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Abstract: In this paper, the effects of initial curvature and lattice core shape on the bending vibration of sandwich 

beams are investigated. The three-dimensional (3D) sandwich beam is simulated by combining a two-dimensional 

(2D) cross-sectional analysis with a one-dimensional (1D) nonlinear beam analysis. The sandwich beam is composed 

of two identical isotropic faces covering a lattice core. Four different lattice core structures are used to take into 

account the effect of core unit cell shape on the dynamic properties of the sandwich beam. The nonlinear governing 

equations of the sandwich beam are discretised using a time-space scheme. Numerical results show that the lattice 

unit cell shape affects both in-plane and out of plane stiffness values and hence changes the dynamic behaviour of the 

beam. Furthermore, it is observed that by changing the density ratio of the beam, modes veer away from each other at 

a specific value of density ratio for specific unit cell types. Moreover, the initial curvature of the beam is shown to 

affect the dynamics of the beam especially lower modes. Finally, it is obtained that the dynamics of the beam is 

different when it is initially curved or curved due to an applied end follower moment.  

Keyword: Curved sandwich beam, free vibration, lattice core, exact beam formulation.  

Introduction 

Due to their high strength to weight ratio, sandwich structures are broadly used in many engineering applications such 

as aerospace, automotive, marine, etc [1]. When the length of the structure is much higher than the other two 

dimensions, it is possible to simulate the dynamics of the structure using beam models [2]. A sandwich beam normally 

is composed of three layers which are a thick core and two thin faces bounded together [1]. The faces of the sandwich 

beam are mainly responsible for the strength of the beam, while the core is used to support the face panels from shear 
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failure. Both core and face panels can be made from isotropic or anisotropic materials, and the core typically can be 

made from foams, corrugated or honeycomb sheets [3, 4].  

Many researchers investigated the dynamics of sandwich beams by considering several design parameters, and a 

number of governing equations were derived. Among the earliest studies, Kerwin [5] derived expressions for the 

flexural stiffness of sandwich beams with a damping layer between two face sheets. The vibration properties of a 

sandwich beam with viscoelastic core was considered by DiTaranto [6] for various boundary conditions. In this study, 

the differential equations of motion for the sandwich beam were derived by considering a complex shear module for 

the sandwich core. Mead and Markust [7] also derived a six-order differential equation for the transverse vibration of 

three-layered sandwich beam. The free vibration of sandwich beams using various beam models was investigated by 

Mead [8]. It was highlighted that the beam model should be selected based on the flexural wavelength and the core 

thickness. Frosting and Baruch [9] studied the effect of flexible cores on the free vibration of sandwich beams. They 

proposed to consider a nonlinear displacement distribution through the core to model the flexible core. Sakiyama et 

al. [10] investigated the free vibration of sandwich beams with elastic and viscoelastic cores with various boundary 

conditions. It was concluded that the core shear modules and depth affect the natural frequencies of the beam. A 

Galerkin element method was developed for vibration analysis of sandwich beam structures by Sainsbury and Zhang 

[11]. It was shown that the proposed element can accurately predict the dynamics of the beam, even higher frequencies, 

with less computational cost. Banerjee [12] used the dynamic stiffness method for free vibration analysis of symmetric 

sandwich beams. They showed that the proposed method is capable of capturing the vibration of the beam accurately. 

The effect of through the thickness deformation and high modulus ratio on the vibration of sandwich beams and plates 

were presented by Moreira and Rodrigues [13] using a layerwise model. The numerical and experimental results 

proofed that their proposed model was able to predict the dynamic behaviour of sandwich beams specially with soft 

cores. Vidal and Polit [14] studied the free vibration of sandwich and laminated beams using a family of sinus models. 

The continuity condition between the layers was retained, and it was shown that the developed models can accurately 

predict the dynamics of the beam for a range of cases. The free vibration of sandwich beams was considered by Khalili 

et al [15] using a dynamic stiffness method. The core to face density and thickness ratios were obtained to significantly 

affect the first mode of the beam irrespective of the type of the boundary condition. The literature on the free vibration 

of laminate composite and sandwich plates was reviewed by Sayyad and Ghugal [16]. The free vibration of sandwich 

beams with soft cores was analysed by Khdeir and Aldraihem [1]. A zig-zag beam theory was developed which then 
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was shown, through comparison with available experimental results, to have high accuracy for soft core sandwich 

beams. Hui et al. [17] proposed a high order finite element for free vibration of sandwich structures. Their numerical 

results showed that the proposed model yields accurate results with less effort in compare to three dimensional finite 

element methods. Wang and Zhao [18] investigated the free vibration of sandwich beams with metal foam cores 

resting on elastic foundation. It was observed that for beams with non-uniform foam distribution, the natural 

frequencies are sensitive to the foam coefficient. A new high order zigzag theory for analysis of sandwich beams was 

developed by Garg and Chalak [19]. The developed method was then used to analyse the effect of boundary conditions 

on the stress distribution and frequencies of the beam. More recently, Kohsaka et al. [20] studied the vibration of 

sandwich beams with a lattice core. They showed that the face thickness and core strut diameter can influence the 

frequencies of the beam. Also, Shu et al. [21] analysed the natural and forced vibration behaviour of sandwich beams 

with elastic metamaterial cores. They showed that the vibration characteristics of the sandwich beam with 

metamaterial core is different from traditional sandwich beams.   

