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ABSTRACT  

We expanded the application of self-sufficient heterogeneous biocatalysts containing co-

immobilized w-transaminases and pyridoxal 5´-phosphate (PLP) to efficiently operate packed-bed 

reactors in continuous flow. Using a w-transaminase from Halomonas elongata co-immobilized 

with PLP onto porous methacrylate-based carriers coated with polyethyleneimine, we operated a 

packed-bed reactor continuously for up to 50 column volumes at 1.45 mL x min-1 in the  

enantioselective deamination of model amines (α-methylbenzyl amine), yielding > 90% 

conversion in all cycles without exogenous addition of cofactor. In this work, we expanded the 

concept of self-sufficient heterogeneous biocatalysts to other w-transaminases such as the ones 

from Chromobacterium violaceum and Pseudomonas fluorescens. We found that enzymes with 

lower affinities towards PLP present lower operational stabilities in flow, even when co-

immobilizing PLP. Furthermore, w-transaminases co-immobilized with PLP were successfully 

implemented for the continuous synthesis of amines and the sustainable metrics were assessed. 

These results give some clues to exploit PLP-dependent w-transaminases under industrially 

relevant continuous operations in a more cost-effective and environmentally friendly process. 
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INTRODUCTION  

The synthesis of optically pure amines is essential to manufacture a plethora of commodities, 

agrochemicals and pharmaceuticals.1 In the last decade, biocatalysis has offered efficient and 

environmentally sustainable solutions to incorporate amine groups into organic molecules under 

mild conditions and with exquisite regio and stereoselectivies.2-4 Pyridoxal 5´-phosphate (PLP)-

dependent w-transaminases (wTAs) efficiently catalyze the asymmetric amination of ketones to 

yield optically pure amines with quantitative yields.5, 6 There are dozens of examples where 

different wTAs have been engineered to aminate industrially relevant molecules.5, 7 

This family of enzymes transfers amino groups from sacrificing amines or amino acids to the 

starting ketones or aldehydes.6 Although the PLP is bound to wTAs through a reversible imine 

bond, scaled-up biotransformations using high substrate concentrations require exogenous PLP to 

achieve high amine yields (50-100 mM).8, 9 Like other cofactor-dependent enzymes, the exogenous 

addition of PLP complicates the work-up because it must be separated from the final products 

increasing the process costs. Fortunately, catalytic amounts of PLP (0.1-2mM) are enough to 

accomplish the amine transfer reaction because wTAs recycle such cofactor during their catalytic 

cycle. Nevertheless, the separation of both soluble cofactors and biocatalysts beside the low 

stability of wTA pose important hurdles to scale-up processes.   

Immobilization of wTAs is proven an efficient approach to increase the operational stability of 

these biocatalysts as well as to intensify the amination process with the aim of achieving both 

higher productivities and yields.10 Several wTAs have been immobilized onto a great variety of 

carriers and using different immobilization strategies, but unfortunately, some of the immobilized 

preparations resulted less efficient and stable than the soluble ones.10-13 This means that the 
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immobilization protocol must be carefully selected to keep catalytic efficiency and gain enzyme 

stability 14. In the particular case of wTAs, their immobilization is challenging because random 

multi-point covalent attachments through short irreversible bonds often distort their 3D structures, 

dramatically inactivating them. In spite of these difficulties, some immobilization protocols 

provided highly robust heterogeneous biocatalysts enabling process intensification of amine 

synthesis using packed-bed reactors (PBR).12, 13 Flow-biocatalysis can lead the development of 

more efficient chemical synthesis since it gains control over several key reactor and reaction 

parameters. For example, the oriented immobilization and further covalent attachment of an wTA 

from Halomonas elongata15 onto methacrylate porous beads has been integrated into a continuous 

process coupled with a scavenger for the in-line synthesis and purification of different optically 

pure amines.12 

Continuous operation of enzymatic transamination contributes for process intensification so far; 

however, those systems still require the exogenous addition of PLP that can limit their economic 

feasibility for the synthesis of low-added value products.12, 13 Ideally, PLP and enzyme should be 

co-reused to increase their operational life-span and thus increasing the cost efficiency of the 

processes. As far as we now, just one example has been reported where PLP has been incorporated 

into the solid phase of heterogeneous biocatalysts to operate in flow.16 Andrade et al. physically 

co-adsorbed PLP and whole cells harboring a wTA onto methacrylate polymeric beads. The newly 

generated biocatalyst was able to synthesize optically pure α-alkoxy- and α-aryloxy isopropyl 

amines in flow with negligible lixiviation of PLP. However, this system must operate in organic 

reaction media to avoid the cofactor lixiviation.  

Recently, our group has developed novel strategies to co-immobilize phosphorylated cofactors and 

enzymes onto a plethora of porous beads in order to fabricate self-sufficient heterogeneous 
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biocatalysts not requiring exogenous addition of cofactors.17, 18 Asymmetric reduction of ketones 

has been successfully accomplished using these systems in an aqueous environment. Redox 

cofactors (NAD(P)H) and enzymes17 remained bound to the resin under flow conditions for more 

than 100 hours of operation. This strategy was successful because the phosphate groups of the  

cofactors establish an intraporous association/dissociation equilibrium with the positively charged 

surface of the carriers, which allows them travelling from one active site to the other without 

diffusing out to the bulk.17 Under these conditions, the system is highly stable over several 

operational cycles without the need for exogenous cofactor.  

