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Abstract
Manufacturing has recently experienced increased adoption of optimised and fast solutions for
checking product quality during fabrication, allowing for manufacturing times and costs to be
significantly reduced. Due to the integration of machine learning algorithms, advanced sensors
and faster processing systems, smart instruments can autonomously plan measurement
pipelines, perform decisional tasks and trigger correctional actions as required. In this paper, we
summarise the state of the art in smart optical metrology, covering the latest advances in
integrated intelligent solutions in optical coordinate and surface metrology, respectively for the
measurement of part geometry and surface texture. Within this field, we include the use of a
priori knowledge and implementation of machine learning algorithms for measurement
planning optimisation. We also cover the development of multi-sensor and multi-view
instrument configurations to speed up the measurement process, as well as the design of novel
feedback tools for measurement quality evaluation.

Keywords: industry 4.0, optical metrology, smart measurement system,
flexibility and automation, measurement quality

(Some figures may appear in colour only in the online journal)

1. Introduction

During recent decades, measurement processes have become
more flexible, due to the integration of knowledge-driven
algorithms in combination with multiple sensors and/or meas-
urement technologies [1, 2]. Exploiting the advantages offered
by different measurement solutions, the design of advanced
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configurations contributes to the definition of what is now
called a ‘smart system’ [3, 4]. By monitoring in-process meas-
urements, smart solutions can adaptively control the produc-
tion line, stopping a process when errors are detected or even
adjusting parameters to retain consistency. Automation of
inspection processes is increasingly used to aid in the meas-
urement and control of manufacturing processes, reducing
dependence on manual inspection, speeding up processes and
minimising the possibility of human error [5].

We begin this review with a definition of smart systems
and an overview of the concepts of flexibility and automa-
tion. Then, we illustrate the latest advances in the field of
optical metrology, particularly covering the key technologies
in optical coordinate and surface metrology, respectively for
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the measurement of part geometry and surface texture, and
discuss the current state of the art in the two respective areas.
We conclude the review with a discussion of the latest devel-
opments in smart measurement solutions and their applic-
ation in industrial production lines. Particularly, we report
examples of information-rich metrology (IRM) and the use
of a priori knowledge about measurements; the combination
of multiple sensors and/or measuring technologies within the
same measuring setup (i.e. multi-sensor data fusion); optical
multi-view systems for in-line, on-machine and post-process
measurement applications; machine learning for measure-
ment optimisation; and incorporation of real-time and/or post-
measurement feedback in the form of performance indicators.

1.1. Smart systems: a definition

To address the current challenges and limitations relating
to the integration of measurement technologies within the
factories of the future, faster and more sophisticated software
and hardware are being developed to drive the deployment
of ‘smart’ measurement solutions. In this work, an instru-
ment is defined as smart when it can incorporate functions
of automatic operability and consequent correction mechan-
isms, making decisions based on the available data in a pre-
dictive or adaptive way; quickly targeting issues and respond-
ing to specific situations [3, 6]. For example, the last five to ten
years have seen a decrease in the sources of error coming from
human operators, leading to a significant reduction in meas-
urement cycle times. We have also seen increased accuracy,
reliability and continuity as a consequence of the introduc-
tion of adaptive technologies and programmed robotic-based
sensors to factory floors [7]. The increased integration of such
advanced instruments in production highlights the need to
measure manufactured workpieces along the production line
more effectively, flexibly and autonomously, while maintain-
ing high levels of accuracy [8, 9].

1.2. The concepts of flexibility and automation

To address complex applications, measuring instruments have
become more flexible, automated and intelligent, as a result of
the development and incorporation of smart algorithmic solu-
tions (including machine learning) and automated technolo-
gies. The concept of flexibility, defined in the ‘Manufacturing
Metrology 2020’ roadmap (VDI/VDE-GMA [10, 11]) as the
‘adaptation to changes in measurement tasks’, indicates the
capability of an instrument to respond smartly to changes in
the measurement conditions and requirements [9]. Primarily
linked to the concept of automation (i.e. ‘the use or introduc-
tion of automatic equipment in manufacturing with a minimal
direct human operation’ [10, 11]), flexibility has become one
of the pillars of productivity enhancement in industrial manu-
facturing lines.

To handle complex tasks, flexible and automated solutions
require not only robust planning of actions but must also the
ability to self-adapt to runtime changes. Despite the underly-
ing measurement principles staying the same, flexible devices
feature the ability to automatically inspect new components

and adapt to different measuring tasks. Flexible devices must
also operate with the same precision and accuracy on surfaces
with different optical characteristics (for example, translu-
cent, highly reflective), materials (for example, glass, poly-
mer, metal), colouring (including black/white), and size and
complexity of part shapes (for example, freeform geometries)
[12]. Adaptability can be achieved using knowledge-driven
algorithmic solutions, which represent the key to guide instru-
ments towards fast measurement executions. Such solutions
can involve running intuitive functions and feedback mech-
anisms for performing automated corrective actions, changes
in the measuring parameters or adjustments of tolerance lim-
its before initiating production [3, 6]. Particularly, available
pre-existing information (for example, a priori knowledge
of the manufacturing process, knowledge about the meas-
ured object, knowledge of the measurement technology prin-
ciples) can help guide instruments in the inspection and veri-
fication of parts and be used to monitor the manufacturing
process [13–15]. The IRM paradigm is discussed in depth in
section 3.1, along with other examples of current advanced
software and hardware measurement solutions.

2. Measurement technologies for part geometry
and surface texture

In recent years there have been significant advances in optical
measurement in both optical coordinate and surface metrology
[16, 17]. In-depth discussions of the many advances in these
fields are somewhat beyond the scope of this review, but we
will cover some of the key technologies in brief and discuss
the current state of the art in both part geometry and surface
texture measurement.

2.1. Optical coordinate measurement technologies

Coordinate metrology is the science and application that refers
to the measurement of the physical geometry of an object
[18], either via contact or non-contact measuring machines.
More specifically, an optical non-contact three-dimensional
coordinate measuring system performs the measurement of
the spatial coordinates exclusively by using optical sensors
(as defined in ISO/DIS 10360-13 [19]). Many definitions can
be found in literature to indicate this type of measurement.
Often it is called ‘part geometry’, ‘shape’ or ‘form’ meas-
urement. Throughout the review, we have opted for the term
‘part geometry measurement’ to differentiate from the spe-
cific measurement of deviation from some nominal shape
(i.e. form measurement) and as a more specific term than
simple coordinate/shape measurement. In addition, the terms
calibration and characterisation used in this work in the context
of optical coordinate metrology are here clarified. Calibration
is defined in the International Vocabulary of Metrology as the
‘operation that, under specified conditions, in a first step estab-
lishes a relation between the quantity valueswithmeasurement
uncertainties provided by measurement standards and corres-
ponding indications with associated measurement uncertain-
ties and, in a second step, uses this information to establish a
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relation for obtaining ameasurement result from an indication’
[20]. Calibration is in simple terms a comparison between two
measurements, one of which is a reference or a standard value,
and the other which is being tested [18]. On the other hand, the
term characterisation is used in this work to specifically indic-
ate the determination of the parameters necessary for the cal-
ibration of a measuring system. In the specific case of optical
measuring technologies such as fringe projection and photo-
grammetry, we refer to the intrinsic and extrinsic camera para-
meters. Further definitions relating to optical coordinate met-
rology in general can be found in [18].

Optical measurement of part geometry is generally per-
formed using one or more technologies that are the focus of
a large array of current research studies. In a recent book,
Leach [16] covers the state of the art in optical part geo-
metry measurement in more depth than we will do here but,
in brief, the key technologies are the following. Because
of the diversity of technologies encompassed with optical
coordinate measurement, it is not possible to convey a single
working principle of all optical co-ordinate measurement tech-
nologies through discussion of a working principle, measure-
ment pipeline or other technical specifications (for example
measurement range), but we have outlined below the work-
ing principles of various key optical coordinate measurement
technologies.

• Laser-based measurement systems (triangulation and time-
of-flight (TOF)): Laser-based measurement systems have
been common in measurement for some years, with two
technologies, based on the principles of triangulation
[21, 22] and TOF [23], respectively, being most com-
mon. TOF-based systems are particularly common in large-
scale applications (for example, civil engineering) where
long range capability is required, while triangulation-
based systems are more common in industrial manufac-
ture, where the relative increases in precision are of signi-
ficant benefit. Within the context of technologies covered
by this review, triangulation systems are significantly more
common, and recent research developments in this area
have been focussed on the development of novel sensing
technologies, understanding the effect of surface proper-
ties on measurement systems and evaluating uncertainty
for triangulation-based systems. A significant amount of
research is currently also being devoted to new applications
of triangulation-based systems. A thorough review of recent
advances in laser triangulation-based measurement techno-
logies is available elsewhere [21].