As it was mentioned above, the core of sandwich beams can be made of different materials such as foams or periodic 

cellular solids (e.g. honeycombs) [22]. These cellular cores are often preferred in compare to solid cores due to their 

lower mass and better performance in thermal expansion, flow permeability, noise and vibration reduction and electric 

conductivity which can be controlled by the unit cell shape [3]. The effective material properties of the cellular cells 

are dependent to the geometry of the unit cell, and several researchers have proposed closed form expressions for 

these effective material properties [22-26]. In most of the cases, it is assumed that cell walls behave like beams, and 

then the material properties are obtained by solving the deformation and equilibrium of the unit cell. Brt-Smith et al. 

[27] studied the bending performance and failure of sandwich structures with cellular cores. It was shown that the 

analytical solutions to predict failure and stiffness can reliably be used for longer beams. The mechanical properties 

of lattice materials using different homogenization methods was considered by Arabnejad and Pasini [28]. They 

highlighted that the homogenization method may be selected based on the required level of accuracy and 

computational cost of the problem. Elsayed and Pasini [29] proposed a multiscale structural design of columns 

manufactured using truss lattice materials. It was determined that the buckling resistance of the column can be 

enhanced by properly shaping the cell element cross-section. Free vibration of sandwich beams with honeycomb-

corrugated hybrid cores was investigated by Zhang et al. [30]. They concluded that the frequency of the beam is 

sensitive to the geometry of the hybrid core. Lou et al. [31] studied the vibration of lattice sandwich beams under 
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various boundary conditions. It was highlighted that increasing the core thickness is the most efficient way of 

increasing the natural frequencies of the sandwich beam. Gu et al. [32] proposed a new lattice structure to induce 

bend-twist coupling for helicopter blade morphing applications. It was determined that adding a lattice core instead 

of a solid core increases the twist distribution of the blade. The free vibration characteristics of sandwich beams with 

body-centred cubic (BCC) truss core was considered by Kohsaka et al. [20]. It was proposed that using lattice 

sandwich panels can suppress vibration in aerospace structures.       

Curved beams are extensively used in many engineering structures such as bridges, tunnels, aerospace structures, etc 

[33]. The dynamics and vibration of curved or twisted beams has been investigated by many researchers, and several 

studies reviewed the literature in this field [34-36]. Wasserman [37] obtained the exact and approximate natural 

frequencies and critical loads of arches with flexible supports. It was shown that both frequencies and critical loads 

are sensitive to the arch opening angle. The vibration and buckling behaviour of circular arches was analysed by Kang 

et al. [38] using differential quadrature method (DQM) for different boundary conditions. Using the DQM showed to 

require less computational effort than other numerical methods. Rosa and Franciosi [39] studied the dynamics of 

circular arches for various boundary conditions. A DQM method was used to solve the six-order differential equations 

of the curved beam, and the results showed that the arch opening angle affects the frequencies of the beam. The out 

of plane free vibration of curved beams resting on elastic foundations was studied by Lee et al. [40]. Three different 

boundary conditions were considered, and the effects of rotary inertia and shear deformation on the natural frequencies 

of the beam were obtained. Yau [41] investigated the effect of moving train on the vibration of tied-arch bridge using 

an analytical approach. It was highlighted that the acceleration response of the beam is dependent to the rise of the 

arch ribs. The in-plane free vibration of uniform circular arches was studied by Wu and Chiang [42] using finite arch 

element. The element stiffness matrix of the arch was determined using a simple implicit shape function. Chang and 

Hodges [33] studied the coupled vibration of curved beam using exact beam formulation for various boundary 

conditions. It was obtained that the natural frequencies of an initially curved beam are different from a straight beam 

and a bent beam with same geometry. The forced vibration of curved beams subjected to impulsive forces was 

investigated by Çalim [43]. It was concluded that the vibration amplitude and period increase when the circular beam 

opening angle increases. The effect of arbitrary placed lumped mass, linear and rotational springs on the in-plane 

vibration of curved beam was considered by Wu et al. [44]. They showed that the natural frequencies of the curved 

beam decrease when the subtended angle increases. Babaei et al. [45] investigated the large amplitude vibration of 
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curved functionally graded beams. Their results showed that the beam frequencies are dependent to the beam length 

to curvature ratio. The effect of crack on the in-plane free vibration of curved beams was studied numerically and 

experimentally by Zare [46]. It was shown that the depth and crack location have significant effects on the natural 

frequencies of the beam. Also, it was highlighted that mode transition phenomenon is dependent to the boundary 

condition of the beam. More recently, the effects of initial curvature on the dynamics of rotating composite beams 

[47], aeroelastic stability of composite blades [48] and aeroelasticity of aircraft wing [49] were studies.  

