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Abstract
We investigate the flow of a one-dimensional nonlinear Schrödinger model with periodic
boundary conditions past an obstacle, motivated by recent experiments with Bose–Einstein
condensates in ring traps. Above certain rotation velocities, localized solutions with a nontrivial
phase profile appear. In striking difference from the infinite domain, in this case there are many
critical velocities. At each critical velocity, the steady flow solutions disappear in a saddle-center
bifurcation. These interconnected branches of the bifurcation diagram lead to additions of
circulation quanta to the phase of the associated solution. This, in turn, relates to the
manifestation of persistent current in numerous recent experimental and theoretical works, the
connections to which we touch upon. The complex dynamics of the identified waveforms and the
instability of unstable solution branches are demonstrated.

Keywords: Bose–Einstein condensates, dark solitons, saddle-center bifurcation, critical velocity

(Some figures may appear in colour only in the online journal)

1. Introduction

Persistent flow is a remarkable property of macroscopic
quantum systems. Bose–Einstein condensates (BECs) in a
ring geometry [1–6] have been shown recently to support
circulating superfluid flow [5, 7, 8]. The ring trap can have a
highly tunable radius and controllable transverse oscillation
frequency [9, 10], which makes such a system ideal for the
creation of, e.g., a multiply connected BEC [5, 8] as well as
for applications in interferometry [11].

A characteristic feature associated with superfluidity is
the existence of a critical velocity above which its breakdown
leads to the creation of excitations. In experiments with
BECs, evidence for a critical velocity was obtained by
moving an obstacle, i.e. a tightly focused laser beam, through
a BEC [12, 13]. This setting has been demonstrated to be
prototypical for dark soliton formation in one-dimensional
(1D) [14, 15] (see [16] for experiments, although the latter

were only quasi-1D), and for vortex formation in 2D [17],
which can be thought of as a type of nonlinear Cherenkov
radiation. In the case of obstacles in a supersonic flow of the
BEC, the formed Cherenkov cone [18–20] transforms into a
spatial shock wave consisting of a chain of dark solitons [21].
The appearance of such radiation in photonic crystals [22] is
yet another illustration of the importance of the fundamental
study of critical velocity. The formation of vortex dipoles in a
similar setting was also directly observed experimentally in
the work of [23]. The case of a heavy impurity and the
associated drag force were studied in [24].

In a homogeneous weakly interacting Bose gas the cri-
tical velocity is the same as the speed of sound, as per the
associated Landau criterion [25]. Moving inhomogeneities
can alter this critical value. For a ring geometry it has been
shown in [26] that the instability of the superfluid is caused by
outer and inner edge surface modes, in a similar fashion as in
an infinite cylindrically symmetric tube with transverse har-
monic confinement [27, 28]. The different mechanism is due
to the presence of a centrifugal force arising from the nature

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 235301 (8pp) doi:10.1088/0953-4075/49/23/235301

5 Author to whom all correspondence should be addressed.

0953-4075/16/235301+08$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:lucia.hackermuller@nottingham.ac.uk
mailto:hsusanto@essex.ac.uk
http://dx.doi.org/10.1088/0953-4075/49/23/235301
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-4075/49/23/235301&domain=pdf&date_stamp=2016-11-04
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-4075/49/23/235301&domain=pdf&date_stamp=2016-11-04


of the rotation. The effect of potential barriers in BECs con-
fined in a ring trap has been studied experimentally and
theoretically [7, 29–33]. The weak link due to the barrier,
which affects the current around the loop, has a promising
application as a closed-loop atomic circuit (atomtronics), e.g.
as analogs of superconducting quantum interference devices
[34, 35]. The current-phase relation of a BEC flowing through
a weak link was explored for a repulsive square barrier in
[36]. The existence of a critical velocity above which super-
fluid flow stops in the ring is connected to Cherenkov
radiation through the excitations of vortex–antivortex pairs
[7, 29], in analogy to the rectilinear case [23]. Nevertheless,
the relevant instability remains somewhat inconclusive (in
connection to corresponding experiments [7]) with different
mechanisms proposed to account for discrepancies between
theory and observation including thermal fluctuations [37]
and imaging system resolution [38].

