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. Introduction 

This paper introduces cloud services for brain simulation that are
ow being offered on the open brain research platform EBRAINS (eu-
opean brain research infrastructures; ebrains.eu), which makes scien-
ific data, tools, and results accessible to everyone within a protected
nvironment that promotes reproducible work. Scientific studies de-
end on increasingly complex workflows that are often difficult to repli-
ate and the produced findings are often not confirmed by additional
ata ( Aarts et al., 2015 ; Ioannidis, 2005 ). The data and the compu-
ational steps that produced the findings as well as the explicit work-
ow describing how to generate the results were identified as the mini-
al components for independent reproduction of computational results

 Stodden et al., 2016 ). EBRAINS addresses these challenges by offer-
ng modelling and simulation services for collaborative brain research,
atabases with annotated and curated data of many modalities, atlases
f human and rodent brains, image processing workflows, supercom-
uting resources, neuromorphic systems, and virtual robots. EBRAINS
as developed by the Human Brain Project, a research initiative funded
y the European Commission with the mission to decode the human
rain ( Amunts et al., 2019 , 2016 ). TVB cloud services ( Tables 1 , 2 ) were
eveloped by the Human Brain Project subproject "The Virtual Brain"
n collaboration with the two Human Brain Project partnering projects
VB-Cloud (virtualbraincloud-2020.eu) and TVB-CD (bit.ly/3ogLYtb).
o provide supercomputing resources, the Human Brain Project offers
s part of the Interactive Computing E-Infrastructure project access to
ompute and storage resources of the Fenix infrastructure (fenix-ri.eu),
 network of six European supercomputing centres. 

TVB cloud services are interlinked and make use of EBRAINS cloud
ervices ( Fig. 1 ), which we briefly introduce in the following before fo-
ussing on the TVB services. Please see Table 3 for a glossary of technical
erms and abbreviations. The ’Collaboratory’ (Supplementary Note: The
BRAINS Collaboratory) provides online workspaces, called ’collabs’,
here research teams can exchange data and work together on docu-
ents, secured with access control to restrict usage to authorized users.

Lab’ provides JupyterLab instances for developing applications and run-
ing code in a protected environment that cannot be accessed by other
sers. Jupyter notebooks provide a programmatic interface to EBRAINS
ervices, allow to execute live code and to link processing steps with
isualized results and documentation. Data can be found and accessed
ia the ’KnowledgeGraph’, which provides a graphical user interface
GUI) and Application Programming Interface for searching, populat-
ng, and editing the data base. The KnowledgeGraph uses controlled
ocabularies and ontologies that are mapped with existing neuroimag-
ng and brain simulation ontologies to store data in a structured for-
at, which enables to search the EBRAINS platform for data sets and to

dentify related information (Supplementary Methods: Data integration
nd TVB-ready data). In addition, EBRAINS offers services for profes-
ional curation of data sets including minting of persistent identifiers
ike Digital Object Identifiers (DOI; doi.org), licensing, versioning, and
etting up of data sharing agreements. RESTful APIs are used for con-
ecting different cloud components, as well as for authentication, data
2 
 available as open-source services on the cloud research platform EBRAINS
r constructing, simulating and analysing brain network models including the
ce imaging (MRI) processing pipelines to extract structural and functional brain
f large-scale brain networks with small-scale spiking networks; automatic con-
quations into fast simulation code; simulation-ready brain models of patients
parameter optimization in epilepsy patient models; data and software for mouse
ducational material. TVB cloud services facilitate reproducible online collabo-
s, models, and software embedded in scalable and secure workflows, a precon-
t data sets, better generalizability, and clinical translation. 

ransfer and control of supercomputers. Atlases provide common spatial
eference spaces including a multilevel atlas of the human brain as well
s the Waxholm Space rat brain atlas ( Osen et al., 2019 ; Papp et al.,
014 ). The Multilevel Human Brain Atlas uses the Julich-Brain proba-
ilistic cytoarchitectonic maps ( Amunts et al., 2020 ) to link with tem-
late spaces such as BigBrain ( Amunts et al., 2013 ) at the micrometre
cale and MNI ( Das et al., 2016 ) at millimetre scale, and combines them
ith imaging-based maps of function ( Evans et al., 2012 ) and connec-

ivity ( Guevara et al., 2017 ). Linking a growing set of multimodal fea-
ures, the Human Brain Atlas captures brain organization in its different
acets. 

What are the benefits of a cloud-based research platform? One im-
ortant advantage are on-demand scalable computing resources. Neu-
oimaging and brain modelling workflows that are used to analyse large
ata sets (like the UK Biobank or the Human Connectome Project data
ets) require processing power and storage beyond what personal com-
uters can offer. On EBRAINS a network of powerful supercomputers
nables to scale computing resources to the needs of a project. Another
ey advantage of cloud-based research is the ability for interoperable
nd reusable sharing of data and software, which is an urgent need as
here is typically not one individual researcher doing all the work from
ata acquisition, analysis, hypotheses generation, model building, val-
dation, up to writing and publishing. Rather, it is getting increasingly
ommon that multiple teams, with team members being potentially scat-
ered all around the planet, work together in large projects that require
ngoing interaction and synchronization of data and code. Instead of fre-
uently transmitting data sets via the internet and maintaining intricate
oftware environments at multiple computing sites it is more efficient
nd practical to have a shared platform where teams can work together
n datasets and run software in a common computing space. Problemat-
cally, sharing of and collaborative work on personal data raises privacy
oncerns: highly personal and detailed health data like MRI can be mis-
sed for malicious intents and must therefore be thoroughly protected,
hich is reflected in legislation like the General Data Protection Regula-