In the previous studies, the effect of lattice core unit cell shape on the bending vibration of beams with initial curvature 

has not been considered using exact formulation. Therefore, in this study, the bending vibration of curved sandwich 

beams with various lattice cores is investigated using the exact beam formulation. Furthermore, the vibration 

behaviour of the beam subjected to an end follower moment is studies to see if it behaves differently when it is curved 

due to an end moment in compare to when it has an initial curvature. To this aim, an analytical model of the sandwich 

beam is developed in which the core is replaced with an equivalent core with effective material properties which are 

dependent to the shape of the unit cell. Using these effective material properties, the stiffness and inertia values of the 

cross-section are obtained which then used to govern the dynamics equations of motion of the sandwich beam. 

Furthermore, the effect of initial curvature on the free vibration of the beam is studied. Finally, the vibration of the 

beam subjected to an end follower moment is investigated. The presented numerical results could give an insight into 

the design and analysis of curved lattice sandwich beam structures.     

Problem Statement 

A sandwich beam with an initial out of plane curvature with a length of L, as show in Figure 1, is considered. The 

initial curvature radius is denoted by 𝑅𝑟 which is the inverse of the out of plane curvature 𝑘2. The cross-section of the 

sandwich beam is composed of a lattice core with an overall thickness of h, two faces with a thickness of tf, and the 

overall width of the cross-section is denoted by b. The core is made of cellular materials with different unit cell shapes 

as are described in the next section. These are the square cell (S), the hexagonal cell (H), triangular cell (T) and mixed 

cell (M). These unit cells can be characterised using the wall thickness (t), and wall length (lu).  
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Furthermore, as shown in Figure 1-c) an end follower moment (𝑀2) is added to the beam next to bend the beam so 

that the deflected shape of the beam become similar to the beam with initial curvature. In what follows, first the 

material properties of the lattice core are introduced, and then the governing equations of motion are derived. 

 

 

 

b) 

 

c) 

 

Figure 1: Schematics of a) the sandwich beam with initial curvature, b) the sandwich beam cross-section, and c) the bent beam 

under end follower moment 
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In-plane equivalent material properties of the periodic core 

To investigate the effect of lattice core on the vibration behaviour of sandwich beam, it is necessary to characterise 

the equivalent material properties of the periodic lattice core. As it was mentioned before, in this study four different 

unit cells are considered. The first unit cell is a Square Cell as shown in Figure 2. It is noted that in all cases, the cell 

length and thickness are denoted by lu and t, respectively. The relative density of the cell can be written as 

𝑟 =
𝜌∗

𝜌𝑠
=
2𝑡

𝑙𝑢
 ( 1) 

where 𝜌𝑠 is the material density of the dense core elements, and 𝜌∗ is the equivalent/effective material density of the 

cell. Also, the effective Young’s modules of the cell can be obtained as [22] 

𝐸∗ =
𝑟

2
𝐸𝑠 ( 2) 

a) 

 

b) 

 

 

 

 

 

Figure 2: a) Schematic of the periodic square cell b) square unit cell  
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The second case is a hexagonal cell as shown in Figure 3 with the relative density and effective Young’s values as 

follows [22] 

𝑟 =
𝜌∗

𝜌𝑠
=

2𝑡

√3𝑙𝑢
 

𝐸∗ =
3𝑟3

2
𝐸𝑠 

( 3) 

a) 

 

b) 

 

 

 

 

Figure 3: a) Schematic of the periodic hexagonal cell b) hexagonal unit cell  
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Figure 4: a) Schematic of the triangular cell b) triangular unit cell  
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The third case is a triangular cell as shown in Figure 4 in which its relative density and effective Young’s values can 

be written as [22] 

𝑟 =
𝜌∗

𝜌𝑠
=
2√3𝑡

𝑙𝑢
 

𝐸∗ = 0.333𝑟𝐸𝑠 

( 4) 

a) 

 

b) 

 

 

 

 

 

 

Figure 5: a) Schematic of the mixed cell b) mixed unit cell  

The fourth case is a mixed cell as shown in Figure 5 with the relative density and effective Young’s values as follows 

[22] 

𝑟 =
𝜌∗

𝜌𝑠
=
(2 + √2)𝑡

𝑙𝑢
 

𝐸∗ = 0.369𝑟𝐸𝑠 

( 5) 

It is noted that the effective elastic modulus of the unit cells is valid for small to moderate relative densities.  