In this work, we have exploited the co-immobilization of PLP and several wTAs (from Halomonas 

elongata15, He-wTA, Chromobacterium. violaceum19, Cv-wTA, and Pseudomonas fluorescens19, 

Pf-wTA) to demonstrate the self-sufficient synthesis of chiral amines. We co-immobilized wTA 

and PLP onto commercial methacrylate beads functionalized with different reactive groups; 

cobalt-chelates, epoxides and positively charged amines (Table 1). These self-sufficient 

heterogeneous biocatalysts have been successfully integrated into flow PBR to perform continuous 

transamination reactions in buffer environment and without exogenous supply of PLP. 
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Table 1. Different architectures of self-sufficient heterogeneous biocatalysts based on co-

immobilized wTA and PLP.  

Purolite ECR8215F (Pu-Co2+) and Sepabeads EC-EP/S (EC-Co2+) carriers were activated with different aminated molecules; 
hydroxylamine (/hA), ethanolamine (/eA) and 60 KDa polyetheleneimine (/PEI). Black dashed lines show the coordination bonds 
between His(6x)-tag of the protein and cobalt chelates displayed at the carrier surface.  
 

EXPERIMENTAL SECTION 

Reagents 

Lifetech Purolite ECR 8215F and Sepabeads EC-EP/S were kindly donated by Purolite Ltd. 

(Llantrisant, U.K.) and Resindion S.R.L., respectively. Polyethyleneimine 60 kDa 50 % wt aq. 

solution, branched was purchased from ACROS OrganicsTM. Ethanolamine, Hydroxylamine, (S)-

phenylethylamine, rhodamine B isothiocyanate, iminodiacetic acid, cobalt (II) chloride, trans-

cinnamaldehyde, p-nitrobenzaldehyde, sodium pyruvate, S-(α)-Methylbenzylamine and PLP were 

acquired from Sigma-Aldrich (St. Louis, IL). UV transparent 96-well plates and 1 mL cuvettes 

were purchased from Thermo Fisher Scientific. µ-Slides with 8 wells were purchased from ibidi 

(Planegg, Germany). All other salts and reagents were of analytical grade. 

Carriers

Code Pu-Co2+/hA Pu-Co2+/eA EC-Co2+/eA EC-Co2+/PEI 

Commercial name ECR8215F ECR8215F EC-EP/S EC-EP/S 

Particle size 150-300µm 150-300µm 100-300µm 100-300µm

Pore size 120-180 nm 120-180 nm 10-20 nm 10-20 nm

Aminated molecule Hydroxylamine Ethanolamine Ethanolamine Polyethyleneimine

Scheme

ωTAωTAωTAωTA
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Activation of carriers 

Purolite. Epoxy-purolite beads were incubated with 0.5 M iminodiacetic acid (IDA) at pH 11.0 

for 3 hours at room temperature and orbital shaking. Samples were intensively washed with 

distilled H2O. A solution of 30 mg x mL-1 CoCl2 was added (1:10 w/v) and incubated for 1 hour. 

After a washing step, Pu-Co2+/eA was prepared adding 0.5 M ethanolamine at pH 11.0 and 

incubated overnight under orbital shaking. In case of Pu-Co2+/hA, 0.5 M hydroxylamine at pH 

11.0 was added and incubated overnight under orbital shaking. 

Sepabeads. Epoxy-sepabeads were firstly activated with cobalt as previously described.202 EC-

Co2+/eA was prepared by adding 0.5 M ethanolamine at pH 11.0 and incubating overnight under 

orbital shaking. For preparation of EC-Co2+/PEI, a solution of 5 mg x mL-1 PEI in 100 mM sodium 

bicarbonate buffer at pH 10.0 was added after protein immobilization and incubated for 1 hour 

under orbital shaking. 

Expression and purification of enzymes 

He-wTA and Cv-wTA were expressed and purified following a previously reported protocol.14 For 

the expression of Pf-wTA, 1 mL of an overnight culture of E. coli BL21 (previously transformed 

with the plasmid pET28b_Pf-wTA) was inoculated in a 50 mL of LB medium, containing 

kanamycin at final concentration of 30 µg x mL-1. The resulting culture was incubated at 37°C 

with energetic shaking until the OD600nm reached 0.4-0.6. At that point, the culture was induced 

with 0.01 mM 1-thio-β-d-galactorpyranoside (IPTG). Cells were grown at 21°C for 16 hours and 

then harvested by centrifugation at 4211 g for 30 min at 4ºC. The resulting pellet was resuspended 

in 5 mL of 10 mM sodium phosphate buffer at pH 7.3 containing 0.1 mM PLP. Cells were 

sonicated (Sonics Vibracell VCX750) at amplitude= 20 %, cycles= 5 sec ON, 5 sec OFF, for 30 
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min. The suspension was centrifuged at 10528 g, 30 min, 4ºC. The supernatant containing the 

enzyme was collected and stored at 4ºC. Protein concentration was determined by analysis of SDS-

PAGE gel bands (with a standard curve of BSA) using the software ImageJ. The purification 

process of He-wTA, Cv-wTA and Pf-wTA was followed by SDS-PAGE (Figure S1). 

