0)

9

Theorem 4.1. Let AssumptionsB.1] and 1] hold. Let us also assume that
Lx o) is compactly supported and Twmin € supp(Lx(o)). If n < 3/4, then Var(t)
exponentially decays to zero as t — oo. Further, there exists an x* € R? such that
X(t) — z* a.s., E(X(t) = o*, X(t) = 2% as t — oo and the following inequality
holds:
3log?2

2a0

f(@®) < fan + () +
where function T'(a) = 0 as o — oo.

Proof. Let T* = sup{t : M(s) > @ for all s € [0,t]}. Observe that T* > 0 by
definition.
Let us assume that T < co. We can deduce that the following holds by definition

of T for all ¢ € [0, T*]:

efafm
25(0) - (22°() + 3? (OEI2P) (1+ )
2e~fm
> 28(t) — (20°(t) + M (OEIZ1?) (1+ W) = X(®),

where the left-hand side of the above inequality is from ([I]). Using Lemma [FT]
the fact that x(¢) is continuous and x(¢) > 0 for all ¢ > 0, we get for all ¢t € [0,T"]:

Var(t) < Var(O)e_X(t)t < Var(0)e Xmint,
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We have from Lemma 2] for all ¢ € (0,T*]:

M?(t) > M*(0) — 4ae=fm /Ot (K18(s) + K20°(s) + K3Ay*(s)E|Z|?) Var(s)ds

> M?(0) — dae™ I (K1 8+ K202(0) + K3Av*(0)E|Z|?) v;r@ (1= e xmint)
M2
> M(0) — e (1B + Kao(0) + Koy (08| 22) Y0 MO

where in the last step we have used the fact that n < 3/4. This shows M (t) >
M (0)/2 which implies M (t) — M (0)/2 > 0 on the set (0, 7*]. Also, note that M(t)
is continuous in ¢, therefore there exists an ¢ > 0 such that M (¢) > M(0)/2 for all
t € [T*, T* + ¢). This creates a contradiction which implies T* = co. Hence,

Var(t) < Var(0)e X»»* and M(t) > M(0)/2 for allt > 0. (4.7)

Therefore, Var(t) exponentially decays to zero as t — oco. From ([{@) and 7)), we
get

5 —or Var(t) o
_ 2 < afm < Xminl .
[EX(t) — X(t)|" <e o = Ce , >0, (4.8)

where C' is a positive constant independent of ¢.
Taking expectation on both sides of ([ZI4]) (recall that EZ = 0), applying
Holder’s inequality and using ([3) gives

‘%Ex(t)‘ < BEIX () - X(1)] < BEIX (1) - X))

< ﬁ(Var(t) + [EX(t) — X(t)|2)1/2

< CeXmmt/2 ¢ 50, (4.9)

where C' is a positive constant independent of .

It is clear from ([@3) that there exists an z* € R? such that E(X (t)) — 2* as
t — oo. Further, X(t) — o* as t — oo due to ([ES).

Let ¢ > 0. Using Chebyshev’s inequality, we have

Var (t)
o—20t

P(X(t) — EX()] = ) < < Qe Gomn201,

where C' > 0 is independent of ¢. If we choose ¢ < xmin/2, then we can say |X(t) —
EX(t)] — 0 as t — 0 a.s. due to the Borel-Cantelli lemma. This implies X (¢) —
x* a.s. Consequently, application of the bounded convergence theorem gives the
convergence result: Ee=f(X(®) 5 ¢=af(=") a5 ¢ — 00. Hence, using [#0), we obtain
for sufficiently large ¢

e 200 @) > M2 () — M2(0)/8 > M?(0)/8



Math. Models Methods Appl. Sci. 2023.33:289-339. Downloaded from www.worl dscientific.com
by 82.19.165.199 on 07/28/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Consensus-based optimization via jump-diffusion SDEs 319

and hence
F(a*) <~ log(M(0)) + 5 - log 2
") < ——log 5 108 2.
Then, using the asymptotics (0], we get
3
f(@*) < frm +T(a) + S log 2, (4.10)

where the function I'(a) — 0 as o — oo. O

As mentioned before, the approach that we have followed in this subsection is
analogous to the one of Refs. [I1] and I3l Alternatively, the improved approach of
Ref. 24! can be adopted instead.