Governing Equations 

The global 1D nonlinear dynamic behaviour of the sandwich beam is simulated by using the geometrically exact 

intrinsic beam formulation [50] as follows   

lu 

t 
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𝜕𝑃1/𝜕𝑡 + Ω2𝑃3 − Ω3𝑃2 − 𝜕𝐹1/𝜕𝑥1 − 𝐾2𝐹3 + 𝐾3𝐹2 = 𝑓1  

𝜕𝑃2/𝜕𝑡 + Ω3𝑃1 − Ω1𝑃3 − 𝜕𝐹2/𝜕𝑥1 − 𝐾3𝐹1 + 𝐾1𝐹3 = 𝑓2  

𝜕𝑃3/𝜕𝑡 + Ω1𝑃2 − Ω2𝑃1 − 𝜕𝐹3/𝜕𝑥1 − 𝐾1𝐹2 + 𝐾3𝐹1 = 𝑓3  

𝜕𝐻1/𝜕𝑡 + Ω2𝐻3 − Ω3𝐻2 + 𝑉2𝑃3 − 𝑉3𝑃2 − 𝜕𝑀1/𝜕𝑥1 − 𝐾2𝑀3 + 𝐾3𝑀2 − 2𝛾12𝐹3 + 2𝛾13𝐹2 = 𝑚1  

𝜕𝐻2/𝜕𝑡 + Ω3𝐻1 − Ω1𝐻3 + 𝑉3𝑃1 − 𝑉1𝑃3 − 𝜕𝑀2/𝜕𝑥1 − 𝐾3𝑀1 + 𝐾1𝑀3 − 2𝛾13𝐹1 + (1 + 𝛾11)𝐹3 = 𝑚2  

𝜕𝐻3/𝜕𝑡 + Ω1𝐻2 − Ω2𝐻1 + 𝑉1𝑃2 − 𝑉2𝑃1 − 𝜕𝑀3/𝜕𝑥1 − 𝐾1𝑀2 + 𝐾2𝑀1 − (1 + 𝛾11)𝐹2 + 2𝛾12𝐹1 = 𝑚3              

𝜕𝛾11/𝜕𝑡 − 𝜕𝑉1/𝜕𝑥1 − 𝐾2𝑉3 + 𝐾3𝑉2 − 2𝛾12Ω3 + 2𝛾13Ω2 = 0                                           (6) 

2𝜕𝛾12/𝜕𝑡 − 𝜕𝑉2/𝜕𝑥1 − 𝐾3𝑉1 + 𝐾1𝑉3 + (1 + 𝛾11)Ω3 − 2𝛾13Ω1 = 0  

2𝜕𝛾13/𝜕𝑡 − 𝜕𝑉3/𝜕𝑥1 − 𝐾1𝑉2 + 𝐾2𝑉1 − (1 + 𝛾11)Ω2 + 2𝛾12Ω1 = 0  

𝜕𝜅1/𝜕𝑡 − 𝜕Ω1/𝜕𝑥1 − 𝐾2Ω3 + 𝐾3Ω2 = 0  

𝜕𝜅2/𝜕𝑡 − 𝜕Ω2/𝜕𝑥1 − 𝐾3Ω1 + 𝐾1Ω3 = 0  

𝜕𝜅3/𝜕𝑡 − 𝜕Ω3/𝜕𝑥1 − 𝐾1Ω2 + 𝐾2Ω1 = 0  

where 𝐹𝑖, 𝑀𝑖, 𝑉𝑖 and Ω𝑖  (for i=1,2,3) are the internal force, internal moment, velocity and angular velocity components, 

respectively. Furthermore, 𝑓𝑖 and 𝑚𝑖 (for i=1,2,3) are the external force and moments applied on the beam, and x1 is 

the beam arc-length. Furthermore, 𝜅𝒊 and 𝛾1𝑖 (for i=1,2,3) are the strain measures. The moment generalised strain (κ𝒊) 

can be obtained from the difference of the final curvature (𝐊) and initial curvature (𝐤 = [𝑘1 𝑘2 𝑘3]) as follows 

κ1 = 𝐾1 − 𝑘1  

κ2 = 𝐾2 − 𝑘2 

κ3 = 𝐾3 − 𝑘3 

( 7) 
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where 𝑘1, 𝑘2 and 𝑘3 are the initial twist and curvatures of the undeformed beam, respectively. In this study, as the 

effect of out of plane curvature is only considered, therefore the other two components are equal to zero (e.g. 𝑘1 =

𝑘3 = 0).  