 

Protein quantification  

Protein was quantified by Bradford’s method21 adapted to 96-well plates. Briefly, 5 µL of enzyme 

solution were mixed with 200 µL of Bradford reagent, incubated at room temperature for 5 min. 

Then the absorbance was measured at 595 nm and the protein content was estimated employing a 

calibration curve using BSA as a standard. 

 

Enzyme immobilization 

10 mL of enzyme solution (0.1 – 0.5 mg x mL-1) containing 0.1 mM of PLP in 50 mM sodium 

phosphate buffer at pH 8, were added to 1 g of carrier and incubated under orbital shaking for 4 

hours (He-wTA and Cv-wTA), and for 1 hour (Pf-wTA) at room temperature. Then, the suspension 

was filtered and washed 3 times with 10 volumes of phosphate buffer. 

 

Cofactor immobilization 

Immobilization of PLP was achieved as described by Velasco-Lozano et al.16 Briefly, 10 volumes 

of 1 mM cofactor in 10 mM sodium phosphate buffer at pH 7.3 were incubated with 1 g of 

methacrylate beads with previously immobilized enzymes. The suspension was kept under orbital 

shaking for 1 h at room temperature. The sample was then filtered and washed three times with 10 

mM sodium phosphate buffer at pH 7.3. The immobilized PLP was determined by measuring the 
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absorbance at 390 nm of 100 µL of the flow-through in a 96-well microplate using a Varian Cary 

50 scan UV-visible spectrophotometer. The PLP immobilization yield was calculated as follows; 

 

Y (%) = 100 – ([PLP]supernatant / [PLP]offered) x 100 

 

[PLP]supernatant means the PLP concentration in the supernatant after being incubated with the 

carrier and [PLP]offered means the PLP concentration in the supernatant before being incubated 

with the carrier. PLP concentration was determined spectrophotometrically.  

 

Enzyme kinetics 

The activity of immobilized ω-transaminases was determined by mixing 50 mg of biocatalyst and 

10 mL of reaction mixture (2.5 mM pyruvate, 2.5 mM S-(α)-methylbenzylamine and 0.25 % 

DMSO in 10 mM phosphate buffer pH 7.3) into a 15 mL reaction tube cap. The final reaction 

mixture was incubated at room temperature under orbital shaking. The absorbance at 245 nm was 

measured along the time as single readings using Brand UV-cuvettes in a Varian Cary 50 scan 

UV-visible spectrophotometer. One unit of ω-transaminase activity was defined as the amount of 

enzyme required for the production of 1 µmol of acetophenone per minute. 

Fluorescence techniques 

Rhodamine-labeling of He-wTA. An enzyme solution was mixed (1:1 molar ratio) with 

rhodamine B (from a stock solution, 1 mg x mL-1 in DMSO) in 100 mM sodium phosphate at pH 

8.0 and incubated for 1 h with gentle agitation at 25 ºC in darkness.  This step allows the acylation 

reaction between the primary amines from proteins and the isothiocyanates from rhodamine B to 
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form a thiourea.22 Later, the unreacted rhodamine B was removed by filtration of the labeling mix 

thorough a tangential ultrafiltration unit (10 kDa) washing with 25 mM sodium phosphate buffered 

solution at pH 7 until the flow-through solution was colourless.  

CLSM (Confocal laser scanning microscopy) imaging. Enzyme localization was observed using 

a ZEISS confocal microscope 510 with an excitation laser (λ: 514 nm) and the emission filter 

LP505. Since PLP exhibits autofluorescence, the spatial distribution of PLP across the EC-

Co2+/PEI beads was determined using CLSM with an UV excitation laser (405 nm) and the 

emission filter LP420. Images were processed with the software ZEN2012. 

Spatial distribution study. The labeled enzyme was further immobilized at 1 mg x g-1 onto EC-

Co2+ beads. After PEI coating, PLP was co-immobilized at 7.5 µmol x g-1. The beads suspension 

was filtered and placed on a microscope slide. In order to improve the match in refractive index 

between the medium and the opaque beads, a drop of glycerol was placed onto the beads. 

PLP immobilization kinetics. 20 mg of EC-Co2+/PEI were incubated with 200 µL of 1mM PLP 

solution containing 50% glycerol in sodium phosphate buffer pH 7.3 in a 8-well µ-slide. PLP 

autofluorescence was monitored along the time. 

Desorption experiments. Three desorptions of PLP were carried out. 50 mg of EC-Co2+/PEI with 

immobilized PLP were incubated with 500 µL of 4 M NaCl, 1 M Ethanolamine or a mixed solution 

with 4 M NaCl and 1 M Ethanolamine. The suspensions were incubated at room temperature for 

1 hour. After filtration, three washing steps with phosphate buffer were performed. The beads were 

observed by adding a drop of glycerol. Finally, PLP was immobilized for second time by adding 

400 µL of 1 mM PLP solution to 40 mg of EC-Co2+/PEI (previously treated with ethanolamine). 