4.2. Convergence to the mean-field SDFEs

In the previous subsection, we showed convergence of the non-linear process X (t)
from (2I4) towards the global minimizer. However, the CBO method is based on the
system (27)) of finite particles. This means there is a missing link in the theoretical
analysis which we fill in this subsection by showing convergence of the particle
system (7)) to the mean-field limit in the mean-square sense (ZI4)) as the number
of particles tends to infinity. The proof of this result has some ingredients inspired
from Ref. 2] (see also Ref. [43)), precisely where we partition the sample space
(cf. Theorem [L2)). Further, we need here the stronger moment bound results of
Lemmas and compared to Lemma 3.4 in Ref. [Tl

We first discuss some concepts necessary for later use in this subsection. We
introduce the following notation for the empirical measure of i.i.d. particles driven
by the McKean—Vlasov SDEs (2.14):

1 N

where d, is the Dirac measure at = € R?. We will also need the following notation:

 Jpeze ! @g(dr) SN Xi(t)em S X0

X (t) = =
(t) fRd e~ (@& (dx) Zf\il e—af(Xi(t)

(4.12)
Using discrete Jensen’s inequality, we have
1 & 1 &
—a— Xt < — —af(X?
em(aN;ﬂ MO‘NEEW(”(“W’

which, on rearrangement and multiplying both sides by e~ /= gives

efafm - WK (OéKu N Xz(t)2> (4 13)
A — <e""vexp E , .
LYV ol (X1(0) N &

where we have used Assumption 341
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Let R > 0 be a sufficiently large real number. Let us fix a t € [0, T]. We introduce
the stopping times

N
TlR—lnf{ NZ: 4>R}
N (4.14)
TQR—IHf{ NZ: |4>R}
TR = T1,R N\ T2,R
and the events
Q) ={mnr <t}U{mr <t} (4.15)
Qo (t) = A\ () = {m.r >t} N{m.r > t}. (4.16)

Lemma 4.3. Let Assumptions Bl and be satisfied. Then, the following
inequality holds for all t € [0,T]:

tATR B B
]E/ | Xn(s) — X5 (s)%ds
0

t1 N , ,
gCRe‘*aKvﬁ/ NZ]E|X}V(S/\TR)—XZ(SATR)FCZS, (4.17)
0 i

where T is from @EID), Xn(s) is from @I), X (s) is from @EID) and C > 0 is
a constant independent of N and R.

Proof. We have
| Xn(s) — X‘ss(s)|
N k3
1 , . e—af(Xk(s)
<52 (XN () = X)) T=x
N LN el (k)
LSV Xi(s) (e (X)) — emal (X' ()

L Z;,Vzl e—af(X%(s)

Lot
=3 AN e—af (X3 (s)) + ijl e—af(Xi(s))

N j=

Using the discrete Jensen inequality, we get
N

% % o SN i sy 1 i i
[Xn(s) = X%(s)| < c<eN BN 10X = 3 X () — X(s)

i=1

4R T SO Z X7 (s)||e @ Xir () _ gmaf (X' ()]
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N N
o j i 1 ) 1 j
+eN SR XL )+F(X(s)) L § | XZ(3)|N § ‘efaf(XN(S))

i=1 j=1
_ e—af(Xj(S))|>’

where C' is a positive constant independent of N. Applying Assumptions and
B4 the Cauchy-Bunyakovsky—Schwartz inequality and Young’s inequality, ab <
a?/2 +b?/2, a,b > 0, we obtain

(4.18)

X (s) — X5 (s)]

N

_ ) N
< C(;’m S X P L 31X (s) = Xi(s)| + e SN Tl XA (9
i=1

X ()(1+ [ XN ()] + X (5)) [ X (5) = X' (5)]

X
2l
M=

i=1

N

afu SN (X () 21X (s)]2) L ;
+e v =Xy N;\XZ(SN
1 Y ,
NZ (1+ X% ()] + | X7 (s )I)va(S)—XJ(SH)
Jj=1

N
=N T IXA P L S7 w6 - xi(s)] 4 o ENL (X @+ @))
N

i=1

<C

N

N
x5 2 (1 (XN ()P + X ()P [ XN () = X'(s)]

i=1

N N
aky j : Jren2y 1 . 1 ; E
e T RPN L 37 i) :|va<s>—XJ<s>>
=1 j:l

N

<c<6”5“ EIL XGPS X3 (5) — X(s)] + €S D0 @PHX )

- N
i=1

(3o o) (o whe - xor) ).

(4.19)
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On squaring both sides, we ascertain

X (s) = X (s)I?

ally 1
<C< e L XA ()P Z‘XN i(s)?

N
20Ky N s _]", 1 2
LeN" SN UXL () PHIX( ))<N§:1+XN ‘Z‘HXZ( )|)>

N
x (% X - Xi(s)|2)> . (4.20)

Using Holder’s inequality, we have

N N 1/2
Z (1 X% () + X7 (s) <Nz (Z (1 X% (s Xj(8)|4)> :

: ]:1
Therefore,
tATR B B
E/ X n(s) — X5 (s)2ds
0
t1 N
< C’Re‘mK“\/ﬁ/ — Z]E|X}V(s ATR) — X'(s A TR)|?ds,
0o N &=
where C' > 0 is independent of N and R. |

Lemma 4.4. Let Assumptions Bl and be satisfied. Then, the following
inequality holds for all t € [0,T]:

tATR 2a Ky,
]E/ X6 (5) —X(s)|2ds < LR (4.21)
0

where Tg is from @), X% (s) is from @A), X (s) is from ZIJ), and C > 0 is
independent of N and R.