• Photogrammetry: Photogrammetry has recently become a
key optical measurement technology and involves the recon-
struction of a three-dimensional (3D) point cloud from two-
dimensional (2D) images of the measured object. Com-
mon for some time in the film, video games and remote
sensing industries [24–26], recent advancements have seen
close-range photogrammetry more heavily applied to indus-
trial manufacture, particularly through the development of
methods of characterisation and calibration of photogram-
metry systems, as well as improvements to speed and
accuracy through process optimisation [27, 28]. Thorough

reviews of recent advances in close-range photogrammetry
technologies are available elsewhere [29, 30].

• Fringe projection: Fringe projection technologies involve
the optical measurement of surfaces bymeasuring the distor-
tion of a projected fringe pattern as a result of the object onto
which that pattern is projected [31]. Non-fringe-based pat-
terns are occasionally used in other ‘structured light’ tech-
nologies, though fringes are by far the most common pattern
type used. Recent research in the area has focussed on gener-
ation of advanced fringe patterns [32], as well as in develop-
ing novel methods of fringe analysis and phase unwrapping
[33, 34]. Further research has recently been published in the
use of high dynamic range fringe projection [35], as well as
calibration and performance verification methods for fringe
projection technologies [36, 37]. There has also been a signi-
ficant amount of recent research in increasing measurement
speed [38], automating fringe projection systems [39, 40]
and integrating them into in-line manufacturing scenarios
[41, 42]. A thorough review of recent advances in fringe pro-
jection technologies is available elsewhere [31].

The above hardware technologies are supported by ongoing
research into software and analysis techniques. Such research
is particularly focussed on the development of novel machine
learning methods for data analysis; new ways of interrogating
point cloud data to provide information about a measured part;
methods of measuring freeform geometries; and the develop-
ment of performance verification methods for optical part geo-
metry measurement. These technologies and techniques are
summarised as follows.

• Machine learning: machine learning methods have been
increasingly applied to the field of smart optical measure-
ment in recent years. Such methods are the subject of a sig-
nificant part of this review (see section 3.4) so we will not
detail them here, but a further review of machine learning
approaches in optical measurement of part geometry is given
elsewhere [43].

• Point clouds: A 3D cloud of points, where each point com-
prises a set of x, y, zCartesian co-ordinates and the cloud rep-
resents the measured 3D object [44]. Recent developments
in point cloud analysis involve the development of new
algorithms for aligning and filtering point clouds [45], as
well as to provide newmethods of faster and easier searching
of information within a point cloud. Pre-processing of point
clouds is also a research focus, with a wealth of research
aimed at improving aspects of the point cloud, such as
part coverage and point sampling, as well as developing
and optimising methods of point feature determination, sur-
face model fitting and point cloud registration [46]. Determ-
ination of measurement uncertainty for point clouds also
remains a significant challenge (see [47] for an example
method for doing so). Thorough reviews of recent advances
in point cloud technologies are available elsewhere [44–46].

• Performance verification: Efforts to develop standardised
methods of verifying the performance of optical meas-
urement systems have been underway for a number of
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years. VDI/VDE 2634 parts 2 and 3 [48, 49] are pub-
lished guides to verifying optical co-ordinate measurement
instrument performance which have been available since
2012 and 2008, respectively, while ISO 10360-13 [19] (the
international standard method for verifying instrument per-
formance) is now at international draft standard stage. A
summary of guidance to performance verification for optical
co-ordinate measurement is available elsewhere [37].

2.2. Optical surface measurement technologies

Optical measurement of surfaces is a core part ofmanymodern
manufacturing processes, with the measurement of functional
surfaces becoming increasingly critical in high-value man-
ufacturing applications across industry [50]. Surface texture
measurement involves the measurement and characterisation
of the fine-scale topography of surfaces, and there is a current
wealth of ongoing research in developing new technologies
for that purpose, often focussed around improving measure-
ment speeds and an instrument’s ability to be robust to envir-
onmental changes; decreasing instrument sizes; and develop-
ing calibration pipelines. In a recent book, Leach [17] covers
the state of the art in optical surface texture measurement in
significantly more depth than we will do here but, in brief, the
key technologies are as follows (also see [51] for a summary of
the terminology used in surface metrology). As in the coordin-
ate case, because of the diversity of technologies encompassed
with optical surface measurement, it is not possible to convey
a single working principle of all optical surface measurement
technologies through discussion of a working principle, meas-
urement pipeline or other technical specifications (for example
resolution), but we have outlined below the working principles
of various key optical surface measurement technologies.

• Coherence scanning interferometry (CSI): CSI is a com-
mon method for optical measurement of areal surface topo-
graphy, which uses a type of reflection-mode interference
microscopy that builds up a 3D height map of a surface by
stacking 2D images along the optical axis of the instrument
[52]. Ongoing research in the area focusses on expanding
the applications of CSI systems to complex surfaces (for
example, those containing high slopes, step-like transitions
or thin films [53–56]), as well as developing new surface
reconstruction methods and improving theoretical model-
ling of CSI systems [57, 58]. Development of system calib-
ration and error correction pipelines is also an area of active
research [59, 60], that ties directly into efforts to improve
theoretical models. A thorough review of recent advances in
CSI technologies is available elsewhere [52].

• Focus variation microscopy (FVM): FVM is another well-
established surface measurement technology that uses local
contrast in narrow-depth-of-field 2D images to build up
a 3D height map of a surface [61]. Current research in
FVM technologies includes development of algorithms to
improve measurement of, for example, smooth surfaces
and vertical walls [62, 63], as well as in measurement
speed increases and measurement system size decreases

to allow for in-process measurements [2]. A thorough
review of recent advances in FVM technologies is available
elsewhere [61].

• Imaging confocal microscopy (CM): CM involves the use
of confocal pinhole to create optically-sectioned 2D images
that are then stacked into a 3D height map of a surface [64].
Research into CM is currently focussed on development of
methods for calibration and adjustment of CM systems [65],
as well as in integrating confocal technologies with other
surface measurement technologies, such as FVM, by devel-
oping methods for performing simultaneous FVM and CM
in a single scan [66]. Other technologies exist that are sim-
ilar to CM, such as active illumination focus variation [62]
and structured illumination microscopy [67], though these
are less well established in industrial surface measurement.
Non-scanning chromatic confocal technologies can also be
used for surfacemeasurement [68], though their applications
are more abundant in the biomedical sector than in manu-
facturing due to the generally poorer precision exhibited by
chromatic systems compared to imaging systems [68, 69].
A thorough review of recent advances in CM technologies
is available elsewhere [64].

• Non-scanning technologies: While CSI, FVM and CM rep-
resent the cutting edge in areal surface topography measure-
ment, these technologies are inherently limited in terms of
their measurement speed by the fact that they require a scan-
ning operation in at least one axis [17]. For real-time applic-
ations, non-scanning areal surface texture measurement
technologies, such as wavelength-scanning interferometry
[70, 71], dispersed reference interferometry [72], chromatic
CM [68] andmicro-scale fringe projection are required [73].
These technologies are commonly capable of significant
decreases in measurement time, generally at the cost of
decreased precision and/or accuracy. A thorough review of
recent advances in non-scanning technologies is available
elsewhere [73].

• Scattering approaches: Another non-scanning technology,
scattering approaches offer a fast route to surface meas-
urement. Unlike the technologies listed in the previous
paragraph, scattering approaches do not measure areal sur-
face topography on a pixel-by-pixel basis, instead using
the light scattered from a surface to holistically recon-
struct the surface [74]. Recent advances in these techno-
logies involve the extension of this technology (which is
established in smooth surface measurement) to rougher
surfaces [75], expanding its range of applications and
developing advanced algorithms for ever-faster computa-
tional surface reconstruction [76, 77]. A thorough review
of recent advances in scattering approaches is available
elsewhere [74].

3. State of the art in smart optical measurement
solutions

Research into smart optical measurement technologies gener-
ally aims to build on the current state of the art in the technolo-
gies discussed in section 2. Inmany cases, this research aims to
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incorporate additional aspects into the measurement pipeline,
such as a priori information about the measured objects and
the measurement process itself. In this section, we discuss the
state of the art in solutions for smart optical measurement,
which have been widely applied across industry. Through-
out this review, we have reported examples of smart solutions
within the context of traditional manufacturing and additive
manufacturing, including applications in the automotive and
aerospace industries. Applications in the medical sectors, as
well as in small scalemetrology (particularlymanufacturing of
electronics and semiconductors), are considered to be outside
of the scope of this review, as these areas are broad enough to
constitute additional review works in their own right. The role
of optical metrology specifically in the context of digital man-
ufacturing is discussed elsewhere [78], in which the authors
have reported numerous examples of optical measurement
solutions applied into different manufacturing environments.

