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Abstract Transient rises and falls of the intracellular calcium concentration have
been observed in numerous cell types and under a plethora of conditions. There
is now a growing body of evidence that these whole-cell calcium oscillations are
stochastic, which poses a significant challenge for modelling. In this review, we take
a closer look at recently developed statistical approaches to calcium oscillations.
These models describe the timing of whole-cell calcium spikes, yet their parametri-
sations reflect subcellular processes. We show how non-stationary calcium spike
sequences, which e.g. occur during slow depletion of intracellular calcium stores
or in the presence of time-dependent stimulation, can be analysed with the help of
so-called intensity functions. By utilising Bayesian concepts, we demonstrate how
values of key parameters of the statistical model can be inferred from single cell cal-
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Rüdiger Thul
Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of
Nottingham, Nottingham, NG7 2RD, UK e-mail: ruediger.thul@nottingham.ac.uk

1



2 Authors Suppressed Due to Excessive Length

cium spike sequences and illustrate what information whole-cell statistical models
can provide about the subcellular mechanistic processes that drive calcium oscilla-
tions. In particular, we find that the interspike interval distribution of HEK293 cells
under constant stimulation is captured by a Gamma distribution.

1 Introduction

Calcium (Ca2+) oscillations have long been recognised as a centrepiece in the world
of intracellular Ca2+ signals [1–9]. Acting as a ubiquitous and versatile signalling
mechanism, Ca2+ oscillations are responsible for inducing gene expression [10–12],
controlling hormone secretion [13–17], orchestrating fertilisation [18–20] and steer-
ing bacterial invasion [21], to name but a few. The notion of Ca2+ oscillations usu-
ally refers to transient increases in the whole-cell Ca2+ concentration that present
themselves as a series of Ca2+ spikes. Since whole-cell calcium recordings yield
averaged concentration values, it has often been assumed that mathematical mod-
els of intracellular Ca2+ oscillations can be directly based on the averaged Ca2+

concentration. To illustrate this concept, consider Ca2+ oscillations driven by Ca2+

release from the endoplasmic reticulum (ER) through inositol-1,4,5-trisphosphate
(InsP3) receptors (InsP3Rs). In its simplest incarnation, these mathematical models
assume that Ca2+ transport through all open InsP3Rs and the activity of all sarco-
endoplasmic Ca2+ ATP (SERCA) pumps can be averaged across the cell to yield
averaged Ca2+ release and resequestration, respectively. Since the activity of both
InsP3Rs and SERCA pumps depends on the cytosolic Ca2+ concentration, these
models implicitly assume that the gating of InsP3Rs and SERCA pumps is con-
trolled by averaged Ca2+ concentration values.

This assumption may serve as a starting point to explore Ca2+ dynamics in sys-
tems for which detailed Ca2+ measurements are missing, and models based on av-
eraged Ca2+ concentrations have been instrumental in furthering our understanding
of Ca2+ oscillations [13, 16, 22–48]. However, the notion of mean Ca2+ values
generally falls short of capturing the biology that underlies Ca2+ oscillations. The
main reason for this is that InsP3Rs form clusters that are distributed throughout the
cell at distances of 2− 7µm [49–53]. This entails that the dynamics of InsP3Rs is
controlled by the local Ca2+ concentration, not a global average. In other words,
measuring the Ca2+ concentration across a cell, taking the spatial average and de-
termining the gating of all InsP3Rs subject to the averaged Ca2+ concentration mis-
represents the actual InsP3R dynamics. In addition, there are only a few tens of
InsP3Rs per cluster [54–56]. Since binding of Ca2+ and InsP3 to InsP3Rs is random
and hence transitions between different states of the InsP3R occur stochastically, the
relative fluctuation in the number of open InsP3Rs is considerable. This stochastic-
ity might even be enhanced by the fact that at basal Ca2+ concentration, the actual
numbers of Ca2+ ions in the vicinity of an InsP3 is small [57–60]. Taken together,
these observations strongly suggest that intracellular Ca2+ is a spatially extended
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stochastic medium, which prompts the question on how to best describe InsP3 me-
diated Ca2+ oscillations mathematically.