In the present study we consider a BEC confined in an
effectively 1D annular trap with a moving potential barrier,
which is equivalent to a stationary barrier and a moving
condensate as realized in [7, 30]. Using the mean-field, i.e.
Gross-Pitaevskii (GP) approximation in the infinite domain, it
was shown that the critical velocity vc corresponds to a sad-
dle-center bifurcation of two branches of solutions [14], a
stable (center) and an unstable (saddle) one. Using a 1D
approximation (for a narrow ring geometry) in an effectively
periodic domain, we reveal in an analytical and corroborate in
a numerical fashion the existence of a sequence of saddle-
center bifurcations and associated critical velocities. These, in
turn, correspond to different topological charges that are all
connected within the same bifurcation diagram. We present
numerical simulations as well as analytical calculations,
where it is shown that the critical points can be obtained from
solving two coupled nonlinear equations. We also observe the
presence of a critical strength of the inhomogeneity (or length
of the domain) above (respectively, below) which there is no
critical velocity, i.e. the inhomogeneity can move with any
velocity while preserving the superfluidity. This occurs when
the ring circumference becomes shorter than the healing
length (a setting that may thus be less relevant from a physical
perspective) or when the obstacle is strong enough. Our
examination reveals a series of unstable branches in the
relevant dynamics; we explore the dynamical evolution of the
solutions associated with these branches by means of direct
numerical simulations.

The results presented here are intimately connected with
recent experimental and theoretical observations. One of the
early attempts to identify topological winding (and unwind-
ing) in atomic BECs resulted in the seminal findings of [39–
41]. In these works, rather than a defect rotating inside a BEC,
a setting where a rotation was imposed on the entire quasi-1D
ring BEC was examined. This has similarities but also sub-
stantial differences from our setup. A similarity is that the
system is analytically tractable; in fact, it is a genuinely
homogeneous system (1D in the co-rotating frame) where the
effective 1D GP equation associated with the dynamics
(including the rotational term) can be solved analytically by
means of elliptic function cnoidal wave solutions which

account for the phase slip events also identified here. On the
other hand, there are nontrivial differences from that case. In
particular, in our setting (and in recent experiments such as
[7, 30, 31, 34, 35, 42], the phase slips do not arise in a
‘distributed’ manner, associated with these periodic cnoidal
solutions, but rather in a localized manner being co-located
with the defect. Hence, the analytical considerations presented
herein are expected to be more closely connected to recent
experiments. Among the latter, a few [34, 35] have been more
directly related to the case with a pair of weak links or
Josephson junctions, aiming at least in part to potential
superconducting quantum interference related applications,
while here we will focus solely on the realm of a single weak
link. Arguably, the recent experimental settings most clearly
related to our own work are those of [30, 31]. The former one
measures experimentally the emergence of the phase slips and
uses a qualitative model based on the Bohr–Sommerfeld
quantization condition and an approximate current-phase
relation at the weak link to theoretically trace a structure
similar to the one that we analytically identify in the present
work (see their figure 4 and our bifurcation diagrams of
figures 2 and 3 below). The latter work of [31], in fact,
explicitly identifies the hysteretic dynamics that has been
proposed to be a key characteristic of this system in the above
figures. However, it also recognizes the disparity of the
experimental observations from the GP findings (a feature
that retraces discussions of earlier work mentioned above
[37, 38]). The analytical tractability of our findings in this
system (in a sense, adapting to it the spirit of calculations
performed earlier in the homogeneous rotated system of [39–
41]) may offer further insight in the relevant comparison.

As a final step in this theme of comparisons, we would
like to mention recent work, which has explored the case of a
rotating weak link as a function not of the potential/domain
parameters considered here (such as the barrier strength or the
domain length), but rather as a function of the interaction
strength [43]. This elaborate task requires different approa-
ches in the weakly interacting limit (treated by means of a GP
equation) and in the strongly interacting limit (treated by
means of a Luttinger liquid approach and in the case of a
Tonks gas by a Bose–Fermi mapping to the case of non-
interacting fermions). Intermediate regimes were treated by
density-matrix renormalization group computations which, in
fact, revealed an unexpected optimality in the observed per-
sistent currents at some intermediate interaction strengths
between the above limits.