Moreover, 𝑃𝑖  and 𝐻𝑖  (for i=1,2,3) are the sectional linear and angular momenta measures which can be obtained from 

the linear and angular velocity using the mass/inertia matrix as follows 

{
 
 

 
 
𝑃1
𝑃2
𝑃3
𝐻1
𝐻2
𝐻3}
 
 

 
 

=

[
 
 
 
 
 
𝜇 0 0 0 𝜇𝜉3 −𝜇𝜉2
0 𝜇 0 −𝜇𝜉3 0 0
0 0 𝜇 𝜇𝜉2 0 0
0 −𝜇𝜉3 𝜇𝜉2 𝑖2 + 𝑖3 0 0
𝜇𝜉3 0 0 0 𝑖2 𝑖23
−𝜇𝜉2 0 0 0 𝑖23 𝑖3 ]

 
 
 
 
 

{
 
 

 
 
𝑉1
𝑉2
𝑉3
𝛺1
𝛺2
𝛺3}
 
 

 
 

 ( 8) 

where 𝜇 is the mass per unit length of the beam, 𝑖2, 𝑖3, 𝑖23 are the cross-sectional inertia components, 𝜉2, 𝜉3  is the 

offsets between the mass centre and reference axis of the cross-section. As it was shown in Figure 1, in this study a 

rectangular cross-section is considered, and hence the nonzero values of the above matrix can be obtained using the 

following relations 

𝜇 = 𝜌𝑐𝑏ℎ + 2𝜌𝑓𝑡𝑏 

𝑖2 = 𝜌𝑐
𝑏ℎ3

12
+ 𝜌𝑓 (

𝑏𝑡𝑓
3

6
+
𝑏𝑡𝑓(𝑏 + 𝑡𝑓)

2

2
) 

𝑖3 = 𝜌𝑐
ℎ𝑏3

12
+ 𝜌𝑓

𝑡𝑓𝑏
3

12
 

( 9) 

where 𝜌𝑐 and 𝜌𝑓 are to the effective mass density of the core and face, respectively. It is noted that depending in the 

cell shape, the core mass density is obtained using Eqs. 1, 3-5. 

Furthermore, the internal force and moment are related to the generalised force and moment strains through the cross-

sectional stiffness matrix. It is noted that in this study both face and core are made from isotropic materials, and it is 

assumed that core is not soft. As the purpose of this study is to investigate the bending vibration of the beam, therefore 

the stiffness matrix can be simplified as follows 
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[
𝑀2

𝑀3
] = [

𝑆55 0
0 𝑆66

] [
𝜅2
𝜅3
] ( 10) 

The nonzero cross-sectional stiffness values of the above stiffness matrix for a sandwich beam with the dimensions 

shown in Figure 1 can be written as 

𝑆55 = 𝐸𝑐
𝑏ℎ3

12
+ 𝐸𝑓 (

𝑏𝑡𝑓
3

6
+
𝑏𝑡𝑓(𝑏 + 𝑡𝑓)

2

2
) 

𝑆66 = 𝐸𝑐
ℎ𝑏3

12
+ 𝐸𝑓

𝑡𝑓𝑏
3

6
 

( 11) 

where 𝐸𝑐 and 𝐸𝑓 refer to the effective module of elasticity of the core and face, respectively. The core modulus of 

elasticity is obtained using Eqs. 2-5. 

By substituting Eqs. 8 and 10 into the main equation of motion (Eq.6), the simplified final equations of motion can be 

obtained 

𝜕𝑃2/𝜕𝑡 − 𝜕𝐹2/𝜕𝑥1 = 0  

𝜕𝑃3/𝜕𝑡 − 𝜕𝐹3/𝜕𝑥1 = 0  

𝜕𝐻2/𝜕𝑡 − 𝜕𝑀2/𝜕𝑥1 + 𝐹3 = 𝑀2  

𝜕𝐻3/𝜕𝑡 − 𝜕𝑀3/𝜕𝑥1 − 𝐹2 = 0                                                                                                                                                        (12) 

𝜕𝜅2/𝜕𝑡 − 𝜕Ω2/𝜕𝑥1 = 0  

𝜕𝜅3/𝜕𝑡 − 𝜕Ω3/𝜕𝑥1 = 0  

𝜕𝑉2/𝜕𝑥1 − Ω3 = 0  

𝜕𝑉3/𝜕𝑥1 + Ω2 = 0  
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 To solve these equations, a time-space finite difference discretization scheme is used [50] where all variables are 

discretized on the left and right had side of each node. The discretised nonlinear equations of motion can be written 

in a compact form as follows 

 𝐚𝑗𝑖𝐪̇𝑖 + 𝐛𝑗𝑖𝐪𝑖 + 𝐜𝑗𝑖𝑘𝐪𝑖𝐪𝑘 = 0 ( 13) 

where q is the vector of unknowns, and 𝐚,b and c matrices storing the linear and nonlinear terms. To find the natural 

frequencies of the beam, first the nonlinear steady-state condition (𝐪̅) of the system (Eq. 13) is obtained using the 

Newton-Raphson method 

𝐛𝑗𝑖𝐪̅𝑖 + 𝐜𝑗𝑖𝑘𝐪̅𝑖𝐪̅𝑘 = 0 )14(  

 Then, the linearised system about this steady-state condition is obtained, and the frequencies of the beam are 

determined by calculating the eigenvalues of this linearised system (Eq. 14) 

 𝐚̂𝑗𝑖 𝐪̇̂𝑖 + 𝐛̂𝑗𝑖𝐪̂𝑖 = 0 )15(  

In what follows, the effects of core unit cell shape, initial curvature, and end follower moment on the free vibration of 

the sandwich beam are investigated.  