One approach starts with the dynamics of single InsP3Rs, groups them into clus-
ters and then places the clusters into a three-dimensional representation of the cy-
tosol — see [61] for a recent perspective. In these models, InsP3Rs are described by
stochastic models known as Markov chains, which consist of different states of the
InsP3R such as open, closed and inhibited and contain rules for stochastic transitions
between different states. Clusters of InsP3Rs communicate with each other through
Ca2+ diffusion. One advantage of such hierarchical modelling lies in its mechanistic
interpretation. It allows to answer questions on how Ca2+ oscillations are shaped by
e.g. the distance between InsP3R clusters, single channel current and Ca2+ buffers.
However, these models require as input a significant number of parameters, such
as gating constants for the InsP3R, and are computationally expensive. In order to
reduce the computational load, Langevin-type models have been put forward. In
essence, they approximate the exact stochastic dynamics of the Markov chains.

In terms of modelling philosophy, the above approaches fall into the category
of bottom-up techniques. At the other end of the spectrum lie so-called top-down
methods. Here, we construct models that directly describe key properties of Ca2+

spikes such as amplitude and frequency without explicitly incorporated mechanis-
tic details as e.g. the possible states of an InsP3R. At first sight, this might appear
less advantageous as different model behaviours cannot immediately be linked to
specific molecular processes. However, there are distinct advantages. Firstly, the
computational demand is significantly lower than with bottom-up approaches. This
puts us in an ideal position to generate large numbers of realistic Ca2+ spike se-
quences, which in turn can serve as input to signalling cascades that decode Ca2+

spikes. Secondly, top-down models provide a powerful framework for fitting data
and testing hypotheses on Ca2+ spike generation. Consequentially, we can use the
knowledge gained from top-down models to improve bottom-up approaches, which
in turn will advance our mechanistic understanding of Ca2+ oscillations.

In this review, we present the current state of statistical modelling of Ca2+ oscil-
lations. The techniques that we employ are well established amongst statisticians,
but are less familiar to modellers and experimentalists in the field of Ca2+ signalling.
We therefore mainly focus on describing the underlying concepts and how they are
related to the physiology of Ca2+ signalling. We discuss practical approaches on
how to ascertain whether our statistical assumptions are consistent with measured
Ca2+ spike sequences and what we can learn from our statistical analysis regarding
the mechanisms that underlie Ca2+ spike generation.

2 Interspike interval statistics

We outlined in the introduction the mechanistic reasons for why Ca2+ oscillations
are stochastic. At this point, one might argue — as is often done — that the molec-
ular fluctuations present at InsP3R clusters average out at the whole-cell level. In
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other words, since a cell can contain a large number of InsP3R clusters, the stochas-
tic contributions cancel. To test this hypothesis, Skupin et al [62] measured sponta-
neous Ca2+ oscillations in microglia, astrocytes and PLA cells as well as carbachol-
induced oscillations in HEK293 cells. They found that their data is consistent with
stochastic whole-cell Ca2+ oscillations, which was also confirmed in later experi-
ments [63]. This conclusion rests on results as shown in Fig. 1. We plot represen-
tative fluorescence traces for carbachol stimulated HEK293 cells in Figs. 1A and
1B. Cells were initially stimulated with 20µM carbachol before the solution was
switched to 50µM carbachol. Figure 1A illustrates the well-known phenomenon of
frequency encoding, by which the frequency of Ca2+ oscillations increases with an
increase in stimulation strength. In Fig. 1C we plot the Ca2+ spike times for a larger
number of cells. If Ca2+ oscillations were deterministic and governed by averaged
Ca2+ concentrations, we would expect an almost constant spread of Ca2+ spike
times, i.e. an almost constant value for the interspike interval (ISI), not the observed
large variability, which is present at both stimulation strengths. Our argument for
stochastic Ca2+ oscillations is further strengthened by the results shown in Fig. 1D.
Here, each dot corresponds to a sequence of Ca2+ spikes from one cell and denotes
its mean µ and its standard deviation σ . We observe that the standard deviation is of
the same magnitude as the mean, which is another strong indicator of stochastic be-
haviour. Importantly, similar results have been obtained for a number of additional
cell types and under different conditions [61, 62], which lends even more support for
the stochasticity of Ca2+ oscillations. Given the insights that σ − µ plots can pro-
vide into the nature of Ca2+ oscillations, we have recently released CaSiAn [64],
a user friendly tool that allows for automatic ISI detection from fluorescence time
course data and interactive investigation of the relationship between µ and σ .