Exploiting the advantages offered by existing optical meas-
uring technologies, there are a large range of intelligent
solutions, with increased capability for self-adaptation and
flexibility [7, 11, 79]. These solutions not only allow for the
measurement process to be optimised, but also for perform-
ing autonomous operations and corrections to deliver results
often in real-time [80]. These advances are possible because
of the use and integration of intelligent algorithms and optim-
ised configurations in the instrument designs [7].

Advanced solutions allow for new integrated smart man-
ufacturing methods that exhibit high levels of adaptability
and rapid design changes, digital information technology, and
more flexible technical workforce training [81]. Examples of
such smart advanced solutions are described in the following
sections, including:

• incorporation of a priori knowledge into the measurement
pipeline (information-rich metrology paradigm) and data-
driven approaches;

• combination of multiple sensors and/or measuring technolo-
gies within the same measuring setup (i.e. multi-sensor data
fusion);

• optical multi-view systems for in-line and on-machine
measurement applications, and post-process maximisation
of measurement coverage;

• machine learning-integrated algorithms for optimisation of
measurement procedures;

• incorporation of real-time and/or post-measurement feed-
back in the form of performance indicators for corrective
actions and adjustment mechanisms.

3.1. Information-rich and data-driven metrology approaches

Leach et al [15] introduced the term ‘information-rich metro-
logy’ (IRM) to indicate the enhancement of any measurement
process through the use of pre-existing (i.e. a priori) informa-
tion. The IRM paradigmworkflow is shown in schematic form
in figure 1. In the IRM approach, information comes from
knowledge of an object/surface being measured, knowledge
of the measuring instruments employed and knowledge of the

physical interactions/principles underlying the measurement
technology itself, with respect to the object being measured
[13–15]. The use of additional sources of information contrib-
utes to the enhancement of the performance of a measurement
system, and thus increases the final quality of its measurement
output. For a digital manufacturing scenario, IRM tools can be
applied in the production lines and in digital future factories.
Learning from prior measurements would signify an improve-
ment of future measurement processes and results.

Several authors have presented examples of the integration
of a priori information into the measurement pipeline/instru-
ments to improve the quality of a measurement. Syam et al
[82] developed a methodology for the design of in-line sur-
face measuring instruments based on the IRM framework.
The developed pipeline is divided into three phases: phase 1
is knowledge and a priori data gathering, phase 2 is instru-
ment and control software development, and phase 3 is the
use of the developed in-process measuring instruments for
in-line control. In particular, phase 1 consists of gathering
both knowledge (information) and data related to instrument
requirements, measured surfaces, measurement models and
manufacturing processes [83]. Another attempt to incorpor-
ate pre-existing knowledge to the measurement pipeline and,
more specifically to the characterisation of surface topograph-
ical measurements, is illustrated elsewhere [13]. The advant-
ages and challenges of introducing heterogeneous sources of
information in the surface characterisation pipeline were dis-
cussed, providing examples about the incorporation of know-
ledge of part nominal geometry, the manufacturing process
and the measurement instrument selected.

A fundamental part of the IRM paradigm involves the
development of smart algorithms and machine learning solu-
tions. Peuzin-Jubert et al [84] recently reviewed state-of-the-
art methods for optimisation of the measurement view plan-
ning of mechanical parts on machine tools, controlled in real
time without human intervention, thereby allowing for auto-
mated adjustment of machine parameters and tool paths dur-
ing the fabrication process. Their classification considered
a priori knowledge methods (i.e. optimisation of the scan-
ning path based on information from CAD, mesh model, etc.),
and search-based methods (i.e. without the need of any input
model, iterative adjustment of the scanning path in real-time
for reverse engineering applications). In their classification,
they introduce numerous quality criteria, including coverage
and part accessibility (see section 3.5). Prior to this work,
Catalucci et al [85, 86] developed a set of algorithmic solu-
tions for the assessment of the quality of complex measured
shapes, based on knowledge of a reference model in the form
of a triangle mesh and the intrinsic properties of measured
point clouds. Zhang et al [87] proposed a technique to optim-
ise the number of cameras and their respective positions for
the measurement of the geometry of a given object. Using vis-
ible point analysis, their approach was based on the exploita-
tion of the information given by the reference CAD underlying
the measured part. Kinnell et al [88] presented an algorithm
for determining optimal positions for a robot-mounted 3D
vision system used in a wide range of manufacturing tasks,
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Figure 1. The information-rich metrology (IRM) paradigm (term introduced in [13]). The raw measured data (i.e. the direct result from the
measuring instrument) and the final result (i.e. improved optimised measurement result) are indicated with solid red arrows and they are the
primary input and the final output of the process; the additional a priori information (for example knowledge of an object/surface being
measured, knowledge of the measuring instruments employed and knowledge of the physical interactions/principles underlying the
measurement technology itself, with respect to the object being measured, etc) are indicated with dashed red arrows.

such as locating tools and parts, inspecting part geometry and
checking of alignment in assemblies, for applications that are
subject to large inherent variation. For example, these vis-
ion systems are commonly employed in challenging pick and
place operations that require components, presented in a ran-
dom orientation, to be located and manipulated by a robot. In
their work, a priori information from a CAD model was used
to identify visible key points on the surface of the model per
camera viewpoint and, thus, determine optimal positions. A
priori information of the CAD part model to perform a guided
inspection planning strategy was presented by Sadaoui et al
[89]. Through recognition and extraction of geometric fea-
tures on the measured part CAD model, a laser line sensor
and a touch probe were combined for automatic generation of
inspection scanning sequences (i.e. a computer-aided inspec-
tion planning approach). A fuzzy logic model was used to
define the best positions and orientations for the measure-
ments. Other example applications of the IRM paradigm are
presented elsewhere [14].

As the IRM is used to improve the final result based on
gathered pre-existing information (includingmeasured data), a
similar process is the so-called ‘data-driven’ approach; a pillar
of the latest manufacturing revolution [90]. Data-driven meth-
ods are based on the availability of a large amount of data col-
lected by smart systems equipped with advanced sensors from

which observations and evaluations can be drawn to further
improve a process. If scarce, data results in poor informa-
tion, whereas an abundance of data can be used to keep track
of the manufacturing process and, consequently, make bet-
ter evaluations and predictions [91]. More specifically, data-
driven methods that stem from statistics to machine learning
can potentially enable intelligent, cost-effective measurement
and thus allow manufacturers to use data for better decision-
making results [92]. The data-driven framework is reviewed
elsewhere [91]. The workflow consists of four layers and is
outlined in figure 2.

The first layer of this framework is known as the ‘manufac-
turing layer’, which comprises different types of manufactur-
ing process, through which a product is designed, manufac-
tured, assembled and checked. The second layer is the ‘data
layer’ where data is collected, stored and visualised for the
preparation of data processing. Via data processing, raw data
is transformed into useful knowledge in the ‘knowledge layer’.
Finally, in the ‘decision layer’, knowledge is used to make
decisions that help to create accurate simulations, evaluations
and predictions to facilitate smart manufacturing.

Several authors have presented example applications of
data-driven metrology in manufacturing (for example, addit-
ive manufacturing [93–95], manufacturing of semiconductors
[96] and aerospace manufacturing [97]). Particularly,
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Figure 2. The data-driven framework from Xu et al [91], comprised of four layers: manufacturing, data, knowledge and decision.
Reproduced from [91]. CC BY 4.0.

Susto et al [96] proposed dynamic sampling approaches for
data-driven metrology plan optimisation and cost reduction
in the semiconductor manufacturing industry. Brunton et al
[97] reviewed the opportunities and challenges of integrat-
ing data-driven science and engineering into the aerospace
industry using machine learning techniques for safety-critical
applications (i.e. aerospace design, manufacturing, verific-
ation, validation, and services). Guo et al [98] proposed
an automated data-driven measurement pipeline for rapid
3D shape reconstruction including characterisation of the
selected optical measuring instrument, multiple measurement
acquisitions and automated full registration. Their optimised
algorithm could find corresponding homologous point pairs
in range data from different view angles, using knowledge
extracted from the rectified images. Yang et al [99] reviewed
the state of the art in data-driven spatial/spatiotemporal inter-
polation and sampling methods for geometry measurement
with a focus on manufacturing applications. The methods
reviewed are based on knowledge coming from data extracted
from highly dense measured areas to draw inferences about
unmeasured regions of the part geometry.