ion (GDPR) of the European Union. With TVB on EBRAINS we created a
oftware environment that globally implements state-of-the-art security
echanisms like encryption, access control and sandboxing to protect
ersonal data, while at the same time workflows can be flexibly and
eproducibly modified using containerized applications. These globally
mplemented measures for data protection make it easier for individual
esearchers to protect confidential data and to comply with the law. An
dditional benefit of TVB on EBRAINS workflows is that mechanisms for
ata management, provenance tracking and reproducible research are
irectly embedded using DataLad ( Halchenko et al., 2021 ), which en-
bles explicit tracking of all inputs, codes and processing steps that pro-
uced a result in a manner similar to how GitHub (github.com) is used
or source code management. Having reproducibility already "built-in"
akes it not only easier for the scientist to understand and re-use their

wn complex workflows years later. More importantly, it makes it also
asier for everyone else to understand and use a complex workflow or
ust individual steps thereof. With simple commands a reviewer, a stu-
ent, or another researcher can start the entire process or just individual
teps and verify the consistency and correctness of the research, or use
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Table 1 

TVB cloud software, source codes and URLs leading to their main entry points. 

Service URLs 

The Virtual Brain Web-App 

Brain network simulation thevirtualbrain.apps.hbp.eu 
Collab 

wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain 
End-to-end use case 

wiki.ebrains.eu/bin/view/Collabs/user-story-tvb 
Source code 

github.com/the-virtual-brain/tvb-root 
Python library 

pypi.org/project/tvb-library 
Container image 

hub.docker.com/r/thevirtualbrain/tvb-run 
Demo brain network model data 

zenodo.org/record/4,263,723#.YYRPgL1Bzxg 
TVB Image Processing Pipeline Web-App 

Connectome analysis thevirtualbrain.apps.hbp.eu 
Collab 

wiki.ebrains.eu/bin/view/Collabs/tvb-pipeline 
Source code 

github.com/BrainModes/tvb-pipeline 
Container images 

hub.docker.com/r/thevirtualbrain/tvb_converter 
Multiscale Co-Simulation Web-App (TVB-Multiscale) 

Two toolboxes for concurrent simulation of large-scale and spiking networks tvb-nest.apps.hbp.eu 
Collab (TVB-Multiscale) 

wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain-multiscale 
Collab (Parallel CoSimulation) 

wiki.ebrains.eu/bin/view/Collabs/co-simulation-tvb-and-nest-high-computer 
Source code (TVB-Multiscale) 

github.com/the-virtual-brain/tvb-multiscale 
Source code (Parallel CoSimulation) 

github.com/multiscale-cosim/TVB-NEST 
Container image (TVB-Multiscale) 

hub.docker.com/r/thevirtualbrain/tvb-nest 
TVB-HPC Collab 

Automatic code generation wiki.ebrains.eu/bin/view/Collabs/rateml-tvb/ 
Source code 

github.com/the-virtual-brain/tvb-root 
Fast_TVB Collab 

Parallelized simulation (multithreading) wiki.ebrains.eu/bin/view/Collabs/fast-tvb 
Source code 

github.com/BrainModes/fast_tvb 
Container image 

hub.docker.com/r/thevirtualbrain/fast_tvb 
Bayesian Virtual Epileptic Patient Collab 

Epilepsy modelling wiki.ebrains.eu/bin/view/Collabs/bayesian-virtual-epileptic-patient 
Source code 

github.com/ins-amu/BVEP 
TVB Mouse Brains Collabs 

Mouse brain simulation wiki.ebrains.eu/bin/view/Collabs/tvb-mouse-brains 
wiki.ebrains.eu/bin/view/Collabs/mouse-stroke-brain-network-model/ 

TVB-ready dataset kg.ebrains.eu/search/instances/Dataset/a696ccc7-e742–4301–8b43-d6814f3e5a44 
SC, FC, and fMRI from tumour patients and controls 

openMINDS metadata for TVB-ready data Collab 

Metadata in JSON-LD format wiki.ebrains.eu/bin/view/Collabs/openminds-metadata-for-tvb-ready-data 
openMINDS schema 

github.com/HumanBrainProject/openMINDS 
TVB atlas adapter Collab 

Brain atlas wiki.ebrains.eu/bin/view/Collabs/sga3-d1–1-showcase-1 
Source code 

github.com/FZJ-INM1-BDA/siibra-python; github.com/FZJ-INM1-BDA/siibra-api 
Visualizer 

brainsimulation.org/atlasweb_multiscale 
INCF TVB training space training.incf.org/collection/virtual-brain-simulation-platform 

Education and training 

a  

k  
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nd adapt it for another problem, without necessarily needing domain
nowledge about the used software, which helps to make workflows and
esults more robust and easier to review and reproduce. 

In the following we guide readers through the main components of
VB on EBRAINS, highlighting their main features and the respective
dvantages of cloud-based operation. Subsequently, we demonstrate an
3 
nd-to-end use case example including the implemented mechanisms
or reproducibility and provenance tracking (please see additional use
ases in the Supplementary Material). We conclude the main part with a
escription of data protection mechanisms, the TVB on EBRAINS shared
esponsibility model, and a discussion. Technical details about the ser-
ices and their deployments can be found in the Methods section and
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Table 2 

Publications using software, workflows or data sets underlying different TVB cloud software. 

