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Abstract 

Filtering for signal and data is an important technology to reduce and/or remove noise 

signal for further extraction of desired information. However, it is well known that significant 

distortions may occur in the boundary areas of the filtered data because there is no sufficient data 

to be processed. This drawback largely affects the accuracy of topographic measurements and 

characterizations of precision freeform surfaces, such as freeform optics. To address this issue, a 

Gaussian process machine learning-based method is presented for extrapolation of the measured 

surface to an extended measurement area with high accuracy prior to filtering the surface. With 

the extrapolated data, the edge distortion can be effectively reduced. The effectiveness of this 

method was evaluated using both simulated and experimental data. Successful implementation of 

the proposed method not only addresses the issue in surface filtering but also provides a promising 

solution for numerous applications involving filtering processes.  

Keywords: freeform surface; surface filtering; edge distortion; extrapolation; precision 

metrology; machine learning; ultra-precision machining 
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1. Introduction 

Spatial filtering is a widely used technique in surface metrology to extract useful 

information from two-dimensional (2D) profile and three-dimensional (3D) areal topography 

measurement data, commonly achieved by separating components with different spatial 

frequencies (e.g. noise, roughness, waviness, form) [1] [2]. The low-pass filter is the most 

commonly used filter and is typically used to remove measurement noise and to smoothen surfaces 

[3]; a high-pass filter is more commonly used in image processing for edge detection [4]; narrow 

band-pass filtering can be implemented to extract signals with a specific wavelength [5]. Spatial 

filtering of surfaces was first implemented in hardware such as resistor-capacitor (RC) filter [6] 

and two-resistor-capacitor (2RC) filter [7] to remove measurement noise. Nowadays, filtering 

techniques are mostly implemented using software algorithms due to their flexibility and superior 

performance [7]. Many different means of filtering techniques have been developed such as 2RC 

filter [7], Gaussian filter [8], B-spline filter [9], morphological filter [10], wavelets filter [11] and 

Gaussian regression filter [12]. Many of these filtering techniques have been included in 

international standards such as ISO 25178 [13], ASME B46.1 [14] and ISO 16610 [15, 16].  

The ordinary Gaussian filter is the most commonly used filter due to its simplicity  [17]. 

However, the transmission characteristic of the ordinary Gaussian filter limits its performance in 

the presence of outliers [18]. Moreover, the filtering result can be significantly distorted near the 

boundary [19], which is known as the edge effect. Many advanced filtering techniques such as 

robust Gaussian filtering [16, 20], Gaussian regression filtering [12, 21] and the combined robust 

Gaussian regression filtering [22, 23] have been developed to address the edge effect. Most of 

these filtering techniques are implemented using convolution approaches with different filtering 

operators such as Gaussian and B-spline functions. As the convolution process requires data 
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outside the boundary, which has to be extrapolated, there is an inherent edge effect [24] due to 

extrapolation error. Solutions have been proposed to address this issue. Janecki [25] proposed a 

method of recursive Gaussian filters by selecting appropriate initial values for the filter difference 

equations. Moreover, Gaussian regression filter [21] and robust Gaussian filter [26] were 

developed using a modified spatially varying Gaussian weighting function, i.e. applying narrower 

weighting functions near the boundary.  

However, the modified Gaussian weighting function is computationally intensive and 

computational speed is very low. Researchers have since developed accelerated algorithms to 

improve the computational speed utilising Graphics Processing Units (GPU) [27, 28], however 

implementation of these algorithm requires knowledge in GPU-optimised programming and costly 

GPU. An alternative solution to manage the edge effect is to remove from the filtered surface area 

near the boundary known to be distorted. However, this method discards part of the data, the 

amount of which can be significant when the cut-off length (i.e. the window size of the convolution) 

is large. This can be undesirable when the entire measured surface is needed for evaluation, or 

when there is insufficient area left to be statistically meaningful. 

