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Holistic Appraisal of Modeling Installed Antennas for Aerospace Applications 
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Abstract—This paper uses the Unstructured Transmission Line 

Modeling Method to investigate near field interactions between a 

broadband microwave antenna and a platform that arise as a result of 

antenna installation. The antenna, feed line and the platform are 

represented by a common meshed model and simulated using a single 

time-domain numerical method. This paper aims to establish guidelines 

on how to achieve high accuracy when modeling both the near and far 

fields of an antenna whilst at the same time prioritizing computational 

resources. By isolating critical features such as the feed line and selected 

fine details of the antenna geometry the paper assesses how accurately 

these fine features need to be described in the model and how they affect 

the return loss and far field pattern of the antenna. The size of the 

platform, is varied from small to medium size (up to 10 wavelengths) and 

its impact on the antenna performance is assessed. Finally, the conclusions 

of the study are applied to an example of an antenna installed in the 

leading edge of an aircraft wing, with and without, a protective radome 

cover. 

Index Terms—Numerical analysis, broadband antennas, aircraft 

antennas.  

I. INTRODUCTION 

There is substantial interest in modeling antennas in their practical 

setting given that an antenna’s performance can be significantly 

affected by its surroundings [1-14]. However, this is a 

computationally challenging task requiring accurate representation of 

both antenna and platform geometries which may differ in size by 

several orders of magnitude. In particular, antennas for many 

applications, such as 5G mobile and radar, come in the form of large 

arrays, where both mutual coupling between antenna elements and the 

array and the platform need to be accurately accounted for [15]. 

Furthermore, the increased presence of complex inhomogeneous 

structures and non-linear and anisotropic materials further 

complicates simulation and proves awkward for methods that are 

usually optimized for perfectly conducting bodies such as the Method 

of Moments (MoM).  

The multiscale nature of such problems leads to high computational 

demands, regardless of the method used. For this reason, simplified 

approaches are still routinely employed, either approximating aspects 

of the geometry and/or materials or else the physical coupling 

mechanisms between the antenna and its platform. 

The first simplified approach is illustrated by asymptotic methods 

such as ray tracing [7] which are indeed viable approaches for solving 

very large problems but are typically limited to PEC structures and 

surfaces that can be described by approximate reflection coefficients 

and as such, lack accuracy when considering antennas with complex 

features [16].  

The second simplified approach which is commonly used is to 

replace the intricate detail of antenna geometries by simpler 

equivalents. These may be obtained by use of the reciprocity theorem 

[3, 17, 18], an equivalent dipole model [4], or by using domain 

decomposition techniques with suitable solvers employed in each 

domain [5, 6]. This approach to installed antennas has been adopted 

in conjunction with a range of particular methods, both asymptotic and 

full wave. The obvious disadvantage is either partial or complete  
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decoupling of an antenna from its practical setting and hence the near-  

field interactions between antenna and the platform are not properly 

accounted for. 

When considering practically large and complex platforms one 

common practice is to scale down the antenna’s operating frequency 

[19] and thus increase the overall antenna dimensions or alternatively 

scale up the antenna’s operating frequency and scale down the overall 

size of the platform [1]. The former approach works well at lower 

frequencies employing quasi-static analysis but will not capture any 

resonant interactions between the antenna and the platform. In 

contrast, the latter approach can over-emphasize or introduce resonant 

interactions that do not physically exist. 

An excellent overview of a range of methods currently in use, 

discussing their advantages and disadvantages for modeling antennas 

in their practical setting, is given in [8].  

At this point it is also important to recognize that installed antennas 

may be present within a larger scale simulation whose primary aim is 

not the characterization of the antenna. For example, lightning zoning 

and electromagnetic compatibility studies for aircraft certification [20, 

21]. In such cases, it is attractive to be able to capture the antenna’s 

installed behavior using the same flexible method employed for the 

overall context without undue need for special treatments for reasons 

of efficiency. The relevance to this work is that it demands a holistic 

view when selecting a modeling method. 

It might be suggested that inexorable increases in computer power 

will inevitably permit full-wave algorithms such as Finite Difference 

Time Domain Methods (FDTD) to be straightforwardly used for 

installed antenna modeling. However, experience shows that 

computational resources are never adequate to fulfill the modeling 

ambitions of the innovative designer. There are a number of candidate 

full wave numerical methods that are actively in use, all benefitting 

from improved computing power: The Method of Moments (MoM), 

[22], Finite Element Time Doman (FETD) method [23], Finite 

Difference Time Domain Method (FDTD) [24] and Transmission 

Line Modeling (TLM), [25, 26]. 

The accuracy of all full-wave methods that spatially discretize the 

geometry is fundamentally dictated by the sampling density. Text 

book figures of /10, where is the operating frequency, are well 

known, [22-26] but of course derive from representing plane wave 

propagation in free space. Capturing rapidly varying static field 

behavior and physically important geometrical subtleties usually 

demands significantly better than this. Nevertheless, illustrations from 

the literature support the argument that increased computational 

power and parallel processing have brought configurations such as 

models of real-size aircraft within the reach of powerful computer 

platforms. 

For example, the FDTD method has recently been used to model a 

dipole antenna installed on the nose of an aircraft using a uniform 

cubic mesh of size /23 [2]. Similarly, [2] reported the modeling of an 

electrically small patch antenna on the roof of a car using a mesh of 

/114 around the antenna which is graded up to /20 for the rest of the 

problem space. In both cases such small cubic meshes were needed in 

order to ensure the stability of the FDTD Method and to reduce the 

dispersion and numerical errors caused by the sugar cube 

approximation of the geometry [8]. 

Clearly, physically informed resource management is critically 

important. So, as it is well known that the structure immediately 
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surrounding the antenna has the greatest impact on its performance in 

contrast to more distant features, examples such as [1, 2] exploit non-

uniform sampling. For example, in [1], sampling densities of /8 for 

the platform sufficiently far from the antenna, /16 for the near field 

region of the antenna using a frequency domain Multi-Level Fast 

Monopole (MLFMM) method.  

Notwithstanding the differences between methods, for example, 

FDTD and MLFMM, in this work it is argued that (a) current 

resources do permit full wave methods to be deployed to provide 

better predictions for installed antenna performance; (b) The modeler 

must carefully manage the use of resources but to do so, (c) must 

understand the relative impact of compromising and/or enhancing 

different physical aspects of the problem and its geometrical 

representation. By means of an investigation of a representative case 

study, the key issues are identified and discussed in comparison with 

previous work and general guidelines are proposed. 