To appreciate the fact that µ and σ are of the same order of magnitude, we
introduce a key concept for this review: the conditional Ca2+ spike intensity q(t|s),
t > s. Based on it, we obtain the conditional Ca2+ spike probability q(t|s)dt, which
represents the probability to observe a Ca2+ spike in the time interval [t, t+dt] given
a Ca2+ spike at time s. In [62], the following ansatz was made:

q(t|s) =

{
0 , s≤ t ≤ Tr + s ,

λ

[
1− e−ξ (t−s−Tr)

]
, Tr + s≤ t .

(1)

Here, Tr denotes the cellular refractory period. Numerous experiments have shown
that there exists a minimal amount of time Tr after a Ca2+ spike before another Ca2+

spike can be triggered [62, 63, 66]. Therefore, the conditional intensity vanishes, i.e.
q = 0, for a time Tr after the last Ca2+ spike. It is important to note that Tr is signifi-
cantly longer than the recovery time of InsP3Rs [63]. Once the refractory period has
passed, the conditional intensity for a Ca2+ spike starts to increase at a rate ξ and
eventually approaches an equilibrium value λ . This reflects the notion that a cell
has to recover from the last Ca2+ spike. While ξ is a single number, it subsumes
numerous recovery processes such as refilling of the ER or replenishment of InsP3
following degradation by InsP3-3-kinase and InsP3-5-phosphatase. The values of Tr,
ξ and λ can be directly inferred from Fig. 1D as outlined below. Due to the strong
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Fig. 1: (A,B) Fura-2 fluorescence intensity traces of two HEK293 cells stimulated
first with 20µM carbachol and then with 50µM carbachol. The solution was ex-
changed at 3738s in (A) and at 3444s in (B). (C) Raster plot of Ca2+ spike times for
the same stimulus protocol as in (A,B). The blue line indicates solution exchange
and the red line denotes the end of the experiment. (D) Relationship between the
standard deviation σE and the mean µE for the data shown in (C). Each triangle cor-
responds to data from one cell, and the line is the best linear fit. Red refers to 20µM
carbachol, and blue to 50µM carbachol. For details of the experiments see [65].

linear relationship between the mean and the standard deviation, we posit that

σ = α(µ−Tr) , (2)

a relationship that has been shown to hold true for another 8 cell types and 10 condi-
tions (see [61] for further discussion). When the standard deviation equals zero, suc-
cessive Ca2+ spikes are separated by a constant period. Such Ca2+ spike sequences
appear deterministic since there is no variation in the ISI, but the interpretation is
different. The lack of ISI variability results from the fact that when the Ca2+ spike
generation probability is high, i.e. λ is large, a Ca2+ spike is initiated as soon as
the cell exits its refractory period. Therefore, the mean of the ISI distribution at a
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vanishing standard deviation equals Tr. This corresponds to the intersections of the
red and blue lines with the x-axis in Fig. 1D, respectively. To determine ξ and λ , we
start from Eq. (1) and derive the ISI probability density f (t,s), i.e. the probability
density for Ca2+ spikes to occur at times t and s. This is equivalent to the probability
of a Ca2+ spike at t given that the last spike occurred at s and no Ca2+ spike during
the time (s− t). Based on this interpretation of the ISI probability, we obtain

f (t,s) = q(t|s)exp
{
−
∫ t

s
q(u|s)du

}
, (3)

where the exponential term corresponds to the absence of Ca2+ spikes between s
and t. The mean µ and the standard deviation σ of the ISI distribution then follow
from Eq. (3) as

µ =
∫

∞

0
t f (t,0)dt , σ

2 =
∫

∞

0
t2 f (t,0)dt−µ

2 . (4)

For practical purposes, we can set Tr = 0 in the computation of µ and σ , since a
constant Tr only shifts the mean and does not affect the standard deviation. To put it
another way, we evaluate Eq. (4) for Tr = 0 and then add Tr to obtain the mean ISI
µ . Next, we fit the equations in (4) to data such as shown in Fig. 1D to obtain cell
specific values for ξ and λ . This is achieved in a two-step process. Firstly, we de-
termine the experimental mean µE and standard deviation σE from individual Ca2+

spike sequences as shown in Fig. 1C. This gives one data point in Fig. 1D. Since µ

and σ2 in Eq. (4) depend on ξ and λ through f (t,0) via q(t|s), we can perform a
least square fit of Eq. (4) to the experimental data µE and σE to obtain single cell es-
timates for ξ and λ . Figures 2A and 2B display results for HEK293 cells stimulated
with 30µM carbachol. While the distribution for ξ exhibits a localised peak, the dis-
tribution of λ is much broader. A similar behaviour is observed for spontaneously
spiking astrocytes as seen in Figs. 2C and 2D. A comparison of the Ca2+ spike rate
λ reveals that it is almost an order of magnitude larger for HEK293 cells than for
astrocytes, which might be attributed to the fact that the former is stimulated, but
the latter is not. Intriguingly, the time scale for recovery ξ is almost 10-fold larger
for HEK293 cells than for astrocytes, indicating that HEK293 cells recover more
slowly than astrocytes after a Ca2+ spike. The existence of wide distributions for ξ

and λ also point towards significant cell-to-cell variability, which provides another
argument in favour of a statistical description of Ca2+ spikes.