In order to avoid loss of measured data while managing the edge effect, researchers have 

attempted to extrapolate the surface so that the fast ordinary Gaussian filtering can be applied. For 

example, Dai and Yang [29] proposed a Fourier transform-based method for extrapolation of the 

fringe pattern for interferogram analysis. However, the method relied on a strong periodical pattern, 

which is available in fringe images but can hardly be applied in freeform surfaces. Lundström and 

Unsbo [30] proposed a B-spline-based method for unwrapping Hartmann-Shack images used in 

the measurement of wavefront aberrations. A B-spline function was fitted using a least-squares 

estimate and then the function was extrapolated to find expected spot patterns for unconnected 
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lenslets. Foracchia et al. [31] proposed a parametric model-based extrapolation method for the 

detection of optic discs in retinal images even when the target is outside of the images. These are 

essentially model-based methods which are well established where the images have a known 

mathematic model. Cigizoglu [32] proposed an artificial neural network (ANN)-based method to 

estimate, forecast and extrapolate river flows. Compared with conventional models, the method 

could provide a better fit to the data. However, the estimation error was still relatively large at 

20%. Janecki [33] proposed an extrapolation method to reduce the edge effect in the profile 

filtering. The original profile was extrapolated at both ends using appropriate polynomial functions. 

Most existing methods are focused on specific tasks and there is relatively little research for 

precision surface measurement, especially for freeform surface measurement with an unknown 

mathematic model. Moreover, the sub-micron level accuracy requirement for precision surfaces is 

difficult to achieve. Recently, Gaussian process has gained research interest [34, 35] for data 

modelling regarding the measurement of precision freeform surfaces with high accuracy. The 

measurement process contains measurement noise which is governed by Gaussian distribution and 

hence the measurement process is essentially a Gaussian process. With its powerful prediction 

function, the Gaussian process data modelling method can not only interpolate unsampled data 

within the measured area but can also extrapolate data outside the measured area with high 

accuracy. With accurate extrapolation, the enlarged surface can be filtered with the ordinary 

Gaussian filter, followed by removal of the extrapolated area from the filtered surface. As a result, 

the fast ordinary Gaussian filtering can be performed on the measured surface with minimal edge 

effect, and without discarding valuable measurement data.  

This paper proposes a Gaussian process machine learning-based surface extrapolation and 

filtering (GPEF) method to address the edge effect issue. The method is designed to accurately 
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extrapolate the measured surface topography outside its boundary using the Gaussian process 

machine learning method. The effectiveness of the proposed method is demonstrated by 

simulations using three different freeform surfaces and verified with measurement experiments. 

Results show the GPEF method is able to manage the edge effect better than zero-order Gaussian 

regression filtering and robust Gaussian filtering techniques included in international standards. 

Successful implementation of this method not only contributes to the measurement of precision 

surfaces, but also provides a new filtering approach in other research areas such as signal 

processing and image processing.  

2. Problem statement - edge effect in Gaussian filtering of a 2D profile and a 3D surface 

Filtering of a profile or a surface can be determined as a convolution operation of the profile 

or surface with a specific shape of the convolution window [19]. For a Gaussian type filter, the 

window shape is a Gaussian function. Gaussian filtering for a 2D profile is the convolution 

calculation of the profile using a 1D Gaussian function: 

  
2

1
( ) exp ,

c c

x
S x 

 

  
    
   

    (1) 

where 
ln 2


 , x is the location of the centre of the weighting function and λc is the cut-off 

length.   

Gaussian filtering for a 3D surface is the convolution of the surface using a weighting of a 

2D Gaussian function which is the product of two 1D Gaussian functions: 
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  (2) 

where 
ln 2


 , and x and y are the location coordinates of the centre of the weighting function, 

respectively. λxc and λyc are the cut-off length in x and y directions, respectively.  

The Gaussian filter for a 2D profile and for a 3D surface as a convolution process is 

illustrated as shown in Figure 1 and Figure 2, respectively. In the case of a 2D profile, the edge 

effect is caused by a lack of data at the beginning and end of the convolution process. In the case 

of a 3D surface, the edge effect occurs along the boundary area. For example, the design of the 2D 

profile as shown in Figure 1 is determined by cos( ), [ , ]z x x     , to which a zero-mean 

Gaussian noise signal with a variance of 0.1 mm has been added. The cut-off length of the low-

pass Gaussian filter is 0.8 mm, so the window size of the weighting function is 0.8×2 = 1.6 mm, 

as shown in Figure 1(b). Figure 1(b) shows that the filtered profile is distorted within the 0.8 mm 

band around the boundary. The deviation in the filtered profile from the design profile is shown in 

Figure 1(c), where the largest distortion in the boundary is approximately 0.5 mm, which is 

significant compared to the profile height (2 mm).  