Cloud service Publications 

The Virtual Brain ( Ritter et al., 2013 ; Sanz-Leon et al., 2013 , 2015 ) 
TVB Image Processing Pipeline ( Proix et al., 2016 ; Schirner et al., 2015a ) 
Fast_TVB ( Costa-Klein et al., 2020 ; Schirner et al., 2018 ; Shen et al., 2019 ; Zimmermann et al., 2018 ) 
Bayesian Virtual Epileptic Patient ( Hashemi et al., 2020 ; Jirsa et al., 2017 ) 
TVB Mouse Brain ( Melozzi et al., 2019 , 2017 ) 
TVB ready datasets ( Aerts et al., 2020 , 2018 ) 
INCF TVB training space ( Matzke et al., 2015 ) 

Fig. 1. TVB on EBRAINS cloud services. Human brain network modelling and neuroimaging require personal data applicable to data protection regulation. Encryp- 
tion, sandboxing, and access control are used to protect personal data. EBRAINS provides core cloud services: the ’Multilevel Human Brain Atlas’ provides maps of 
structure, function, and connectivity in multiple reference spaces; ’Drive’ for storing and sharing files; ’Wiki’ and ’Office’ to create workspaces and documents for 
collaborative research; ’Lab’ for running live code in sandboxed JupyterLab instances; ’OpenShift’ for service and resource management; ’HPC’ are supercomputers 
for resource-intensive computations. All software components interact via RESTful APIs and use UNICORE for communication with supercomputers. Software com- 
ponents exist in the form of web GUIs, container images, Python notebooks, Python libraries and high-performance machine codes. Curated scientific results, input 
and output data can be loaded from and stored into the EBRAINS KnowledgeGraph using openMINDS-compliant metadata annotations to enable efficient and robust 
sharing and reproducible re-use. The connectors show interactions between different components (colours group connectors according to different forms of software 
implementation). 
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xhaustive online documentation ( Table 1 ). Supplementary material
rovides further information on the different components of TVB on
BRAINS. 

. Results 

.1. The Virtual Brain 

TVB (thevirtualbrain.org) is an open-source software for simulating
nd analysing brain network models, which describe the brain as a graph
hat is composed of nodes that represent brain areas and edges that rep-
esent physical connections between these areas (Supplementary Note:
rain simulation with TVB) ( Ritter et al., 2013 ; Sanz-Leon et al., 2013 ).
VB can be directly used on EBRAINS from a web GUI ( Table 1 ), without
he need to install further software or to have a specific operating sys-
em, computing environment or hardware. In addition, TVB can also be
sed as a Python library for programming in the EBRAINS Lab ( Fig. 1 ).
ia these interfaces users can upload brain network models, configure,
nd run simulations, as well as postprocess and export results. TVB us-
ge is introduced through Jupyter notebooks, explanatory videos, and
4 
echnical documentation ( Table 1 ). TVB’s main documentation is hosted
t docs.thevirtualbrain.org. 

Importantly, TVB interfaces with supercomputers to rapidly perform
imulations that require extensive processing time and storage space.
or example, parameter space explorations with hundreds of parame-
er sets can be simulated in parallel. The web GUI simplifies the pro-
ess of running high-performance simulations as no further knowledge
bout supercomputer usage is required: the entire process of sending
ncrypted data to a supercomputer, decrypting, sandboxed processing,
ncrypting of results and transmission to the web GUI is handled by the
oftware automatically without any intervention by the user. 

.2. TVB Image Processing Pipeline 

Brain network modelling requires a description of the anatomical
etwork that connects brain areas, called structural connectivity, which
an be estimated from diffusion-weighted MRI data using the TVB Image
rocessing Pipeline. The pipeline takes anatomical, functional and diffu-
ion MRI as input and provides as output structural connectivity, region-
verage functional MRI time series, functional connectivity, brain sur-
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Table 3 

Glossary of technical terms and abbreviations. 

Notation Description 

access control (computer security) selective restriction to consume, enter or use a resource 
annotation of data categorization and labelling of data 
authentication (computer security) verifying the identity of a computer system user 
authorisation (computer security) specifying access rights and privileges to resources; access control rules are used to decide whether access 

requests from (authenticated) users shall be granted or not 
API; application programming interface interface that connects computers or software 
BIDS Brain Imaging Data Structure; a standard for organizing neuroscience data 
brain network model system of coupled differential equations for simulating brain activity 
checksum a small block of data that contains information about the contents of another block of data for the 

purpose of detecting errors 
cloud computing on-demand availability of computing power and storage over the internet 
cloud service infrastructure, platforms, or software made available through the internet 
container image, containerization 
(software) 

(creating) executable packages of software that include all dependencies needed to run an application 
reliably in different computing environments 

controlled vocabulary carefully selected list of words and phrases for unambiguous tagging of units of information 
curation organization and integration of data collected from various sources 
data sharing agreement legal contracts that detail what data are being shared and the appropriate use for the data 
differential equation equation that relates functions and their derivatives (rate at which the value of a function changes with 

respect to a change of its argument) 
EBRAINS European Brain Research INfrastructureS 
encryption converting information into secret code that hides the information’s true meaning 
functional connectivity statistical relationships between brain signals represented as a network; often a matrix of pairwise 

correlation coefficients between region-average fMRI signals 
General Data Protection Regulation a regulation in European Union law on data protection and privacy with the aim to increase individual’s 

control and rights over their personal data 
GUI graphical user interface 
Jupyter notebooks open-source web application to create and share documents that contain live code, equations, 

