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We investigate performance losses and aging mechanisms in state-of-the-art PTB7:PC70BM solar cells. Inverted 

devices incorporating a vanadium pentoxide (V2O5) top contact have efficiencies of 8%. After aging the 
unencapsulated devices we observe no changes in the open circuit voltage (Voc) or short circuit current (Jsc), 
however the fi l l  factor (FF) drops from 0.7 to 0.61.  An s-shape initially appears in the JV curve after aging, 
which can be reduced by cycling through the JV curve under i l lumination. We discuss this in context of the 

redox properties of V2O5. With impedance spectroscopy we demonstrate that changes to the contact 
interfaces are completely reversible and not responsible for the performance loss. Intensity Modulated 
Photocurrent Spectroscopy (IMPS) combined with device modelling reveals that the loss in FF is due to trap 

formation in the active layer. Additionally we observe that the performance of pristine devices is l imited by 
optical absorption in the thin active layer and the build-up of space charge which hinders carrier extraction.  

 
 

Introduction: Power conversion efficiencies of polymer solar cells have now 

surpassed 9 % [1,2,3,4].  The rapid increase in the performance is largely due to the 

development of novel donor-acceptor polymers with broad optical absorption [5]. State 

of the art power conversion efficiencies have been achieved using blends of poly[[4,8-

bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-

ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7)6 and  phenyl-C71-butyric acid 

methyl ester (PC70BM) [2,7].  

 

Despite promising results, the performance of PTB7:PC70BM solar cells is limited by 

the thin active layer3, carrier selectivity at the contacts [8], and rapid degradation of the 

active layer and contacts caused by exposure to ambient oxygen [9,10,11] and water 

vapour12,. Although inverted solar cell architectures have demonstrated high 

efficiencies combined with relatively good stability, age-induced performance loss in 



 

high performance PTB7 solar cell architectures2 has been reported, and the 

mechanisms are currently not well understood. 

 

Identifying the origins of performance loss in any solar cells is challenging because it 

involves differentiating between interfacial phenomena and bulk properties 
[13]

. 

Frequency resolved opto-electronic techniques such as impedance spectroscopy14 

and intensity modulated photocurrent spectroscopy (IMPS) [15] are useful in 

discriminating between electronic processes in the active layer and at contact 

interfaces, and correlating these with device performance. In this work, we combine 

these techniques with device modelling to identify key loss processes and aging 

mechanisms in state-of-the-art PTB7 based inverted solar cells incorporating a V2O5 

hole transport layer. After prolonged exposure to ambient conditions no change in the 

open circuit voltage (Voc) or short circuit current density (Jsc) were observed.  An s-

shape is initially observed in the JV characteristic, which can be reversed by cycling 

through the JV curve under illumination. Subsequently, a small drop in the fill factor 

(FF) from 0.7 to 0.61 was observed. With impedance spectroscopy, we demonstrate 

that changes to the device interfaces are completely reversible and that performance 

losses are due to degradation of the organic active layer. The IMPS analysis reveals 

age-related trap formation in the active layer. Interestingly, the high density of traps 

does not appear to have a significant effect on performance. We attribute this 

phenomenon to slow carrier thermalization times.  

 

Experimental: The device structure is depicted in figure 1a. The PTB7:PC70BM 

active layer is sandwiched between an Indium tin oxide (ITO)/ poly[(9,9-bis(3-(N,N-

dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)] (PFN) [16] electron 

extracting contact and a V2O5 
[17,18,19,20,21]

/Ag hole extracting contact.  The PFN and  

active layer were deposited using spin coating, while the V2O5 and silver (Ag) were 

deposited using thermal evaporation. The relative energy levels of the layers are 

shown in fig. 1b [2,22]. Impedance and IMPS measurements were carried out using a 

Metrohm Autolab. JV measurements were carried out using a Keithley 2401 source 

measurement unit in combination with a solar simulator SS80 (Photo Emission Tech, 

Inc.). Full details of the fabrication and measurement process can be found in the 

supplementary information. 
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Figure 1 a) the solar cell architecture used in this study b) relative energy positions of the 
contact materials (ITO, PFN, V2O5 and Ag) and active layer (PTB7 and PC70BM). 