It is now instructive to evaluate Eq. (4) for a constant conditional intensity func-
tion q = r > 0, which corresponds to a homogenous Poisson process. It emerges
from the general form of the conditional intensity function in Eq. (1) in the limit of
fast recovery, i.e. a large value of ξ . In this case, the integrals can be computed an-
alytically and we obtain µ = σ = r, which is consistent with the scaling in Eq. (2).
This provides further intuition for the statement made above that stochastic effects
need to be taken into account when the mean and the standard deviation are of sim-
ilar magnitude.



A statistical view on calcium oscillations 7

ξ (s−1)

R
el

at
iv

e 
F

re
qu

en
cy

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

A

λ (s−1)

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25B

ξ (s−1)

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

C

λ (s−1)

R
el

at
iv

e 
F

re
qu

en
cy

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25D

Fig. 2: Relative frequency for ξ (A, C) and λ (B, D) for HEK293 cells (top, blue)
and astrocytes (bottom, red). HEK293 cells were stimulated with 30µM carbachol,
while Ca2+ spikes in astrocytes were spontaneous. N = 138 for HEK293 cells and
N = 321 astrocytes. For experimental details, see [62].

Equation (3) expresses the ISI distribution in terms of the conditional intensity
function. It is often convenient to reverse the approach and start from an ISI distri-
bution. Firstly, we obtain ISIs directly from experimental recordings, which inform
us about the possible shapes of ISI distributions. Secondly, some ISI distributions
that have been shown to capture experimental data cannot be derived from closed
form intensity functions as e.g. in Eq. (1). A point in case is the Gamma distribu-
tion, which is consistent with Ca2+ oscillations in HEK293 cells [67] and also with
voltage spikes in neurons [68, 69]. One common representation for the density of
the Gamma distribution reads as

fG(t,s) =
β α

Γ (α)
(t− s)α−1e−β (t−s) , (5)

where α and β are called the shape parameter and rate, respectively, and Γ de-
notes the standard Gamma function. Suppose for a moment that the time between
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successive Ca2+ puffs follows a Poisson distribution with rate β . In contrast to
Ca2+ spikes, Ca2+ puffs correspond to localised Ca2+ liberation through a clus-
ter of InsP3Rs. In addition to Ca2+ release through single InsP3Rs, Ca2+ puffs are
considered the basic building blocks in the hierarchy of Ca2+ signals [2, 61, 70].
A Gamma distribution where α is a positive integer returns the probability that α

Ca2+ puffs have occurred for the first time. In other words, the Gamma distribution
is a probability distribution for a combination of events to happen for the first time.
This interpretation makes it an appealing candidate for Ca2+ spikes. The reason is
that Ca2+ spikes are thought to form when a small number of Ca2+ puffs generates a
region of elevated Ca2+ in the cell, which then initiates Ca2+ release throughout the
cell. Alternatively, recent experiments in astrocytes suggest that the co-occurrence
of a certain number of Ca2+ puffs is sufficient to trigger a Ca2+ spike [71]. This also
fits well with a body of research that shows that Ca2+ puffs and Ca2+ spikes can be
described as first-passage time problems [63, 72–76]. As an interesting observation,
note that the mean ISI for Eq. (5) is α/β , so that the mean interpuff interval for
α puffs is 1/β , which is consistent with the mean interpuff time when puffs are
described by a Poisson process with rate β . To relate a given ISI distribution to the
conditional intensity function, we find that

q(t|s) = f (t,s)
1−

∫ t
s f (u,s)du

, (6)

which is equivalent to Eq. (3) as shown in Appendix 1. Equations (3) and (6) allow
us to switch between conditional intensity functions and ISI distributions depending
on what our modelling question requires.