To undertake this study we apply, for the first time, the 

Transmission Line Modeling method using unstructured meshes 

(UTLM) [27-35] to the problem of installed antennas. Selection of this 

method proceeds from the well-known fact that unstructured meshes 

require notably fewer sample points to capture curved and multiscale 

geometries and if used intelligently in a hybrid fashion with Cartesian 

grids to model large empty space regions, this can be achieved without 

unduly compromising computational efficiency or with the 

complexity of bespoke sub-gridding techniques. Unstructured meshes 

are routinely used with FE methods [23] and have been developed for 

FDTD [36-38]. However, the TLM framework offers distinctly 

valuable features. First, there is no need to approximate the theoretical 

basis of TLM algorithm, using for example mass lumping, in order to 

obtain an explicit time stepping algorithm. Second, compared to the 

FDTD method, the electric and magnetic field samples are co-located 

in time and space. Third and most importantly, the stability of a 

UTLM algorithm is provable a-priori on a cell-by-cell basis without 

resorting to estimators such as the Courant condition. For large scale 

simulations this is a critical advantage as late time instability has never 

been observed with TLM. Being a time-domain method, UTLM easily 

permits modeling of both linear, dispersive and nonlinear materials. 

Finally, recent work has accounted for both electric and magnetic 

material losses [28], and the presence of carbon fiber panels embedded 

as thin film layers between the mesh cells [29]. 

This paper analyses 3 different antenna configurations. First, an 

antenna on an electrically small platform. This is typical of an antenna 

being modeled in isolation in order to converge the model with respect 

to sampling density and other simulation parameters of the antenna in 

order to obtain accurate predictions of overall performance. 

Performance is assessed in terms of both the return loss and the 

radiation pattern which permit assessment of sensitivity to both near 

and far field representations. The study is then extended to modeling 

a broadband antenna placed on an electrically large flat ground plane 

in order to investigate how the presence of the platform affects the 

overall antenna performance. Finally, the guidelines deduced from the 

previous analyses are used to study the performance of an antenna 

installed in the leading edge on an aircraft wing.  

The paper is structured as follows: Section II summarizes the main 

characteristics of the UTLM method. Section III outlines the UTLM 

model of a broadband Vivaldi antenna on an electrically small 

platform and explores the meshing requirements in order to achieve 

good accuracy for both near and far field parameters. Specific 

attention is given to the geometrical description of the antenna feed 

and the use of mesh refinement in the near field region. Section III 

further examines how the size of the platform affects the antenna’s 

radiation pattern and return loss and investigates whether reductions 

in the computational box size can be usefully made when modeling 

antennas installed on electrically large platforms. Section IV predicts 

the in-situ performance of a Vivaldi antenna installed in the leading 

edge of the aircraft wing and investigates how the presence of the wing 

and then a radome cover affects the radiation parameters of the 

antenna. Section V summarizes the main conclusions of the paper. 

II. THE UTLM METHOD 

In this section the main algorithm of the UTLM method and the 

associated mesh generation requirements are overviewed. It is 

emphasized that the focus of the paper is not to introduce the method, 

rather its use for the first time, exploring the choice of parameters, for 

application to installed antennas. Whilst not as well known as FDTD, 

the first 3D UTLM approach was initially presented in 2005, [27] and 

has been continuously validated and developed since then in order to 

yield an industrial strength capability. Particularly significant steps are 

highlighted as [30] and [34] as these have provided the robustness to 

scale and complexity demanded by installed antenna applications. 

Supporting evidence for the accuracy and multiscale capability of 

UTLM as well as its industrial deployment can be found in [27-35] 

which have primarily concerned EMC problems to date. 

The UTLM method decomposes the problem space into non-

overlapping discrete tetrahedral cells forming a Delaunay mesh [39], 

the tangential electric and magnetic fields being sampled on the faces 

of each cell. Coupling a local harmonic field expansion within each 

cell with the requirement for tangential field continuity between cells 

results in a time domain algorithm that updates the field samples as 

time evolves [27]. Characteristic of all TLM approaches, this local 

field expansion and imposition of continuity mimic a scatter-connect 

process occurring in an analogous transmission line network. 

The choice of a time step for the UTLM algorithm, ∆𝑡, is dependent 

upon the quality of the mesh and its suitability is assessed using a 

canonical scattering problem for each cell considered in isolation. 

Note that the UTLM implementation does not become unstable with 

larger time steps, rather loses accuracy [27, 30]. Typically, very small 

cells, adjacent cells whose scattering centers approach each other, or 

quasi-flat sliver like cells will demand the use of a small time step for 

accuracy. Unfortunately, all of these possibilities are routinely 

encountered in many tetrahedral meshes. Initially, this presented a 

serious limitation for the choice of time step resulting in a 

computationally inefficient algorithm. The breakthrough for the 

UTLM method was to pre-process groups of cells into clusters 

forming larger scattering entities, [30]. The structure of these clusters 

easily permits separation of the physically meaningful field responses 

from those identifiable as sampling noise. The latter, which depend 

upon the precise local layout of the mesh sampling, are those 

demanding small time step values. Hence, this separation 

conveniently facilitates selection of a time step that accurately 

captures the physics without being constrained by a stability 

requirement to be impractically small.  In practice, this critical 

clustering phase is user controlled by setting a threshold distance and 

groups of adjacent cells whose centers are closer than this value are 

automatically clustered into larger scattering entities. A point that 

shall be discussed more fully in the context of the results, is that 

specifying the threshold distance is strongly related to declaring a 

maximum frequency for which wave, as opposed to quasi-static, 

behavior is of interest.  

It is commented that it is the requirement that the mesh be Delaunay 

that facilitates the UTLM approach and whilst this precludes use of, 

for example, advancing front meshes, this has not proved practically 

inconvenient. However, experienced modelers of industrial scale 
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problems are well aware that successful simulations demand more 

than just a robust implementation of an accurate EM algorithm. 

Starting from real CAD data, generating a tetrahedral mesh by any 

means is a non-trivial task. As recently described in [34], geometrical 

features that might have little physical impact overall can, 

nevertheless, introduce substantial complications for subsequent 

simulation. It is naïve to consider meshing as an available black box 

activity that is undertaken without understanding its impact on 

accuracy, stability, memory and run time demands of the simulation 

algorithm. Therefore, a powerful complexity reduction approach has 

recently been developed to substantially extended the scope for 

clustering to cases when the meshing of practical CAD data yields 

regions comprising 1000s of small cells with little physical basis, [34].  