 

Results: A typical light JV curve for a fresh PFN/PTB7:PC70BM/V2O5/Ag device is 

shown in Fig. 2 (red dots).  This cell has an efficiency of 8 % (Jsc = 16.7 mA/cm2
, Voc = 

0.69 V and fill factor (FF) = 0.7). The black symbols (Fig. 2) represent the JV curve of 

the same device after it has been exposed to air for four weeks (ISOS standard D-1 

[23]). It can be seen that after exposure to air, both Jsc and Voc remain constant, but FF 

is reduced to 0.61.   We observe an s-shape initially in the JV characteristics after 

ageing. The s-shape can be eliminated by cycling through the JV curve under 

illumination.  

 

Previously S-shaped JV curves have been attributed to a reduction in charge 

extraction efficiency [24,25,26,27,28] due to the formation  of an extraction barrier at the 

contacts [29,30,31]. Interesting, we also note that when the aged device is successively 

cycled through the JV curve under illumination, the S-shape is reduced (Fig. 2, grey 

symbols) and after 100 cycles the JV curve fully recovers, except for a drop in FF to 

0.61.  This suggests that JV cycling under light exposure reduces the height of an 

extraction barrier within the device.  Other reports have shown that PTB7:PC70BM 

blends are highly sensitive to photo-oxidation [9,10]. The fact that Voc and Jsc do not 

change with aging, suggests that the V2O5 hole collection layer is at least partially 

encapsulating the active layer from irreversible degradation [32]. We attribute both the 

stability of the device architecture, as well as the recovery of the JV characteristics 

after aging to the redox properties of V2O5.  

 

V2O5 is a well-known oxidizing agent, and oxygen vacancies in V2O5 are easily 

induced [12,33,34,35,36] via annealing [35,36] and environmental exposure [12,22]. The 



 

reduction of V5+ to lower oxidation states has been correlated with a decrease in the 

work function of V2O5 films [22], which would represent an extraction barrier for holes 

from the solar cell. When the device is illuminated, however, electron injection from 

the conduction band of the V2O5 into the HOMO of the donor molecule subsequently 

re-oxidizes the V2O5 thereby reducing the extraction barrier. Teran-Escobar et al. 

recently reported on a similar phenomenon, and correlated the age and oxidation 

state of solution deposited V2O5 layers with the quality of the JV characteristics of 

P3HT:PCBM solar cells 
[12]. The complete reversibility of the s-shape in the JV of our 

solar cells compared to partial recovery observed in [12] can be due to the difference in 

the properties and quality of thermally evaporated versus solution processed V2O5 

layers. These results demonstrate the potential of achieving high stability in organic 

photovoltaics via chemical control [37] of the contact interfaces to tune extraction 

barriers.  

 

To demonstrate the stability of the device interfaces and confirm that performance 

loss after aging is only related to changes in the active layer, we apply impedance 

spectroscopy. Impedance spectroscopy has previously been widely applied to study 

recombination, transport and carrier extraction barriers in organic solar cells 

[24,30,31,38,39,40]. Measurements were performed under illumination on the pristine device 

(fresh), and on the degraded device after the S-shape had been eliminated from the 

JV (aged).  

 

 

 

 

Figure 2 JV characteristics of a solar cell exposed to ambient conditions for four weeks. The 

black symbols show the initial JV curve, and gray symbols and arrows depict successive JV 



 

cycles to recover the solar cell performance. The red symbols show the JV characteristics 
after 100 sweeps.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Cole-Cole plots for the device under illumination before (black) and after (blue) aging 

are shown for applied DC voltages of 0 V, 0.4 V, 0.5 V and 0.6 V.  

 

Fig. 3 shows the Cole-Cole representation of the impedance data taken under 

illumination from the fresh solar cell (black) and after (blue) aging.  It can be seen that 

both the real (Z’) and imaginary (Z’’) impedance values are slightly lower for the aged 

device. Furthermore, it can be seen that the impedance increases minimally with 

applied DC voltage after aging. Interestingly, we do not observe features in the 

impedance spectra which are characteristic of contact corrosion impeding charge 

extraction, i.e. peaks in the dielectric loss spectra and/or the emergence of new, high 

frequency features 
[24,31,41]

, indicating that after voltage cycling the device, the 

extraction barrier resulting in the S-shape is eliminated.  

 

To better understand the impedance spectra, we fit the data with an equivalent circuit 

model consisting of 3 resistor-capacitor (RC) elements 38
. The solid lines in fig. 3 

show the fits. The details of this procedure can be found in the supporting information 

(SI).  This allowed us to correlate changes in the impedance spectra before and after 

aging with the opto-electronic response of physical sites in the solar cell, i.e. the 

contact interfaces and the bulk active layer [38,42]. From this analysis, we observe a 

decrease in the series resistance of the device after aging which we attribute to the 

V2O5 layer. Additionally there is a decrease in the resistance of the RC element 

associated with the response of the active layer. We do not observe any age-induced 

changes in the circuit elements associated with the contact interfaces.  This suggests 

that changes in device response after aging are only related to the active layer and 



 

that changes to the contact interfaces in this device architecture are completely 

reversible.  