Flow deamination reactions 
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The continuous flow biotransformations were performed using a R2+/R4 flow reactor 

commercially available from Vapourtec equipped with an Omnifit glass column (6.6 mm i.d x 100 

mm lenght) filled with 1.0 g of biocatalyst. An amino acceptor substrate solution (20 mM pyruvate 

in phosphate buffer) and an amino donor solution (50 mM S-(α)-methylbenzylamine and 5% 

DMSO in phosphate buffer) were prepared. After mixing with a T-tube the resulting 

concentrations were 10 mM for the amino acceptor and 25 mM for the amino donor. 50 mM 

phosphate buffer at pH 8.0 was used for flow-reactions with added PLP (0.1 mM) and when 

exogenous PLP was not added. 10 mM phosphate buffer at pH 7.3 was used for flow-reactions 

when PLP was co-immobilized. The resulting flow stream was driven to the column packed bed 

reactor with the biocatalyst (packed bed reactor volume: 1.3 - 1.45 mL). A first washing step with 

a flow rate of 0.4 mL x min-1 was performed for 30 minutes. Then, the flow rate was varied in 

order to obtain the desired residence time. The resulting flow product was analysed by HPLC 

following a previously reported protocol.20 

Flow synthesis of amines 

The continuous flow synthesis of cinnamylamine and p-nitrobenzylamine were performed using 

the equipment described above. The synthesis of cinnamylamine, was performed preparing 

solution of 20 mM trans-cinnamaldehyde and 10% DMSO in phosphate buffer and mixing it with 

1 M L-alanine in phosphate buffer. After the mixing, the concentrations of trans-cinnamaldehyde 

and L-alanine were 10 mM and 500 mM, respectively. In the synthesis of p-nitrobenzylamine, the 

amino acceptor solution (10 mM p-nitrobenzaldehyde and 20 % DMSO in phosphate buffer) was 

mixed with the amino donor solution (1 M L-alanine in phosphate buffer). After the mixing, the 

concentrations of p-nitrobenzaldehyde and L-alanine were 5 mM and 500 mM, respectively. The 

resulting flow product was analysed by HPLC following a previously reported protocol.20 
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RESULTS AND DISCUSSION 

To expand the concept of self-sufficient heterogeneous biocatalysts to amine biotransformations 

using PLP-dependent wTAs, commercial porous methacrylate beads activated with epoxide 

groups were functionalized with cobalt-chelates and then blocked with either hydroxylamine or 

ethanolamine (Figure 1), giving rise to carriers named as Pu-Co2+/hA and Pu-Co2+/eA, respectively 

(Table 1). Firstly, we optimized the PLP immobilization conditions to avoid its lixiviation in 

reaction. To this aim, we firstly co-immobilized He-wTA and PLP onto Pu-Co2+/eA under different 

buffered conditions. We must point out that both enzyme and cofactor were reversibly bound to 

this carrier through coordination and ionic bonds, respectively. Low ionic strength (10 mM) 

phosphate buffer and Tris-HCl buffer at pH 7.3 were the most effective conditions to minimize 

both PLP and enzyme lixiviation after 3 consecutive washes (Figure S2). The use of phosphate 

instead Tris-HCl buffer is indeed beneficial for the process, since phosphate promotes the stability 

of the apoenzyme and prevents its irreversible unfolding.23 For these reasons, phosphate buffer 

was selected to carry out the enzymatic reactions.  The deamination activity of immobilized He-

wTA towards S-α-methylbenzyl amine (S-MBA) was significantly lower when PLP was adsorbed 

onto Pu-Co2+/hA than when it was onto Pu-Co2+/eA (Figure S3), indicating that the cofactor was 

catalytically more available when the solid surface was activated with ethanolamine. 
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Figure 1. Preparation of self-sufficient biocatalysts. Methacrylate-based carriers activated with 

epoxy groups were functionalized with iminodiacetic acid (IDA) (1) and then with cobalt chloride 

(2) resulting in cobalt chelates that drive the His-tagged ω-transaminase immobilization (black 

dashed line). Then, the carrier was also activated with amine groups from ethanolamine, 

hydroxylamine and polyethyleneimine for the PLP co-immobilization (3). Red asterisk highlights 

the dual binding of PLP on PEI layer (left bottom inlet). 

 

Finally, we tested the effect of the carrier architecture on PLP binding by using methacrylate 

carriers activated with ethanolamine at two different pore sizes (Table 1).  Methacrylate beads 

(EC-Co2+/eA) with smaller pores (size = 10-20 nm) loaded up to 8.6 µmolPLP x gcarrier
-1 and only 

10% of the bound cofactor was lixiviated after three washes. On the contrary, Pu-Co2+/eA with 

larger pores (size = 120-180 nm) loaded 3 times less PLP (2.8µmolPLP x gcarrier
-1) than EC-Co2+/eA 

and underwent 43% lixiviation of the bound cofactor after three washing steps (Figure S4). 