Proof. We have
| X% (s) — X (s)]

1
T LY N el e | N

1
Z(Xz Yool (X () _ /dxe‘“f(’”)ﬁx(s>(d$)>‘
R

i=1

z|=

SV (eI 6D — [ em eI @ L) (da)
. / 2o L (da) T ( - ) ‘
R N

S e OO oy eme 0 L (d)
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Using Jensen’s inequality and squaring both sides, we get

X (s) = X ()

N 2

3 (Xi(s)e o XD _E(X (5)e oS (X))

i=1

1
N

Le 2aEf(X(S)) ]E|X

2|H

)

where C is a positive constant independent of N. Applying Assumption B4 we

N
Z( —af(X7(s)) _ ]E(e—af(X(S))))

w3 T S(X (),

ascertain

X (s) = X ()
2

( % ZN: ( Je—af (X)) _ ]E(X(S)efaf(X(s))D
. LS~ (e Carxomy|
4 20K uE|X (s ]E|X )2 sz::l ( (X (s —E(e Jx( )))) )

X 62(11{,(“ Zj'v=1 |X'7(5)\2.

Hence, using Theorem 3.3 we obtain

tATR B B
]E/ X (s) — X (s)[2ds
0

2

tATR N R
< Ce2oK YRR / =3 (Xs)e X B (X (s)em X)) | ds
0 i=1
soruvin [T L o FXI(s) _ x|
+ Qe K ]E/O NE::( E( )| ds
20K, VR ! 1 ad i
< Ce*hu /O]EN;UIZ(S/\TR) ds
vE ['al 1 o i
20K,V R
+ Ce%® /OJEN;UQZ(S/\TR) ds,

where Ui(s A 75) = Xi(s A Tr)e /(X (sA7r) _ E(X(s A Tg)e" o/ (X(sATr))),
Us(s A 7r) = e SX') — E(e=o/(X()) and C is independent of N and R.
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We have
1 ad % ’ 1 al 7 2
]EN;UI(S/\TR) :m;E\Ul(s/\TRN
R . ,
+ 52 > E(Ui(sA7r) Ul(s ATr)).
i,j=1,i#j

Note that E(Uj(s) - Uf(s)) =0 for i # j and s A 7 is a bounded stopping time
then E(U{(s ATR) - Ui(s A TR)) = 0 for 7 # j because of Doob’s optional stopping
theorem (see Theorem 2.2.1 in Ref. [3]). Using Theorem B3] we deduce

2

1L, c
E| < ; Ul(s ATr)| < (4.22)
where C'is independent of V. In the similar manner, we can obtain
N 2
1 i C
E| < > Us(snTr)| < e (4.23)

i=1
where C'is independent of N. Using [22]) and [@23]), we get the following estimate:

= 2a Ky VR

tINTR < -
]E/U | X% (s) =X (s)|?ds < C—F—,

where C' is independent of N and R. |

Theorem 4.2. Let AssumptionsBIl and B3HZH be satisfied. Let X, i=1,...,N,
solve @I0) and X', i = 1,...,N, represent independent processes each solv-
ing @I4). Assume that X% and X' are driven by the same Wiener processes and
compound Poisson processes. Also assume that X4 (0) = X*(0), a.s. i = 1,..., N,
EZ|' < C and sup;—y . yEIX'(0)|' = sup,_y . nE[XK(0)* < C. Then, Xj
converges to X* in the mean-square sense when N — oo, i.e. for all t € [0,T]:

lim sup E|XL(t) — X'(t)]> = 0. (4.24)

N—ooi=1,.. N

Proof. Let ¢t € (0,T]. We can write
ElXy(t) - X' = E(|X§ () - X' () Lo, ) +E(| XN () — X' (1) Loy )
=: E1(t) + Ex(t),
where Q4 (t) and Qo(t) are from [@IH) and [I6), respectively. Using the Cauchy—
Bunyakovsky—Schwartz inequality and Markov’s inequality, we obtain
Ei(t) == E(|XN(1) — X' (O)*Io, 1))

< (BIXL () - X (1)) (Blg, )"
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< C(EX?v(t)I“+]E|Xi(t)l4)1/2< ZE sup | Xy (s)|*

0<s<t

0<s<t

1/2
ZE sup |X'(s 4) .
=1

We get the following estimate for E(t) by applying Lemma B2l and Theorem
C
Ei(t) < —,
1( ) = \/E
where C' is a positive constant independent of N and R.
Now, we estimate Ey(t). We have E(| X} (¢) — X' (t)[* Lo, ) < E(| X4 (EATR) —
Xi(t ATgr)|?). Using Ito’s formula, we have

| X5 (tATR) — X't ATR)|?