 

To gain insights into degradation of the active layer resulting in the decrease in the FF 

we employ IMPS. IMPS has been widely applied to study electrochemical systems 
[15] 

such as dye sensitised solar cells [43], but rarely to study organic photovoltaics 

[44,45,46,47]. In this measurement a small optical AC perturbation is superimposed on the 

background light intensity, causing periodic variations in carrier density. By monitoring 

the changes in the photocurrent collected at the contacts as a function of light 

modulation, transient phenomena such as trapping, recombination and charge 

transfer at material interfaces can be probed as a function of carrier density.  The 

resulting change in the photocurrent density (J) is fit with equation, 

 

   ΦtiJexp=tJ    (1) 

 

where J represents the magnitude of the change in photocurrent, and Φ represents 

the phase shift between the light modulation and the current response.  

 

In the following measurements, the cell was kept at short circuit and illuminated with a 

red LED (627 nm) with background bias light intensities of 50 mW/cm2, 100 mW/cm2, 

150 mW/cm
2
 and 200 mW/cm

2
. 

 

Figure 4 Re(J) vs. frequency before (closed symbols) and after (open symbols) aging for 

illumination intensities of 50 mW/cm
2
, 100 mW/cm

2
, 150 mW/cm

2
 and 200 mW/cm

2
 with a red 

LED (627 nm). The arrows indicate increasing background light intensity.  



 

 

 Figure 4 depicts the real (Re) component of J vs. frequency as a function of 

background light intensity, measured before (closed symbols) and after aging (open 

symbols). Re(J) decreases with increasing illumination intensity. At higher light 

intensities carrier density is higher and recombination increases, and the sinusoidal 

perturbation produces less change in the current density collected at the contacts.  In 

addition, a weak positive dependence of Re(J) on frequency is observed. A 

comparison of the spectra reveals that the optical perturbation produces less change 

in J after aging.  

 

a)                                                                            b) 

 

Figure 5 Im(J) spectra a) before and b) after aging at illumination intensities of 50 mW/cm
2
, 

100 mW/cm
2
, 150 mW/cm

2
 and 200 mW/cm

2 
with a red LED (623 nm).  

 

The imaginary component of J, Im(J), is plotted in Fig. 5 a) before and b) after aging. 

Im(J) reflects how the generated photocurrent leads or lags the modulation in light 

intensity. The trend of the Im(J) spectra of the solar cell before and after aging are 

very comparable, except in the high frequency regime. Im(J) values are more than 10 

times lower than Re(J) values, indicating that the phase shift between 

photogeneration and charge extraction in the device is small. Interestingly, Im(J) is 

mostly positive, particularly at low frequencies and with increasing light intensity. This 

indicates that the maximum in extracted photocurrent precedes that of the photoflux, 

i.e. the device produces a maximum current before the modulated light intensity 

peaks. Im(J) decreases gradually between 10 Hz and 1 kHz, before peaking around 3 

kHz. Before aging, at frequencies above 4 kHz, the Im(J) spectra decreases and 

becomes negative. After aging the device, however, Im(J)  increases at higher 

frequencies.  



 

 

Previously, positive values of Im(J) have been attributed to degradation-induced trap 

formation [46].  However, we would not expect to see this in fresh, high efficiency 

devices. Furthermore, the gradual drop in Im(J) and the peak at 4kHz have not been 

previously reported. Difficulties in interpreting IMPS data from organic photovoltaics 

due to the complex interfacial phenomena combined with wide range of time scales 

for key electronic processes have limited its application in the field to date [45]. 

Therefore, to analyse our results, we developed a Shockley-Read-Hall based 
[48,49]

, 

drift-diffusion model to quantify the features in the spectra. 

 

The model uses an effective medium approximation to describe the electrical 

characteristics of the device [50]. The model solves Poisson's equation, the 

electron/hole drift diffusion equations and the carrier continuity equations in 1D from 

the cathode to the anode. The energetic distribution of trap states in energy space is 

assumed to be exponential and the optical profile within the device is calculated using 

the transfer matrix method (see SI for details).   