The interrelation between the performance of the simulation 

algorithm and the mesh generation process is not often discussed in 

detail and this proves a critical consideration for successful modeling. 

For this reason, we highlight this aspect of the current study as a 

substantial contribution of this work. 

When undertaking unstructured mesh generation, the user typically 

has two degrees of freedom. First, a measure of the uniformity of the 

3D shape of the tetrahedral cells. This is often expressed by the mesh 

quality parameter, Q, which is defined as the ratio between the 

circumradius to the minimum edge length of each cell [39] with a 

related 2D measure of the quality of the triangular faces of the 

tetrahedral cells defined in the same manner. These two measures 

respectively characterize the uniformity of the field sampling in 3D 

space and the representation of the geometrical surfaces. Typically, a 

high quality Delaunay mesh has a value of Q=2 with many practical 

geometries producing a good quality mesh with 3<Q<6. Imposing this 

requirement for quality will produce a mesh of well-shaped elements 

that is naturally denser around small and curved features of the model 

than in large empty regions of space. Moreover, good quality meshes 

produce less sampling noise in the subsequent simulations.  

The second degree of freedom available to the modeler is to further 

control this good quality meshing by setting localized targets for the 

maximum cell volumes. This can initially be guided by simple 

knowledge of the operating wavelengths and then, more valuably, 

designer understanding of where rapid field variations are likely to 

occur due to quasi-static behavior. Throughout, the designer must 

consider the sensitivity to crucial aspects such as the feed points. 

Generally, the disadvantage of using purely tetrahedral meshes is 

that they are less computationally efficient than their Cartesian 

counterparts. Therefore, in practice and throughout this paper, 

selective use of tetrahedral meshing is hybridized with cubic meshes 

to discretize the empty space regions. Such hybridization does not 

require special treatment in either mesh generation or subsequent 

UTLM time stepping. Seeding the mesh with sample points laid out 

in a grid yields UTLM computational cell clusters which are cuboidal 

cells and whose time stepping responses are the known special 

Cartesian cases which is very attractive for maximizing 

computationally efficiency for parallel, cache-conscious codes. 

All meshes used in this study are obtained using our in-house 

Delaunay Mesher software [40] with a single pass used to holistically 

discretize the complete problem.  

III. ANTENNA MODELS 

In this section a broadband Vivaldi antenna is considered in 3 

different settings namely, on an electrically small platform which is 

typical of an antenna being modeled in isolation, on an electrically 

large flat ground plane, and finally, installed in the leading edge of an 

aircraft wing. Modeling the antenna in isolation enables exploration 

of different meshing strategies in order to converge the results for both 

the near field parameter S11 and far field radiation patterns. The 

sensitivity of the antenna parameters to the accuracy of the 

geometrical description of the coaxial feed line and the computational 

box size is also investigated with the aim of achieving the most 

computationally efficient simulations without unduly compromising 

accuracy. This analysis is then extended by placing the antenna on an 

electrically large ground plane and assessing the impact of the 

installation on the antenna performance together with an assessment 

of different meshing densities. Finally, the conclusions of the above 

analysis are applied to modeling the broadband Vivaldi antenna 

installed in the leading edge of the of the aircraft wing, with and 

without a radome cover.  

A  Antenna Model 

The geometry of the Vivaldi antenna mounted on a conducting 

platform shown in Fig. 1 is taken from [19]. The slot line is printed on 

a dielectric substrate of r=3 and is exponentially flared to provide a 

smooth impedance transition from the coaxial feed to free space. The 

half width of the slot line, w, varies as   zezw 0797.025.0  and reaches 

20 mm at the open mouth. The radius of the balun, realized as an 

etched circuit in the flared metallic region, is 2.5 mm. The height and 

thickness of the dielectric slab are 55 mm and 1.5 mm respectively. 

The coaxial feed has core and outer diameters of 2 mm and 6 mm and 

a dielectric constant of r=1. The overall dimensions of the ground 

plane and the substrate are 70 mm×60 mm and 55 mm×40 mm 

respectively as shown in Fig. 1a,b). The antenna is excited with the 

TEM mode of the coaxial feed modulated by a time domain pulse with 

3 dB frequencies of 1.8 GHz and 4.6 GHz. A 4 mm length of the 

coaxial cable is placed inside the ground plane which is of 5 mm 

thickness. The antenna is enclosed by a Huygens surface placed at /2 

from the structure making the overall dimensions of the computational 

box 1.7×1.6×2.05, where  is the free space wavelength at the 

antenna’s resonant frequency of 3 GHz. 

The antenna is excited using the fundamental coaxial mode which 

is obtained as an eigen-solution of the discretized two-dimensional 

cross section of the cable [33]. It is important to emphasize that the 

same mesh that is used to discretize the whole antenna model is also 

 

  
 

(a)                                           (b) 

 

 

Fig. 1. a) Vivaldi antenna on a ground plane showing tapered slot line and the 

balun; b) front view and detail inside the ground plane and showing the cross-
section of the coaxial feed cable. 
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used to characterize the excitation mode which eliminates non-

physical reflections which would otherwise be generated by either 

applying the theoretical solution or using an independent mode solver 

that may discretize the cable in a different manner. The method for 

obtaining the excitation, which is fully described in [33], has second 

order convergence with mesh size for the modal wave impedance and 

effective relative permittivity and is able to provide good 

approximations to the true mode profile even when the mesh size or 

the feed’s geometrical descriptions are crude. Both the discretization 

and geometrical description of the cable will have an effect on the 

accuracy of the performance and are hence investigated in this paper. 

The first mesh selected for the model, shown in Fig. 2, is a good 

quality (Q=2) mesh naively allowing the sizing to be dictated solely 

by the requirement for the mesher to capture the geometry. This case 

is included to illustrate that the modeler must certainly impose more 

control than this. Whilst the fine detail of the antenna geometry is well 

resolved, Fig. 2a, the mesh is crude in the free space region, Fig. 2b. 

A simple first improvement is shown in Fig. 3 where a hybrid mesh, 

combining a cubic mesh of unit cell size of /20 with the tetrahedral 

mesh, achieves both fine resolution of the antenna geometry and a 

uniform sampling of the free space region around the structure.  

The case for use of this hybrid mesh may be summarized as relying 

on a good quality tetrahedral mesh to capture the geometry yet 

ensuring adequate wavelength resolution with the cubic mesh. 

However, as yet, it does not specifically target predictable rapid 

varying quasi-static field regions. 