  

Figure 1 Convolution for a 2D profile, (a) design cosine profile with added noise, (b) filtered 

profile and (c) deviation in the filtered profile  
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Another example with the design of a 3D surface as shown in Figure 2 is determined by 

cos( ) cos( )z x y  , where , [ , ]x y    . The cut-off length of the Gaussian function in the x and 

y directions are both 0.8 mm, which means the window size is (1.6×1.6) mm. The filtered surface 

is shown in Figure 2(b), indicating distortion in the 0.8 mm-wide band around the edges of the 

surface. The deviation in the filtered surface from the design surface is shown in Figure 2(c) where 

the largest distortion in the boundary is approximately 1.5 mm. It is large compared to the surface 

height, i.e. 1.5 mm to 3 mm.  

 

Figure 2 Convolution for a 3D surface, (a) convolution with a Gaussian weighting function over 

the surface, (b) filtered surface, and (c) deviation in the filtered surface  

The Gaussian regression filter, which is designed to improve the edge effect is discussed 

in this paper and it is determined by minimizing the objective function [12]: 

 2

1

( ) ( ( ) ( )) ( , )
n

p

E k z p w k S k p x


       (3) 

where z is the profile data, w is the mean line data, n is the number of points, k is the index for the 

location of the centre of the weighting function, p is the index of points, Δx is the spacing, and S 

is determined by: 

 22

2
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ln 2ln 2 cc
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

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  

 
 

    (4) 

where λc is the cut-off length.  
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 The zero-order Gaussian regression filter for a 2D profile has the following weighting 

function: 

 

1

( , )
( , ) ,

( , )
MOD n

p

S k p
S k p

S k p





     (5) 

where ( , )S k p  is given by: 

2
1
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    
   

    (6) 

where 
ln 2


 . 

The zero-order Gaussian regression filter for a 3D surface has the following weighting 

function: 

1 1

( , , , )
( , , , ) ,

( , , , )
MOD ny nx

ly lx

S kx px ky py
S kx px ky py

S kx px ky py
 




   (7) 

where kx is the index for the location of the centre of the weighting function in the x direction, px 

is the index of points in the x direction, ky is the index for the location of the centre of the weighting 

function in the y direction, py is the index of points in the y direction, lx is the index of points in 

the x direction and ly is the index of points in the y direction, nx is the number of points in the x 

direction and ny is the number of points in the y direction, and ( , , , )S kx px ky py  is given by: 
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where 
ln 2


 ,  λxc and λyc are the cut-off lengths in the x and y directions, respectively. 
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It should be noted that the computational complexity of the zero-order Gaussian regression 

filter is much higher than that of the ordinary Gaussian filter, and the second-order Gaussian 

regression filter is even more complex [7]. The computational complexity is due to the weighting 

function for each point in the boundary area having different weighting values while for the inner 

data they are the same. Robust Gaussian filter included in ISO 16610 [16] also has the 

computational complexity problem. The proposed method aims to retain the fast computation 

speed of the ordinary Gaussian filter and eliminate the edge effect by enlarging the surface with 

accurately extrapolated data. 

3. Gaussian process machine learning-based extrapolation and filtering (GPEF) method 

The schematic of the proposed Gaussian-process machine learning-based extrapolation and 

filtering (GPEF) method is shown in Figure 3. The original surface is extrapolated using the 

Gaussian-process machine learning (GPML) method [36]. With the GPML method, a surface 

model is first trained using the original surface and then used to extrapolate outside the surface 

boundary. With the enlarged surface, the problem of having insufficient data in the boundary area 

is solved. Next, the enlarged surface is filtered with the fast ordinary Gaussian filtering algorithm.  

 

Figure 3 Schematic of the proposed GPEF method  

At this point, the filtered surface has the same size as the enlarged surface and the edge 

effect occurs only within the extrapolated area. In the last step, the filtered surface is trimmed to 

the same size as the original surface as the final result. With the edge area removed, the influence 

of the edge effect is eliminated.  
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Gaussian process machine learning-based surface extrapolation  

The measurement process contains noise governed by Gaussian distribution and the 

original measured surface can be determined by [35, 36],  

( ) ,z f x         (9) 

where z is the measurement result, ( )f x  is the true value, x is the measured location, and ɛ is the 

measurement noise, which can be determined by:  

 2~ (0, ),N        (10) 

where the noise is Gaussian distributed with zero mean and 2  variance. 