 

The device model was fit self-consistently to both the illuminated JV curve, and two 

cycles of the IMPS response of the device, at 39 Hz and at 2818.4 Hz. In order to 

keep the interpretation of the results as simple as possible and reduce the number of 

fitting parameters, the model parameters were kept symmetric. Once the model was 

calibrated to the experimental data, we asked the model to predict the shape of the 

Re(J) and Im(J) spectra from 10 Hz - 5 kHz (fig. 6). A comparison between the 

experimental (fig. 4) and simulated (fig. 6 a)) Re(J) spectra reveals the same trend; a 

gradual increase in Re(J) with frequency, and a decrease in signal with increasing 

light intensity.   

 

In the case of Im(J), experimental (fig. 5) and simulated (fig. 6 b) spectra both show a 

positive photocurrent. This indicates that when responding to a sinusoidal optical 

excitation, the device reaches its maximum efficiency and produces most current 

before the light intensity is at its maximum.  This is a counterintuitive effect, and is not 

expected in high efficiency devices at low frequencies. For frequencies which 

approach the DC case, it would be expected that changes in the light intensity result 

in immediate changes in the photocurrent. Time delays between optical modulation 

and photocurrent response at low frequencies indicates loss processes even in the 

fresh devices. The increase in the magnitude of Im(J) with increasing light intensity 

suggests processes dependent on illumination and/or charge density. 



 

  

 a)                                                                            b) 

 

Figure 6 Simulated (a) Re J and (b) Im J response of the device plotted as a function of light 
intensity.  

  

Increasing the carrier density in low mobility organic materials is expected to lead to 

the build-up of space-charge. With our model we were able to produce a positive 

Im(J) current at low frequencies by using parameters which encouraged the formation 

of non-uniform and transient spatial distributions of charge within the device, resulting 

in band bending which hinders charge extraction [15]. This resulted in a peak in 

photocurrent generation and device efficiency before the modulated light reached its 

maximum intensity. The effect could be turned on by increasing the energetic 

distribution of trap states while keeping the recombination rate low. The effect could 

be turned off by artificially increasing the permittivity of the material in the simulation 

to prevent band bending (see SI).   

 

We now consider the optical properties of the organic active layer as a function of 

light intensity. Im(J) decreases between 10 Hz to 3 kHz (Fig. 5). Interestingly, we 

were unable to reproduce this by varying the electrical parameters in the model alone. 

Furthermore, we were unable to self-consistently fit the JV curve while simultaneously 

producing the experimentally observed peak above 1 kHz in the Im(J) spectra. In 

order to self-consistently reproduce all the experimental trends in the Im(J) spectra 

with the model, we had to allow the optical absorption of the active layer to decrease 

as light intensity was increased, simulating reversible optical bleaching. Under 

increasing illumination intensity, bleaching of the active layer occurs as higher energy 

states are filled with charge, depleting the ground state and making the promotion of 

further carriers to higher states unlikely. Once easily excitable charge occupies these 

higher states, α decreases.  



 

 

We modeled this effect by reducing the optical absorption coefficient α of the active 

layer as a function of local free carrier density,  

 

            x
f

px
f

nx
f

px
f

nρ+xα=xα 00
0  (2) 

 

where nf 
o(x) and pf 

o(x) are spatially dependent density of free carriers at equilibrium 

in the dark, nf (x) and pf (x) are the density of free carriers out of equilibrium.  

 

We then examined the distinctive peak in the Im(J) spectra (fig. 5) at ~ 3 kHz.  The 

position of this peak can be shifted by altering the carrier capture and recombination 

cross sections. This peak is still observed even if the permittivity of the medium is 

increased to a very high value to turn off electrostatic effects and band bending. We 

explain this effect by considering that increasing the frequency of light modulation 

leads to increasing lag in the carrier recombination with respect to carrier generation, 

as the occupation of trap states is retarded at higher frequencies. As the frequency of 

light modulation approaches 3 kHz the trapped carrier population is 180○ out of phase 

with carrier generation, resulting from carrier recombination being faster than carrier 

thermalization (see SI). 

 

We finally turn our attention to the differences in the high frequency behaviour of the Im(J) 

spectra before and after aging. Before the device is aged (fig. 5 a) and 6 b)), Im(J) values 

continually decrease at frequencies above 3 kHz and become negative. Negative Im(J) 

values occur when photogenerated charge cannot be transported to the contacts as fast as 

the optical field is changing. Furthermore, because the optical field is changing so fast, there 

is not enough time during the IMPS oscillation to allow a build-up of space charge to hinder 

extraction.  Thus a negative imaginary IMPS signal indicates that the transit time of the 

carriers is longer than the period of the modulating light. After aging the device (fig. 4 b)) 

Im(J) continually increases at higher frequencies. This behaviour could be reproduced in the 

model by increasing the density of trap states from 5x10
25

 m
-3 

eV
-1
. to 5x10

26
 m

-3 
eV

-1
 (Fig. 