(4.25)

— X3 () - Xy - 28 | " B() (X (s) — X (s))
0
(X (s) — Xv(s) — Xi(s) + X (s))ds

i 2/0 " 02 ()|Diag(Xi (5) — X (s) = X¥(s) + X (s)) s

*2\[/ " o(5)(Xi(s) — X(s)) - Ding(Xiy(s) — Xr(s)

X X+ [ [ (1) - X6
+7(s) Diag(Xjy(s7) — Xn(s7))z — 7(s) Diag(X'(s7) — X(s7))z[*
— X4 (s7) - Xi(s—)P)/w’(ds, dz). (4.26)

Taking expectations on both sides of ([@20), using the Cauchy-Bunyakovsky—
Schwartz inequality and Young’s inequality, and applying Doob’s optional stopping
theorem (see Theorem 2.2.1 in Ref. [3), we get

E| X%t ATR) — XUt ATR)|?
< BIXy(0) - X(O)F + CE [ T (1X(s) — X + | Zels) — X (5)2)ds
08 [ [ (1X0(6) = XOR +1Xn(0) — KR elp. ) dzds
< E[X§(0) — X(0)? +C]E/O - X4 (s) — X(s)%ds

tINTR tATR
—|—C]ET/ X n(s) _st(s)|2ds+CE/ X (s) — X(s)[2ds.  (4.27)
0 0
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Substituting [@IT) and @2T)) in (2T, we obtain
E(|Xk(tATR) — X' (tATR)[?)

, , t1 N ,
< EIXi(0) = XT(0)P + CRe‘mKuﬁ/ + S E(Xk (s A7r)
0 i=1

. eQaKu\/E
—XZ(S/\TR)F)dS—FCT,
where C' > 0 is independent of N and R. Taking supremum over ¢ = 1,..., N, we
get
sup ]E(|X}V(t ATR) — XUt A TR)|2)
=1,...,N

i=1,...,

t
< sup ]E|X}Q(O)—Xi(0)\2+CRe4QK“‘/E sup E(|Xy(sATR)

i=1,...,N 0 i=1,...N

2aK,VR

; e
—XZ(S/\TR)‘Z)dS“rCT

Using Gronwall’s inequality, we have

~sup E(|X}V(t/\7'R)—Xi(t/\TR)|2)

i=1,...,

C 4a Ky VR C Cu VR
< _eCRe eQaKuR < R

, (4.28)

where C' > 0 and C, > 0 are constants independent of N and R. In the above
calculations, we have used the facts that R < e2eKuvVR and 20K, VR < e2eKuvVR
for sufficiently large R.

We choose R = Cig(ln (In(N'/2)))2. Therefore,

sup  E(IX} (1) — X'(6)*Tazr))

i=1,..,
i i 2

which implies

Jim - sup E(IXR (1) = X(8)* Ty )

0 j=1,...,N
= lim sup E(|Xy(tATR)— X'(tATR)?) =0. (4.29)
N_>O°i:1,m,N

The term (20 and the choice of R provide the following estimate:
‘. Cc
VE " In(n(N72)’
where C' > 0 is independent of N and R. This yields

lim  sup E(|X&(t) — X'(6)* Lo, 1)) = 0. (4.30)

N—oo =1, N

E(| X (t) — X'(t))* 1, (1) <
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As a consequence of [29) and [@30), we get

lim sup E|X§(t) - X‘@#)>=0
NHOOi:l,...,N

for all t € [0, T7. |

Remark 4.1. It is not difficult to see from the above theorem that the empirical
measure of the particle system (2I1]) converges to the law of the mean-field SDEs
(ZI4) in 2-Wasserstein metric, i.e. for all ¢ € [0, T7:

lim Wi (&N, Lxw) =0, (4.31)
N— oo

N
where &Y = + 3.1, Sxi,(1)-

Remark 4.2. Theorem [ Zimplies weak convergence of the empirical measure, &
of interacting particle system towards £ x ;) which is the law of the mean-field limit

process X (t) (cf. Refs. 48 and [9).

4.3. Conwvergence of the numerical scheme

To implement the particle system (27), we have proposed to utilize the Euler
scheme introduced in Sec. The jump-diffusion SDEs (2.7)), governing interact-
ing particle system, have locally Lipschitz and linearly growing coefficients. Due to
non-global Lipschitzness of the coefficients, it is not straightforward to deduce con-
vergence of the Euler scheme to (27). In this subsection, we prove this convergence
result uniform in N.