Since the true value of the surface ( )f x  is unknown and the Gaussian process machine 

learning method is used for modelling of the measurement data: 

( ) ~ ( ( ), ( , ')),f x GP m x k x x      (11) 

where ( )m x  and ( , ')k x x  are the mean function at location x, and covariance function at x and x', 

respectively, they can be determined by: 

( ) [ ( )],m x E f x       (12) 

( , ') [( ( ) ( ))( ( ') ( '))],k x x E f x m x f x m x       (13) 

Prediction of new data f  at new location X  can be determined by:  

  
2( , ) ( , )

~ 0, ,
f ( , ) ( , )

z K X X I K X X
N

K X X K X X

 

   

   
         

   (14) 

where I is the identity matrix, X is the matrix of the measured locations, X  is the matrix of the 

predictive locations and 2  is the noise variance. 

 The predictive equation for Gaussian process regression is:  
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f | , , ~ (f ,cov(f ))X z X N         (15) 

where  

2 -1f [f | , , ] ( , )[ ( , ) ]E X z X K X X K X X I z         (16) 

  2 1cov(f ) ( , ) ( , )[ ( , ) ] ( , )K X X K X X K X X I K X X 
         (17) 

 In this study, Gaussian process modelling was implemented by using the GPML toolbox 

[37]. It should be noted that the new location for prediction can be both inside or outside the area 

of the original dataset. When the new location is outside of the original surface, additional data are 

added to enlarge the surface. The optimal extrapolation size is critical and is determined by the 

cut-off length used in the Gaussian filter. Since the affected length of the distortion of the Gaussian 

filter implemented in the next step equals the length of the cut-off length, and that the extrapolated 

data will be trimmed after filtering, the enlarged size of the surface is a cut-off length outward 

from the edges.  

 After the original surface is enlarged using the GPML method, the enlarged surface is then 

filtered with the ordinary Gaussian filter. At this point, the edge effect is only observed in the 

enlarged area and the affected area is then trimmed and a final result with the same size as the 

original surface is obtained.  

4. Experimental verification and discussion 

To evaluate the effectiveness of the proposed GPEF method, a series of experiments using 

simulated and experimental data were conducted and the results and discussions are given in this 

section. In order to demonstrate the advantage of the proposed method, the results are also 

compared with those produced by a zero-order Gaussian regression filter and a robust Gaussian 

filter. All cut-off lengths used in the experiments were chosen according to the international 

standards of ISO 16610.   
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4.1. Simulation experiments 

1) Sinusoidal surface 

A sinusoidal surface was simulated as shown in Figure 4 and it is determined by:  

  
2 2

5 5
z 0.1 sin( ) cos( ) m

x y
N

  
  

      (18) 

where , [ 10,10]x y   mm, sampling space is 0.2 mm. Nm is the normally distributed measurement 

noise with zero mean and 0.1 mm standard deviation. Figure 4(a) shows the underlying surface 

and Figure 4(b) shows the surface with measurement noise. The period of the sinusoidal pattern is 

5 mm.   

 

Figure 4 Simulated sinusoidal surface, (a) design surface, and (b) design surface with noise  

The result of filtering with the zero-order Gaussian regression filter (ZOGF) with the cut-

off length of 0.8 mm is shown in Figure 5. The noisy surface is smoothed and the deviation from 

the underlying surface is shown in Figure 5(b), which exhibits an obvious edge effect: the deviation 

in the edge area is larger than the inner area. The root mean square (RMS) of the deviation for the 
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entire surface is 4.3 m. The RMS values of the deviations in the interior excluding the edge band 

and in the edge band are 4.1 m and 5.1 m, respectively.  

 

Figure 5 Result of ZOGF (a) filtered surface, and (b) deviation from the design surface  

The result of filtering with the robust Gaussian filter (RGF) with the same cut-off length 

of 0.8 mm, is shown in Figure 6. The RMS of the deviation for the entire surface is 6.9 m. The 

RMS values of the deviations in the interior excluding the edge band and in the edge band are 

5.6 m and 16.5 m, respectively. The result shows that the edge effect is still large.  