visualizations and narrative text 
JupyterLab web-based interactive development environment for Jupyter notebooks 
key (computer security) a piece of information, which, when processed through a cryptographic algorithm, can encode or decode 

cryptographic data 
knowledge graph a data model and database for linking, integrating, and storing information in a graph structure 
licensing (software) providing a software product with a legal statement (license) that governs its use and redistribution 
metadata data that provides information (annotations) about other data 
metadata schema a definition how metadata is structured 
MRI magnetic resonance imaging 
neuromorphic systems electronic analogue circuits to mimic neuro-biological architectures 
ontology (information science) a way to organize data, information, knowledge by defining concepts, categories and their relationships 
openMINDS specifications for structuring metadata in neuroscience (github.com/HumanBrainProject/openMINDS) 
persistent identifiers a long-lasting reference to an (often digital) object (e.g., document, file, web page); one example are 

digital object identifiers (DOI, doi.org), which are widely used to identify publications and data sets 
public-key cryptography a system that uses a different key for decryption than for encryption; this has the advantage that the 

decryption key needs not to be communicated via insecure channels, while the key for encryption can be 
known by everyone ("public") without compromising safety 

RESTful API an architectural style for APIs where resources are provided in a textual representation that can be read 
and modified with a predefined set of operations 

sandbox (computer security) security mechanism for separating running programs in an effort to protect computing systems from 

failure or attacks, often used to run untrusted programs and code 
structural connectivity aggregated descriptions of the networks that couple neurons, neural populations and brain areas 
supercomputer a computer that is shared by many users and that provides a high level of performance regarding 

processor time, memory and storage space 
TVB The Virtual Brain, a software to simulate brain network models 
UNICORE interface for exchanging data and commands between different computers in a network (unicore.eu) 
versioning (software) assigning unique version names or unique version numbers to unique states of computer software 
version control tracking and managing changes to software code or data sets 
virtual robots computer simulation of a physical robot 
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ace triangulations, projection matrices for predicting EEG, and brain
arcellations. The outputs can be directly uploaded to TVB for brain
imulation and analysis. Users can configure and control pipeline steps
rom the TVB web GUI ( Table 1 ), without needing to directly operate
 supercomputer. A workflow orchestrator coordinates the execution
f the pipeline and deals with privacy and reproducibility aspects. GUI
nd orchestrator ensure that the highly personal human brain data can
nly be accessed by authorized users, that they are always encrypted
hile at rest or in transit, and that they are only decrypted and pro-

essed inside a sandbox that is inaccessible by users of the cloud en-
ironment. In addition, the pipeline orchestrator supports provenance
racking and actionable reproducibility: the entire code, data, and all
omputational steps necessary to reproduce results starting from the raw
ata can be stored and re-run with a small set of simple commands on a
5 
hosen level of granularity, which enables easy reproduction of research
esults. The pipeline supports flexible processing workflows as it con-
ists of a sequence of container images that can be adapted, exchanged,
dded, or removed. Containerization makes the pipeline more platform-
ndependent: it can be executed on all similar hardware platforms that
upport container runtimes like Docker or Singularity. Accordingly, the
ipeline serves as a prototypical example for general-purpose protected
nd reproducible cloud workflows. 

.3. Multiscale Co-Simulation 

Multiscale Co-Simulation are two new Python toolboxes for sim-
lating large-scale brain networks with TVB that interact with spik-
ng networks in NEST ( Gewaltig and Diesmann, 2007 ). The toolboxes
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rovide interfaces to couple the two simulators by connecting the
rogrammatic Python interface of TVB ( Sanz-Leon et al., 2013 ) with
yNEST ( Eppler et al., 2009 ), a Python wrapper for NEST. Multiscale Co-
imulation can be downloaded as standalone container image or used
n EBRAINS from Jupyter notebooks ( Table 1 ). 

The need for a high-performance environment is for multiscale co-
imulations even more important than for single-scale simulations: in-
tead of one resource-demanding simulator there are two and they need
o be executed in parallel. Critically, the two simulators need to syn-
hronize to exchange their respective inputs, which is costly because
he latency of network interaction is often orders of magnitude higher
han the time needed to compute these inputs. To address the involved
ottlenecks, the toolboxes implement routines that optimize communi-
ation and parallel execution. The Multiscale Co-Simulation project is
nder ongoing development currently focussing on postulating and val-
dating coupling scenarios between the scales, optimizing the user inter-
aces as well as optimizing performance. See Supplementary Methods:
ultiscale Co-Simulation for more information. 

.4. High-Performance implementations of TVB 

Large software products like TVB are often designed with the goal to
ase maintainability and long-term development, but that often comes
t the cost of non-optimal execution speeds and resource consumption.
lgorithms that are not optimized for speed can be orders of magni-

ude slower than optimized versions: instead of taking days or weeks, a
imulation can be done in mere minutes, depending on how it is imple-
ented. Problematically, optimizing computer code for speed is chal-

enging and a task that is largely independent from scientific tasks like
ostulating and validating a new model: researchers must be put in a
osition where they can easily manipulate a given model in order to
apidly test hypotheses. To make it easier to simulate high-performance
odes, two different strategies were realized. The first one, TVB-HPC
 Table 1 ), automatically produces high-performance codes for CPUs and
PUs using an easy XML-based language called RateML for model spec-

fication. RateML is based on the domain-independent language ’LEMS’
 Vella et al., 2014 ), which allows for the declarative description of com-
utational models using a simple XML syntax. The already existing ex-
mple implementations can be easily adapted to test different models,
ithout requiring any knowledge about algorithmic optimization. The

econd one, Fast_TVB ( Table 1 ), is a specialized high-performance im-
lementation of the "Reduced Wong Wang" model ( Deco et al., 2014 ;
anz-Leon et al., 2015 ). Written in C it makes use of several optimization
trategies and a sparse memory layout to efficiently use CPU resources,
hich makes it possible to simulate extremely large models with mil-

ions of nodes even on a standard computer in a reasonable time. Further
nformation and benchmarks are provided in Supplementary Methods:
igh-performance implementations. 