The convergence of the antenna field patterns with mesh size is now 

specifically investigated with hybrid meshes embedding cubic meshes 

of unit cell size of /5, /10, /15, /20 and /40 which correspond to 

cubic cells of size 20 mm, 10 mm, 7 mm, 5 mm and 2.5 mm 

respectively.  

 

 

          
(a)                                               (b)  

Fig. 2. Coarsely sized tetrahedral mesh of well-shaped elements of a) the 

antenna and the ground plane geometry and b) the complete computational 

model.  

        
      (a)                                               (b) 

Fig. 3. a) Hybrid cubic-tetrahedral mesh of a) the antenna and the ground plane 
and b) the complete computational model. 

All simulations in this section are run on 80 processor cores of a 

commodity cluster with a time step of 2 m and a threshold for 

forming cell clusters of 1 m. (Physically, the modeler is managing 

the sensitivity to exact sampling placement and the maximum 

frequency of interest by this choice as shall be discussed further 

below). The geometry of the coaxial cable cross section is described 

using 50 piecewise linear segments as shown in Fig. 1b) which results 

in a very smooth cross-section, a decision that will be explored further 

below. The magnitude of the horizontally polarized electric field of 

the fundamental mode is shown in the inset of Fig. 4. 

The normalized radiation intensity in the H- and E- plane is shown 

in Fig. 4a,b) respectively, together with the inset in each figure 

depicting how the patterns in each plane are defined. Fig. 4 shows that 

the coarsely sized tetrahedral mesh has a similar response to the /5 

hybrid mesh, neither resolving the far field patterns accurately due to 

inadequate sampling of the free space region. However, the field 

patterns do converge for the hybrid meshes with /10 or better 

sampling, which corresponds to a cell size of 10 mm and smaller. 

The results for this far field metric, suggest that a strategy of 

geometry resolution with good quality tetrahedra, bootstrapped by a 

maximum cell size chosen on the basis of the usual better than /10 

guideline, can provide useful results. 

 
(a) 

 
(b) 

Fig. 4. Normalized radiation intensity in a) H-plane and b) E plane for different 

embedded cubic meshes of unit cell size /5,/10,/.15, /20 and  /40 and 

(t) a coarsely sized good quality tetrahedral mesh. 
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Fig. 6 shows the convergence of the return loss, S11, obtained using 

the same range of meshes as above. It can be seen that coarsely sized 

tetrahedral mesh and hybrid meshes of cell size /10, /15, /20 can 

resolve the depth of the return loss, S11, minimum, but the resonance 

is shifted to lower frequencies. Convergence is eventually obtained for 

the hybrid mesh of size /40. The more stringent mesh requirement 

for return loss is clearly known to be attributable to the need to 

sufficiently resolve the near field of the antenna.  

The computational runtime and peak memory are also given in 

Table 1. A number of factors explain why the run time in particular 

does not scale in a simple manner. First, the cubic cells are more 

computationally efficient than the tetrahedral cells as the code can be 

optimized around fewer (and shareable) characterizing parameters 

which can better utilize modern CPU caches. This explains the 

reduction in run time when comparing the pure tetrahedral case (t) to 

the 𝜆 10⁄  hybrid case. Straightforward use of finer grids has an 

underlying 4th order scaling factor (3 spatial and 1 temporal). 

However, smaller cubes can approach more closely to the geometrical 

structure which also displaces slower tetrahedral cells. For reasonably 

large problems, the mesh often comprises a thin skin of tetrahedral, a 

few cells thick that provide a spatial transition from the geometrical 

scale of the surfaces to that of the cubic grid. Asymptotically, the 

relative number of tetrahedra and cuboids approaches a surface-to-

volume relationship. This feature underpins the assertion of scalability 

for UTLM when used with hybrid meshes. 

 

Fig. 5. S11 parameter for hybrid meshes with varying cubic mesh sizes. 

 

Mesh Runtime (s) Memory (MB) 

𝑡 1972 288 

𝜆 10⁄  973 225 

𝜆 15⁄  1960 484 

𝜆 20⁄  2362 529 

𝜆 40⁄  2369 2033 

𝜆 60⁄  3758 8290 

Table 1: Runtime and Memory Requirements for the results of Fig.5. 

The second factor affecting runtime scaling is the computational 

nature of the cells clusters which was explored in depth in [34]. For 

coarse models, a few notably large cell clusters can form which 

disproportionally impact the run time, especially if one includes the 

pre-processing time (as done here) not just the time-stepping runtime. 

Typically, as the mesh is further resolved to practical, i.e. better than  

𝜆 10⁄  levels, these clusters often break up into smaller more efficient 

parts. However, it is clearly important that the modeler recognizes this 

phenomenon and understands how the definition of the CAD can 

impact upon it. 

The results of Fig. 4 and Fig. 5 show that an accurate determination 

of S11 requires a mesh four times smaller than that required for 

convergence of the field patterns and that refining the mesh will 

primarily require a notable increase in memory use. 

Deploying a fine mesh throughout the problem space is prohibitive 

for large-scale simulations and we now explore the value of 

selectively refining the mesh locally around the antenna. Local mesh 

refinement is introduced by specifying a region in which a maximum 

target volume for the tetrahedral cells is defined. Our in-house 

meshing software permits refinement regions to be defined by means 

of mesh concentration points, lines or within fictitious cubic domains, 

as well as by proximity to selected surface features. Fig. 6. provides a 

simple illustration; refinement within a non-physical box 

encompassing the structure within which a maximum target volume 

of 2 mm3 is prescribed and with a /10 cubic background mesh. This 

can be regarded as the next level strategy, generally refine the near 

field region, but without focusing on particular elements of the 

geometry. 

Fig. 7a,b) show the convergence of S11 for the hybrid /10 and /20 

meshes respectively, corresponding to cubic cell volumes of 1000 and 

125 mm3. (A subtlety in comparing cell volumes is that a cube 

typically comprises 6 tetrahedra each of ~1/6 the cubic volume). On 

each plot, the different curves are for different target cell volumes for 

the near field refinement. To compare with the previous strategy, a 

reference result obtained with a fine /40 hybrid mesh with no near 

field refinement is shown. As before, the inset of Fig. 7 also shows the 

magnitude of the horizontally polarized electric field profile of the 

coaxial mode which again remains the same due to the fact that cable 

discretization is still dominated by its smooth geometrical description.  

 In both Fig. 7a) and Fig. 7b) near field refinement improves the S11 

parameter now locating it at the correct resonant frequency. In fact, 

volume targets of below 2 mm3 further reduce S11, showing that Fig. 