Introduce the function kp,(t) 1= tg, tp <t < tgy1, where 0 =19 < -+ <t, =T
is a uniform partition of [0, T}, i.e. ty41 —t = h for all k =0,...,n — 1. We write
the continuous version of the numerical scheme (219 as follows:

Yy (t) = =B) (YR (kn(t) — Yo (kn(1))dt + V20 (t) Diag (Y (kn(1))

— Vv (sn (1)) AW (1) + /

» Diag(Yy (ki (1)) — Y (kn () 2N (dt, dz).

(4.32)

In this subsection, our aim is to show mean-square convergence of Y7 (t) to X4 (¢)
uniformly in .

Let Assumptions BIland B2l hold. Let E|Y}(0)]? < oo and E|Z|? < oo, then the
particle system ([32)) is well-posed (cf. Theorem B.1]). Moreover, if E[Y};(0)]?? < oo
and E|Z|?? < oo for some p > 1, then, due to Lemma B2} the following holds:

E sup |Y4(1)|* <K, (4.33)
0<t<T
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where we cannot say that K is independent of h. However, to prove the convergence
of numerical scheme, we need the uniform in A and N moment bound, which we
prove in the next lemma.

Lemma 4.5. Let Assumptions Bl and B3HZE hold. Let p > 1, E|Y(0)*P < oo
and E|Z|?P < co. Then

sup E sup |Yi(t)* < Kq, (4.34)
i=1,.,N 0<t<T

where Kg4 is a positive constant independent of h and N.

Proof. Let p be a positive integer. Using Ito’s formula, the Cauchy—Bunyakovsky—
Schwartz inequality and Young’s inequality, we have

YA < [YR(0)) + C/O (YA ()P + YR (5 (5)) P + [Yv (in (5))[ ) ds

t
+2\/§p/ ()Y (s)[*P~2(Yy (s) - Diag(Yy (kn(s))
0
t
V() (s) +C [ [ (V) + (Vi (o) P
+ [V (ki (s)7) (1 + \Z\Qp))Ni(ds,dZ)‘
First taking supremum over 0 < ¢ < T and then expectation, we obtain

E sup |Yy(t)[*
0<t<T

< E[Y}(0)*" + CE / (1Y ()2 + [V G ()27 + [V (sn(5)) 2 ) ds

+2V2pE sup

/ ()| YR (5)[*P2 (Y} (5) - Diag (Y (sn(s))
o<t<T | Jo

=Tl )| + 08 [ [ (Wa I+ (v ents)

[T (n(5))PP) (1 + [2[27) )\ (ds, d2),

where C' is independent of h and N. Using the Burkholder-Davis—Gundy inequality
(note that we can apply this inequality due to ([E33)) and the fact that E|Z]?P < oo,
we get

E sup |[Yx(t)[*”
0<t<T

. T . . —
<EPROF +CE [ (VP + [V () 7 + [V () ) s
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1/2

L CE sup me(t)Fp—l( / me(ms))—Ywh(s))ms)

0<t<T
Applying Young’s inequality and Holder’s inequality, we ascertain (note that this
is the same set of arguments used to obtain (328]))

t
E sup [V (1) SE\YK}(O)IQ’WC/ (YR ()7 + [Y& (5 (3)) [P
0<t<T 0

_ 1 )
+\YN(Kh(8))\2”)d8+5E sup Y (8
0<t<T

T
+CE / Vi (1 (s)) — v (s (5))[ 2P ds. (4.35)
0
Using Jensen’s inequality and ([B5), we have
I,
_ 5 ;
Vv (sn()* < Lo+ ; Y (ki (s) [ (4.36)

Therefore, substituting (£30) in [@35) yields

T
E sup [Vi(OF < 23O +C+ CE [ (V(s) + [V (an (5D
0<t<T 0

N
Z Yy (kn(s |2”)ds

0<u<s

T
ng\YJ@(O)Pp+C+C/ (E sup |Yi(u)|?
0

NZ]E sup |Yu( )|2”>ds,

0<u<s

where C' > 0 is independent of h and N. Taking supremum over ¢ = 1,..., N, we
get

sup E sup |Y]f,(t)|2”
i=1,..N 0<t<T

< 2E|YE%(0)*P + C + C’/ supNEOiug [V (u)|?Pds,

where C' > 0 is independent of h and N. Using Gronwall’s lemma, we have the
desired result. O

Lemma 4.6. Let Assumptions Bl and B3H3H hold. Let sup,_,
00, sup,_; v E[Y{(0)]* < oo, E[Z|* < co. Then

sup ]E|Y1i[(t) — ij,(mh(t))\z < Ch,
; N

NEIXHO)* <

.....
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where C' is a positive constant independent of N and h.