.5. TVB atlas and data adapters 

TVB on EBRAINS provides interfaces for interoperability with dif-
erent components and services offered on EBRAINS, which enables re-
earchers to plug in different analysis and modelling tools into their
ustom workflows. While the different TVB components are already in-
eroperable by design, there is a need for ’adapters’ that enable to in-
erconnect with other EBRAINS services like the siibra toolbox, which
onnects TVB with the Human Brain Atlas ( Table 1 ). The Human Brain
tlas characterizes brain regions with a growing set of multimodal fea-

ures, including transmitter receptor densities ( Palomero-Gallagher and
illes, 2019 ), cell distributions, and physiological recordings, based on
he Julich-Brain cytoarchitectonic maps ( Amunts et al., 2020 ). Aligned
ith standard brain templates, the Human Atlas can be registered with

ndividual brains to export multimodal microstructural "fingerprints"
hat can be used to set the parameters of brain models. The siibra adapter
6 
ives direct programmatic access to EBRAINS atlas services like select-
ng a parcellation, browsing and searching brain region hierarchies, and
btaining maps of atlas features like the distributions of cell densities,
eurotransmitters, or gene expression data. Internally, siibra connects
ith repositories like the EBRAINS KnowledgeGraph or the Allen Brain
tlas to retrieve the requested data, hiding the complexity of interacting
ith different services and minimizing common risks like misinterpre-

ation of coordinates from different reference spaces. Complementary to
iibra a viewer was implemented to visualize different atlas maps on the
ortical surface ( Table 1 ). 

Additional adapters are under development that connect TVB with
he Knowledge Graph and the Human Intracerebral EEG Platform to
nform brain network model parameterization and to compare simula-
ion results with empirical data. For example, it is planned to link in-
racranial electrophysiology recordings with the respective Julich-Brain
egions to set model parameters based on direct measurements of effec-
ive connectivity and transmission delays from stimulation experiments
 Trebaul et al., 2018 ). See Supplementary Methods: TVB atlas and data
dapters for more information. 

.6. Data integration and TVB-ready data 

Another advantage of cloud-based operation is that research results
rom different groups can be directly integrated into a central data
ecord where they can be found and re-used by others. This functionality
s provided by the EBRAINS KnowledgeGraph, an ontology-based graph
ata base where data sets are richly annotated with openMINDS meta-
ata in order to ensure their interpretability in the future ( Table 1 ). The
penMINDS metadata annotations define an exact classification of re-
earch inputs and outputs (for example, empirical recordings, software,
rticles, books, imaging coordinate systems, reference atlases, models,
rojects) against a scientific ontology or knowledge framework. To en-
ure data quality EBRAINS employs a team of expert curators who as-
ist in creating and verifying that data format and metadata annota-
ions fulfil state of the art practices for provenance tracking and data
anagement with regard to long-term availability and interpretability

f the results. Data in the KnowledgeGraph is protected by the ’Human
ata Gateway’, which controls access to human datasets through regula-

ory compliant data use agreements and access policies. A first example
f modelling results that were integrated into the KnowledgeGraph are
VB-ready connectivity data sets in BIDS format from tumour patients
nd matched control participants. The data set contains region-average
MRI time series, FC, and SC from 31 brain tumour patients before and
fter surgery, and 11 healthy controls ( Aerts et al., 2019 ). See Supple-
entary Methods: Data integration and TVB-ready data for more infor-
ation. 

.7. End-to-end use case with reproducible brain model construction 

Upon introducing the individual components of TVB on EBRAINS
e now exemplify how they may be combined. Additional use cases are
escribed in the Supplementary Material, especially in the section ‘Ad-
anced use cases and training’. To get acquainted with TVB one may
tart by performing a few test simulations with TVB’s default structural
onnectivity to learn usage of the web GUI and the Python interface;
ocumentation and tutorials explain the steps ( Table 1 ). Visualizing the
utputs for different parameter settings and fitting simulation results
ith empirical data (for example, using functional connectivity) helps

o create an intuitive understanding of brain network model dynamics.
ext, researchers may want to perform a more detailed analysis, for ex-
mple, comparing individuals in patient versus control groups to study
echanisms of pathological versus healthy brain dynamics. Here, the

esearchers can use the TVB Image Processing Pipeline to compute in-
ividual structural and functional connectivity from human MRI data.
stimating connectomes from MRI data consists of many complex steps,
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aking it hard to explicitly track all the necessary provenance data to
obustly reproduce a particular configuration of processing steps. Just
 minor update of a dependency or an untracked renaming of a file
an break the entire workflow and make a result not reproducible. The
ipeline uses DataLad (datalad.org) to make its workflow reproducible
n an actionable manner: all software and data are tracked in a way
hat the entire workflow or just individual steps can be easily re-run,
rchived, published and shared. With DataLad all data and code files
re version-controlled and managed in a manner that is comparable to
ow software is managed with GitHub (github.com), allowing to cap-
ure complex hierarchical project structures and all computational steps
rom raw data to final figures. 