Although the carriers were loaded with different amounts of PLP, co-immobilized He-wTA 

1 2

3

ωTA

ωTA

ωTA
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expressed similar deamination rate and ketone yield without adding exogenous cofactor after the 

first batch cycle (Figure S5) and after the first column volume in flow (Figure 2). However, EC-

Co2+/eA biocatalyst presented a slightly longer operational half-life time (133 minutes) in flow 

than the Pu-Co2+/eA one (115 minutes). Nevertheless, the activation of methacrylate beads with 

ethanolamine and cobalt chelates (EC-Co2+/eA) was not enough to operate the self-sufficient 

heterogeneous biocatalysts for longer times with high yields (Figure 2). PLP was observed in the 

flow-through after 20 minutes, suggesting that its lixiviation might be one of the main causes for 

the biocatalyst inactivation. Furthermore, the enzyme was immobilized through reversible metal 

coordination bonds between the His(6x)-tag fused at the protein N-terminus and the cobalt-

chelates groups displayed in the carrier surface (Figure 1).  

 

 

 

 

 

 

Figure 2. Stability test of different self-sufficient biocatalysts operating in flow at 0.3 mL x min-

1. He-wTA was immobilized at 1 mg x g-1 onto three different carriers; Pu-Co2+/eA, EC-Co2+/eA 

and EC-Co2+/PEI, that loaded 1.7, 7.8 and 7.5 µmolPLP x gcarrier
-1

, respectively. Each column volume 

corresponds to 5 minutes. 
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This common strategy for protein purification has been recently and successfully exploited for a 

subsequent ten-minute protein purification and operation under continuous-flow conditions to 

yield p-nitrophenol using a bi-enzyme (alkaline phosphatase and phosphodiesterase) immobilized 

system.24 However, in our set-up, the reversible immobilization of He-wTA failed since the 

enzyme was partially release, leading the yield decay observed in Figure 2. 

To avoid both enzyme and cofactor lixiviation, and consequently improve the performance of the 

biocatalyst, we modified its architecture design to establish irreversible bonds between the enzyme 

and the solid surface and optimize the reversible interactions between PLP and the surface matrix. 

After site-directly immobilization of He-wTA through the His(6x)-tag, the remaining epoxide 

groups were exploited to irreversibly attach the oriented enzyme and allow the PEI coating upon 

the immobilization (EC-Co2+/PEI). As result, the enzyme was oriented and irreversibly 

immobilized through a multivalent attachment, while PLP established an association/dissociation 

equilibrium with the PEI layer, through both ionic bridges and reversible imine bonds (Schiff´s 

bases) (Figure 1, Table 1). Such dual interaction was supported by desorption experiments that 

demonstrate quantitative PLP elution from EC-Co2+/PEI requires both high ionic strength and 

ethanolamine concentrations to break ionic bonds and Schiff´s bases, respectively (Figure 3A). 

Unlike other phosphorylated cofactor such as NAD(P)H, aldehyde groups and phosphate groups 

from PLP can establish that dual interaction with the primary amines and the positively charged 

amine groups of PEI, respectively. The reversible imines bonds between PLP and PEI mimic the 

chemistry that anchors such cofactor into the wTA active site. Moreover, once PLP is fully eluted, 

the carrier can be equilibrated and re-charged with fresh PLP (Figure 3A, right side panel). Finally, 

this architecture significantly increased the operational life of the self-sufficient heterogeneous 
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biocatalysts in continuous deamination reactions, since the reaction conversion decayed less than 

20% after 200 minutes of operation (40 column volumes) (Figure 2). 

The higher capacity of EC-Co2+/PEI to reversibly bound PLP through a dual binding is supported 

by its Kd = 20.4±0.9 µmol x g-1, which is significantly lower than Kd values determined for EC-

Co2+/eA (Kd = 27.4±1.2 µmolx g-1) and Pu-Co2+/hA (Kd =121.4±5.8 µmol x g-1) carriers. These 

equilibrium constants were determined by fitting experimental data to Langmuir isotherm equation 

(Figure S6). The PLP adsorbed in EC-Co2+/PEI falls in the same order of magnitude that the PLP 

equilibrium constants determined with similar positively charged surfaces.17 Hence, the nature of 

the interaction between PLP and carrier surface dictates how strong PLP is bound to the matrix. 

Therefore, PEI containing primary, secondary and tertiary amines capable to establish two type of 

interactions with PLP; salt bridges and imine bonds retains more efficiently the cofactor that 

surfaces only activated with secondary amines (EC-Co2+/HA and EA) that limit PLP adsorption to 

ionic interactions.  

Additionally, confocal microscopy of EC-Co2+/PEI particles co-immobilizing PLP and He-wTA 

revealed that both molecules co-localized within the same particle but with different spatial 

distributions (Figure 3B). While He-wTA is located at the outer surface of the porous beads, PLP 

is homogenously distributed across the whole carrier surface. The spatial organization of both PLP 

and enzyme remained stable even after one-week storage at 4º C, demonstrating that the enzyme 

cannot migrate inside the porous surface because it is irreversibly bound, while the cofactor is 

unable to diffuse out of the beads (Figure 3B). PLP binding monitored by time-lapse fluorescence 

microscopy demonstrates the reversible nature of PLP interaction since cofactor molecules are 

primarily adsorbed to the outer surface of the beads (short times), to further migrate across the 
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carrier porous structure (Figure 3C). The cofactor migration proves that PLP molecules can reach 

enzyme active sites within the carrier microstructure but without diffusing out to the reaction bulk.  