Proof. We have

YR (t) = Ya(rn (1))

- o(’ / i(t) (Y (ki (s)) — Vv (rn(s))ds

" ] [ ) Diag(Vi s 9)) ~ i (51 )
K (t)

2)
where C' is independent of h and N. Taking expectation and using Ito’s isometry
(note that we can apply Ito’s isometry due to Lemma [LT]), we get

+‘ /ﬁh(t) /Rd v(s) Diag(Ya: (kn(s)) — Y (kn(5))) 2N (ds, dz)

t

EIV (1) — Vi (s (®) < O+ EZ%( | EWk o) - YNwh(s))Fds)

n(t)
Therefore, use of [30) gives

__?upN]EIYJ@(t) = YN (sn(t)?

g0(1+]E|Z|2)< [ s B

h(t) i=1,...,N
1, N
FLi+ Y sup (B (s))ds ).
N S i=1,..N
Using Lemma [£5] we get

sup B[V (t) = Y (kn(t)[> < C(t — rn(t)) < Ch,
i=1,...,N

where C' is independent of N and h. |

Theorem 4.3. Let Assumptions Bl and hold. Assume that Y (0) =
X3(0), as.,i=1,...,N, sup;_,  nyE[XK(0)]* =sup,_;  yE[YZ(0)[* < o0 and
E|Z|* < co. Then

. . i v 2
lim lim i:Sl?F)’NE‘YN (t) = Xn ()]

= lim lim sup E|Vi(t) — Xy(t)]*=0 (4.37)
N

N—o0c0 h—0 i=1,...,

for all t €10,T).
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=)

i:: |4>R}

Proof. Introduce the stopping times

TlR—lnf{
TéLR—lnf{

T}}% =T1,R N\ T;R
and the events Q3(t) = {m.p < t} U{rlyr < t}, Qu(t) = N\(@) = {rr >

ty {7l g >t}
We have

EYy (1) — Xy = E(Ya(t) = Xx(0) Laye) + E(YA () — Xy () o, 0)

Let us first estimate the term FEj5(t). Using the Cauchy-Bunyakovsky—Schwartz
inequality, Markov’s inequality, Lemmas [3.2] and 5] we get

E(|Yx () = XN (6)* To, )

< (BIYA(t) = Xi(0)[")"* (EIg, )

2|H

2|H

1/2
1 1 Y e
4 i 4
SC(R—N;E Sll[g) 1Y (s)] —I—R—Ng]E s_u;i | X% (s)] ) < ﬁ,
4

where C' is independent of h, N and R.
Note that E(|Y3 (1) — X& (62 I, ) < E[YVE(EATE) — X (EATE)[?. Using Ito’s
formula, we obtain

YA (EATR) = Xy (t AR
= Y3 (0) = XK (0)[? —2/0 h Bs)(Ya(s) = Xi(s))

(YA (kn(s)) = Y (sn(s)) — Xy (s) + X (s)))ds

+2f/ Th )((Yii(s) — X5 (s)) - Diag(Ye (kn(s)) — Yo (kn(s))
~Xita) o+ Fn ()W ) 42 [ o) ()

0
= Tln(9) = Xio) + Kn(o)Pas+ [ [ () - Xl

+7(s) Diag(Yy (kn(s)) — Y (kn(s)))z — 7(s) Diag(X}y (s)
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= XN ()2 = [Ya(s™) = XN (7)) N (ds, dz).

Taking expectation on both sides, and using the Cauchy-Bunyakovsky—Schwartz
inequality, Young’s inequality, Ito’s isometry (note that we can apply Ito’s isometry
due to Lemma [IH)) and Doob’s optional stopping theorem, we get

E(|Vi (£ Ah) — Xig(t ATE)?)
<cu+mzPE [ (Witm(s) - X ()P
0

+IYn(s) = X ()] + [V (sn(s) = XN(S)\Z)dS

<CE [ (Wh(sn(s) — VP + V() ~ X (o)

+ P (kn(s) = Y ()2 + [T (s) = K (s) [ ) ds. (4.39)
Due to Lemma E.6] we have
sup  E|Yi (kn(s)) — Yi(s)|> < Ch, (4.40)
i=1,...,N

where C' is independent of h, N and R.

Now, we will estimate the term |Yy(s) — Y (kn(s))|. Recall that we used dis-
crete Jensen’s inequality, Assumptions and [3.4] and the Cauchy-Bunyakovsky—
Schwartz inequality to obtain ({20]). We apply the same set of arguments as before
to get

[V (s) = Yiv (sn(s))?