3.2. Multi-sensor data fusion

Multi-sensor data fusion is a broad topic, that involves research
across disciplines and fields. Here, however, we will focus
on aspects of multi-sensor data fusion relating specifically to
smart optical metrology. In their 2013 review, Khaleghi et al
[100] summarised the general state of the art in the broad field
of data fusion at the time, noting that research in data fusion
was steadily becoming more commonplace and highlighting
some key research challenges. These challenges were related
particularly to scale (i.e. the need for large-scale data fusion
from a large number of sources) as well as the abundance

of non-conventional data (such as written reports and web
pages). Khaleghi et al concluded their paper with a prediction
that the future of data fusion research lay in the develop-
ment and adoption of evaluation protocols that are independ-
ent of the given application domain and that there would be
extensive ongoing research into the performance of data fusion
system security and reliability in the coming years. Simil-
arly, in their 2015 paper, Wang et al [101] reviewed data
fusion within the context of surface metrology, noting that hol-
istic workpiece measurement is increasingly becoming neces-
sary in modern engineering, with new fusion technologies
required to characterise complex surface geometries featuring
high-dynamic range structures and re-entrant features, such
as friction-resistant feature arrays, broad spectrum absorption
surfaces and self-cleaning surfaces, engineered with repetitive
structures on the micro-/nano-scale. Wang et al also commen-
ted that there are common threads in spatial data fusion solu-
tions, particularly that they follow similar process frameworks,
comprising four steps: pre-processes, registration, fusion and
post-processes. Within these four processes, registration had
been widely investigated, while fusion had a more limited set
of available algorithms, with significant further investigation
required. Post-processing efforts were also limited, with the
development of specialised spatial database management sys-
tems required.

In state-of-the-art measurement systems, data fusion can
be used to synthesise information from multiple individual
sensors (i.e. featuring different measurement technologies),
with the common goal of providing results greater in quality
that the sum of their parts. In other words, multi-sensor data
fusion refers in this work specifically to the fusion of hetero-
geneous data captured using measurement technologies of dif-
ferent nature. In their 2009 review, Weckenmann et al [102]
discussed the use of data fusion in dimensional metrology,
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noting ongoing challenges in merging and processing mul-
tiple data models, multiscale technology, uncertainty of multi-
sensor measurements and automation. While this review is
now somewhat older than the state of the art, these challenges
remain broadly applicable today. In 2020, Meng et al [103]
provided a review on machine learning in data fusion as a
general field, noting four key open issues. The first of these
relates to the current relative simplicity of machine learning
implementations, with Meng et al noting the opportunity for
deep learning to be implemented for data fusion. The second
open question relates to the efficiency of fusion algorithms
(or lack thereof), with Meng et al noting that little effort has
been put into improving the computational efficiency of cur-
rent implementations. The third open issue relates to a lack
of robust methods for data fusion, with many current meth-
ods lacking suitability for practical applications due to fail-
ures in algorithm implementations as a result of, for example,
noisy data. Meng et al final observation relates to data privacy
and security, with the authors noting the sensitivity of machine
learning methods to data leakage [103].

Further to the publication of these review works, there
have beenmany studies conducted on development ofmachine
learning methods for data fusion in optical metrology, used for
applications ranging from micro-scale surface texture meas-
urement to mapping (for example [104–107]). One trend in
research in the field ofmulti-sensor data fusion is improvement
of the functionality of traditional algorithms with machine
learning or other artificial intelligence (AI) techniques. For
example, Gong et al [105] proposed an machine learning
algorithm based on Gaussian process regression, using a four-
view stereo vision system to gather data. Gong et al tested
their newmethod using a high-order curved surface and exper-
iments with a freeform surface, with results indicating that this
Gaussian process-based machine learning method performed
better than traditional Gaussian process-based algorithms, in
terms of the accuracy and efficiency of the reconstruction.
Another example of the combination of traditional algorithms
with machine learning is a neural network method named
‘DeepFit’, developed by Ben-Shabat and Gould [106] This
method involves the application of neural network algorithms
to learn point-level weights for weighted least-squares poly-
nomial surface fitting. The method is also able to extract nor-
mal vectors and other geometrical properties from the sur-
face data. The experimental results presented by Ben-Shabat
et al show the algorithm’s robustness to noise and the applic-
ation on noise removal. Abdelazeem et al [107] proposed a
data fusion method for high-coverage 3D mapping of build-
ing constructions. This method involved fusing high-density
but low-coverage point cloud data obtained using a terrestrial
camera with a high-coverage but low-density data point cloud
obtained using an unmanned aerial system (UAS). Using data
obtained from a terrestrial laser scanner (TLS) as a reference,
the results showed an improvement in registration error when
registering the fused camera/UAS-based point clouds to TLS
data compared the registration results for the unfused datasets.

In-process optical measurement is another common thread
in multi-sensor data fusion, with, for example Moretti et al
[108], developing methods for in-process measurement of

additive manufacturing processes. It is clear from the avail-
able literature that multi-sensor data fusion is a topic of cur-
rent research, much of which is intertwined with research into
machine learning methods. A thorough review of the intersec-
tions between multi-sensor measurement and data fusion was
recently published by Kong et al [109], who noted the emer-
gent nature of multi-sensor data fusion research and the rapid
increase in publications in this general area. Kong et al suggest
that demand for data fusion algorithms is likely to increase
over time, and that fusion technologies are likely to be at the
core of the next generation of industrial measurement systems.
Current issues that Kong et al noted, however, relate to the lack
of a consistent narrative surrounding a generalised model for
data fusion and the preliminary nature of much of the recent
research into data fusion algorithms. They conclude by sug-
gesting that a unified approach and generalised model repres-
ent the next steps, with solutions to problems with data regis-
tration, data pre-processing, database construction, database
management, human-machine interface and general software
package development being required. Kong et al also noted
their expectation that AI is likely to feature heavily in data
fusion in the future and that further algorithm testing pipelines
need to be established and standardised.

3.3. Multi-view measurement systems

In ISO/DIS 10360-13 [19] a multi-view measurement is
defined as the ‘measurement of spatial coordinates through
registration and fusion of multiple single-view measurements
in different locations and orientations of the optical sensor
relative to the workpiece’. Based on this definition, multi-
view instruments have shown themselves as appealing solu-
tions, especially for post-process measurement applications,
becoming an emerging research area in both 3D geometry
and surface texture metrology over the last two decades [110].
Weinmann et al [111] presented a measuring framework for
a fringe projection system based on a multi-camera-projector
configuration. Their experimental setup consisted of multiple
cameras mounted on a hemispherical gantry (approximately
150 cameras) and they simulated a multi-projector frame-
work by placing one projector, mounted on a tripod, at differ-
ent locations. At least five different projector positions were
used to cover the whole surface of the selected test cases
(as test cases, two common objects featuring freeform shapes
with surface of challenging reflectance behaviour were used).
Weinmann et al approach paved the way for the removal
of time-consuming registration/stitching methods for multiple
measurements whilst maximising object coverage. Following
this work, Groh et al [112] developed a multi-view fringe
projection system composed of two cameras (moving along
an arc-shaped gantry) and three projectors. Once again, the
degree of coverage of the measured objects was maximised
and the time for the acquisitions was largely reduced. The
objects chosen to test the setup were a white ball target, a
wooden figurine painted in different colours and a rubber and
plastic mug.

In a production-line scenario, the employment of
multi-view configurations for the inspection of fabricated
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workpieces could be beneficial to shop floor productivity,
ultimately speeding up quality checks by maximising meas-
urement coverage and improving measurement results by
minimising the effects of occlusions. Particularly, the inspec-
tion of large objects (for example, the complete assembled
body of an automotive vehicle) or freeform geometries (such
as those produced via additive manufacturing) may appear as
challenging due to the limited field-of-view of conventional
single-view instruments [113]. To overcome this limitation,
the simultaneous measurement of an object from multiple
viewpoints could significantly reduce the inspection time,
meaning both the time required to either rotate the object
placed on a rotary stage or move the robot-mounted sensor
around it, and the time required to merge multiple acquisitions
into a single scanning output. Mineo et al [114] developed a
multi-robot flexible inspection cell, equipped with cameras for
photogrammetric measurements, to assess the position of large
composite aerospace components placed within the robots
working environment. Essentially, multi-view measurements
could offer advantages to in-line inspection scenarios; how-
ever, their exploitation in factories is still largely avoided due
to the instrument complexity and lack of flexibility in the
characterisation process.