3 Beyond stationary Ca2+ spike sequences

The discussion so far assumed that successive Ca2+ spikes are independent and
are described by the same statistics. The conditional intensity function q(t|s) only
depends on the time since the last spike (t− s), but not on the absolute Ca2+ spike
times t and s. Hence, the probability for two spikes to be separated by say 80s is
the same irrespective of whether the first spike occurs 10s into the experiment or
1000s. The same holds true for the ISI density in Eq. (5) which only depends on
the time difference (t− s) between successive Ca2+ spikes. A consequence of the
independence of Ca2+ spikes is that we can immediately write down the probability
density for n Ca2+ spikes occurring at times y1,y2, . . . ,yn. If we collect the Ca2+

spike times in a set y = {y1, . . .yn} the probability density for the entire Ca2+ spike
sequence is given by

p(y) = f1(y1,0) f (y2,y1) · · · f (yn,yn−1) fn(T,yn) , (7)

where f1(y1,0) denotes the probability density for the first spike to occur at y1 and
fn(T,yn) is the probability that no spike happens after yn until the end of the ex-
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periment at time T . The probability for a Ca2+ spike sequence factorises in the
probabilities of individual and identical ISIs, which are properties often referred
to as independence and stationarity, respectively. We separate out the contributions
from f1 and fn since they do not correspond to ISI probabilities and hence are often
modelled by different probability distributions, e.g. a Poisson distribution.

However, there are numerous reasons for why ISI probabilities do not remain
constant over time and hence ISIs at different times of the experiment follow dif-
ferent probability distributions. For example, while the ER refills between Ca2+

spikes, the level of refilling can decrease as Ca2+ leaves the cell across the plasma
membrane. In most experiments, InsP3 is formed in response to activation of cell
surface receptors, but the efficiency of this pathway may decrease over time. Both
factors lower the propensity for the generation of Ca2+ spikes as the experiment
progresses and introduce trends when plotting ISI as can be seen in Fig. 1B. When
analysing Ca2+ spikes, we can remove trends and only consider Ca2+ spikes after
initial transients. This presents a sensible approach when cells experience constant
stimulation such as in step change experiments. However, under physiological con-
ditions, hormones arrive in a time-dependent manner, so do neurotransmitters and
paracrine signals. To mimic such an in vivo environment, cells need to be challenged
with time-varying stimuli. As soon as we introduce an explicit time-dependence, ISI
distributions are no longer stationary, but depend on the absolute time of the exper-
iment.

This raises the question on how to mathematically describe the non-stationarity
of Ca2+ spike sequences. One approach is to introduce an explicit time-dependence
into the ISI distribution by making the parameters change over time. While concep-
tually appealing, the practicalities of this approach are limited. For instance, if we
believe that the parameters change continuously over time, it is not apparent how to
constrain the model best given that we sample the values of the parameters at only
a few discrete time points, viz. the times of Ca2+ spikes. Another issue arises from
the fact that the probability of a Ca2+ spike sequence does not necessarily factorise
any more as in Eq. (7), but we need to consider the full multivariate probability
p(y) = p(y1, . . . ,yN), which can pose significant challenges.

A more practical approach was put forward in [68]. At the heart of it lies a time
transformation that maps the time of the original experiment, denoted by t, to a new
time u via

u(t) =
∫ t

0
x(v)dv , (8)

where x is called the intensity function and relates to the level of Ca2+ spiking as
we will illustrate below. As such, x is always strictly positive and hence associates
each value of t with a unique values of u through Eq. (8). A consequence of this
mapping is that in the new time u, ISIs become independent [68]. This means that
the probability density for a Ca2+ spike sequence factorises again and we have

p(y|x) = g1(u1,0|x)g(u2,u1|x) · · ·g(uN ,uN−1|x)gn(U,un|x) , (9)
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where ui = u(yi), U = u(T ) and the dependence of y on the left hand side enters
on the right hand side through u being a function of t. We explicitly include x to
emphasise that the transformation depends on the intensity function. What makes
Eq. (9) particularly useful is that the probability density g is related to the original
ISI probability density f via

g(ui,ui−1|x) = x(yi) f (ui,ui−1) , (10)

which follows from the conservation of probability [67, 77]. We illustrate a practical
calculation for Eq. (10) in Appendix 2.