When large cohorts are modelled users may find the speed of stan-
ard brain model implementations insufficient and switch to TVB’s high-
erformance implementations, which allow fast execution and easy gen-
ration of high-performance codes for custom models with TVB’s XML-
ased modelling language RateML. To inform model parameters re-
earchers may decide to include microstructural information from the
BRAINS Human Brain Atlas using the siibra interface ( Wang, 2020 ).
r they may extend large-scale models to encompass finer scales us-

ng TVB Multiscale to study hypotheses about brain function that span
patial scales from individual point neurons over populations to whole
rain models. In a recent preprint this novel approach was used to study
he effect of deep brain stimulation on a spiking basal ganglia model
 Meier et al., 2021 ). Finally, the resulting data outputs can be anno-
ated with metadata, curated, and integrated into the KnowledgeGraph
or future reuse by the community. 

.8. Advanced use cases and training 

In addition to the introductory use cases described above, EBRAINS
rovides tutorials for several advanced use cases ( Table 1 ). The Bayesian
irtual Epileptic Patient tutorials showcase how Bayesian inference can
e used to compute posterior probability distributions for region-wise
arameter settings of TVB’s Epileptor model in order to study the spread
f epileptic seizures ( Jirsa et al., 2017 , 2014 ). The approach makes use
f prior distributions obtained from empirical data (for example, a pa-
ient’s structural connectivity, or lesions detected in MRI) and model
imulations to take into account the likelihood for these observations.
or example, estimating excitability parameters of an Epileptor brain
etwork model yields a map of region-wise epileptogenicity to guide
linical decision-making. The Virtual Mouse Brain extends TVB with
ractography-based as well as tracer-based mouse SC ( Melozzi et al.,
017 ), which was estimated from the Allen Mouse Brain Connectivity
tlas ( Oh et al., 2014 ). Tutorials demonstrate how to export mouse con-
ectivity at different resolutions and how to simulate strokes in mice
 Allegra Mascaro et al., 2020 ). In addition to these notebook tutorials
he INCF (International Neuroinformatics Coordination Facility) train-
ng space holds a dedicated collection for TVB with didactic use cases,
ideo tutorials, Jupyter notebooks and example data sets ( Table 1 ). See
upplementary Methods: Advanced use cases and training for more in-
ormation. 

.9. What can go wrong? Common pitfalls of brain network modelling. 

Although cloud services make it easier to run scalable modelling
orkflows there are several limitations to consider. Already one of the
rst steps, creating a brain network model from MRI data, involves sev-
ral caveats. One major limitation of MRI tractography is that coupling
trengths and time delays of nerve fibre tracts cannot be directly mea-
ured ( Sotiropoulos and Zalesky, 2019 ). Identifying and quantifying fi-
re tracts is based on a mapping from water diffusion to fibre orienta-
ions, which is in general an ill-posed problem as MRI voxels are too
arge to resolve individual fibers. Neither the orientation of fibers in
 voxel can be resolved, nor can different arrangements like bending,
7 
anning, crossing or kissing be distinguished. As a result, tractography
rovides only a model-based approximation of interregional coupling
trengths and time delays. Problematically, these approximations are
iased by factors like the distance of the regions, algorithmic choices,
nd individual anatomical properties ( Jeurissen et al., 2019 ; Yeh et al.,
021 ). Furthermore, even if fibers could be reliably counted, there
re several microstructural properties known to influence the strength
f coupling that also cannot be directly measured like myelination,
xon diameter and synaptic properties, which implicates that tractog-
aphy results must be interpreted with caution ( Jeurissen et al., 2019 ;
eh et al., 2021 ). A related problem is node delineation and the ques-
ion what is a meaningful parcellation of the brain to form the nodes
f a network model? Unlike the microscale, where the mapping be-
ween nodes and neurons is obvious, defining nodes at the macroscale
s less clear. An intuitive criterion would be functional homogeneity:
oxels get grouped based on how similar their activity is, which is
lausible, because one model node is usually governed by one type of
ynamics. However, matters are complicated by individual structure-
unction variability. For example, the size of a well-characterized area
ike V1 can vary twofold in size across subjects ( Amunts et al., 2000 ;
an Essen, 2013 ), which would be missed by group-level parcellations.
imilarly, the scale and the number of nodes heavily impacts the re-
ulting model and they must therefore be aligned with the goals of
he research ( Proix et al., 2016 ). For example, the parcellation must
e fine enough to be able to represent and differentiate between the
pecific features of the system that are related to the aims of the
esearch. 

Probably one of the biggest challenges is to identify whether a given
odel can or cannot reproduce a set of observations, which is done

n a process called ‘inference’ that works by comparing modelling out-
uts with the actual data and selecting the model that explains the
bserved phenomenon in a way that is deemed optimal. Problemati-
ally, already the related task of finding optimal parameter values for
 given set of model equations suffers from the so-called ‘curse of di-
ensionality’: with each added dimension the space of possible model
arameterizations increases exponentially (there is a combinatorial ex-
losion in the possible values that the parameters can jointly take),
aking it harder to find models that generalize to the typically high-
imensional real-world scenarios in digital medicine ( Berisha et al.,
021 ). Complex mechanistic models are poorly suited for inference, be-
ause computing the likelihood for a given observation is typically in-
ractable ( Cranmer et al., 2020 ), as this would require integrating over
ll potential outcomes of a simulation, the number of which increases
xponentially with each model dimension. Likewise, complex systems
re often degenerate, producing indistinguishable observations by in-
nitely many realizations of the same process. While new approaches