3.3.1. Characterisation approaches. The most significant
complexity ofmulti-view instruments is the structural relation-
ship between the components (multi-camera, multi-camera-
projector, etc) and their individual characterisation [115].
In the last decade, several authors have proposed methods
to solve the issues surrounding multi-view characterisation.
The most common approach is an extension of the method
developed by Zhang [116] and Huang [117] for a single
camera-projector configuration. Using this method, each cam-
era is characterised with an accurately manufactured planar
pattern (for example, a checkerboard or circle board) and the
relationship between different views is obtained by global
optimisation of the extrinsic parameters of all the views.
For example, Albers et al [118] presented a flexible char-
acterisation method for a multi-sensor fringe projection sys-
tem by incorporating the Scheimpflug optics for the cam-
eras and defining a common world coordinate system using
a planar target. In the paper, Albers et al also discussed
the benefits of multi-camera systems with single projector
over a multi-projector unit (for example, the improvement
of measurement accuracy and the potential for performing
measurement without calibrating the projection unit). Feng
et al [119] proposed a characterisation method based on the
use of a transparent glass checkerboard, refractive projection
model and ray tracing to reduce calibration errors. Several
researchers have proposed flexible methods to solve the inher-
ent complexity of multi-view system characterisation using
3D targets [120, 121]. This method allows for the charac-
terisation of all cameras with limited-overlapping or non-
overlapping fields of view in a single operation, unifying the
multi-camera coordinates in the same reference frame and

avoiding extensive workloads and accuracy losses caused by
repeated processes. A pyramid-shaped calibration object with
triangle-coloured patterns on its faces was used by Abedi
et al [122] for circular multi-camera system characterisation.
All cameras were processed simultaneously, and the error
accumulation issue was solved. To verify the robustness of
the method, further tests were performed in dynamic scen-
arios and 3D modelling applications. Other authors have pro-
posed different characterisation methods that do not require
the use of any calibration target or other auxiliary calibration
devices. Gai et al [123] proposed a user-friendly character-
isation method for multi-view fringe projection, where digital
fringe projection and phase maps are used to acquire global
characterisation information. Similarly, Shaheen et al [115]
proposed a characterisation approach for a multi-view fringe
projection system based on correspondences between recti-
fied unwrapped stereo phase maps, where the matched phase
values between the stereo phase images are triangulated to
acquire 3D point clouds. The developed setup comprised of
two stereo pairs (four DSLR cameras and two projectors) is
shown in figure 3. Other authors [124, 125] developed global
characterisation methods for multiple camera-projection sys-
tems avoiding the pair camera cross-talks by employing par-
ticular light bandwidths (i.e. RGB optical colour filters).

3.3.2. Examples of in-line applications. Not many examples
of multi-view configurations with direct applications in in-
line measurements have been published, either as research
prototypes or commercial solutions. However, Perez-Cortes
et al [126] developed a multi-camera system able to recon-
struct the complete shape of a measured object using image
processing methods. This setup composed 16 synchronised
cameras, uniformly distributed within the measurement cell
(a cell in the shape of a polyhedron with 16 faces, unparallel
with each other to avoid overlapping of the cameras field of
view). The setup demonstrated a high level of measurement
coverage without suffering from occlusions and shadowing.
Adequate diffuse illumination was created by employing high-
power LEDs attached to the camera supports or to the inner
faces of the measuring cell. The setup was tested on simulated
objects of simple primitive geometries (for example a sphere,
a cube, and a spring), which showed its applicability to a pro-
duction line, augmenting workpiece measurement coverage
while minimising the acquisition time. Similarly, Deetjen and
Gould [125] tested their global characterisation method using
four camera-projector pairs setup as shown in figure 4 that suc-
cessfully captured flying birds, demonstrating its applicability
in an industrial quality control environment for the dynamic
measurement and reconstruction of rapidly moving, complex
objects. Birdal et al [127] developed a multi-view, close range
optical metrology system, composed of multiple static, locally
overlapping cameras, to inspect automotive parts with various
geometries.

Preliminary research on the integration of multi-view
solutions for in-process monitoring applications has been
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Figure 3. Multi-view systems: fringe projection setup comprised of four DSLR cameras and two projectors for post-processing
applications. Reproduced from [115]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.

Figure 4. The multi-view structured light system designed by Deetjen and Lentink [125]. (a) Schema showing the configuration of four
camera and projector pairs. To reduce cross-talk between the four projected patterns, three different colours matched by camera colour
filters for pairs 1–3 were used (green, blue and red respectively). The colour of the 4th pair (blue) is duplicated from the 2nd pair; (b) an
image of the actual setup. Reproduced with permission from [125]. © The Optical Society.
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Figure 5. Examples of in-process fringe projection setups: (a) mock-up of a four cameras-one projector system, designed to be integrated in
a powder bed fusion (PBF) chamber for the measurement of surface topography (Reproduced from [129]. CC BY 4.0.); and (b) CAD design
of a multi-sensor measurement system for in-situ defect identification in metal additive manufacturing (Reproduced with permission from
[130]. © EUSPEN.), which includes a multi-view fringe projection configuration and a high-speed thermal camera.

recently carried out. Kalms et al [128] developed a new
approach to evaluate 3D laser printed parts in powder
bed fusion-based additive manufacturing in-line within an
enclosed space. Dickins et al [129] developed a prototype on-
machine multi-view fringe projection system for the acquis-
ition of high-resolution surface topography information of a
metal powder bed, implementing the system into a mock-up
powder bed fusion (PBF) chamber. The setup, composed of
four cameras and one projector (shown in figure 5(a)), allowed
for a high degree of surface coverage, maintaining a high
resolving power over the entire powder bed area. Areas not
measured by a single camera are accessed from other views,
reducing data drop out. A similar configuration was proposed
by Remani et al [130] (shown in figure 5(b)). In their paper,
they presented a multi-sensor approach to evaluate the layer-
by-layer development of printed parts. The metal laser PBF
build is monitored in-process using amulti-view fringe projec-
tion system, a high-speed thermal camera and other sensors, to
capture defects as they form during the process. Remani et al
note that this system will soon be integrated into a commercial
metal PBF system.

3.4. Machine learning integrated algorithms for
measurement optimisation

Machine learning techniques differ from classical program-
matic methods, in that they do not require the programmer
to explicitly state how a problem should be solved. Instead,
a statistical model is built that learns how best to repres-
ent an approximation through training on a dataset. This
training can be either supervised (with ground truth labels)
or unsupervised (without labels, also referred to as pattern
recognition). These statistical approaches were previously an
approach constrained to research laboratories, but the recent
increase in highly parallelised processing and big data has
allowed these approaches to be deployed industrially [43].
Machine learning methods have already found applications in

small scale metrology, particularly in the process monitoring
of semiconductors [131–133], but these scales are outside the
scope of this review.

Machine learning approaches can be applied effectively to
the entire measurement pipeline; indeed, machine learning can
be used as a part of a traditional pipeline or can replace it
entirely in a so-called ‘end-to-end’ learned system [134, 135].
The following sections describe the current state of the art in
machine learning for metrology across the various measure-
ment stages, followed by a consideration of the ramifications
of using these methods on measurement uncertainty.

3.4.1. Measurement planning. Learning techniques can be
used in the measurement planning stage before data is col-
lected. For example, Zhang et al [87] presented an automated
view planning and part detection pipeline for close-range pho-
togrammetry. The proposed pipeline was based on a priori
information exploited from the CAD model of the measured
part. First, a local optimisation procedure located a seed cam-
era, from which the largest number of surface points could
be seen. A global objective function was built to consider a
combination of surface coverage, convergence angle between
camera pairs, normal angle of views to part faces, and baseline
distance between camera pairs. A genetic algorithm performed
the global optimisation to maximise the objective function,
producing a list of camera coordinates relative to the CAD
data.

An alternative approach is to leverage machine learning
to produce the measurement plan during the measurement.
This approach is performed through a next best view (NBV)
method, which iteratively finds the next camera position based
on previously collected data. An approach presented by Arce
et al [136] employed structure from motion to create an ini-
tial point cloud, from which the next position was iteratively
generated using an unsupervised model. This approach was
specifically designed for situations where the CAD model is
unavailable, an unlikely scenario in production engineering.
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If the CAD model of the object is known, the NBV positions
can be precomputed. Mendoza et al [137] took a supervised
approach to NBV by using a traditional view-planning method
based on ray tracing; the latter was used to calculate labels
and generate a dataset of 15 000 training point clouds. A 3D
convolutional neural network (CNN) was then used to predict
the NBV position directly. Comparing their machine learn-
ing based approach to traditional methods, Mendoza et al
showed that machine learning methods appeared to be con-
sistently faster, often by many orders of magnitude. Further-
more, they showed that machine learning approaches were
particularly effective at finding early camera locations but per-
formed worse when calculating later positions; consequently,
they suggested a fused approach employing machine learn-
ing to initially find a small number of camera positions and
then using a traditional algorithm to compute the following
positions.