 

Figure 6 Result of RGF (a) filtered surface, and (b) deviation from the design surface  

 With the proposed GPEF method, the original surface is first extrapolated and the result is 

shown in Figure 7(a). The result shows that the pattern of the original surface is successfully 

learned and the extrapolated surface stitches to the original surface seamlessly. The extrapolated 
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surface is also compared with the underlying surface (extended definition of ,x y  in Eq. (18)) and 

the deviation is shown in Figure 7(b). The result shows that the deviation in the extrapolated area 

is relatively small compared to the amplitude of the design surface and therefore does not 

significantly influence the convolution result.  

  

Figure 7 Result of Gaussian process extrapolation (a) extrapolated surface, and (b) deviation 

from the reference surface  

The ordinary Gaussian filter was applied to the enlarged surface and the extrapolated area 

was subsequently removed, resulting in a filtered surface with the same size as the original surface, 

as shown in Figure 8(a). The deviation to the underlying surface is shown in Figure 8(b) and the 

pattern is evenly distributed with a small amplitude, which is significantly lower than those 

produced by ZOGF and RGF. The RMS of the deviation in the entire surface is 4.2 m. The RMS 

values of the deviations in the interior excluding the edge band and in the edge band are 4.1 m 

and 4.5 m, respectively. The results are summarised in Table 1. The improvement in terms of 
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RMS of deviation on the whole surface of the proposed GPEF method compared to the ZOGF and 

RGF methods are 3.13% and 39.82%, respectively.  

 

Figure 8 Result of GPEF method (a) final result, and (b) deviation from the reference surface  

Table 1 Comparison of deviations in the filtered surfaces using different methods 

 ZOGF RGF GPEF 

RMS in the interior 4.1 5.6 4.1 

RMS in the edge band 5.1 16.5 4.5 

RMS on the whole 4.3 6.9 4.2 

 (unit: m)  

2) F-theta lens surface 

To demonstrate the effectiveness of the proposed method with freeform surface without 

periodic patterns, an f-theta lens surface was simulated for the experiment as shown in Figure 9. 

Figure 9(a) shows the design surface and Figure 9(b) shows the target surface with added noise 

and it is determined by: 
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2 4 2z max bx cy N        (19) 

where [ 40, 40]x   mm, [ 15,15]y   mm, 1 / 250a   , 1/ 92000b   and 1/ 25c   . The 

sampling space is 0.2 mm. Nm is the measurement noise with zero mean and 0.1 mm standard 

deviation.  

 

Figure 9 Simulation with f-theta surface (a) design surface, and (b) design surface with noise  

 The surface was filtered with the ZOGF with cut-off length of 0.8 mm and the result is 

shown in Figure 10(a). The result was compared to the design surface and the deviation is shown 

in Figure 10(b). The deviation is significantly large near the edges. The RMS of the deviation for 

the entire surface is 20.4 m. The RMS values of the deviations in the interior excluding the edge 

band and in the edge band are 18.8 m and 26.7 m, respectively. 

 

Figure 10 Result of ZOGF (a) filtered surface, and (b) deviation from the design surface  
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The surface was also filtered with the RGF and the result is shown in Figure 11(a). The 

RMS of the deviation for the entire surface is 40.6 m. The RMS values of the deviations in the 

interior excluding the edge band and in the edge band are 40.1 m and 41.2 m, respectively. The 

result shows that the edge effect is also obvious.  

 

Figure 11 Result of RGF (a) filtered surface, and (b) deviation from the design surface  

 With the proposed GPEF method, the surface was firstly extrapolated and the result is 

shown in Figure 12(a) while the deviation to the design surface (with extended definition of x, y 

in Eq. (19)) is shown in Figure 12(b). The result shows that although the edge area of the 

extrapolated surface has a relatively large deviation from the design surface, it is continuously 

extended from the original surface with micrometre accuracy.  

 

Figure 12 Result of Gaussian process extrapolation (a) extrapolated surface, and (b) deviation 

from the reference surface  
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After the surface was extrapolated, it was filtered with the ordinary Gaussian filter and the 

affected edge was removed and finally the result obtained is shown in Figure 13(a). The deviation 

of the result to the design surface is shown in Figure 13(b). The result shows that the deviation is 

smaller compared to both ZOGF and RGF. The RMS of the deviation of the entire surface is 18.9 

m. The RMS values of the deviations in the interior excluding the edge band and in the edge band 

are 18.7 m and 21.6 m, respectively. The results are also summarised in Table 2. The 

improvement in terms of RMS of deviation on the whole surface of the proposed GPEF method 

compared to the ZOGF and RGF methods are 8.02% and 53.84%, respectively. 