N
2a Ky J(g 1 i i
<C<e 2 S RO LS v (5) = Vi (a9
=1

4B TN (Y ()P HYR (kn ())

1 & , ,
< L+ VEEE + V)P

i=1

N
1 i i
< (3 L Iviee) - YN<m<s>>|2>>‘ (4.41)
i=1
In the similar manner, we can obtain the following bound:

X (s) = Yn(s)”

N
(o3 u '7‘ 1 ) ‘
- C(@% >V, lXN(S)lzN | X (s) = Yi(s)?
i1
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N
20Ky N i (s)]2 i (s)|2 1 ; i
12 DX PHYZOP) (N Z_l(l + Xk () + YN<s>|2>2>

1N .
X (ﬁ Z [ Xn(s) = YJ@(S)2>>,
. (4.42)

where C' > 0 is independent of h, N and R. We substitute [@40)-E42) in [@39)
to get

E(|YX(EATR) = XN(EATR)?)

tATh _ ‘
< C’E/ (IX&(s) = Yy(s)]*)ds + Ch
0

t/\‘r}}% 1

N
= ST (VA () = Vi (sn(9) ) ds
N
i=1

+ CRe*K.VR (E/
0

N

B[ 53 Xk —Yms)F)ds)

i=1

t
gc/ E(1X (s A Th) — Yi(s A7)?)ds + Ch
0
tq N
| ORI / = SE([YR(sATh) = i (kn(sATh)) ) ds
i=1

t1 X . ,
+ CRe‘mK“‘/E/O ~ D E(IXN (s ATR) = Yi(s A h)[*)ds,
i=1
where C' > 0 is independent of A, N and R. Taking supremum over i = 1,..., N
and using Lemma .G, we obtain
sup ]E(\Y](,(t ATRY — X (tA TE)‘Z)
i=1,...,N

i=1,.

t
< CRe*KuVRp 4 CReASVE [ qup E(|Yii (s ATh)

0 i=1,..,N
— X5 (s A Tg)|2)ds,
where C' is independent of A, N and R. Using Gronwall’s lemma, we get

sup E(|Y3(t ATR) — Xziv(t/\Tg)lz) < O Rk VR CReA Ky
N

i=1,...,

CuvR
< Ce® h,

where C' > 0 and ), > 0 are constants independent of h, N and R.



Math. Models Methods Appl. Sci. 2023.33:289-339. Downloaded from www.worl dscientific.com
by 82.19.165.199 on 07/28/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

334 D. Kalise, A. Sharma & M. V. Tretyakov

We choose R = gz (In (In (h=1/2)))2. Consequently, we have

sup E([Yx(t) — Xy Io,w) < ?UPNEGYK/@ ATR) = X (EATE)P)
1=1,...,

i=1,...,N
< On'’2,
where C' > 0 is independent of A and IN. This implies
lim lim supNE(\YN( ) — }Q(t)\QIQ4(t))

h—0 N—o00 ;—1

= lim lim sup E(\YN() XN Ia,w) = 0. (4.43)

N—0o h—0,;=1,.

The term (£38) and the choice of R provide the following estimate:

) ) C
E(|YE () — X&)% S ———1mn
ZinPN (‘ ~(t) ~ ()] Qs(t)) T (1n(h*1/2))’

where C' is independent of h and N. This gives
lim lim supNE(\YN( ) — }Q(t)\zfgs(t))

h—0 N—o00 ;—1

= lim lim sup E(\YN() Xy )P Ia,m) = 0. (4.44)

N—00 h—0 ;=1 .

As a consequence of [IA3) and [{@A4), we get

li li E YZ t _Xi t 2
h%Ngnooi:Slup (| () N (@) )

yeeey

= lim lim sup E<|YN() Xyn(®?) =0.

N—oco h—0 =1,

5. Numerical Examples

In this section, we conduct numerical experiments on the Rastrigin and Rosen-
brock functions by implementing the models (Z3]), 271), 2I7) and the model with
common noise introduced in Refs. and 34l We use the Euler scheme for imple-
mentation with A = 0.01. We run 100 simulations and quote the success rates. We
call a run of N particles a success if |Yn(T) — Zmin| < 0.25. Defining success rate
in this manner is consistent with earlier CBO papers.

Experiment 5.1. We perform the experiment with the CBO model @3],
JumpCBO model 27), JumpCBOwCPN model (jump-diffuison CBO model with
common Poisson noise from ([ZI7)), CBOwCWN model (CBO model with common
Wiener noise of Refs. [33 and [34)) for the Rastrigin function

d
z) =10+ Z ((z; — B)? — 10 cos(2n(z; — B)))/d, (5.1)

where we take the dimension d = 20 and B = 0. The minimum is located at
(0,...,0) € R?. In this experiment for the Rastrigin function, the initial search
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Table 1. Success rate for a = 20.

N CBO CBOwCWN  JumpCBO  JumpCBOwCPN

20 53 1 61 65
50 62 0 69 72
80 22 2 41 40
100 1 2 29 25

Table 2. Success rate for a = 30.