The list of positions generated are generally given relat-
ive to the measured object, and this approach can cause an
issue as the coordinate system of the CAD data is unlikely to
be aligned with the measurement system’s coordinate frame.
Eastwood et al [138] presented a solution to this problem by
directly regressing the CAD offset from the camera coordin-
ate system using a residual neural network (RESNET-50). The
RESNET-50was trained on photorealistic renders of themeas-
urement volume using a realistic extracted material texture,
which could be applied to the CAD data, and the ground truth
offset of these images was known explicitly. Once the offset
was determined, the camera coordinates could be transformed
to allow for fully automated data acquisition.

3.4.2. Learned depth. Optical measurement requires raw
optical sensor data to be decoded into height data, this pro-
cess often requires complex and computationally expensive
algorithms. Here, we cover attempts to augment, or in some
cases replace, these traditional approacheswithmachine learn-
ing models.

3.4.2.1. Machine learning for phase unwrapping. Both
fringe projection profilometry and various forms of interfer-
ometry produce data with wrapped phase [139]. Unwrap-
ping this phase can be slow and ambiguous, especially when
the surface is not smooth within the range of the fringe
wavelength. Machine learning has much to offer here: first,
it can provide fast phase unwrapping, allowing for depth maps
to be produced at high refresh rates, enabling in-situ mon-
itoring applications. Secondly, it can provide informed pre-
dictions for the removal of ambiguities. Early work in this
field was conducted by Zhang et al [33], a dataset was created
using a traditional phase shiftingmethod. This dataset trained a
pair of CNNs to extract intermediate values required for phase
retrieval. This idea was extended by Liang et al who used a
new phase unwrapping segmentation network for fringe pro-
jection to unwrap the phase in a single step (see figure 6) [140].

Similarly, Wang et al [141] used a U-NET (similar to one
shown in figure 6) to unwrap phase in a single step. The train-
ing dataset was created in reverse by generating synthetic sur-
faces from a combination of random and Gaussian distribu-
tions, that constituted the ground-truth labels. These surfaces
were then wrapped to create the training features [141]. The
training process used in this method is shown in figure 7.

Wang et al method was tested against unseen simulated
data with added noise and aliasing, and real measurement
data. The CNN was shown to be robust to both noise and
aliasing and performed favourably when compared to tra-
ditional unwrapping approaches. Further models have been
developed to improve performance on noisy data [142, 143];
Zhang et al [143] used a similar U-NET-based CNN to per-
form phase unwrapping. However, in this case, the input was
passed through an additional modified U-NET that performed
a denoising operation. A labelled training set was generated
by synthetically adding Poisson and salt-and-pepper noise to
interferograms at a signal to noise ratio of 4 dB. When com-
pared to traditional approaches for unwrapping phase (i.e.
Goldstein’s method [144] and the quality-guided path follow-
ing method [145]), the learned method was shown to outper-
form the traditional methods. Experiments performed by Yin
et al [146] showed machine learning methods can be used
in temporal phase unwrapping to reconstruct absolute phase
maps from a pair of relative phase maps robustly. They also
show that their model can reduce the number of fringe pat-
terns required enabling real-time applications such as process
monitoring. A book chapter by Hyun et al [31] concludes that
experiments have shown machine learning models can per-
form fringe analysis more accurately than traditional phase
retrieval methods but that the huge datasets and uncertainty
surrounding the generalisation of learned models remain large
barriers to widespread adoption.

3.4.2.2. Stereo matching. Due to its applications in
machine vision (especially within self-driving cars), learned
stereo matching is a highly researched area that saw an initial
breakthrough in 2015 with the work carried out by Zbontar
et al [147], who computed stereo matching cost using a CNN.
Since then, there have been many developments (see [148]
for a thorough review). One of the most popular approaches
is called Geometry and Context (GC-Net) [134]. GC-net
takes a pair of rectified stereo images as input and employs
a twin 2D CNN to generate a cost-volume; a 3D-CNN auto-
encoder architecture processes the cost volume before it is de-
convolved and passed to a soft argmax function that outputs
the depth in the form of a disparity map. A recent approach
(ResDepth) is to use deep learning for matching refinement
in a two-step process [149]. First, the dense reconstruction is
generated through any chosen method, which can be learning-
based or not, as the case may be. To fully leverage the per-
formance of a CNN, the reconstruction should be represented
in a regular grid such as a depth map. Re-projecting the depth
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Figure 6. The workflow of the method proposed by Liang et al [140] showing the network architecture for phase unwrapping (Reproduced
from [140]. CC BY 4.0.).

Figure 7. Training and testing the learned phase unwrapping: (a) the
unwrapped phase is wrapped to produce training features with
which to train and optimise the CNN; (b) the deployed CNN
predicts the unwrapped phase on unseen samples (Reproduced with
permission from [141]. © The Optical Society).

map is performed to find the residual depth. Then, a U-Net
based CNN takes both the initial reconstruction and the resid-
ual depth as input to produce a final refined reconstruction.
In this work, Stucker and Schindler presented a robust char-
acterisation and calibration pipeline for measurements, and,
in their conclusions, they highlighted the benefits of using
deep learning and pattern recognition to measure and classify
surface defects.

Calculating the cost volume of the scene is highly compu-
tationally expensive and limits the resolution of stereo images
on which it is feasible to deploy learned stereo machines.
Yao et al [150] proposed a recurrent multi-view stereo net-
work (R-MVSNet) to sequentially regularise 2D cost maps

along the depth direction rather than calculating the entire
volume in one go. R-MVSNet dramatically lowers memory
usage compared to using a 3D CNN, allowing for high res-
olution learning-based reconstructions. PatchmatchNet [151]
is an end-to-end learned stereo machine which performs
multi-scale feature extraction, correspondence and refinement.
PatchmatchNet eschews the need to calculate a cost volume
by implementing a learned version of Patchmatch (a random-
ised correspondence algorithm [152]) leading to naturally low
memory requirements and high processing times. Finally, as
was noted in section 3.4.2.1, generalisation is a concern for
the widespread deployment of learned depth methods. Wang
et al [153] address this problem in the context of stereo match-
ing and propose two new loss functions which can be embed-
ded into existing stereo networks. These loss functions are
designed to promote consistency on learned features between
stereo views across unseen domains. It is shown experiment-
ally that generalisation is improved across a range of models
on a range of datasets when these loss functions are used.

3.4.3. Machine learning enabled in-situ monitoring. As
machine learning approaches become increasingly popular
smart manufacturing, there has been an increasing need for
solutions for quality assurance of measured data, includ-
ing defect classification, recognition and detection in surface
texture [154–157]. Data-driven methods, using machine learn-
ing to extract characteristic features of aluminium die cast-
ings industrial surfaces have been investigated by Schmitt
et al [158] In their work, the authors proposed a generat-
ive deep learning framework using style-based autoencod-
ing to extract surface deviations. Similarly, Ren et al [159]
developed a generic deep-learning-based approach for auto-
mated inspection of surfaces based on image classification and
defect segmentation.

The current major challenge in industry is the need for large
datasets to accurately train the machine learning models, as

13

https://creativecommons.org/licenses/by/4.0/


Meas. Sci. Technol. 34 (2023) 012001 Topical Review

collecting training datasets is usually costly and related meth-
ods are highly dependent on the datasets available. Eastwood
et al [160] recently presented an approach to numerical sur-
face texture generation applicable to any encoded surface,
based on a progressively growing generative adversarial net-
work. By encoding height data into grayscale values within an
image, the authors demonstrated that the network could create
realistic synthetic surface data, both qualitatively and quant-
itatively. Their model was trained on two example surfaces
obtained using different manufacturing processes and meas-
ured with different techniques; the results showed good agree-
ment between the synthetic and real data in the distributions of
areal surface texture parameters. Moriz et al [161] investigated
the employment of cycle-consistent generative adversarial net-
works (CycleGANs) to augment the available image datasets
and detect defects on surfaces.

