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Abstract: Large-scale 3D electromagnetic simulations are commonly used as design and investigation tools 
in a wide variety of technological fields. It is not uncommon for both excitations and observation quantities 
to be expressed in terms of particular field profiles of feed waveguides. These may then be used to evaluate, 
for example, scattering parameters. These field profiles must be obtained as a pre-processing task before the 
main simulation. Use of a theoretical field profile as an excitation to a discretised structure will typically 
cause a non-physical reflection. It is therefore more desirable in practice to use a field profile that is 
consistent with both the discretisation of the geometry and the 3D method of simulation. We present an 
approach to extracting these 2D field profiles from large-scale 3D unstructured meshes which are to be 
simulated with the Unstructured Transmission Line Modelling (UTLM) method. Discretised slices from the 
3D mesh are extracted and incrementally extruded into a form suitable for consistent pre-processing. The 
impact of all the parameters of the approach are investigated. Benchmarking is undertaken on both coaxial 
cable and microstrip waveguide feed structures showing that good quality results can be obtained 
straightforwardly. 
       

1. Introduction 
Large-scale numerical computational electromagnetic methods have rapidly evolved to become a 

mainstay of design and simulation activities in a broad range of disciplines, [1-4]. In the authors’ opinion, 

experienced users understand and accept that the accuracy of the results from simulations are dependent 

upon the refinement of their discretised representations. However, there is a difference between the 

perturbation of values such as the scattering parameters and observing a non-physical phenomenon such as 

a spurious reflection. Therefore, as simulation developers, it is preferable where possible, to carefully 

manage how the consequences of discretisation errors manifest themselves to the user. 

Besides the core algorithms and their computationally efficient implementation, practical deployment 

of numerical methods also demands a supporting portfolio of techniques to provide a complete simulation 

capability. For example, it is common to develop radiation boundary conditions, thin panel, thin wire models 

and complex material models. Moreover, appropriate means for extracting observation quantities of interest 

and exciting the simulation in a physically meaningful manner must be available. In this work, we 

demonstrate how to effectively extract particular 2D field profiles from a 3D meshed geometry which are 

necessary to specify a class of excitations and observations when using the Unstructured Transmission Line 
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Modelling (UTLM) method, [5]. In particular, we show how to remove a non-physical consequence of 

discretisation errors from the point of view of a user. 

 

 
Fig. 1.  Illustrations of 3D problems requiring identification of waveguide modes to act as sources and observers. 
a A Vivaldi antenna driven by a coaxial line feed [6] 
b A Lange coupler with four microstrip ports [7, 8] 

 

Fig. 1 shows a pair of illustrative scenarios which we have used to describe and benchmark the method 

presented below. First (Fig. 1a) shows a compact antenna excited by the fundamental TEM mode of a coaxial 

feed line and its performance is characterised in part by the return loss, S11, [6]. Second (Fig. 1b), shows a 

Lange coupler which is excited at one of its ports by a fundamental microstrip mode and its performance is 

characterised in terms of a 4-port scattering matrix, [7, 8]. In both cases, the 3D simulation is being 

performed using an algorithm that discretises the problem space using an unstructured tetrahedral mesh. 

(Such 3D meshes may be hybridised for efficiency with a cubic grid in the relatively large free space regions.) 

A pre-processing task before the main time-stepping simulation is to obtain suitable 2D field profiles for the 

modes of the coaxial and microstrip lines. These are to be used to; (i) provide the source excitation to the 

simulation and, (ii) to evaluate the amplitude of the scattered modal fields for the purposes of identifying 

the circuit scattering parameters. The modes being sought are 2D waveguide-like eigen-solutions of 

Maxwell’s equations. For the coaxial cable, there exists a simple closed form expression for this field. For 

the microstrip line a numerical mode solver would often be employed beforehand for this purpose. The use 

of an independent mode solver is at least inconvenient, but more importantly, may discretise the fields in a 

different manner to the representation used by the 3D algorithm requiring the use of interpolation. In both 

cases, it is important to recognise that solutions for the modes obtained using different spatial discretisations 

and/or different approximations to Maxwell’s equations will be numerically different.  

The key motivation for this work is remove a non-physical artefact from 3D simulations that 

compromises the usefulness of their results for design and understanding of the phenomena involved.  