 

Figure 13 Result of GPEF method (a) filtered result, and (b) deviation from the reference surface  

Table 2 Comparison of deviations from filtered results to underlying surface for different 

methods 

 ZOGF RGF GPEF 

RMS in the interior 18.8 40.1 18.7 

RMS in the edge band 26.7 41.2 21.6 

RMS on the whole 20.4 40.6 18.9 

 (unit: m) 

4.2. Actual measurement experiment 
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The proposed method was applied to the experimental data to verify the effectiveness of 

the proposed GPEF method. A sinusoidal surface with only one cycle was used in this experiment 

and it can be determined by Eq. (20).  A workpiece was computer numerical control (CNC) milled 

and the workpiece was measured with a Werth VideoCheck UA multi-sensor coordinate-

measuring machine (CMM) using a touch trigger probe - Renishaw TP200; the probing error is 

±0.65 µm while the Maximum Permissible Measuring Error (MPE) of the CMM is 

(0.75 / 300)L  µm. The sampling space was 1 mm for the experiment.  

2 2

60 60
z sin( ) cos( )

x y        (20) 

where , [ 30,30]x y   mm. The design of the workpiece and the measurement process is shown in 

Figure 14.  

 

Figure 14 Actual measurement experiment, (a) design of the workpiece, and (b) measurement 

process  

In the actual measurement experiment, the reference surface was chosen to be the design 

surface, where , [ 30,30]x y   mm. In order to easily align the data to the design surface, the 
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processed area was chosen to be slightly smaller than the design surface, where  , [ 27, 27]x y   

mm, as shown in Figure 15. All the alignment results in this experiment were processed by using 

the Iterative Closest Point (ICP) algorithm [38].  

 

Figure 15 Data for the measurement (a) whole measurement data, and (b) trimmed data for 

processing  

 The filtered surface using ZOGF is shown in Figure 16(a) and the deviation from the design 

surface is shown in Figure 16(b). The cut-off length of the filter is 2.5 mm. The edge distortion is 

large as compared with the inner surface. The RMS of the deviation in the entire surface is 11.2 m. 

The RMS values of the deviations in the interior excluding the edge band and in the edge band are 

6.3 m and 29.1 m, respectively.  

 

Figure 16 Result of ZOGF (a) filtered surface, and (b) deviation from the design surface  
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The filtered surface using RGF is shown in Figure 17(a) and the deviation from the design 

surface is shown in Figure 17(b). The RMS of the deviation in the entire surface is 31.2 m. The 

RMS values of the deviations in the interior excluding the edge band and in the edge band are 

25.5 m and 36.8 m, respectively. The result shows that the edge effect is also obvious.   

 

Figure 17 Result of RGF (a) filtered surface, and (b) deviation from the design surface  

With the proposed GPEF method, the extrapolated surface is shown in Figure 18(a) and 

the deviation from the design surface is shown in Figure 18(b). The extrapolated surface is well 

connected with the original surface and it shows the effectiveness of the surface extrapolation 

method. The extrapolated surface was then filtered with the ordinary Gaussian filter and trimmed 

back to the original size, as shown in Figure 19(a). The result was compared with the design surface 

and the deviation is shown in Figure 19(b). The RMS of the deviation of the entire surface is 10.0 

m, which has improvement over ZOGF and RGF. The RMS values of the deviations in the 

interior excluding the edge band and in the edge band are 6.2 m and 25.3 m, respectively. 
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Figure 18 Result of Gaussian process extrapolation (a) extrapolated surface, and (b) deviation 

from the reference surface  

 

Figure 19 Result of GPEF (a) filtered result, and (b) deviation from the reference surface  

The performance of the proposed GPEF method is summarised in Table 3. The 

improvement in terms of RMS of deviation on the whole surface of the proposed GPEF method 

compared to the ZOGF and RGF methods are 10.92% and 68.07%, respectively. All the results 

show that the performance of the proposed GPEF underwent improvement compared to the two 

other methods. It is interesting to note that the performance of the filters regarding the edge effect 

differs for different surfaces and this is due to the fact that different surfaces have different 

deviations from the zero plane which influences the filtering result.  