2. Theoretical setup

The 3D GP equation is given by [44]

 
y y y y y y¶ = - D + + +

m
g n V U tx xi
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with = Îx y zx , , 3( ) , y tx,( ) is the mean-field wave
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function, m is the atomic mass, D = ¶ + ¶ + ¶xx yy zz is the

Laplacian, μ is the chemical potential, = pg a

m3D
4 2

s the
atomic interaction strength, which is proportional to the
atomic scattering length as, n is the number of atoms, V is the
external trapping potential, and U is a short range potential
representing the moving obstacle with an angular velocity ω.
Here, the wave function is scaled by the integral

ò y =xd 1.2
3
∣ ∣

BECs on a ring, with radius R, can be described by the GP
equation (1) with a trapping potential that can be written in
cylindrical coordinates qr z, ,( ) as

w w= - +V r z m r R z,
1

2
,r z

2 2 2 2( ) [ ( ) ]

where w w , 1r z , such that the dynamics of the BECs would
be confined at r=R and z=0, which is the minimum of the
confining potential V r z,( ). Typical parameters used in
experiments [30] with 23Na are w p =2 110r Hz,
w p =2 550z Hz, m=R 20 m, ~n 105 and the Planck
constant  = ´ -1.05 10 34 Js.

In this case, D = ¶ + ¶ + ¶ + ¶qqrr r r r zz
1 1

2 and the
moving potential U can be treated as a δ potential of strength
α, i.e., q ad p d q w= - -U r t r L t, , .( ) ( ) ( ) Assuming a
concentration around the minimum = =r R z, 0( ) and
using w w , 1z r , one can then write y =tx,( )
y y y qr z t,1 2 3( ) ( ) ( ), where y r1( ) and y z2 ( ) are the ground
states satisfying the equations
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under the scaling  ò òy y= =+ r r zd d 11
2

2
2∣ ∣ ∣ ∣ . Substitut-

ing y y y y q=t r z tx, ,1 2 3( ) ( ) ( ) ( ) into (1) evaluated at r = R
and z = 0 under the assumption that the atoms are con-
centrated at the minimum of the potential, one obtains
approximately
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Using the scaling =t t t0˜ and y y= g 3
˜ ˜ , with

 y y= =t
m

g g n R m
2

, 0 20 3D 1
2

2
2 2˜ ( ∣ ( )∣ ∣ ( )∣ ) ( )

and setting k k k= + t1 2 0˜ ( ) , w w= t0˜ , and a a= t0˜ ( )
accordingly, equation (2) can be reduced into the scaled
equation (after dropping all the tildes)

y y ky y y ad q w y= - + + + -qq
R

ti
1

, 3t 2
2∣ ∣ ( ) ( )

where the periodic boundary conditions along the azimuthal

direction are

y p y p y p y p- = - =q qt t t t, , , , , .( ) ( ) ( ) ( )

A static BEC with a moving potential is equivalent to the
flow of a nonlinear Schrödinger fluid past an immobile
obstacle. Writing p=R L , /q w a a= = R x R v R, , ,
and considering the traveling frame (i.e.,  -x x vt),
equation (3) for the effectively 1D problem can be written as

y y y ky y y ad y= - + + + - <v x L x Li i , .
4

t x xx
2∣ ∣ ( )

( )

In order to study the existence of persistent superflow, we
search for a steady state solution

*
y m= -x t t u x, exp i( ) ( ) ( )

of the GP equation (4), where
*

m is the chemical potential,
which leads to

*
k ad m- + + + =vu u u u u x u ui , 5x xx

2∣ ∣ ( ) ( )

or equivalently

m ad- - + + =vu u u u u x ui 0 6x xx
2∣ ∣ ( ) ( )

with
*

m m k= - .
Denoting NL as the norm of the solution u(x), i.e.

ò= =
-

N u x gRdL L

L 2∣ ∣ ˜ , equation (6) is solved simultaneously
with the scaling equation, without loss of generality,

=N L2L , using a Newton–Raphson method by discretizing
the Laplacian with a central finite difference method [45].

We then examine the (linear) stability of a solution
u(x) for which we introduce the linearization ansatz

*
* *y m= - + +w w- x t t u x r x s x, exp i e et ti i( ) ( )( ( ) ( ( ) ( ) )),

where  is a formal small parameter, w an eigenfrequency and
(r, s) an eigenvector. Substituting it into equation (4) and
keeping the linear terms in r and s, one obtains the linear
eigenvalue problem

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥* *




w
- -

= -u
u

r x
s x

r x
s x

, 7
2

2( )
( )
( )