5. had not fully converged in this regard. In comparison with the 

reference result obtained using the unrefined /40 mesh, local 

refinement impacts the S11 parameter by 7 dB or 4 dB for the hybrid 

/10 and /20 meshes respectively. 

As a guideline, cell volumes below 2 mm3 are equivalent to 

tetrahedra with edge sizes of better than /40 which further confirms 

the requirement that the near field of antenna typically need to be 

modeled with meshes of unit cell size of /40. 

Table 2 summarizes the computational resources, namely the 

simulation runtime and the peak memory usage. The simulation run 

time might initially be surprising. However, recalling that we do show 

total run time comprising both pre-processing and time stepping, a 

simple behavior is not to be expected. As stated above, the 

 

 

Fig. 6. Refined antenna near field mesh embedded within a /10 cubic mesh. 
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formation of cell clusters is a significant enabling feature and for these 

results the clustering threshold that controls this was kept constant 

which is physically justified as follows. The purpose of mesh 

refinement here is to better capture the rapidly varying near field 

behavior up to 5 GHz, knowing that this field behavior is intrinsically 

tied to geometrical features such as corners and the feed points. We 

are refining the mesh to achieve better spatial resolution of the quasi-

static fields at the operating frequency, not to extend the fidelity of the 

model to higher frequencies by better capturing shorter wavelength 

behavior. The average spatial size of the clusters should be determined 

by the maximum frequency of interest and the role of mesh refinement 

is to give more resolution to the shape of the clusters. For example, 

seeking better resolution of the shape of a cluster of small cells 

forming around the end of a metallic dipole might be for the purpose 

of giving a more accurate estimator of the net capacitive lengthening 

effect at the fundamental operating frequency, not to extend the result 

to cover higher order resonances. Refining the mesh and reducing the 

clustering threshold would be the approach to obtaining a wider 

bandwidth.  

Although the relationship between runtime and clustering 

parameters is still the subject of investigation, [34], the data in Table 

2 does show that the gains in accuracy of Fig. 7 are not being bought 

by significant costs in resources, rather they support the underlying 

point of this work that intelligent targeting of resources is the critical 

issue. UTLM’s clustering approach permits modelers an additional 

degree of freedom for this compared to many alternative methods. 

In summary, in all cases of Fig. 7 significant memory savings are 

achieved by use of targeted mesh refinement within an adequately 

sampled, e.g. /10, background mesh when compared to the unrefined 

/40 mesh case without significantly affecting the overall runtime of 

the simulation. 

Fig. 8a,b) compare the field patterns obtained using hybrid meshes 

of size /20 and /10 mesh, with and without near field mesh 

refinement. Fig. 8a) shows that local near field refinement within the 

/20 mesh contributes very little to the accuracy of the radiation 

pattern in both the E- and H-plane as the field is already sufficiently 

well sampled for this purpose. The inset of Fig.8a) also shows that the 

radiating field patterns in a polar form are virtually indistinguishable. 

However, Fig. 8b) shows that with a coarser /10 hybrid mesh, near 

field refinement does change the radiation pattern. Fig. 8b) also 

compares the field patterns with the unrefined hybrid /20 mesh and 

shows that near field refinement somewhat improves the radiation 

pattern in the sidelobes of the H-plane compared to the /20 mesh and 

gives a better estimate for the radiation pattern. However, when 

comparing the memory requirements, the hybrid /20 mesh requires 

529 MB (Fig. 5), and locally refined /10 mesh with a target volume 

of 2 mm3 requires 412 MB (Fig. 5) – a saving of 23%. 

It is concluded from this section that, in cases of large-scale 

scenarios and limited memory resources sampling at /10, but more 

conservatively /20, in conjunction with simplistically defined near 

field refinement can offer a valid compromise for good initial 

prediction of both S11 and the radiation pattern. 

The next level of sophistication consider is to target particular 

features of the near field geometry to which the results are expected 

to be particularly sensitive. It is commented that although this might 

seem an obvious step, for complicated configurations containing 

many such sub-structures, antennas, wires, fasteners etc, the need for 

the modeler to manually intervene in the mesh targeting becomes less 

attractive and there is definitely a role for the simplistic near field box 

approach just described. Nevertheless, it is valuable to explore the 

further benefits that can be obtained by a more focused mesh 

refinement.  

 
(a) 

 

 
(b) 

Fig. 7. Comparison of S11 parameter for different near field mesh refinements, 

(target volume cell of 1-10 mm3 ) with a) a hybrid /10 background cubic mesh 

and b) a hybrid /20 background cubic mesh. 

 

Background Mesh Near field 

volume target, mm3 

Runtime (s) Memory (MB) 

𝜆 40⁄  Unrefined 2369 2033 

λ 10⁄  10  2477 344 

λ 10⁄  4 2479 369 

λ 10⁄  2 2482 412 

λ 10⁄  1 2487 493 

λ 20⁄  10  2807 637 

λ 20⁄  4 2965 662 

λ 20⁄  2 2963 703 

λ 20⁄  1 2876 805 

Table 2: Runtime and Memory Requirements for the results of Fig. 5. 
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(a) 

 
(b) 

Fig. 8. Normalized radiation intensity in the E- and H- plane for a) the /20 

hybrid mesh with refinement (solid line) and without refinement (dashed line) 

and b) the /10 hybrid mesh, with refinement (solid line), without refinement 

(dashed line) compared with hybrid /20 mesh (solid line). The inset in figures 

gives the normalized field patterns in the polar form 

 

All of the preceding results were obtained with the circumference 

of the coaxial cable geometry described by 50 piecewise linear 

segments. The resulting smooth curvature combined with the 

requirement for a good quality mesh results in a rather fine mesh 

discretization of the coaxial cable cross-section albeit at the expense 

of overall mesh size and memory requirements. In order to investigate 

if the geometrical description of the coaxial cable can be relaxed 

without unduly affecting the accuracy of the simulation, the 

circumference of the cable has also been modeled with 4, 8, 20, 30, 40 

and 50 segments. For this investigation the /20 hybrid mesh is used 

with a near field target cell volume of 2 mm3 selected. The magnitude 

of the horizontally polarized electric field for different cable cross 

sections is shown in the inset of the Fig. 9a) and it can be seen how 

the geometrical resolution impacts the field resolution of the 

fundamental mode solution which is exciting the antenna. Fig. 9a) 

shows that even when the coaxial cable is described very crudely with 

only 4 segments the simulation can still accurately predict the resonant 

frequencies of S11 but there is an error in the depth of the resonance of 

more than 15 dB at 3 GHz when compared to the results using cross 

sections of 30 or 50 segments. 