Table 3 Comparison of deviations from filtered results to underlying surface for different 

methods  
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 ZOGF RGF GPEF 

RMS in the interior 6.3 25.5 6.2 

RMS in the edge band 29.1 36.8 25.3 

RMS on the whole 11.2 31.2 10.0 

 (unit: m) 

The surfaces used in the simulation experiments are sinusoidal surface and f-theta surface, 

where the sinusoidal surface has strong periodical pattern while the f-theta has not. The surface 

used in the measurement experiment is a sinusoidal surface with only one cycle, so it has not 

periodical pattern either. All these freeform surfaces are common in precision engineering. The 

Gaussian process machine learning method can successfully predict the surface data at unsampled 

locations with high accuracy. The accurately extrapolated data in the non-periodical surfaces 

demonstrated that GPML method can accurately predict the extra data outside the surface and is 

not limited to periodical surfaces. Hence, this approach is expected to be applicable to other types 

of surfaces with high confidence.   

4.3. Influence of the cut-off length  

The cut-off length is an important parameter of the filtering process to filter out unwanted 

signal and keep the desired wavelength of the signal. It is interesting to note that the cut-off length 

affects the area of edge distortion as well, with a large cut-off length, and the affected zone is large, 

and vice versa. The influence of cut-off length for different filtering techniques was studied, i.e. 

for ZOGF, RGF and the proposed GPEF method with cut-off lengths from 2.5 mm, 8.0 mm to 25 

mm (taken from international standard of ISO 16610), using the same experiment data in the actual 

measurement experiment. The results of RMS deviations of the entire surface are shown in Figure 

20. It can be seen that the GPEF method has the best performance since it has the optimal solution 
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to address the lack of data in the edge area. The larger the cut-off length, the greater advantage of 

GPEF is found.  

 

Figure 20 Influence of cut-off length of filters  

4.4. Discussions   

The proposed GPEF method demonstrates a significant improvement to the edge effect in 

surface filtering. In terms of RMS of deviation on the whole surface, the proposed GPEF method 

has improvement of approximately from 3-10% and 40-70% compared to the ZOGF and RGF 

methods, respectively, according to surfaces with different peak-to-valley values. The method 

utilizes the surface extrapolation method to assist the filtering process. The method can also be 

potentially applied in other research areas in precision engineering such as toolpath generation [39] 

for diamond-turned surface, where sometimes the design surface is not a round one and the 

diamond tool then needs to go outside the designed area and thus the data outside have to be 

calculated with an extrapolation method.  

Currently, the calculation of Gaussian process machine learning requires long computation 

time especially when the dataset is large. Although the data size in the present study was limited 

to several hundreds × several hundreds and there was no need for special handling to reduce the 

data size, it would be difficult to deal with an extremely large dataset such as those in the high 
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dynamic range measurements [35, 40]. One solution to this is to first down-sample the original 

dataset to a reasonable dimension and then conduct the Gaussian process calculation for surface 

extrapolation. After conducting the extrapolation process, interpolation for the dataset is 

implemented to obtain a resolution as high as the original data. This can save significant 

computational time and yet have only a small influence on the result since the influence of the 

slight difference of the extrapolated data is negligible. 

5. Conclusion 

This paper presented a novel Gaussian process machine learning-based extrapolation and 

filtering (GPEF) method which attempts to improve the edge effect during surface filtering. The 

novelty of the GPEF method lies in the accurate extrapolation of the original measured surface 

before ordinary Gaussian filtering is applied. As a result, edge distortion is significantly reduced 

while the entire measured surface area is retained. Simulation and actual measurement experiments 

involving three different freeform surfaces have shown that the edge effect was improved by 

approximately 3-10% and 40-70%, respectively, over the commonly used zero-order Gaussian 

regression filter and robust Gaussian filter. Successful implementation of this method not only 

helps to improve the accuracy of surface characterization, but also provides a new method for other 

research fields dealing with signal processing. The limitation of the proposed method is that down 

sampling may be required for large datasets (e.g. more than one million points) in order to reduce 

computation time.  
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