As discussed in section 3.3.2, machine learning is a power-
ful tool for in-situ monitoring and process control. In much
of the recent literature, particular attention is given to additive
manufacturing applications, due to the complex and numerous
surface defects that can occur on a layer-by-layer basis. Recent
reviews have comprehensively covered machine learning for
additive manufacturing [162–164].

Work by Liu et al [165] showed how a fringe projection
system can be set up for in-situ monitoring of an electron
beam PBF process. Liu et al concluded that deep learning and
pattern recognition are required for timely measurement and
detection of defects. To achieve high speeds, several authors
have presented methods that rely on 2D imaging (i.e. con-
taining no explicit depth information), due to the increased
speed of data acquisition, compared to fringe projection or
photogrammetry [166]. An approach presented by Caggiano
et al [167] employed a deep CNN trained on images of the
powder bed for in-line defect detection. The model was a bi-
stream (i.e. two inputs) CNN, with each stream using an image
taken after laser scanning and one after powder recoating.
Both inputs were passed through parallel convolutional lay-
ers before being combined through a fully-connected (dense)
layer from which the final classification was drawn. Here, the
classification indicated the presence of a variety of defects. A
similar approach was used to monitor the porosity in a laser
additive manufacturing process [168]. Scime and Beuth [169]
used images as the data source in a laser PBF process, focus-
ing on the morphology of the melt pool. A number of steps
were taken to transform the high-dimensionality nature of an
image of (1024 × 1024) pixels to a lower-dimensional vec-
tor representation. In their approach, Scime and Beuth pro-
posed splitting the melt pool image into nine sub-images and
using the scale invariant feature transform algorithm to detect
local gradients. A bag-of-words algorithm was used to assign
a 50-element vector to each image, based on the distribution of
detected local gradients before finally concatenating the three
vectors into a single 450-element ‘fingerprint’ vector. A sup-
port vector machine was trained to predict the presence of five
kinds of defects from the fingerprint. Scime and Beuth showed
that this approach could accurately detect defects based on the
melt pool fingerprint even though its data size was only 0.04%
of the original image size. In their review, Yu and Jiang [170]

discussed how machine learning approaches can be adap-
ted for defect detection in 3D bio-printing. In tandem with
optical sensing, other sensors can be used to provide additional
data and context to the machine learning model, such as data
from thermographic [171] and acoustic sensors [172, 173]. As
an example, photodiode sensors can be placed to detect the
backscattered laser light from the melt pool in a laser PBF
process [174].

Post-processing techniques, such as x-ray computed tomo-
graphy, can be used to build the ground truth datasets required
to train a model, as demonstrated by Gaikwad et al [175]. In
this example, x-ray computed tomography data was used to
evaluate statistical build quantifiers that parametrise the build
quality of a thin-walled additively manufactured part. A CNN
was then trained on this data to predict, from in-situ optical
images, the thin-wall quality.

Machine learning techniques are not only limited to
additive manufacturing processes. For instance, the civil
engineering sector employs machine learning for in-process
monitoring applications. Tuan et al [176] employed a machine
learningmodelmonitoring a rectified stereo camera pair for in-
situ monitoring of a concrete slump test. A particularly novel
application of this technology is in construction monitoring
[177], where photogrammetry is used to capture point clouds
while a building is constructed. By re-projecting the CAD
data from the known camera positions, a CNN was used to
automatically label different sections of the construction even
if the view was partially occluded. Additionally, a structure-
from-motion photogrammetrymethodwas developed to detect
defects within masonry walls [178]. The measured point cloud
of the wall was segmented into smaller units using a 2D con-
tinuous wavelet transform from which a CNN predicted the
presence of multiple defect categories. El Hachem et al [179]
proposed a method based on deep learning to automate visual
quality inspection of automotive components. The method
showed its potential in detecting object movement and was
able to readjust the camera’s angle with respect to the new
object position to optimise the inspection process. Malaca et al
[180] developed a real-time vision inspection system for clas-
sifying car door interior fabric textures, based on machine
learning techniques. The authors addressed the challenges
given by poor, uncontrolled lighting conditions in the auto-
motive industry by developing a robust pre-processing tech-
nique and selection of fabric characteristics using twomachine
learning classifiers.

3.4.4. Calibration and characterisation. As manufacturing
environments become more inter-connected and autonomous,
a metrological framework for the complete life cycle of meas-
ured data is required: from calibration capabilities for indi-
vidual sensors to uncertainty quantification associated with
machine learning in sensor networks. The ‘Factory of the
Future’ project [181] has developed the concept of ‘smart
traceability’ which combines digital pre-processing of sensor
data with traceable calibration of micro-electromechanical
system (MEMS) sensors. In their US patent for the calibra-
tion of small angle x-ray scatterometry, Hench et al [182] use
machine learning to solve the inverse problemwhenmodelling
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the interaction between the x-ray beam and occlusion elements
in the calibration device.

The largest body of work relating to calibration of
optical measurement relates to camera calibration and
characterisation [183–185], likely due to the relevance to
machine vision problems. It has been shown that CNNs can
be more effective than standard algorithms at detecting calib-
ration checkerboards in photographic images [183]. Due to the
requirement for multiple images acquired at different angles,
traditional calibration methods can be significantly affected
by low-accuracy components such as rotation stages. There
is potential to use deep neural networks (DNNs) to character-
ise a camera’s intrinsic parameters and a parameterised form
of the radial distortion in a single step from a single image
[184], rather than the many images required for conventional
approaches. Li and Liu [185] used a MEMS micro-mirror
device and a laser to stimulate single camera pixels. A DNN
was then trained on this single pixel illumination data to cal-
ibrate the camera. It was shown that this approach was highly
accurate and required fewer computations than traditional
calibration algorithms. It is likely that much of the work on
applying machine learning to camera calibration can be gen-
eralised or extended to other optical sensors and measurement
techniques.

3.4.5. Implications for uncertainty in machine learning. For
machine learning to be integrated into traceable measurement
pipelines, particularly when machine learning is included in
virtual instruments, the uncertainty in predictions produced by
machine learning models must be quantifiable [186]. As dis-
cussed by Sediva and Havlikova [187], when models become
complex it becomes more difficult to apply the methodolo-
gies outlined in the Guide to the Expression of Uncertainty
in Measurement (GUM) [188] and stochastic approaches such
as Monte Carlo simulations must be employed (as outlined in
Supplement 1 to the GUM [189]). Early work showed how
uncertainty could be propagated from input through to the
model output for simple linear regression models [190]. This
uncertainty analysis has been expanded to apply to more gen-
eral machine learning regression models.

Cheung and Braun [191] proposed that the following uncer-
tainty components should be considered:

• model output: the uncertainty relating to the difference
between the model prediction and the ground truth value;

• calibration data: the uncertainty in the data which make up
the model training dataset;

• input measurement: the uncertainty in the input data to
a model; and

• output measurement: the output uncertainties outside the
calibration data set.

Cheung and Braun showed that increasing the size of the
training dataset reduced uncertainty in the calibration data but
did not affect the other uncertainty contributions. They also
conclude that the uncertainty will be larger if the model is used

to estimate outputs which are outside the bounds of the training
data.

Given the prevalence of machine learning models in indir-
ect measurement and virtual instruments, there is little lit-
erature on their uncertainties, and this area is ripe for fur-
ther research. Recently, machine learning itself has been used
to attempt to provide uncertainty evaluations during stereo
matching [192]. In this work, similar to some of the work
discussed in section 3.4.2.2, a DNN approach was employed
for stereo matching. The difference here, when compared to
the work discussed in section 3.4.2.2, is that the model used
was a probabilistic network. This network, rather than learning
the network parameters directly, learned a distribution from
which the parameters were sampled at every prediction. There-
fore, the variation between predictions given on the same input
approximated the model uncertainty.

3.5. Performance indicators

In the manufacturing sector, performance monitoring leads to
the improvement of production and the optimisation of fabric-
ation processes and indicators of performance are indispens-
able for improving the quality of the manufacturing shop floor.
Quality indicators are performancemeasures designed tomon-
itor one or more processes during a defined time and are use-
ful means for service demands, production, personnel, invent-
ory control and process stability evaluations. In this work we
specifically focus on those criteria strictly related to 3D point
clouds processing and their intrinsic properties (for example
level of noise, coverage, density, etc), designed as metrics for
the evaluation of the quality of a measured output rather than
focusing on any other aspect of the measurement pipeline. We
primarily intend to highlight how quality in measurement can
be interpreted from the final result and how information can be
translated into smart automated feedback tools for correction
and optimisation of the entire measurement process.