One point to observe is that the run time in Table 3 is actually 

notably higher for the crudest cable description. Again, this is 

attributable to the formation of clusters, in this case around the 90-

degree corner of the cable. As the resolution of the cable is most likely 

set by the CAD data before meshing, this reinforces the argument that 

the modeler must be aware of the impact on computational effort of 

many more issues than just the simulation methodology. 

 

 
(a) 

 

(b) 

Fig. 9. a) Comparison of S11 and b) Normalized radiation fields obtained using 

coaxial cable described with 4 and 50 circumferential segments. 

 

Background 

Mesh 

Near field 

volume 

target, mm3 

Coaxial 

Cable 

resolution, 

segments 

Runtime (s) Memory 

(MB) 

λ 20⁄  2 4 2048 575 

λ 20⁄  2  8 433 573 

λ 20⁄  2 20 378 384 

λ 20⁄  2 30 695 587 

λ 20⁄  2 50 2361 703 

Table 3. Runtime and Memory Requirements for the results of Fig.9. 

 

Fig. 9b) compares the radiating fields in the E- and H- plane 

obtained when the antenna is excited using a crude coaxial cable 

geometry described by 4 segments and a fine geometry described by 

50 segments and shows that the geometrical description of the cable 

does not affect the far field pattern, the results being indistinguishable 

in both forms of the plots. This is an encouraging result as it shows 

that valuable computational savings can be made when analysis of far 
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field patterns is the principle objective of the simulation. For example, 

a 20% saving in the memory and a 30% saving in the runtime is 

obtained by describing a coaxial cable crudely with 4 segments 

compared to a fine geometrical description of 50 segments without 

affecting the far field pattern. 

 
(a) 

 
(b) 

Fig. 10. a) Normalized radiation intensity in the E-plane and H-plane and b) 

S11 parameter for different sizes of the computational box. 

 

Background 

Mesh 

Near field 

volume 

target, mm3 

Computational 

box size 

Runtime 

(s) 

Memory 

(MB) 

λ 20⁄  2 0.5 λ 2963 662 

λ 20⁄  2  1.0 λ 2550 1328 

λ 20⁄  2 1.5 λ 3268 2836 

λ 20⁄  2 2.0 λ 3285 5287 

λ 20⁄  2 3.0 λ 9189 14459 

Table 4: Runtime and Memory Requirements for the results of Fig. 10. 

 

The impact of the size of the computational box on the antenna 

radiation intensity and S11 parameter is investigated in Fig. 10. The 

computational problem space is terminated at 0.5, , 1.5, 2 and 3 

away from the antenna-ground plane geometry. In all cases a hybrid 

/20 mesh, further refined in the antenna’s near field region using a 

cell volume target of 2 mm3 is used and the coaxial cable is described 

by 50 segments. Fig. 10a) shows the normalized radiation intensity in 

the E- and H-plane and Fig. 10b) shows S11. It can be seen that in all 

cases the size of the computational box does not substantially affect 

the results. However, a closer inspection shows that truncating the 

computational box more than 1.5 away from the antenna gives well 

converged results for both radiation pattern and S11. Fig. 10b) also 

shows that truncating the computational box too close to the antenna, 

i.e. at 0.5 from the antenna, gives rise to an error of 4.5dB in the 

value of S11 at 3 GHz, compared to the larger box terminated at 1.5. 

Details of the computational requirements for the different 

computational box sizes are given in Table 4 indicating that significant 

savings can be made by optimizing the size of computational box. 

Here, the run times with the smaller boxes are dominated by the effort 

for the tetrahedral cells, but with larger boxes this changes to 

domination by the cubic mesh and the scaling becomes asymptotically 

more predictable.  

B. Vivaldi Antenna on a Large Ground Plane 

The previous section explored the accuracy of antenna modeling on 

a small ground plane of the size 0.7×0.6 . This is an important step 

as it fully characterizes the antenna’s performance but it does not take 

into account the realistic setting of the antenna. The installation of 

antenna is an important aspect to consider and in this section the 

changes in antenna performance due to installation are investigated by 

considering platforms that span sizes ranging from the near to the far 

field of antenna. 

Fig. 11 and Fig. 12 explore the effect of the antenna installation on 

a square platform having a side length of 6 and 10, where  is 

the operating frequency of the antenna. In all cases a /20 hybrid mesh 

is used with target cell volume of 2 mm3 in the antenna’s near field 

region and with the computational box truncated at a distance of 1.5 

away from the structure. All simulations are run with a time step 

corresponding to using of a 2 m cubic cell and a cell clustering 

threshold of 1 m. Fig. 11 compares S11 for different platform sizes 

and shows that the size of the platform does not affect the position of 

resonant frequencies of the antenna but mainly affects the depth of the 

minima of S11, which changes by 12.95 dB at 3 GHz and by 11 dB at 

1.2 GHz with platform sizes of 0.7 and 10. This is a significant 

change in S11 prediction and contradicts the result of [19] which 

showed that the large platform of similar electrical size (8×6) had 

negligible effect on S11. Table 5 also compares computational 

resources for each installation case showing significant increase in 

computational resources as the problem size is increased. Again, the 

scaling behavior of the runtimes is strongly affected by cluster 

formation. 

Fig. 12a,b) shows the normalized radiation pattern in the E- and H-

planes respectively. Fig. 12a) shows that as the platform size is 

increased, the radiation pattern becomes more directional in the E-

plane. In the H-plane, the radiation intensity in both the main beam 

and the side-lobes is decreased, the nulls in the radiation pattern are 

shifted and the number of side lobes is increased, as shown in Fig. 

12b). 

Fig. 11 and Fig. 12 confirm that the impact of installation on antenna 

performance is practically significant and modeling antennas in their 

practical environment must be the goal. All the results in Fig. 11 and 

Fig. 12 were obtained with a hybrid mesh of unit cell size /20, 

however use of such a fine mesh becomes computationally impractical 

for ever larger electrically large platforms. Therefore, there is a strong 

motivation to investigate the use of coarser background meshes. More 

sophisticated mesh grading strategies could exploit the fact that the 

surface current density on the platform decreases significantly with 

distance from antenna. However, this places yet more requirements on 

the modeler and the mesh generation software and in the context of 

full aircraft models with many such installed components, will 
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demand a substantial human effort. Therefore here, we simply explore 

whether use of a hybrid mesh with a cruder cubic background grid 

produces sufficiently useful results. For reference, it is noted that a 

minimum sampling of /20 using a structured sugar cube FDTD grid 

is reported in [2] and triangles with edge size of /8 and /10 are 

reported in [1] with 2 times denser mesh around the antenna. 