Numerical Results 

To investigate the effects of initial curvature and core unit cell shape on the dynamic behaviour of sandwich beams, 

first the developed model is validated in two steps. In the first step, the effect of initial curvature on the out of plane 

vibration of a cantilever beam with solid rectangular cross-section is obtained and presented in Table 1. It is noted that 

here the natural frequencies are nondimensionalised using the following relation 

𝜔̅2 =
𝜔2𝜇𝑅𝑟

4

𝑆55
 

where Rr is the radius of the arc. The results are in very good agreement showing that the developed model can predict 

the vibration of curved beams accurately.  

Table 1: Comparison of the first four out of plane natural frequencies of a half a circle arc shape beam (opening angle of 180o) 
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Mode No. Present Rosa and Franciosi [39] 

1 0.435 0.435 

2 1.377 1.375 

3 4.711 4.71 

4 10.516 10.52 

In the second step, the bending vibration of a cantilever isotropic sandwich beam is determined and compared with 

those reported by [17]. It is noted that in [17], a classical Timoshenko beam model is considered, while here an exact 

beam formulation is used. The material and geometrical properties used for this case are presented in Table 2, and the 

natural frequencies are nondimensionalised as follows 

𝜔̅2 =
𝜔2𝜌𝑓𝐿

4

𝐻2𝐸𝑓
 

where H is the overall thickness of the cross-section (𝐻 = ℎ + 2𝑡𝑓). The results presented in Table 3 are in satisfactory 

agreement (less than 1% difference) showing that the developed numerical model can obtain the natural frequencies 

of sandwich beams accurately. 

Table 2: Material and geometrical properties of the sandwich beam 

Property Value 

𝐸𝑓 200 GPa 

𝐸𝑐 0.66 GPa 

𝜌𝑓 7800 Kg/m3 

𝜌𝑐 60 Kg/m3 

𝜈𝑓 0.3 

𝜈𝑐 0.3 

L/H 100 

H/b 1 

𝑡𝑓/b 0.015 

 

 

 

Table 3: Comparison of the nondimensional natural frequencies of a cantilever sandwich beam 

Mode No. Present Hui et al. [17] 

1  1.0099 1.0098 
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2  1.4908 1.4898 

3  6.3366 6.3259 

4  9.3465 9.3281 

5  17.7819 17.701 

7  26.2165 26.081 

8  34.9642 34.652 

9  51.5156 51.000 

By considering the above two cases, it can be concluded that the developed numerical model can be used to analyse 

the free vibration of sandwich beams with initial curvature accurately. In what follows, the effect of initial curvature 

and the core unit cell shape on the vibration of the sandwich beam is investigated. 

A cantilever beam with the material properties presented in Table 4 is considered. It is assumed here that both face 

and core are made from a same material, and hence the material properties of face and core are equal to each other. 

Table 4: The material properties of the sandwich beam with lattice core 

Property Value 

𝐸𝑠 70 GPa 

𝜌𝑠 2680 Kg/m3 

𝜈𝑠 0.3 

 

In order to be able to compare the results when different unit cells are considered, a baseline sandwich beam 

configuration with material properties presented in Table 4 is considered. The baseline sandwich beam has a 

rectangular cross-section with a solid core. From here on, all the results are compared with respect to the values of 

this baseline beam. The core thickness to width ratio, the length to width ratio and the face thickness to width ratio of 

the beam are h/b=0.75, L/b=25 and 𝑡𝑓/b=0.05, respectively.  

The nondimensional natural frequencies of the baseline sandwich beam is determined and presented in Table 5. As 

mentioned above, all values are nondimensionalised with respect to the baseline beam, and the subscript (•𝑏) refers to 

the values of the bassline beam. It is noted that here, for simplicity, the out of plan bending (flap) and in-plane bending 

(lag) are denoted as (F) and (L), respectively.  

Table 5: The nondimensional natural frequencies of the baseline sandwich beam 

Mode 1F 1L 2F 2L 3F 3L 4F 4L 
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Frequency (ω̂ =
𝝎𝟐𝜇𝑏𝐿

4

𝑆55𝑏
) 

3.516 4.137 22.093 25.977 62.174 73.041 122.8 144.08 

 

The effect of relative density of the mentioned periodic unit cells on the in-plane and out of plane stiffness values of 

the cross-section (𝑆55, 𝑆66) are obtained and shown in Figures 6-9. It is noted that all stiffness values are 

nondimensionalised with respect to the stiffness values of the baseline beam. It is clear that both the shape of the 

periodic unit cell and the density ratio of the core affect the cross-sectional stiffness values of the beam. Therefore, it 

is necessary to examine the effects of periodic core on the vibration behaviour of the sandwich beams.  