N CBO CBOwCWN  JumpCBO  JumpCBOwCPN

20 87 0 90 94

50 99 0 100 100
80 100 0 100 100
100 100 0 100 100

space is [—6,6]?° and final time, 7" = 100. We take 3 = 1, 0 = 5.1 for CBO,
CBOwCWN, JumpCBO and JumpCBOwCPN models. We take v(t) = 1 when
t <20 and y(t) = e*/20 when t > 20 for JumpCBO and JumpCBOwCPN models.
Also, Z is distributed as standard Gaussian random variable and we choose the
jump intensity, A, of the Poisson process equal to 20.

The results are presented in Tables[Mland 2l In the case of the Rastrigin function,
the performance of JumpCBO model [Z7)), JumpCBOwCPN model [ZI7) and
CBO model (Z3) is comparable. However, CBOwCWN of Refs. [33] and [34] does not
perform well. As the alpha is increased from 20 to 30, the success rates increase
to a very high level (except for CBOwWCWN). We have taken constant 8 and o,
and decaying ~y for the jump-diffusion CBO models. As one can see, the jump CBO
models perform better than the earlier CBO models when o = 20. Another fact
to be noticed is that performance of the jump-diffusion models with common or
independent Poisson processes is very similar. It is also clear from the experiment
that CBOwCWN model of Refs. [33] and [34] does not induce enough noise in the
dynamics of the particle system sufficient for effective space exploration.

Experiment 5.2. We perform the experiment with the CBO model (23),
JumpCBO model [27), CBOWCN model (CBO model with common noise of
Refs. 33 and [34)) for the Rosenbrock function

d—1

> [100(xi1 — 27)? + (2 — 1)]/d, (5.2)

i=1
where we take d = 5. The minimum is located at (1,...,1) € R>. In this experiment
for the Rosenbrock function, the initial search space is [—1, 3]® and final time T =
120. We take § =1, 0 = 5 for CBO as well as CBOwWCN models. We take 5(t) =
2 —e 100 () =447t/ and y(t) = 1 for t < 90 and y(t) = e~/ for ¢ > 90.
Note that 5(0) = 1 and ¢(0) = 5 which are the same as the parameters § and o
for the CBO and CBOwCN models. Also, Z is distributed as standard Gaussian
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Table 3. Success rate for a = 20.

N CBO CBOwCWN  JumpCBO  JumpCBOwCPN

20 2 1 35 37
50 3 1 75 76
80 3 0 96 89
100 4 4 85 94

Table 4. Success rate for a = 30.

N CBO CBOwCWN  JumpCBO  JumpCBOwCPN

20 6 2 20 25
50 3 0 49 45
80 5 2 69 64
100 4 1 74 70

random variable and we choose the jump intensity, A, of the Poisson process equal
to 90.

The results are presented in TablesBland @l In the case of the Rosenbrock func-
tion, there is a significant improvement in finding global minimum when using the
jump-diffusion models ([27) and (2I7) in comparison with (X)) and CBOwCWN
of Refs. [33] and [34. As is the case with the Rastrigin function, for the Rosenbrock
function, both jump-diffusion models have similar performance. We note that the
Rosenbrock function has quartic growth. We take time-dependent 3(t), o(t) and
~(t) for the jump diffusion models so that 5(¢) is increasing function, o(t) is a
decreasing function, and 7(t) is constant for some period of time and then starts
decreasing exponentially. This experiment illustrates a good balance of exploration
and ezploitation delivered by the proposed jump-diffusion models. The particles
explore the space until ¢ = 90 and after that particles start exploiting the searched
space.

6. Concluding Remarks

We have developed a new CBO algorithm based on jump-diffusion SDEs, for which
we have studied its well-posedness both at the particle level and its mean-field
approximation. In particular, we proved mean-square convergence of the interacting
particle system to the mean-field limit and of a discretized particle system to the
continuous-time dynamics. The key feature of the jump-diffusion CBO is a more
effective energy landscape exploration driven by the randomness introduced by
both Wiener and Poisson processes. In practice, this translates into better success
rates in finding the global minimizer and a more robust initialization, which can be
located far away from the global minimizer.

One of possible extensions of the proposed CBO model is to develop a particle
system driven by path-dependent jump-diffusion SDEs. This model will have a non-
Markovian structure which can potentially be utilized to force particles to search
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unexplored space. Another natural extension of the current work is a systematic
study of CBO with constraints in the search space as recently discussed in Refs. [5]
[T4] 23] and BTl This is particularly challenging because of the need to accurately
treat boundary conditions for the SDEs (see e.g. Ref. [43)). One more interesting
research direction is the exploration of jump-diffusion processes in the framework
of kinetic-type CBO models 8 Bl
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