If, for example, an excitation is imposed in the form of a field profile which is not a waveguide-like 

eigen-solution of Maxwell’s equations discretised in exactly the same manner as that used by the 3D 

algorithm, then a numerical impedance mismatch will occur. Specifically, both the characteristic impedance 



3 
 

and the field distributions will be slightly different. This leads to non-physical reflections. The simulation 

user could then be confronted by a situation where exciting a straight section of supposedly impedance 

matched waveguide by its fundamental mode actually generates a spurious return loss. The authors believe 

that, even if an exact closed form expression for the waveguide mode is known, it is more valuable to use 

the closest approximation to it that does not cause such a reflection. The error associated with the 

approximation is then simply a further small contribution to the background discretisation error expected by 

a user. Fig. 2 presents a summary of the context. A 2D slice through a 3D mesh is identified as an excitation 

or observation port. This slice will have been discretised in the 3D mesh. A modal field profile is to be 

evaluated on the slice such that if the slice were extruded to form a uniform length of waveguide, no spurious 

reflection would result at its start. 

 

 

Fig. 2.  The overall process for extracting a section of mesh through to identifying the mode. 
 

An important point to clarify is the application context motivating this study. There is a long history 

of developing, refining and implementing specialised techniques for electromagnetic mode solving 

techniques in both the microwave and optical regimes that have been proved highly successful, (illustrated 

by chapter 7 of [4]). However, in the context of large 3D simulations, for example on the scale typical of 

aerospace electromagnetic compatibility studies, it is unlikely that the geometry around feed waveguides 

will be meshed very finely. Simply demanding a finer discretisation of the feeds is not a viable option due 

to the overall demands on resources.  

Hence, the key measures of success for this work are proposed as: (i) To obtain good representations 

of field solutions for feed structures which have relatively crude discretisations. (ii) That the field solutions 

are obtained with a method directly compatible with the technique used to perform the full 3D study in order 

to avoid spurious reflections. 
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2. Unstructured Transmission Line Modelling Method 
The Transmission Line Modelling (TLM) method was initially developed in the early 1970’s, from a 

2D through to a 3D algorithm, for predicting electromagnetic field behaviour, [2, 3, 9]. Originally operating 

with a Cartesian discretisation on a cuboidal grid, more recently a powerful variant that uses unstructured 

tetrahedral meshes has been developed, [5]. This has been thoroughly characterised and industrially 

deployed, [10, e.g. 11-13]. Unstructured meshes offer both smoother material and geometrical boundary 

representations than their Cartesian counterparts. Furthermore, they easily permit the use of a highly graded 

meshes to deal with multi-scale problems which otherwise demand the use of multi-grid methods to maintain 

computational efficiency, [10, 14-17]. TLM algorithms were originally developed by making an analogy 

between the field solutions of Maxwell’s equations and the behaviour of voltages and currents on an 

interconnected electrical network of commensurate transmission lines. In the unstructured case, it is more 

simple to regard each tetrahedral cell as an incremental volume of compact homogeneous space in which 

local canonical solutions to Maxwell’s equations are available as interpolators between discrete field 

sampling points defined on the surfaces of each cell. Requiring continuity of the fields across the boundaries 

of adjacent cells yields a time domain algorithm for repeatedly updating the field samples as time evolves. 

Note that this is the reverse of the steps used to derive finite element methods which also start with a local 

field interpolation for each cell, but which are additionally required to a priori satisfy suitable continuity 

conditions. The finite element update algorithm then follows from the requirement that the total field is then 

a solution of Maxwell’s equations in a variational sense. Finally, the discretisation approaches of both TLM 

and finite element (FE) methods contrast with the dual grid (Delaunay and Voronoi) arrangement used by 

finite difference time domain (FDTD) techniques. In the UTLM case, the feature that maintains its link with 

the original Cartesian TLM is its implementation, rather than its derivation, in terms of commensurate 

lengths of transmission lines. Advantageous features of the TLM algorithms are (i) a spatial and temporal 

co-location of the electric and magnetic field samples, unlike with FETD and FDTD and most importantly, 

(ii) a priori assurance of stability. Stability is provable on a cell-by-cell basis without the need to rely on 

guidelines such as the Courant condition or else an impractical eigen-analysis of the whole mesh. For large-

scale simulations, this is a critical advantage and late time instability has never been observed. One further 

enabler is the use of automatic cell clustering. In common with all explicit time stepping algorithms, the 

choice of the UTLM time step is often dictated by the smallest mesh feature, i.e. cell, present in the 

simulation. Mesh generation is not able to guarantee that small cells are only present where absolutely 

necessary to represent the geometry. Indeed, even in the presence of fine geometry, one usually wishes to 

set a notably larger time step based upon the physically frequencies of interest. Cell clustering is a technique 

whereby many thousands of TLM tetrahedral cells are automatically coalesced into larger entities, [10]. A 

simple pre-processing of the characteristics of these clusters inherently separates their behaviour into that 

which is physically meaningful and that which is attributable to noise caused by the non-regular distribution 
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of the mesh across the cluster. The latter can be explicitly excluded from the simulation without 

compromising the physical validity; the only effect being to change the particular nature, but not the 

magnitude, of the dispersion errors. Overall, cell clustering, which may be regarded as constructing a higher 

order scheme on the fly, allows significantly larger time steps to be used which reduces the time-stepping 

run time. 