( )
( ) ( )

where  m ad= ¶ - ¶ - + +v u xi 2x xx
2∣ ∣ ( ) and * =

m ad- ¶ - ¶ - + +v u xi 2x xx
2∣ ∣ ( ). Note that eigenvalues in

Hamiltonian systems come in complex quartets [46]. In
particular, in the realm of the Schrödinger systems (3), if w is
an eigenfrequency of (7) with a corresponding eigenfunction
r x s x T[ ( ) ( )] and T represents the transpose, then w-( ),
*w-( ) and *w are also eigenfrequencies with corres-

ponding eigenfunctions - -s x r x T[ ( ) ( )] , * *s x r x T[ ( ) ( ) ] and
* *- -r x s x T[ ( ) ( ) ] , using the fact that * = -u x u x2 2( ( ) ) ( ) and

* = -f x f x( ) ( ). A solution u(x) is therefore stable if and
only if w =Im 0( ) for all eigenfrequencies w.

3. Numerical results and connections to theory

In figure 1 we show one of the principal results of the present
work, namely the bifurcation diagram of superfluid flow for
varying velocity v starting from the static solution v=0 of
(3) for a system with = =N L2 10L and a = 0.5. As we fix
the norm, the bifurcation diagram is depicted in μ as a
function of v. From figure 1 we observe that the solution

3
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experiences many saddle-center bifurcations (turning points)
as indicated by black dots. Since steady flows do not exist
beyond the turning points (i.e. for either larger or smaller v for
the respective turning point), the abscissa of the bifurcation
points corresponds to critical velocities vc. Note that hyster-
esis in 1D rings and in optical lattices has been reported
before in [47], where it was argued that superfluidity can be
naturally viewed as a hysteretic response to rotation.

In a ring trap geometry the phase of the BEC circulates
around the center by an integer multiple of p2 (see figure 1).
The so-called topological charge q corresponds to how many
times the phase winds along the ring. Macroscopic states with
different q have distinct energies and the effect of q on per-
sistent flow has been recently studied experimentally [8].
Considering the phase of the solutions along the branch in
figure 1, it is interesting to note that the topological charge
jumps along the branch segments that correspond to
decreasing velocity v. More precisely, q increases at the
points where the density at the obstacle vanishes. Hence, the
solutions for all values of q are smoothly connected along the
diagram. In figure 1, the upper insets show the density and the
phase profile right before the charge jump (phase slip).

To provide a better understanding of the relation between
the bifurcation diagram in ring systems (figure 1) and that of
the infinite domain, which only has one saddle-center bifur-
cation [14], we now study bifurcation diagrams for different
values of the domain length L. For this calculation it is pre-
ferable to fix the chemical potential μ and let the solution
norm vary. Using a = 0.5 and m = 1, the results are shown in
figure 2. Plotted is the square-root density of the stationary
solution u 0∣ ( )∣ against the velocity.

It is known that in the infinite domain, the critical velo-
city corresponds to a saddle-center bifurcation between a dark
soliton pinned to the obstacle and the uniform solution that is
modified due to the inhomogeneity U(x) [14]. The continua-
tion diagram of the solution in this case forms a loop with its

symmetric counterpart (note that equation (4) is invariant
under the transformation  -v v and  -x x) shown as
black curve in figure 2. As v varies further, one will go around
in the closed loop.

In a ring system, when L is finite, we do not obtain a
closed loop, but have connected ‘loops’ instead. The situa-
tion, when the curves touch the horizontal axis for finite L,
corresponds to the creation of dark-soliton-like states at the
position of the impurity. Exactly at these points the topolo-
gical charge increases. While in the infinite domain there is
only one velocity point, where dark soliton-like-states can be
created by the impurity, there are several of these points in the
ring systems. The implications of this feature lead to complex
dynamics as will be discussed further below.

Figure 1. Bifurcation diagram of the steady flow solution for a model system with a = 0.5 and = =N L2 10L . Bold solid and dotted lines
correspond to stable and unstable solutions, respectively. The insets show the time independent solution profiles in the ring trap along the
branches for velocities corresponding to the position of the crosses. Solid and dashed lines in the insets show the magnitude and phase of the
solutions. For each profile the solution charge q is given.

Figure 2. Connection between ring systems with finite lengths L
(colored) and the infinite domain (black line). We plot =A u0 0( ) ∣ ( )∣
as a function of v for a = 0.5 for several values of L, i.e.¥ (black),
5 (red), 2 (blue), 1/2 (green). Solid and dotted curves represent
stable and unstable solutions, respectively.