 Fig. 13 compares the effect of the discretization on the accuracy of 

the radiation pattern for an electrically large, 10platform. 

Specifically, Fig. 13a,b) show the normalized radiation pattern in the 

E- and H- planes using a hybrid mesh sampling of /10 and /8 for a 

large platform, respectively, in each case comparing results with those 

obtained using a hybrid mesh of /20 for both the large, 10, and the 

small 0.7 platform. 

Fig. 13a) shows that installation effects play a dominant role in 

antenna field patterns and that the results from the hybrid /10 and 

/20 meshes are very similar in the main radiation pattern and location 

of the nulls. However, the most significant point is that the difference 

in patterns when installed on the small and large platforms is 

substantially greater than the errors caused by using the cruder /10 

mesh. This is a significant result as it illustrates that highly accurate 

models of isolated antennas, for example obtained using very fine 

meshes, are of limited value in assessing installed performance. This 

point is further reinforced by Fig. 13b), when even the use of a mesh 

for the installed case that would break the conventional sample better 

than /10 rule gives better results than a finely meshed isolated case. 

Table 6 compares computational resources for each case of Fig.13 

and showing that significant savings can be made if cruder hybrid 

meshes are used when modeling antennas on large platforms without 

significant loss of accuracy. 

A further significant point is that the non-uniform meshing strategy 

has provided accurate results using a background sampling density of 

/10 and /8 which is drastically lower than the FDTD method that 

required a minimum background sampling of /20 [2] and is 

comparable to those of the frequency domain multi-level fast multiple 

method (MLFMM) [1]. 

As a further example of where designer understanding of the 

physical mechanisms can be exploited, Fig. 14 explores whether 

further computational savings can be made by truncating the 

computational box just below the ground plane for platforms of size 

10 and 6 where little field is expected to exist. In all cases a /10 

hybrid mesh with target cell refinement of 2 mm3 in the antenna near 

field is used. For the 10 platform both full space and half space box 

simulations predict very similar results as shown in Fig. 14a) whereas 

for the 6 platform small differences appear in the amplitudes of 

minor side-lobes but the main features in the pattern are preserved. In 

both cases significant computational savings are made by reducing the 

computational box as outlined in Table 7, with a 34% saving in the 

memory and a 46% saving in the runtime for the case of the 10 

platform. 
 

Background 

Mesh 

Near field 

volume 

target, mm3 

Platform 

size 

Runtime (s) Memory 

(MB) 

λ 20⁄  2 0.7 λ 3336 2971 

λ 20⁄  2  1.0 λ 3295 3382 

λ 20⁄  2 6.0 λ 9756 14510 

λ 20⁄  2 10.0 λ 13470 20010 

Table 5: Runtime and Memory Requirements for the results of Fig. 11. 

 

 

Fig. 11. Comparison of S11 parameter, computational resources and the largest 

cluster size for the antenna installed on a square platform with side length of 

0.7, 1, 6and 10.

 
(a) 

 
(b) 

Fig.12. Normalized radiation intensity in a) H-plane and b) E-plane for square 

platforms with side length of 0.7, 1, 6 and 10. The inset of the figure 

shows the results in polar form. 
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(a)                                                      b) 

Fig. 13 Comparison of the radiation fields obtained using hybrid meshes of a) 

/10 and /20 cell size for electrically large platform of 10 with that of a 

hybrid mesh of /20 for the antenna installed on a small 0.7 platform; b) /8 

and /20 cell size for electrically large platform of 10, with that of a hybrid 

mesh of /20 for the antenna installed on a small 0.7 platform.  

 

Background 

Mesh 

Near field 

volume 

target, mm3 

Platform 

size 

Runtime (s) Memory 

(MB) 

λ 20⁄  2 0.7 λ 3336 2971 

λ 8⁄  2 10.0 λ 3005 2592 

λ 10⁄  2 10.0 λ 3663 4436 

λ 20⁄  2 10.0 λ 7334 11565 

Table 6: Runtime and Memory Requirements for the results of Fig. 13. 

 

  

(a)                                                    (b) 

Fig. 14. Normalized radiation intensity for the antenna on the a) 10 and b) 6 
platforms with reduced and full computational boxes. 

 
Background 

Mesh 

Truncated 

Computational 

box 

Platform 

size 

Runtime 

(s) 

Memory 

(MB) 

λ 8⁄  No 6 λ 3663 4436 

λ 10⁄  Yes 6 λ 1982 2946 

λ 10⁄  No 10.0 λ 2914 1647 

λ 20⁄  Yes 10.0 λ 894 2458 

 

Table 7: Runtime and Memory Requirements for the results of Fig. 14. 

IV. VIVALDI ANTENNA INTEGRATED IN AN AIRCRAFT WING 

This section explores how the installation of an antenna in the 

leading edge of an aircraft wing affects its performance. Besides being 

more realistic, the curved nature of this platform further motivates the 

adoption of an unstructured mesh approach such as UTLM. 

 Below, we investigate the impact of the presence of the platform, 

the antenna’s orientation within it and the introduction of a radome 

cover. The antenna is the same broadband Vivaldi antenna of sections 

3.1 and 3.2 and the perfectly conducting wing is derived from an 

NACA 0010 airfoil with chord length 1.83 m, maximum thickness 

over chord of 0.18 m and a span of 3.35 m. Fig. 15 shows the antenna 

in situ where w1 and w2, are dimensions of the flat platform on which 

antenna is mounted, t is the thickness of the platform, d is the depth at 

which the platform is positioned from the leading edge of the wing 

and s is the overall length of the wing section. All simulations are 

performed using a 10 mm mesh refined in the antenna near field with 

the target cell volume of 2 mm3.  

The choice to retain just the leading edge, rather than the full wing 

is typical of the role of modeler experience and during an iterative 

design process. Whilst installation in the full aircraft model might be 

the eventual goal, focusing attention in the first instance on the most 

significant installation effects provides a pragmatic compromise with 

computational effort. Therefore, as in the previous section, we also 

define the intermediate case where the antenna is just placed on a 

simple flat conducting plate of size w1 and w2 for comparison. 