 
Fig. 3.  The canonical tetrahedral UTLM cell in space and its implementation. 
a Each cell maintains a pair of orthogonal field sample values on each of its four faces. 
b The implementation of the time stepping algorithm for each cell proceeds in terms of a scattering centre, S, interconnected to 
its neighbouring cells via commensurate lengths of transmission line. 

 
Fig. 4.  In a prismatic extrusion from a triangular base, the 3 constituent tetrahedral cells have a common circumcentre and 
coalesce into a higher order scattering centre. 
a The constituent tetrahedra of a triangular prism. 
b The adjacency of higher order prismatic scattering centres, only showing some of the field sampling points for clarity. 

3. Extracting Modal Profiles  
This section presents the core method used to achieve the objective of the work. The principles of the 

approach are drawn from established background material and the novel contribution is to apply them for 

the first time to the particular discretisation found in 3D UTLM simulations. 

Fig. 3 Shows the field sampling on the surface of a single UTLM cell and how this is implemented 

using propagating voltage impulses on a transmission line network. (The complete details are given in [5, 

10].) Referring to Fig. 2, a surface triangulation is extracted from the 3D mesh upon which a 2D modal field 

profile is to be evaluated using the same sampled field representation as in the 3D mesh. Consistent with the 

formulation of a propagating mode eigen-problem, a stand-alone prismatic mesh is extruded from this 
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surface triangulation and tetrahedralised. It is noted that the tetrahedra appear in degenerate (i.e. have the 

same circumcentre) groups of three, each of which forms a small prismatic cluster. Fig 4 shows the sampled 

fields on such a structure, noting that there are three sets, those on the top and the bottom which are tangential 

to the prism cross-section and those midway between. On the sides of the prism a suitable impedance or 

more complex boundary condition is to be used to relate the electric and magnetic fields and this is typically 

drawn from the geometry of the 3D problem. 

For each UTLM scattering cell indexed by n, a scattering matrix, Sn is defined by the UTLM algorithm 

such that  

 

௡௥܄ =  ௡௜            (1)܄௡݁ି௝ఠ∆೟܁

 

where the term ݁ି௝ఠ∆೟  embodies the time stepping delay of the algorithm in the Fourier domain and the 

superscripts nr and ni denote the reflected and scattered quantities of the nth cell. Combining the expressions 

(1) from each cell gives an overall expression for all cells. 

 

௥܄ =  ௜             (2)܄௝ఠ∆೟ି݁܁

 

A sparse connection matrix, C enforces field continuity between adjacent cells, the boundary conditions on 

the sides of problem and the reflection coefficients at the end of the transmission line stubs that form part of 

the cell scattering elements, S, shown in Fig. 3.  

 

௠܄
௜ = ۱௠௠܄௠

௥              (3) 

 

The subscript m, and below t and b, denote the samples on the midpoint, top and bottom of the prisms shown 

in Fig. 4b. Combining (2) and (3) yields an expression which is conveniently expressed in the form. 
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The z-directed modal solutions being sought are defined by augmenting the relationships for the midpoint 

samples, (3), with  

 

Γ܄௕
௥ = ௧܄

௜      ܽ݊݀       Γ܄௕
௜ = ௧܄

௥                 (5) 
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for the top and bottom samples, where z is the direction of extrusion and 

 

Γ = ݁ି௝ఉ௱೥              (6) 

 

 ௭ the extrusion߂ is a propagation constant, which may be complex in order to account for attenuation, and ߚ

length of the prismatic mesh (see Fig. 2). From (4) and (5) 
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which can be rearranged to present a generalised eigenvalue problem for Γ. 
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Although symmetry, losslessness and reciprocity will provide a number of relationships regarding the 

structure of the matrices A and B, in this work we do not manipulate (8) further in order to improve its 

numerical characteristics for such special cases. Furthermore, the dependence upon frequency does not 

appear in a manner amenable to its explicit extraction.  Equation (8) can be solved using the shifted inverse 

power method based upon an estimate of the value of ߚ for the solution being sought which is usually easy 

to provide in context. The matrices are sparse and hence the complex linear equation solutions required are 

obtained using GMRES employing a sparse ILUT preconditioner [18]. Once solved, the sampled electric 

and magnetic fields, E and H, can be processed to yield a value for the modal wave impedance, where 

meaningful, using for example 

ܼௐ = ∬ ௗ஺ ۳×۶∗∙ܢො

∬ ௗ஺ ۳∙۳∗                                   (9) 

where the integrals are evaluated over the cross-section. This corresponds to use of a power-voltage 

definition of impedance [21] 

4. Results 
 
4.1 Coaxial Cable 

 
Fig.5 shows the convergence with mesh size of the approach for a coaxial cable operating at 3 GHz. 