4
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With decreasing length L the initial ‘loops’ become
smaller and the distance between two consecutive ‘loops’
increases. There will be critical values of L when the
shrinking ‘loops’ become points, i.e. pairs of saddle-node
bifurcations collide. In that case, when one decreases the
length further, the corresponding ‘loops’ will disappear as is
the case in the green curve in figure 2.

We have also studied the effect of varying the potential
strength α on the existence of steady state solutions. From our
computations shown in figure 3, we obtain that as α increases,
the bifurcation ‘loops’ are getting smaller and two con-
secutive saddle-center bifurcation points get closer to each
other and then finally disappear at some value α. This implies
that there is a critical potential strength parameter acr above
which there is no saddle-node bifurcation, i.e. the obstacle can
move with any velocity. This may be interpreted as a con-
dition when the obstacle is strong enough to pin the ring BEC
such that moving the obstacle means moving the BEC as a
whole and hence there is no relative velocity between the two.
This informs us that there is a limiting α above which it is
unfavorable for the BEC to have a non-vanishing density at
the position of the barrier, i.e. the BEC moves together with
the barrier. The green curve ( =L 1 2) in figure 2 also cor-
responds to such a situation. This is a feature that is not
present in the infinite domain.

The bifurcation diagrams can be analyzed as follows (a
similar derivation was presented in the supplemental material
of [43] without connection with bifurcations that occur
in the system). Using the Madelung’s transformation

= ju x A x e xi( ) ( ) ( ), one obtains from the static version of (4)

j j= -A vA A2 , 8xx x x x ( )

j m j= - + - +A A A A vA U x A. 9xx x x
2 3 ( ) ( )

Multiplying (8) with A and integrating yields

j = -
v C

A2
, 10x

1
2

( )

where C1 is a constant of integration, which can be directly
taken to be any number in the infinite domain [14]. Notice
that equation (10) is suggestive (as discussed above in con-
nection with figure 2) of the fact that where A 0 0( ) , sharp
gradients in the phase may arise; see the top profiles in
figure 1. For a δ-potential U(x), one then obtains from (9) the
first integral

m= - + + -A
A

A v A C A C
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4
2 4 4 4 11x

2
2

6 2 4
2

2
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2[ ( ) ] ( )

with C2 being a constant of integration, and boundary con-
ditions

a= - =+ - + -A A A A A0 0 , 0 0 0 . 12x x( ) ( ) ( ) ( ) ( ) ( )

Due to the symmetry (x → − x), the latter equation is
equivalent to a=+A A0 0 2x ( ) ( ) . Using the equations in (2),
which are equivalent to - =  =A L A L A L, 0,x( ) ( ) ( ) and
(12), it is straightforward to obtain from (11) evaluated at
=x L0, that
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Y y
y
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, 14
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which can be expressed in terms of the incomplete elliptic
integral of the first kind [48]. Then, the solution of (11) is

= + >-A x Y x Y A x0 , 0 151 2( ) ( ( ( ) )) ( )

and - =A x A x( ) ( ). Hence, A(L) can be written in terms of A
(0). Finally, using (10), one obtains the nonlinear algebraic
equation that will yield the diagrams in figure 2, i.e.

òp- =
+-

vL
q

C

Y x Y A
x

2 0
d , 16

L

0

1
1 2( ( ( ) ))

( )

where Îq is the topological charge. Figure 1 can be
obtained similarly from solving (16) simultaneously with the

constraint ò + =-Y x Y A x N0 d 2
L

L0
1 2( ( ( ) )) for μ and A(0).

It is then interesting to investigate the dynamics of
solutions of equation (4) in two specific regions of the

Figure 3. The critical velocities vc as functions of the potential
strength α, in a ring with L=5. The black dots correspond to those
depicted in figure 1. Above a certain critical strength the potential
can move with any velocity without breaking the superfluidity. This
is because the critical points pairwise merge, as shown in the figure.
This is done in a way reminiscent of a swallowtail catastrophe
surface6 in the context of figure 1 and results in a monotonic
dependence of the chemical potential μ versus the velocity v and the
absence of critical points.

6 See e.g. the relevant discussion of this catastrophe in: https://en.
wikipedia.org/wiki/Catastrophe_theory
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bifurcation diagram. To be more precise, we study the time-
evolution of unstable solutions under small perturbations
(figure 4) and discuss the time dynamics of solutions for
velocities beyond the critical values (figure 5), i.e. below or
above which the corresponding steady state solutions do not
exist.