Similarly, space precludes repeating the full investigation of section 

III and the meshing choices for the selected simulations presented here 

will be based upon the conclusions of that work. Again, this is where 

the modeler’s experience must be drawn upon. Physically, the rapidly 

varying quasi-static near field antenna fields within the wing context 

are still primarily interactions with the plate it is mounted upon and 

thus the analysis of section III is a sound basis for selecting 

parameters. The remaining mechanisms for installation interactions 

are with the vertical ribs of the wing and the diffractive phenomena at 

the edges. Comparing the wavelength to the rib spacing and given the 

expected field strengths, these do not give cause for concern for the 

parameter choice. Of course, good practice for any simulation 

motivates confirmation of this argument, but space precludes it here. 

Fig. 16 compares the normalized radiation patterns in the E- and H-

plane when the antenna is installed in the wing without the radome 

cover to those when installed on the simple flat plate. The model 

parameters are w1=0.35 m, w2=0.28 m, t=30 mm, d=0.2 m and s=2.15 

m. It is immediately clear that installation in the wing significantly 

changes the results. In the H-plane the sidelobe level is lower by 10 

dB, the radiation nulls are shifted and the intensity in the main beam 

is slightly reduced for the case of antenna installed in the wing. In the 

E-plane the pattern is more directional and possess more nulls 

compared to the case of antenna on a flat platform. 

 

 
 

 

 

Fig. 15. Vivaldi antenna installed in the leading edge of the wing facing 
forward, with and without a radome cover in place. 

 

Fig. 17 considers an alternative orientation of the antenna, rotating 

it by 90 degrees so that it faces the wing ribs and compares the field 

patterns for the two orientations. As expected, the results confirm that 

the performance of the antenna facing the wing is significantly 
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degraded due to reflections from the wing structure, especially in the 

H-plane. 

 

 

Fig. 16. Comparison of normalized radiation intensity between antenna 

installed in the wing and installed on a flat platform. 

 

 
Fig. 17. Comparison of normalized radiation intensity for antenna installed 

in the wing facing forward and facing one of the wing ribs. 

 

 

Fig. 18. Comparison of normalized radiation intensity for antenna installed in 

the wing as in a) with and without the radome cover. 

 
The impact of the radome cover on antenna performance is now 

considered. The cover is a half-wavelength dielectric layer of 

permittivity r=4.2 and thickness of 24.4 mm designed to operate at 3 

GHz. Fig. 18 shows that the presence of the radome significantly 

degrades the antenna performance by severely flattening the gain in 

the main beam in the H-plane and increases unwanted radiation in the 

sidelobes, whilst the antenna is more directive in the E-plane, with a 

prominent null at 270 degrees. 

Finally, Fig. 19 shows the S11 parameter for the antenna in the wing 

with and without the radome cover. The results show that 

consideration of the realistic setting of the wing changes the 

magnitude of S11 at 3 GHz by 16 dB compared to the flat platform 

case. S11 is additionally changed by the presence of the radome cover 

with noticeable ripples in the response that are due to the antennas 

interaction with it. 

 

 

Fig. 19. Comparison S11 for the antenna installed on the flat platform, in the 
wing with no radome cover and in the wing with the radome cover. 

 

In summary, these results confirm that the performance of the 

antenna installed in the aircraft wing will strongly depend upon the 

details of its integration within the wing, i.e. the size of the mounting 

plate, the depth of the platform from the leading edge and the presence 

of the radome cover. This paper does not have the space to explore 

optimization, rather sought to demonstrate how antenna behavior must 

be assessed in context rather than in isolation. 

V. CONCLUSION 

Antenna performance is significantly changed when installed in 

realistic environments, being affected by both near and far field 

interactions. As many applications ranging from aerospace through to 

the domestic are equipped with ever more antennas and other sensors, 

there is a strong demand to provide predictive simulations of complete 

configurations, rather than to rely on uncoupled models.  

Full wave numerical methods are powerful candidates to provide 

this capability but are computationally challenging and must be 

deployed with careful focusing of their resources. Unstructured mesh 

approaches are adept at reducing sampling densities and time stepping 

algorithms are capable of accounting for both broadband signals and 

a diverse range of exotic materials. 

For this reason, this paper has explored the issues of installed 

antenna performance using the UTLM method for the first time. The 

method’s accuracy was already established, but its applicability to this 

scenario has now been confirmed by its use for a sequence of typical 

examples. The objective here has not been to present highly accurate 

results for particular antennas, rather to investigate whether relatively 

crude models are nevertheless valuable. Indeed, it has been shown that 

cruder models accounting for the installation are actually more useful 

that highly accurate models in isolation. 
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A theme has been developed of understanding which features of a 

model impact most on the value of the results. Building upon simple 

concepts, a sequence of issues has been investigated demonstrating 

the tradeoffs between accuracy and computational effort. An 

awareness of realistic CAD data and mesh generation has informed 

this investigation and it is reiterated that showing that ideas such as 

near field refinement defined by simple boxes produce valuable gains 

is useful as trying to adopt more sophisticated schemes in complex 

configurations is likely to prove difficult to automate or demand high 

levels of human intervention.  

In particular, the paper has assessed how realistic installation of an 

antenna affects both the near field return loss and far field radiation 

pattern of the antenna. Three different environment scenarios are 

considered: antenna in isolation, i.e. on an electrically small platform, 

on an electrically large platform and installed in the leading edge of 

an aircraft wing. 

Specific results considered the required meshing for modeling 

antenna in isolation, distinguishing between the background cubic 

grid, refinement of the near field region, the impact of the feedline 

resolution and the size of the computational box. It is first clear that 

the use of hybrid tetrahedral-cubic meshes is a major asset in reducing 

runtime and memory. Further, substantial computational savings can 

be made by locally refining the mesh around antenna near field for 

accurate estimations of S11. The paper shows that using a crude coaxial 

cable geometry does not compromise the accuracy of the far field 

pattern but that for a better estimation of the S11 parameter at least 30 

piecewise sections in the cable cross section should be considered. 

Truncating the computational box at least 1.5 away from the antenna 

geometry gives converged results for both near and far field 

parameters. In the context of electrically large platforms it was found 

that background meshing sampling can be relaxed to /10 and /8 

without significantly compromising the accuracy of results. This is an 

important result that shows significant improvement in computational 

efficiency when compared to the minimum requirement of the FDTD 

method of /20 [2] and is similar to that of the MLFMM method [1]. 

For large platform sizes truncating the computational box to just 

below the ground plane yields additional computational savings 

without compromising the accuracy of results. Finally, when the 

antenna is installed in an aircraft wing it was shown that the near-field 

interactions between the antenna and the wing platform are more 

disruptive than when antenna is positioned on a flat platform. The 

radome cover causes additional disruption to the antenna pattern by 

severely reducing radiation intensity in the main beam and increasing 

the radiation in the sidelobes.  
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