 

Figure 3. Single-particle studies by CLSM imaging. A) From left to right, porous beads (EC-

Co2+/PEI )n before and after incubation with PLP (blue). The porous beads immobilizing PLP 

incubated with 1 M ethanolamine, 2 M NaCl and both 1 M ethanolamine and 2 M NaCl. Finally, 

PLP was again re-loaded on EC-Co2+/PEI after washing steps. Images show the overlay of 

fluorescence and brightfield signals. B) Spatial distribution of rhodamine-labeled He-wTA (red) 

and PLP (blue) within the self-sufficient biocatalyst. Images were taken when the biocatalyst was 

prepared (0 week) and after storage at 4 ºC for a week. The left side image of each panel shows 

the fluorescence signal and the right one merges the fluorescence and the brightfield signals. C) 

PLP immobilization kinetics along the time. Images show the overlay of fluorescence and 

brightfield signals.  

Functional data together with microscopic analysis indicate that the nature and the density of 

positively charged groups as well as the pore size of the methacrylate beads are determinant 
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parameters to allow the PLP shuttling between the enzyme active sites without leaving the pore 

microenvironment. 

Flow rate is one of the most important parameters that govern productivity of continuous 

operations. Once both PLP and He-wTA were optimally co-immobilized onto EC-Co2+/PEI, this 

self-sufficient heterogeneous biocatalyst was tested at two different flow rates; 0.3 and 1.45 mL x 

min-1 (Figure 4). Operating the PBR at higher flows, the specific productivity of He-wTA increased 

from 6.79 to 33.95 µmolproduct x min-1 x mgenzyme
-1 and remained constant after processing 70 mL 

of reaction mixture (50 column volumes). This result clearly indicates that bound PLP is not 

lixiviated even under high flow rates, strongly favoring enzymatic productivity.  

 

 

 

 

 

 

Figure 4. In flow stability test of the self-sufficient biocatalyst with co-immobilized He-wTA (5 

mg x g-1) and PLP (7.8 µmol x g-1) onto EC-Co2+/PEI along the time. For the flow rate at 0.308 

mL x min-1, each column volume corresponds to 5 minutes and for the flow rate at 1.45 mL x min-

1, each column volume took 1 minute.  
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Therefore, this PBR successfully operated at 1.45 mL x min-1, the highest flow rate ever reported 

using co-immobilized enzyme and cofactor 16-18 and one of the highest (0.1-1.7 mL x min-1) using 

immobilized enzymes supplied with exogenous cofactor.11-13, 25 

In principle, this promising approach may be expanded to other wTAs in order to fabricate a battery 

of self-sufficient heterogeneous biocatalysts with different catalytic properties (stability, 

selectivity, kinetics). Based on the same architecture, two additional N-terminus His-tagged wTAs 

(Cv-wTA and Pf-wTA) were immobilized onto EC-Co2+ and further coated with PEI to finally 

absorb PLP as described above. In all cases, > 90 % of offered activity (5 mgenzyme x gcarrier
-1) was 

immobilized and each heterogeneous biocatalyst loaded 7-7.5 µmolPLP x gcarrier
-1 (Table 2). As 

shown in Figure 1, the enzymes were oriented and irreversibly immobilized through a multi-valent 

attachment, while cofactor establishes an association/dissociation equilibrium with the PEI layer 

based on a dual interaction mode. Upon the immobilization process, the three wTAs recovered 8-

11% of their specific activity in solution (Table 2). The low recovered activities might be caused 

by mass transport restrictions underlying the measurement set up. Enzyme activities were 

determined by spectrophotometric analysis using plate readers whose orbital shaking is not 

optimized to measure highly dense carriers with large particle size such as the porous methacrylate 

beads utilized in this work. In this context, the substrate likely suffers important diffusion barriers 

for being transported from the reaction bulk to the porous surface of the carrier, where both enzyme 

and cofactor are located. In fact, when enzyme activity was measured under more vigorous 

shaking, the expressed activity of wTA upon immobilization was increased up to 90% (Table S1).  

Noteworthy, the three wTAs herein studied showed similar specific activity towards soluble and 

immobilized PLP, which demonstrates that the cofactor is fully available and can access to the 

wTA active sites (Table 2). 
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Table 2. Immobilization yields and specific activities of immobilized ω-transaminases onto EC-

Co2+ /PEI.  

Protein load of He-wTA and Cv-wTA was determined by Bradford assay. SDS-PAGE analysis by using ImageJ was 
carried out to determine the Pf-wTA load. The enzymatic activities were measured in 96-well plates by monitoring 
absorbance at 245 nm. Briefly, 200 µL of a reaction mixture (2.5 mM pyruvate, 2.5 mM S-(α)-methylbenzylamine, 
0.25% DMSO and 37.5 µM PLP in 10 mM sodium phosphate buffer at pH 7.3) were incubated with 10 µL of 
enzymatic solution or suspension (1:10 w/v). Immobilization yield is defined as percentage of protein that disappears 
from the supernatant after the immobilization. Relative recovered activity is defined as; (specific activity of 
immobilized enzyme/specific activity of soluble enzyme) x 100. Specific activity was measured as above described.  