7), but not by changing recombination rates or carrier mobility values.   



 

 

 

Figure 7 The simulated IMPS spectra of the fresh device (red line) and of a device with an 
increased number of trap states (green line). 

 

Lastly it should be noted that none of the features in the Im(J) spectra could be reproduced 

by introducing extraction barriers at the device interfaces. This is in agreement with the 

results from the impedance analysis. Based on the impedance and IMPS results, the slight 

loss in FF after ambient exposure is attributed to low density trap formation in the organic 

active layer.  

 

We are able to apply IMPS together with device modelling to quantify loss processes 

in high efficiency, pristine PTB7:PC70BM solar cells. On the one hand, low carrier 

mobility, likely in the polymer phase, results in the build-up of space charge in the 

active layer, preventing the extraction of charge from the device. The poor transport 

properties of PTB7 layers is a reason why optimized solar cells based on PTB7 

employ extremely thin active layers2,8. We confirm, however, that the photocurrent in 

the device is ultimately determined by limitations in the optical absorption of these thin 

active layers3. We note that the effects are minimal under lower illumination (very low 

Im(J) values), but become increasingly apparent as the intensity is increased. 

 

After aging the device, the trap density within the active layer is found to increase by over an 

order of magnitude. Interestingly this does not affect carrier mobility values or recombination 

rates, and as a result, the photocurrent does not decrease. This could be due to the charge 

carrier capture cross section being over three orders of magnitude smaller than for a 

material system with molecularly ordered domains such as P3HT:PCBM [51]. The high 

efficiencies achieved with PTB7:PC70BM blends have been attributed to minimizing the 

domain sizes of the polymer and fullerene phases to facilitate efficient charge transfer 52. 

Further, the PTB7:PC70BM active layer is kept thin (<100 nm) to minimize non-geminate 



 

recombination losses in the amorphous polymer phase [53,54]. In contrast, solar cells based 

on P3HT:PCBM do not demonstrate pronounced dependence on the thickness of the active 

layer 8. 

The underlying molecular mechanisms related to degradation of the PTB7:PC70BM blend are 

not yet well understood [55], in contrast to the well-studied P3HT:PCBM system [56], Recently 

Razzell-Hollis et al. [9] applied Raman spectroscopy to monitor molecular level changes in 

PTB7:PC70BM blends after photodegradation. They found that photo-oxidation is a two-step 

process, and applied DFT to find that hydroxyl formation on the BDT unit was linked as a 

probable cause connected to final, irreversible degradation. Cox et al. [10] used frequency 

modulated electrostatic force microscopy on PTB7:PC70BM blends and showed that 

photodegradation results in local variations in the measured surface potential of the blend on 

the scale of 40 nm. The DIO additive used in high efficiency blends stabilised the blends 

against degradation, and prevented larger scale damage. Based on these results, we 

attribute the observed performance loss in our PTB7:PC70BM solar cells to molecular scale 

changes to the polymer backbone, and not due to larger scale morphological changes of the 

blend. 

Conclusions 

We investigate loss mechanisms in efficient inverted PTB7:PC70BM solar cells.  Upon 

exposure to ambient conditions for several weeks, an s-shape emerges in the JV curve. 

Cycling through the JV curve under illumination leads to reduction of the s-shape and 

recovery of the JV curve. No losses in Voc or Jsc due to aging were observed, however the 

FF drops from 0.7 to 0.61. Both impedance spectroscopy and IMPS demonstrated that after 

JV cycling there was no significant extraction barrier present in the device, indicating that 

changes to the contact interfaces are completely reversible.  By applying a Shockley-Read-

Hall drift-diffusion model together with IMPS measurements, we investigate processes 

related to performance loss in the active layer. We demonstrate that the intensity-dependent 

positive Im(J) response of the IMPS spectra at low frequencies indicates reversible optical 

bleaching of the thin active layer as well as band bending effects. Traps are formed in the 

active layer upon aging, however, they do not significantly decrease device performance. 

We attribute this to a slow carrier thermalization rate in the PTB7 material system. These 

results reveal that key performance limiting mechanisms in state of the art organic solar 

cells. 
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