For the two unstable solutions depicted in the insets of
figure 1, we show the time evolution dynamics in the
laboratory frame in figure 4 by plotting the density distribu-
tion along the ring. In both situations a dark soliton is released
from the inhomogeneity after initially traveling along the
obstacle. The detachment of the dark soliton from the ‘pin-
ning’ potential is the only dynamics of instability that we

observed in all our simulations. Whether the soliton travels
ahead or behind the obstacle depends sensitively on the per-
turbation. Note as well that the density of the cloud shows that
after detachment the dark soliton in panel (b) moves faster
than that in panel (a).

We then analyze the dynamics beyond a critical value,
i.e. we take the steady state solution at a critical velocity vc as
the initial condition and then compute the evolution
for = + Dv v vc .

In figure 5(a) we show the dynamics in moving coordi-
nate frame for clarity with = +v v 0.02c for the second
bifurcation point in figure 1 at vc = 1.2. We observe that a
dark soliton is emitted from the impurity along the evolution.

Figure 4. Time dynamics of the two unstable solutions shown in the insets of figure 1 for q=0 and v = 0.6 (a) and q=1 and v = 1.9 (b). In
both panels, a soliton is created and moves around the ring with constant velocity, while the density of the BEC shows a periodic pattern.
Depicted is the density u x t, 2∣ ( )∣ .

Figure 5. Numerical integration of equation (4) at = + Dv v1.2 close to the bifurcation point. (a) ForD =v 0.02 a soliton is created at the
position of the impurity, after one round-trip the soliton is trapped by the impurity and released after some time. (b) ForD =v 0.6 there are
one or two solitons within the trap. Arrows in the figure indicate the presence of two solitons at one instant of time. See text for details.

6

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 235301 M Syafwan et al



In striking difference to the infinite domain [14], the released
dark soliton interacts periodically with the impurity, which
then traps the soliton for some time (e.g. between t = 40 and
t = 50) before releasing it again. Note that the trapping time
after each round trip is not constant. For a wide interval of
D >v 0 ( < <v1.2 1.3) we obtain similar dynamics with
only one soliton present in the annular BEC. In the ‘labora-
tory frame’ (where the obstacle is rotating), this situation
implies that the emitted dark soliton will tend to be standing,
even though it also slowly drifts due to the temporary
entrapment that it suffers from the moving obstacle.

WhenD =v 0.6, one or two dark solitons can be created
within the ring, as is shown in figure 5(b). For the first few
time units, there is only one soliton present within the ring.
After some time an additional dark soliton can be created, and
as a result at the time instant indicated with arrows, two
solitons exist in the trap. The presence of several solitons in
the trap and repeated interaction with the impurity can lead to
complex dynamics including collisions between the solitons
or annihilation of the soliton by the impurity.

4. Discussion and future challenges

In current state of the art ring traps that have been created e.g.
by a spatial light modulator (SLM) [8] or by magnetic
potentials [49], the impurity can easily be added through a
focused blue detuned laser beam or by the SLM as well. In
the setup of [7, 34] the impurity is present and excitations
have indeed been observed [30]. The predictions of this paper
are therefore directly relevant for the effects observed in
current experiments.

In summary, we have studied the creation of dark solitary
waves (and more generally the generation of phase slips/
persistent currents) in a system with periodic boundary con-
ditions. In contrast to the infinite domain case, for our
bounded domain setting we find the existence of several
critical velocities corresponding to different charges q of the
stable solution. A somewhat unexpected feature was also the
existence of sufficiently narrow domains or sufficiently strong
obstacles for which no critical velocity could be identified.
The ability to create coherent structures by increasing the
velocity or to annihilate them through the impurity allows the
creation—via the bifurcation diagram presented herein—of a
controllable number of p2 phase windings within the ring
trap. The analytical tractability of this formation through the
quasi-1D theoretical formulation proposed herein is a feature
adding to the controllability of the process. The exact
dynamics of the resulting structures can be highly complex
including possible collisions and interactions and will be an
interesting object for further study. It is especially relevant to
systematically extend such considerations to higher dimen-
sional contexts not only in 2D but also in 3D. In higher
dimensions, the situations are distinct as the superfluid does
not necessarily rotate like a solid body, see e.g., [29] for
numerical studies of flow dissipation in 2D in the mean field
regime in the presence of a static barrier, [33] for superfluid

with q— topological charge in the presence of rotating barrier
and [32] for persistent currents in the 3D case.
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