or "likelihood-free" simulation-based inference are under development
 Cranmer et al., 2020 ), in practical cases often recourse is made to tra-
itional approaches like relying on the insights of scientists into the
ystem to construct powerful summary statistics to effectively compare
bserved with simulated data. A related problem, especially regarding
linical application, is that models always involve (per definition) enor-
ous simplifications and are often based on assumptions that are only
eakly justified and might be very restrictive. Consequently, the conclu-

ions that can be drawn are a function of the validity of the knowledge
hat was used to build the model and the efficiency with which the ver-
al knowledge was translated into mathematical equations and then into
omputer code. Especially in clinical applications false expectations,
isinterpretations and overconfidence in simulated results can lead to

ignificant real-life problems. Consequently, these workflows may not
e used in a "turn-key" manner and with the expectation that they will
utomatically produce meaningful results. To produce meaningful re-
ults and to adequately interpret them knowledge about modelling and
umerical methods as well as neuroscience domain knowledge are fun-
amentally necessary. 
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Fig. 2. Securing personal data processing workflows in shared environments. Access control ensures that only authorized users can access sensitive data. Sensitive 
data is encrypted with public-key cryptography on the data controller’s computer before upload to the cloud. The key pair for upload is generated within a sandboxed 
process at the final processing site and the private key never leaves the sandbox. This ensures that the data can only be decrypted at the final processing site and 
that no human gets into possession of the key for decryption. All processing is performed in the sandbox and personal data is never written outside the sandbox in 
unencrypted form. A public key generated by the data controller is used for returning encrypted results, which ensures that only the data controller can decrypt the 
data. 
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.10. Data protection in the TVB on EBRAINS cloud 

Biomedical research is facing challenges because many methods lack
echnical infrastructure to protect the privacy of sensitive data. Re-
earch often involves that teams exchange and process sensitive data
n shared infrastructure like the internet and high-performance com-
uters, which poses risks for illegitimate access. Consequently, an im-
ortant requirement for privacy protection is to enable secure process-
ng of sensitive data in shared infrastructures, as the involved networks
nd computers can be accessed by many human and non-human users
ith only logical separation between them. Cloud platforms have the
dvantage that privacy technology and legal compliance measures can
e globally implemented and offered as a standardized and certified
ervice, which makes it easier for the individual researchers to over-
ome technical and organizational hurdles for demonstrating compli-
nce with data protection law. The European Union’s General Data
rotection Regulation (GDPR) and similar international and national
aws impose restrictions on the processing of personal data including
torage and sharing. Problematically, biomedical data cannot be eas-
ly anonymized or pseudonymized such that all potentially identifiable
nformation are removed, and potential re-identification is excluded
 Byrge and Kennedy, 2018 ; Gymrek et al., 2013 ; Rocher et al., 2019 ).
 principle means of ensuring GDPR-compliant data processing is the

mplementation of technical and organizational measures to ensure a
evel of security appropriate to the risk of the processing (Article 32
DPR). To protect data by design and default (Article 25 GDPR), TVB
n EBRAINS implements access control, public-key cryptography, and
andboxing ( Fig. 2 ). 

Access control mechanisms, like the TVB web GUI, hide direct ac-
ess to systems where sensitive data are actively processed: users need
o log into the GUI with their password and can only access data that
hey uploaded or created themselves or that was made available to them
hrough the role-based access control and permission management func-
ionalities of the EBRAINS Collaboratory (see Supplementary Note: The
BRAINS Collaboratory). Sensitive data is encrypted before upload to
BRAINS and remains encrypted at all times with the only exception be-
ng the time when a processing job is actively executed. Cryptographic
eys are created ad-hoc and independently for each processing job and
he system is designed such that no human gets into possession of the
ecryption key while the data is in the cloud: the sensitive data can only
e decrypted at their final processing site by an automatic procedure.
uring the actual processing sensitive data may exist in unencrypted
8 
orm, but only within isolated temporary memory locations that cannot
e accessed by other users of the system (sandboxes). See Supplemen-
ary Methods: Data protection in the TVB on EBRAINS cloud for more
nformation. 

.11. Shared responsibility & compliance 

In addition to technical measures also organizational aspects must be
onsidered for processing to be lawful. The GDPR describes two roles
or lawful processing of personal data: data controllers and data pro-
essors. Data controllers are responsible for, and required to be able
o demonstrate, compliance with GDPR (Art. 5, GDPR), by implement-
ng technical and organisational measures that ensure appropriate secu-
ity of the personal data (Art. 24, GDPR). In contrast, data processors
rocess personal data only on behalf of data controllers, acting under
he authority of the controller to carry out the processing (Art. 28/29,
DPR). When a user uses TVB on EBRAINS services to process personal
ata the user is always the data controller, while EBRAINS as a ser-
ice provider is always the data processor, because the user is directing
he processing through its interaction with the offered services, while
BRAINS is only executing the provided instructions. As data proces-
or EBRAINS is responsible for protecting the global infrastructure with
ocumented procedures and services on behalf of the user. As data con-
roller a user maintains control over the data that it hosts or processes
ith TVB on EBRAINS, as mechanisms were put in place to prevent
nauthorized access and to enable that data controllers can indepen-
ently or jointly determine the means of the data processing. To use
VB cloud services a user must therefore agree to terms that clarify its
ersonal responsibility regarding compliance with GDPR with respect to
ecurity precautions, access permissions, contact persons, personal re-
ponsibilities, monitoring, logging, and passing of information to third
arties (ebrains.eu/terms). 