The cable has core and shield radii of 1 mm and 3.495 mm respectively and an insulator relative permittivity 
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of 2.25, [6].  Both the core and shield are assumed to be perfect conductors. As described above, a 

triangulated cross-section mesh was extracted from a 3D mesh (produced using an in-house 3D Delaunay 

tetrahedral mesh generator) and extruded to provide uniform prismatic slice. Meshes were generated with 

two measures of quality, specifying (1) a maximum area and (2) a maximum Q-factor for the cross-section’s 

triangles. The Q-factor for triangles is defined as the circumradius to minimum edge length ratio and 

provides a convenient quantification of the shape of the triangle, [19]. Equilateral triangles have a Q-factor 

of 0.58 and generally speaking, a value of <2 is regarded as indicative of well-shaped triangles [19]. Further 

degrees of freedom are the extrusion length, ߂௭, and the time step ߂௧. Except where stated, the value of ߂௧ 

is set by the lowest prismatic cell cluster response time, as described in [10], such that in all cases at 3 GHz, 

߱∆௧≪ 1. The use of small values of ∆௧ does not incur a run time penalty for mode identification as it does 

for time stepping. However, Fig. 5 does show one example of the effect of explicitly controlling the value 

of ∆௧. 

 

Fig. 5.  Results for ඥ߳௘௙௙ and wave impedance, Zw from a modal analysis of a coaxial cable with core and shield radii of 1 mm 
and 3.495 mm respectively and an insulator relative permittivity of 2.25 operating at 3 GHz. 
a Convergence with mesh size: Δz=0.01 mm, Δt is selected automatically as described in the text, DT=0.01 mm 
b The effect of extrusion distance Δz: Δt is selected automatically as described in the text, DT=0.01 mm and ඥܣ௠௔௫ = 0.1 ݉݉ 

c. The effect of time step Δt: Δz=0.01 mm, DT=0.0001 mm and ඥܣ௠௔௫ = 0.1 ݉݉ 

d. The effect of clustering threshold, DT: Δz =0.01 mm and ඥܣ௠௔௫ = 0.1 ݉݉. The solid and dashed lines correspond to 
2coΔt=0.1 mm and 2coΔt=0.01 mm respectively 
 

Fig. 5a demonstrates that the errors in both the propagation constant, in terms of an effective relative 

permittivity  ඥ߳௘௙௙ = ܿ௢ߚ/߱ and the modal wave impedance, Zw, exhibit second order convergence with 
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triangle size. ܿ௢ and ߱ are the free space speed of light and angular frequency. The triangular element size 

is quantified in terms of the square root of the maximum triangle area, denoted by ඥܣ௠௔௫,  in order to 

provide a measure which is dimensionally a length. Fig. 5b considers the effect of the extrusion length, Δz. 

It can be seen that the propagation constant remains accurate even as Δz  approaches the length scale of the 

triangles and in fact, remains constant until the sampling limit with respect to the propagation constant is 

reached. Typically, the value for Δt is set automatically as described above, but it was also argued in the 

introduction that being able to use exactly the same parameters as for a subsequent 3D simulation is 

important to avoid numerical impedance mismatches. Fig. 5c shows that the convergence with the scaled 

measure, 2ܿ௢Δ௧ can conservatively be set using a criterion of 10% of ඥܣ௠௔௫. 

The formation of higher order cell clusters has proved a powerful enabling technique for the UTLM 

method. Without clustering, the time step can be required to be significantly smaller than demanded by the 

physics, incurring a significant computational penalty when time-stepping. The clusters are formed by 

specifying a threshold distance, DT, and cells whose scattering centres are closer than this are coalesced as 

described in [10]. In Fig. 5d the use of larger thresholds is clearly seen to allow larger time steps to be used. 

The limit on the thresholding occurs when too many cells (typically >1000 in a 3D mesh) coalesce such that 

the pre-processing of the cell clusters becomes prohibitively large. The rise in error as larger clusters are 

formed in Fig. 5d is due to the fact that the spatial resolution in the transverse plane eventually becomes 

diminished. 