Encouraged by the excellent enzymatic activity towards the immobilized cofactor, we tested the 

three different self-sufficient heterogeneous biocatalysts in the continuous deamination of S-MBA 

at 1.45 mL x min-1 (Figure 5). Interestingly, the operational performance of each biocatalyst relied 

on which wTA was immobilized onto. He-wTA maintained maximum conversion during the 

whole operational test producing 70 mL of 25 mM product after 50 column volumes. On the 

contrary, when the reactor was packed with Cv-wTA co-immobilized with PLP, we observed a 

linear decay of conversion down to 30% after 50 column volumes (Figure 5). Under the same 

conditions, Pf-wTA performed notably better than Cv-wTA but slightly worse than He-wTA. 

Differences on deamination efficiencies may rely on the affinity of each enzyme towards PLP. In 

fact, when flow reactions were performed using the different immobilized wTAs with natural 

bound PLP (not exogenously added), we observed a similar trend: He-wTA preserved the highest 

conversion whereas Cv-wTA showed the lowest one after 50 cycles (Figure S7). These results 

suggest that high flows can detach more easily the natively bound PLP from Cv-wTA than from 

He-wTA. The unsatisfactory performance of Cv-wTA can be explained by the low affinity of this 

Enzyme Immobilization 
yield (%)

Protein load 
(mgenzyme x gcarrier

-1
)

Cofactor load 
(µmolPLP x gcarrier

-1
)

Immobilized specific activity 
(U x mg-1) and [Relative recovered activity (%)]

Free PLP Co-immobilized PLP

He-wTA 99 ± 1.81 4.95 7.5 ± 0.08 0.29 ± 0.02 [11] 0.27 ± 0.02 [10]

Cv-wTA 92 ± 3.42 4.62 7.4 ± 0.15 0.13 ± 0.03 [7] 0.11 ± 0.00 [6]

Pf-wTA 100 ± 0.90 5 7 ± 0.21 0.16 ± 0.00  [8] 0.14 ± 0.01 [7]
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enzyme towards PLP (Kd = 78 µM)23 compared to other wTAs (Kd = 0.25-10 µM).26 Hence, the 

operational stabilities shown in Figure 5 and S7, suggest that Pf-wTA binds PLP better than Cv-

wTA but worse than He-wTA. 

The results shown in Figure 5 motivated us to understand whether the enzyme is stabilized by the 

immobilization itself, by the high effective PLP concentration in the enzyme vicinity or by a 

synergy of both effects. To answer that question, Pf-wTA was immobilized with and without PLP 

on porous carriers functionalized with PEI, and the resulting preparations were thermally 

inactivated (Figure 6).  

 

 

 

 

 

 

Figure 5. Continuous flow deamination reactions using different self-sufficient biocatalysts with 

co-immobilized ω-transaminases and PLP. He-wTA, Cv-wTA  and Pf-wTA  were immobilized 

onto EC-Co2+/PEI at 5 mg x g-1. The flow reactions were performed at 1.45 mL x min-1. Each 

column volume corresponds to 1 minute. 

 Likewise, soluble enzyme was inactivated either in presence or absence of PLP.  Soluble Pf-wTA 
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cofactor. Conversely, the co-immobilization of Pf-wTA and PLP significantly stabilizes the 

enzyme against high temperatures. 

Figure 6 shows that PLP drives to more significant thermal stabilization than protein 

immobilization itself. In fact, we observed a trend between the concentration of immobilized PLP 

and the enzyme thermal stability. When wTA was surrounded by the highest PLP intraparticle 

concentration tested herein, the enzyme thermal stability was 10 times higher (Figure 6). This 

result indicates that the available concentration of PLP for wTA relies on the concentration of 

bound PLP. Hence, enzymes surrounded by more molecules of PLP are more stable, because this 

cofactor stabilizes protein quaternary structure avoiding subunit dissociation.20 When soluble PLP 

was incubated with soluble Pf-wTA, we observed a similar stabilization effect in agreement with 

the data published elsewhere for Cv-wTA.22 These experimental evidences point out that 

immobilization itself is not significantly stabilizing the enzyme, while the presence of PLP (both 

in soluble and co-immobilized forms) enormously enhances the enzyme stability. 
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Figure 6. Stability of Pf-wTA at different PLP concentrations. Bars represent the residual activity 

of the biocatalysts after 30 min of incubation at 65ºC: A) Soluble Pf-wTA. B) Soluble Pf-wTA at 

0.1 mM PLP. C) Immobilized Pf-wTA on EC-Co2+/PEI. D) Co-immobilized Pf-wTA and PLP on 

EC-Co2+/PEI at 1 µmolPLP x gcarrier
-1and E) Co-immobilized Pf-wTA and PLP on EC-Co2+/PEI at 

10 µmolPLP x gcarrier
-1.  

Finally, to expand the applications of this autonomous system, we performed the continuous 

synthesis of amines without exogenous supply of PLP (Figure 7A). A column packed with He-

wTA and co-immobilized PLP onto EC-Co2+/PEI, was fed with cinnamaldehyde to continuously 

synthesize cinnamylamine. Figure 7B shows as the self-sufficient heterogeneous biocatalyst is 

operationally slightly more stable than the system supplied with exogenous PLP. A similar trend 

was found for the synthesis of p-nitrobenzylamine (Figure S8).  
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Figure 7. Synthesis of Cinnamylamine. A) Reaction scheme. B) Continuous synthesis of 

cinnamylamine without PLP (red triangles), with exogenous PLP (blue circles) and immobilized 

PLP (green squares). He-wTA was immobilized onto EC-Co2+ PEI at 5 mg x g-1. The flow reactions 

were performed at flow-rate 0.725 mL x min-1. Each column volume corresponds to 2 minutes. 