From a measurement standpoint, performance indicators or
criteria were first introduced in relation to 3D point clouds by
Hoppe et al [193], designed as metrics for the evaluation of the
quality in measurements. Implemented as built-in functions,
performance indicators represent useful means for develop-
ing intelligent measuring instruments, able to autonomously
plan a measurement process and assess measurement per-
formance while the inspection task is in progress. This goal
can be achieved by combining such indicators with available
pre-existing knowledge of parts, instruments and technologies
(section 3.1) and employing smart algorithms for the optimisa-
tion of measuring procedures (such as machine learning tech-
nologies, see section 3.4).

3.5.1. Indicators of point cloud quality. Hoppe et al [193]
suggested in their early work related to the reconstruction
of surfaces from unorganised point clouds to qualify data
according to indicators of noise and density. Both indic-
ators appeared to be representative of the quality of each
point, highlighting the performance of the point-to-surface
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Figure 8. Performance indicators of part coverage from Catalucci et al [86]: (a) boxplots from five measurement repeats indicating coverage
ratio, and coverage area ratio respectively (individual results for each of the five repeats, and median); and (b) covered and uncovered
triangles rendered using binary colouring projected onto the triangle mesh surface. Reproduced with permission from [86]. © EUSPEN.

reconstruction algorithm. Following this work, Lartigue et al
[194] proposed a set of four quality indicators for point
clouds obtained with non-contact probes. These indicators
were noise, density, completeness and accuracy of the point
cloud data. The noise indicator can be found in Contri et al
[195], where the effects of the digitising noise are taken into
account to evaluate the global positional uncertainty of a
subset of points in a 3D point cloud measured with a laser tri-
angulation system. Similar indicators can be found in Mehdi-
Souzani et al [196], where they are used to support measure-
ment planning for freeform surfaces in reverse engineering. In
both works, the methods presented relied on an initial scan of
the object set as a reference, without the involvement of a CAD
model. The point cloud was converted into a voxel space rep-
resentation to evaluate the density indicator, considering the
number of points that belong to each voxel (i.e. volumetric
density). To compute the completeness and rate of coverage
indicators, the point cloud was converted to a triangle mesh
and the distances between neighbouring points in the mesh
were evaluated.

Based on this early work, Catalucci et al [85, 86] proposed
a set of indicators to assess the quality of 3D point clouds
acquired using two optical measuring instruments. The indic-
ators are locally mapped to the measured object’s reference
geometry (i.e. a triangle mesh), highlighting measurement
behaviour in correspondence to diverse geometric features of
the measured part. The designed criteria include measure-
ment time, surface coverage, density of point-based sampling
and point dispersion (see in figure 8). Performance indicators
based on local mapping on the 3D mesh model surface have
also been proposed by Phan [197] to evaluate scanning noise.
The noise is calculated for each triangular facet in the mesh,
and it is qualified based on comparison with a threshold value
obtained from the sensor qualification protocol. Again, in their
work Vlaeyen et al [198] reported that the quality of 3D point
clouds can be characterised based on the indicators of density,
completeness, noise and accuracy, developed earlier by Hoppe
et al and Lartigue et al.

Evaluation indices have been used not only to determine the
quality of a measurement but also to prove the performance
of different algorithms and stages of the point cloud pro-
cessing pipeline, such as registration. For example, Wang et al
[199] developed a novel registration method for partially over-
lapping featureless 3D point clouds in large-scale metrology
applications. The authors compared the performance of their
algorithm against a number of existing registration solutions
using four pre-defined quantitative criteria (used by [200]),
including rotation error, translation error, Root Mean Squared
Error (RMSE), and success rate (i.e. the number of point cor-
respondences that satisfy a defined threshold over the num-
ber of points belonging to the overlapping area, expressed in
percentage). Applied to simulated and real test cases, their
algorithm showed its high potential in handling outliers and
featureless point clouds when compared to other existing
methods. The RMSE, as well as the Mean Squared Error
(MSE) and the Mean absolute error, is a common evaluation
indicator in point cloud registration.Mei et al [201] proposed a
novel point cloud registration network based on deep learning.
Based on a performance analysis using the aforementioned
indicators, their proposed method showed higher registration
accuracy and stronger robustness to noise compared with sev-
eral mainstream algorithms.

3.5.2. Indicators as means for comparisons and process
optimisation. Performance indicators can potentially serve
as tools for quantitative comparison of test parts, measurement
conditions and instruments in large measurement campaigns
[202]. For example, Zuquete-Guarato et al [203] presented
a comparison between three optical measuring instruments
based on noise, trueness, measured area and surface accessib-
ility indicators. The trueness indicator was based on the meas-
urement of a linear distance set as reference (i.e. the distance
between two parallel planes fit to a calibrated step height).
The accessibility indicator quantified a measurement system’s
ability to access critical areas, while the measured area indic-
ator computed the regions where the data was missing.
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By comparing collected data to available a priori inform-
ation (for example, the underlying CAD model from a meas-
ured object), an intelligent system can analyse the dispersion
of the measurements on a point by point basis, as well as
return feedback in real-time regarding any extra required scan
views, locating occlusions or areas needing more data to sat-
isfy sampling density criteria [85]. In tandem with machine
learning algorithms, quantitative indicators related to point
clouds have also been used in the context of pose estimation:
Karaszewski et al [204] compared the results obtained for 13
NBVplanning algorithms based on four criteria: the number of
directional measurements, digitisation time, total positioning
distance and surface coverage, the latter specifically computed
on the point cloud.

4. Summary and future work

In this review, we have covered the state of the art in smart
optical metrology, as applied in the context of digital man-
ufacturing. A large variety of smart measurement solutions
developed over the past decades have been illustrated, includ-
ing knowledge-driven algorithms built on a priori knowledge
of technologies and processes, multi-sensor and multi-view
measurement configurations, machine learning and quality
feedback algorithms. Despite the latest advances in the fields
of engineering, robotics and computer science, each of the top-
ics discussed still present a significant number of challenges
that we have summarised here.

Flexible and automated measurement solutions require ver-
satility to deal with complex tasks and unexpected scenarios.
For this reason, as good practice, robust action planning prior
to the measurement process is required. Available a priori
information aids in the successful performance of a measure-
ment, as learning from prior knowledge improves the qual-
ity of the obtainable results. Following the IRM principle dis-
cussed in section 3.1, knowledge-driven algorithms based on
a priori information represent useful tools for smart machines
and allow for optimisation of both system performance and
data processing methods. The development of feedback tools
in the form of quality indicators presented in section 3.5 are
often based on the use of a priori knowledge. More specific-
ally, the availability of a CAD model of the part being meas-
ured or a nominally more accurate measurement that can be
set as reference enable direct evaluation of the quality in meas-
urements. CAD use allows for local mapping of measurement
performance in correspondence to each surface of the meas-
ured part.

Advanced configurations, such as multi-sensor instruments
for data fusion applications, produce more consistent, accurate
and useful information than those provided by any individual
data source, as discussed in section 3.3. Multi-view optical
instruments combined with smart algorithms eliminate time-
consuming methods for merging multiple and heterogeneous
measurements, while maximising part coverage. As discussed
in section 3.2, the integration of multi-view configurations

for the inspection of fabricated workpieces (especially the
inspection of large objects, complex freeform geometries and
in-line measurement applications) benefits shop floor pro-
ductivity. Ongoing challenges in multi-sensor data fusion
include merging and processing of multiple data derived from
multiscale technologies; automation in the fusion process,
computational efficiency of current solutions, a lack of robust
fusion methods when dealing with noisy data and a lack
of data privacy and security tools that can cause data leak-
age. Multi-view configurations are still largely avoided in
industrial quality control environments due to the complex
structural relationship between the instrument components
(multi-camera, multi-camera-projector, etc), the challenging
and time-consuming individual characterisation of such com-
ponents, the difficulties in dynamic measurement applications
and reconstruction of rapidly moving objects along the pro-
duction line.

Machine learning methods allow for automated inspection
planning and best-view part detection pipelines, as demon-
strated by the examples reported in section 3.4.1. For example,
supervised learning approaches combined with the know-
ledge of the part CAD model allow the determination of
the best camera locations/best-view positions, based on the
largest number of surface points seen. Machine learning meth-
ods can speed up time-consuming processes, such as phase
unwrapping and stereo matching, allowing for more reliable
and accurate optical measurement calibration and character-
isation; and providing useful tools for classification of sur-
face defects, especially in the context of in-line metrology
applications. Examples have been discussed in sections 3.4.2–
3.4.4. Remaining challenges to widespread industrial adoption
include: the collection and processing of large training data-
sets, high computational expense during training time, unclear
implications on uncertainty and developing general models
which perform well on a large range of input data.
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