. Discussion 

TVB cloud services were developed to lower the barriers to brain sim-
lation and connectome analysis. They offer reproducible and protected
orkflows for collaborative computational neuroscience research. All

odes are open source and available for download from EBRAINS and
itHub ( Table 1 ). Software is packaged in container images that can
e directly used without the need to install dependencies. Several soft-
are and data components have been peer-reviewed, and results were
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ublished in academic journals ( Table 2 ). To enable actionable repro-
ucibility the image processing workflow is equipped with tools for data
anagement and provenance tracking. All computational steps, inputs

nd software are tracked, and each step can be easily rerun and verified
ith a simple set of commands. Technical and organisational measures

or protecting the privacy of personal data are globally implemented into
he services offerings of the platform, making it easier for researchers
o demonstrate compliance with data protection regulation. Access con-
rol, encryption and sandboxing ensure that sensitive data stays con-
dential. Comprehensive documentation in the form of manuals, tuto-
ials, lectures, Jupyter notebooks, demo data, workshops, videos, use
ases, mailing lists and support contacts provide efficient and didactic
issemination of knowledge and support. EBRAINS core services enable
o map and organize complex projects by large remote teams into a
ersistent and replicable structure at a central and secure place, which
akes it easier to pick up projects at a later time. The flexibility of

he platform and its focus on community-driven research enable rapid
doption of advances in brain simulation and connectomics, as well as
orrection of errors. Technical and organisational security mechanisms
re designed to provide highest data protection standards, while at the
ame time providing the required flexibility to enable state-of-the-art
esearch. To keep the high quality of the cloud services, ongoing and fu-
ure efforts are directed towards the continuous integration of improved
ommunity standards and best practices. The TVB on EBRAINS ecosys-
em can be transferred to other cloud environments within the European
pen Science Cloud or beyond. Thus, it serves as a reference architec-

ure for secure processing and simulation of neuroscience data in the
loud ( Fig. 1 and Supplementary Discussion). 

. Methods 

.1. The Virtual Brain 

The methods behind the main TVB neuroinformatics simulator
re extensively described in several publications ( Ritter et al., 2013 ;
anz-Leon et al., 2015 , 2013 ) and in online documentation ( Table 1 ;
ocs.thevirtualbrain.org). To deploy TVB as cloud service it was im-
lemented as container image executed on OpenShift, an open source
ontainer orchestration platform. This deployment serves TVB’s GUI via
he web and automatically scales the number of running instances of
he TVB container depending on demand. The GUI is connected with
he EBRAINS identity and access management system to perform access
ontrol: only registered EBRAINS user can access the GUI and they can
nly access the data for which they were given role-based permission.
epending on their complexity, simulation jobs are either directly com-
uted in the running OpenShift instance that serves the web GUI or on
 supercomputer. Currently users still have the responsibility to manu-
lly encrypt their data with a public key before upload, but in a next
elease it is planned that this will be automatically performed by the
pload function. After upload every project is individually re-encrypted
ith a dedicated key. Decryption only happens when a user opens a
roject in the web GUI and the decrypted data is immediately deleted
hen the project is closed or the user logs out. The decrypted project is
ot directly written to a file system, but only stored inside the running
ontainer. For high-demand operations that run on the supercomputer
ata is only decrypted after the job gets started by the job scheduler
nd only inside the running TVB container. See Supplementary Meth-
ds: Brain simulation with TVB for more information. 

.2. TVB Image Processing Pipeline 

The TVB Image Processing Pipeline ( Schirner et al., 2015b ) allows
sers to select and combine dedicated neuroimaging workflow contain-
rs, like BIDS Apps (see Supplementary Note: BIDS Apps), into repro-
ucible workflows that process MRI data on supercomputers while pro-
ecting the privacy of personal data in compliance with data protec-
9 
ion regulation. Containerization makes it easier to deploy neuroimag-
ng workflows, as they often rely on a high number of dependencies and
omputational steps. Users can select amongst different neuroimaging
ontainers like fmriprep for functional MRI processing ( Esteban et al.,
019 ), Mrtrix3_connectome for diffusion MRI tractography ( Smith and
onnelly, 2019 ; Tournier et al., 2019 ), or the Human Connectome
roject pipelines for both ( Glasser et al., 2013 ). Like main TVB, the
ipeline execution on the supercomputer can be controlled from the
VB web GUI without giving users direct access to the supercomputer.
n orchestrator program on the supercomputer coordinates the execu-

ion of the container images and ensures that personal data is encrypted
t all times, except for the duration of the processing and then only in the
ain memory of a sandboxed process ( Fig. 2 and Supplementary Note:
VB Image Processing Pipeline for more details). To make workflow
rocessing reproducible the open source distributed data management
olution DataLad (datalad.org; ( Halchenko et al., 2021 )) was used for
ersion control and provenance tracking: all files involved in a work-
ow (such as data, code and computational environment) are stored
ithin nested directory trees, which allows to explicitly store the evo-

ution of a data set from its raw state to the final result. Checksums
llow the user to uniquely identify the contents of every file, which in
urn allows to verify the correct execution of every computational step
nd thereby full computational reproducibility of the entire workflow.
ee Supplementary Methods: TVB Image Processing Pipeline for more
nformation. 
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