The amine synthesis required double residence times than the deamination reaction to achieve 

complete conversion. In addition, the operational stability under amination conditions was 

significantly lower than under deamination conditions, likely due to the high concentration of L-

Ala that may elute some of the bound PLP, since such needed amine donor contains amine and 

carboxylic groups that can compete with the dual interaction mode of PLP; imine and ionic bonds, 
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respectively. Hence, the alanine may provoke the cofactor lixiviation which may explain the lower 

yields in the amination reaction than in the deamination one. 

Encouraged by the excellent results obtained for the continuous synthesis of cynamylamine, we 

assessed some sustainable metrics for the amination reaction shown in Figure 7 (Table S2). 

Considering exogenously added PLP as a reactant, the atom economy is 27% compared with the 

60% obtained with the reaction catalyzed by the self-sufficient biocatalyst that incorporates both 

enzyme and cofactor into the solid phase. More interestingly, we determined the total E-factor and 

the contribution of each reactant (waste) to that total value after 50 continuous reaction cycles 

(Figure 7). Table 3 shows that E-factors including solvents (DMSO and water) are two orders or 

magnitude higher than those ones calculated ignoring them. Pleasantly, the use of immobilized 

PLP reduces E-factor value 1.23 times compared to the system supplied with exogenous cofactor. 

This reduction is mainly due to higher yields after the 50 operational cycles, but surprisingly the 

contribution of the soluble PLP was negligible. 

 

Table 3. E-factor values for the continuous synthesis of cynamylamine using immobilized w-

TAs under different conditions.  

 
PLP 
form 

 

Including 
Solvents 

E-factor contribution of each reagent[b] (relative contribution, %)[c]  
Total 

E-factor [a] 
Aldehyde Alanine Pyruvate PLP DMSO Water Biocat 

I YES 0,38 (0) 46 ( 1) 0,66 (0) 0      (0) 10 (0) 6438 (99) 15 ( 0) 6510 

NO 0,38 (1) 46 (74) 0,66 (1) 0      (0) n.a n.a 15 (24)     61 
S YES 0,67 (0) 55 ( 1) 0,66 (0) 0,03 (0) 13 (0) 7784 (99) 18 ( 0) 7871 

NO 0,67 (1) 55 (74) 0,66 (0) 0,03 (0) n.a n.a 18 (24)     75 
 [a]Total E-factor was calculated as mg of reactants / mg of cynamylamine. [b]E-factor contribution was calculated as 
mg of each reactant / mg of cynamlamine. [c] E-factor relative contribution of each reactant was calculated as (E-
factor contribution of each reactant / Total E-factor ) x 100. PLP forms; (I) immobilized; (S) soluble exogenously 
added. 

The major contribution to the E-factor is water (99%), a reactant that is essential for the most of 

enzyme reactions but rarely accounted when measuring sustainability of biocatalytic processes. 
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Water should be considered as a waste at least that such residual water is fed back to the system 

or downstream purification steps are included in the process. The latter case has been shown 

successful in flow-biocatalysis, although sustainable metrics were not assessed12. In the other hand, 

when solvents were ignored, biocatalyst contribution to the total E-factor is significant (15-18%); 

the second highest after the amine donor (alanine). These sustainable metrics thus suggest that 

both solvents and biocatalysts must be integrated in the equation that defines process sustainability. 

Hence, solvents and biocatalysts should be considered when assessing sustainable metrics, at least 

both ones can be extensively recycled.  

 

CONCLUSIONS 

In summary, we have expanded the fabrication of self-sufficient heterogeneous biocatalysts for 

deamination and amination reactions avoiding the exogenous supply of cofactors. To this aim, we 

have co-immobilized wTAs from different origins and PLP within the same porous methacrylate 

beads. Within these solid materials, His-tagged wTA is irreversibly and multivalently attached to 

the carrier surface, whereas PLP is bound on a polymeric bed through reversible interactions (ionic 

bridges and imine bonds). As result, we operated PBRs using wTAs from different sources with 

different operational stability results. We suggest that such stability relies on the affinity of each 

immobilized enzyme towards PLP. Finally, we exploited these self-sufficient heterogeneous 

biocatalysts in the continuous amination of aldehydes, obtaining high amine yields along the 

column volumes. In addition, we assessed the sustainability metrics for this latter reaction, 

reflecting that water and biocatalysts (more importantly when it is immobilized) must be 

considered in the calculation, otherwise we dramatically underestimate E-factor values.  This work 

advances in the development of self-sufficient biocatalytic systems that ultimately eliminate the 

requirement of exogenous supplementation of additives (i.e cofactors) making these strategies 
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more appealing alternatives for industrial processes. Herein, we encourage scientific community 

to develop more efficient biocatalysts but also processes with much higher capacity to recycle 

solvents and enzymes to make biocatalysis really sustainable.   
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