  

Figure 6: The stiffness values of the sandwich beam with square unit cell 
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Figure 7: The stiffness values of the sandwich beam with hexagonal unit cell 

  

Figure 8: The stiffness values of the sandwich beam with triangular unit cell 
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Figure 9: The stiffness values of the sandwich beam with mixed unit cell 

Figures 10-13 show the effect of density ratio on the first seven nondimensional natural frequencies of the sandwich 

beam for various unit cells. The core density ratio affects all beam frequencies in all cases, but higher modes are more 

sensitive to the variation of density ratio. Also, by increasing the density ratio, all frequencies decrease for all cases 

except case 2 at which the frequencies first decrease, and then increase. It is noted that the density ratio at which this 

change of trend is seen for case 2 is not constant for all modes. Furthermore, mode veering between in-plane and our 

plane bending modes is seen at around 
𝜌∗

𝜌𝑠
= 0.56 for case 1 and 2 configurations, which from this density ratio onward, 

the properties of bending modes are switched. Therefore, it is clear that the dynamics of the sandwich beam is 

dependent to the core unit cell shape and density ratio. Moreover, Table 6 presents the nondimensional frequencies of 

first 5 modes for various cases and density ratios.  

Next, the effects of initial curvature combined with the core unit cell shape on the natural frequencies of the beam are 

investigated. 
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Figure 10: The effect of density ratio of the core on the natural frequencies of the sandwich beam (case 1) 

 

Figure 11: The effect of density ratio of the core on the natural frequencies of the sandwich beam (case 2) 
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Figure 12: The effect of density ratio of the core on the natural frequencies of the sandwich beam (case 3) 

 

Figure 13: The effect of density ratio of the core on the natural frequencies of the sandwich beam (case 4) 

 

 



21 
 

Table 6: effect of density ratio and periodic core unit cell shape on the first five natural frequencies of the sandwich beam 

 Density ratio Mode 1 (1L) Mode 2 (1F) Mode 3 (2L) Mode 4 (2F) Mode5 (3L) 

Case 1 

0.1 3.6668 4.5669 23.0259 28.6607 64.7436 

0.2 3.4610 4.0057 21.7337 25.1494 61.1102 

0.3 3.3449 3.6680 21.0050 23.0347 58.6251 

0.4 3.2703 3.4402 20.5364 21.6069 54.6285 

0.5 3.2183 3.2751 20.2096 20.5723 51.9183 

Case 2 

0.1 3.1446 4.3424 19.7467 27.2517 55.5233 

0.2 2.7315 3.6749 17.1525 23.0723 48.2290 

0.3 2.6200 3.3200 16.4528 20.8489 46.2615 

0.4 2.7126 3.1556 17.0341 19.8194 47.8960 

0.5 2.9442 3.1267 18.4888 19.6402 51.9862 

Case 3 

0.1 3.4958 4.4909 21.9522 28.1835 61.7245 

0.2 3.2037 3.8835 20.1181 24.3819 56.5676 

0.3 3.0348 3.5131 19.0576 22.0615 53.5857 

0.4 2.9243 3.2602 18.3637 20.4767 51.6346 

0.5 2.8463 3.0753 17.8734 19.3169 50.2561 

Case 4 

0.1 3.5333 4.5074 22.1880 28.2870 62.3876 

0.2 3.2609 3.9101 20.4772 24.5494 57.5772 

0.3 3.1043 3.5470 19.4939 22.2749 54.8123 

0.4 3.0023 3.2998 18.8533 20.7256 53.0111 

0.5 2.9305 3.1194 18.4021 19.5943 51.7426 

 

Effect of initial curvature on the natural frequencies 

In this section, the effect of initial curvature on the natural frequencies of the sandwich beam with various core lattice 

unit cells is investigated. Figure 14 shows the equilibrium shape of the beam when it is subjected to various initial out 

of plane curvatures. It is noted that the initial curvature of the beam is uniform along the beam, and the beam 

deflection/shape along x2 and x3 coordinates are nondimensionalized with respect to the beam length (L).  
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Figure 14: The deformed shape of the beam with out of plane curvature (k2) 

The effect of out of plane initial curvature on the natural frequencies of the baseline beam is shown in Figure 15. All 

frequencies of the beam are sensitive to the initial curvature of the beam to some extent. By increasing the initial 

curvature, all frequencies decrease except first and second modes. It must be noted that the first lag mode varies rapidly 

and tends to reach to higher modes.   
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Figure 15: The effect of out of plane curvature (k2) on the natural frequencies of the baseline beam 

Figures 16-19 depict the variation of beam natural frequencies with respect to an initial curvature for two values of 

density ratio. As it has been observed in Figure 15, here also for all cases, the initial curvature affects all frequencies. 