 

Fig. 6.  The effect of mesh quality onඥ߳௘௙௙, Zw and field profile for the problem of Fig.5 

a. The convergence curves for the ඥ߳௘௙௙ and Zw errors are identical 
b. An illustrative field profile for a well refined mesh: Δz=0.01 mm, Δt is selected automatically as described in the text, DT=0.01 
mm and ඥܣ௠௔௫ = 0.1 ݉݉ 
 

Fig. 6 assesses the sensitivity of the approach to mesh quality: Good quality triangles are quasi-

equilateral (Q-factor <2) and poor triangles are those possessing either a small (<10 deg.) or large (>170 

deg.) angle, [19, 20]. The Delaunay mesh refinement process recursively splits poor triangles at their 
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circumcentre to achieve either better quality or smaller elements, so it is actually difficult to generate small 

element area, poor quality, meshes as splitting for area naturally improves the quality as well. Fig. 6 shows 

four cases with different worse case element qualities. It is remarkable that even with such crude meshes, 

reasonable results can be obtained. For comparison, Fig. 6b shows a field profile obtained using a more 

refined mesh and it is noted that one can see that the circular cable has been discretised by a polygon (of 16 

sides) which supports the proposition that such geometrical resolution will not necessarily be high in very 

large-scale simulations. 

 
4.2 Microstrip Line 

 
 The second example presented is driven by the need to provide a source to and observe the outputs 

from the Lange coupler example shown in Fig. 1b. The relevant parameters for mode extraction are an 

operating frequency of 1 GHz, a substrate relative permittivity of 9.6 and thickness of 2 mils (0.0508 mm) 

and a strip with and thickness of 10 mils (0.254 mm) and 2 mils (0.0508 mm) respectively, [7]. For each of 

the microstrip ports, a small “selecting cube” is used to extract a part of the surface triangulation from the 

3D mesh from which an extrusion is generated as shown in Fig. 2. In general, this may encompass known 

boundary conditions, for example the ground plane here, but also leave (jagged) edges on which a boundary 

condition must be imposed for the purpose of mode identification. In this case, an open circuit condition is 

used to close the top and sides of the problem creating a boxed microstrip structure. 

 

 

Fig. 7.  Results for the Lange Couplers’s microstrip feed using the value with ඥܣ௠௔௫ = 0.01 ݉݉ as a reference. 
a Convergence of ඥ߳௘௙௙, with mesh size: Δz=0.01 mm, Δt is selected automatically as described in the text, DT=0.001 mm 
b Magnitude of the horizontal and vertical electric field components for three meshes,  
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Fig. 7a examines the convergence of the propagation constant with mesh size. The reference value taken is 

the result obtained using a fine mesh (ඥܣ௠௔௫=0.003 mm). Again, second order convergence is observed. 

Fig. 7b shows a selection of field profiles obtained. In the context of exciting very large-scale 3D simulations, 

it is useful that an error of ~6% is available even with the crudest mesh shown.  

 Finally, it is commented that the computational effort required to obtain the results is wholly 

dependent upon the effective implementation of a sparse preconditioned matrix eigensolver. In the above 

examples, results were obtained in a matter of seconds when run serially on a Sandy Bridge CPU platform 

and never required more than a minute. This is to be compared to the subsequent 3D simulation times often 

extending to many hours or days. 

5. Conclusion 
This paper has presented for the first time a methodology for extracting waveguide mode parameters 

using the 3D Unstructured TLM approach. The value of the work to the simulation developer and user 

community is to be able to provide field profiles on 2D slices that can be used for the purpose of excitation 

or observation which do not give rise to spurious non-physical reflections. If such artefacts are not avoided 

where possible, the interpretation of simulation results is less straightforward. 

Slices containing triangular elements are taken from a 3D tetrahedral mesh and extruded to produce a 

prismatic structure. This structure is then analysed to identify the eigen-solutions corresponding to the 

propagating modes. The analysis is developed by applying well known waveguide and matrix theory to the 

particular discretisation used by the UTLM algorithm.  

The method demonstrates second order convergence with mesh size and an investigation of the other 

degrees of freedom has shown that the method is robust. The key contribution is considered to be that the 

solutions obtained are (i) fully consistent with both the field sampling method of the full 3D mesh upon 

which they are intended to interact and (ii) able to provide acceptable approximations to the true mode 

profiles even when the mesh is crude which is important in the context of resource limited very large scale 

simulations. 
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