Also, the first flap and lag modes, in all cases, increase with an increase of curvature value, while the frequency of the 

rest of modes decrease. Furthermore, depending on the value of density ratio, the curvature at which the modes cross 

each other is different for all cases. It is noted that for all curvatures, the frequencies related to density ratio 𝜌∗/𝜌𝑠 =

0.1 of is higher than the density ratio of 𝜌∗/𝜌𝑠 = 0.3. But, the rate of change is dependent to the shape of the unit cell.  

 

Figure 16: The effect of out of plane curvature (k2) and density ratio on the natural frequencies of the sandwich beam (case 1) 
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Figure 17: The effect of out of plane curvature (k2) and density ratio on the natural frequencies of the sandwich beam (case 2) 

 

Figure 18: The effect of out of plane curvature (k2) and density ratio on the natural frequencies of the sandwich beam (case 3) 
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Figure 19: The effect of out of plane curvature (k2) and density ratio on the natural frequencies of the sandwich beam (case 4) 

The effect of end follower moment on the natural frequencies 

In this section, it is assumed that the sandwich beam is subjected to an end follower moment which makes the beam 

to bend. The end moment is nondimensionalized using the following relationship 

𝑁 =
𝑀2𝐿

2𝜋 𝑆55
 

Figure 20 shows the nondimensional deformation of the beam for different values of moment. It is noted that the beam 

deformation when it is subjected to an end moment of N=0.125, N=0.25, N=0.5 and N=0.75 is exactly similar to the 

shape of beam with initial curvatures of k2=45 (deg/m), k2=90 (deg/m), k2=180 (deg/m) and k2=275 (deg/m), 

respectively. Next, the effect of the end follower moment on the dynamics of the sandwich beam is studied to 

investigate if the beam behaves differently when it is initially curved to curved due to the end follower force.   
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Figure 20: The deformed shape of the beam subjected to an end follower moment (N) 

Figure 21 shows the variation of the natural frequencies of the baseline beam when it is subjected to different end 

follower moment values. The follower moment affects all frequencies, but not in a same way as it was observed to the 

initial curvature shown in Figure 15. Furthermore, at N=0.73, a dynamic instability (flutter) is seen in the system which 

is due to the coalescence of the first and second lag modes. The nondimensional frequency of instability at this case 

is 𝜔̂ = 13. By comparing Figure 21 and Figure 15, it is clear that although the equilibrium shape of the beam is the 

same for both cases, but the system behaves differently when it is subjected to an end follower moment or has an 

initial curvature. This observation was also seen by Chang and Hodges [33].  

N 
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Figure 21: The effect of end follower moment on the natural frequencies of the baseline beam 

Figures 22-25 show the effect of both density ratio and end follower moment on the natural frequencies of sandwich 

beam with various core shapes. It is noted that here the value of the end follower moment is selected so that the system 

doesn’t suffer from dynamic instability. For all cases, when the beam is subjected to an end follower moment, all 

natural frequencies change. It is noted that the flap modes are more sensitive to the moment than the lag modes. 

Furthermore, as the density ratio increases the difference between the frequencies with and without moment tend to 

decrease. But, this is not correct for the fourth lag mode in case 1 and case 2 configurations in which by increasing 

the density ratio, the difference gets higher.  
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Figure 22: The effect of end follower moment and density ratio on the natural frequencies of the sandwich beam (case 1) 

 

Figure 23: The effect of end follower moment and density ratio on the natural frequencies of the sandwich beam (case 2) 
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Figure 24: The effect of end follower moment and density ratio on the natural frequencies of the sandwich beam (case 3) 

 

Figure 25: The effect of end follower moment and density ratio on the natural frequencies of the sandwich beam (case 4) 

Conclusion 
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In this paper, the influence of initial curvature on the in-plane and out of plane vibration of sandwich beams with 

lattice core has been studied. A baseline sandwich beam with a solid core alongside four sandwich beams with lattice 

cores has been considered. The dynamics of the beam has been simulated using the geometrically exact beam 

formulation. The effect of lattice core has been taken into account by using the equivalent material properties of the 

core. An out of plane initial curvature has been added to the beam to see how the natural frequencies of the beam can 

be affected. First, the effect of core density ratio on the cross-sectional stiffness as well as the natural frequencies of 

the beam has been analysed. It has been observed that depending on the type of the lattice core, the natural frequencies 

can decrease or increase when the density ratio increases. Furthermore, the effect of initial curvature on the natural 

frequencies of the lattice sandwich beam has been investigated. It has been determined that the initial curvature affects. 

Next, the effect of an end follower moment on the natural frequencies of the sandwich beam has been studies. The 

results showed that the end follower moment changes the flap modes more than the lag modes. Also, a dynamic 

instability has been observed in the system when the beam is subjected to this follower moment. Finally, the results 

indicated that the natural frequencies of the beam change differently when the beam is initially bent (initial curvature) 

or is bent because of an end follower moment even if the final equilibrium shape of the beam is the same.  
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