At this point, it might appear that the intensity function is mathematically conve-
nient, but detached from the actual biology. As it turns out, the contrary holds true.
For the models of Ca2+ spiking considered here, x(t) corresponds to the probability
of Ca2+ spiking independent of the history of the Ca2+ spike sequence. Put differ-
ently, if there are N identical Ca2+ spiking cells, Nx(t) is the expected number of
Ca2+ spikes at time t. To illustrate this concept, we chose an intensity function (red
line in Fig. 3), generated 10,000 Ca2+ spike sequences from it and binned them
(light blue histogram). By using a large number of Ca2+ spike sequences, binning
is equivalent to taking the average across all possible histories that led to a Ca2+

spike in the respective bin. The excellent agreement between the intensity function
and the histogram confirms the above interpretation of x(t). For the practicalities of
generating the Ca2+ spike sequences, we refer the reader to Appendix 3.
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Fig. 3: Intensity function (red) and peristimulus-time histogram (blue) obtained
from 10,000 Ca2+ spikes when the ISI distribution is given by a Gamma distri-
bution. Parameter values are x(t) = 2cos(t) + 2cos(0.5t) + 2.4 and α = 6.2 and
β = 6.2s.
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4 Bayesian computation

A main motivation for pursuing a statistical approach is to fit models of Ca2+ spike
generation more easily to experimental data and hence learn more about the nature
of Ca2+ oscillations. This requires us to infer the parameters of the ISI distribution,
e.g. α and β for the Gamma distribution, and the time course of x(t) from measured
Ca2+ spike sequences. For ease of reference, we will call all unknowns of the model,
i.e. the intensity function and the parameters of the ISI distribution, hyperparameters
and denote them by θ .

There are a number of ways for achieving this goal. Here, we will make use of
Bayesian inference, that addresses the following question: what does the data tell us
about the parameters of the model? Expressed more formally, we are interested in
p(θ |y), i.e. the probability distribution of the hyperparameters given a Ca2+ spike
sequence. This probability is called the posterior distribution. The advantage of this
approach is that we do not merely obtain a single value, but the full probability dis-
tribution for the parameters that are consistent with the data. This allows us to judge
how well the model captures the data and what parameter values to use to describe
the underlying biology. For instance, consider one of the hyperparameters, say θ1.
If the distribution for θ1 is sharply peaked around a value θ ∗1 , we can be confident
that θ ∗1 is a sensible estimate for θ1. On the other hand, if the probability distribu-
tion is broad or exhibits multiple maxima, we are pressed much harder to interpret
the results. It might also indicate that we based our original model on incorrect as-
sumptions. In addition to these conceptual benefits, the posterior distribution is all
we need to answer any question we have about the experiment. For instance, we can
determine summary statistics such as mean and variance as well as the behaviour of
functions that depend on hyperparameters.

To compute the posterior probability, we make use of Bayes’ theorem, which
states that

p(θ |y) = p(y|θ)p(θ)
p(y)

. (11)

The right hand side contains the likelihood function p(y|θ), the so-called prior p(θ)
and the normalisation

p(y) =
∫

p(y|θ)p(θ)dθ . (12)

The conceptual appeal of Eq. (11) stems from its numerator. We already encountered
an example for a likelihood function in Eq. (9). It represents how likely it is to
observe what we have measured for a given θ and hence reflects our believes on
the potential mechanisms that drive Ca2+ spike generation. The prior distribution
allows us to provide sensible input for the hyperparameter values before we see the
data. For instance, if we believe that some hyperparameter, say θ1 again, has a value
close to some θ 0

1 , we pick a probability distribution that is centred around θ 0
1 . On the

other hand, if we are uncertain about possible values of θ1, we choose a wider prior.
Thinking about priors for hyperparameters that are numbers immediately leads us
to probability distributions in the classical sense such as Poisson distributions or
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Gamma distributions. But what about a prior for the intensity function x(t)? To
answer this question, it is helpful to return to the biological interpretation of x(t),
viz. the probability density for a Ca2+ spike at time t irrespective of the history of
the Ca2+ spike sequence. If we challenge cells with a constant stimulus as in e.g.
a step-change experiment, a reasonable assumption is that x(t) remains constant
over longer periods of time, but not necessarily at the same value for the entire
experiment. For instance, as the experiment continues, Ca2+ spikes may become less
frequent compared to the beginning of the experiment due to receptor desensitisation
or changes to ER Ca2+ load. We can mimic this biological response by assuming
an x(t) that has a large constant value when the experiment is started and smaller
constant value towards the end. In this particular illustration, we assumed that there
are two different levels. To allow more flexibility, suppose that there are k levels
and that the probability for having k levels is Poissonian with rate γ . If we further
assume that each level hi is drawn from a Gamma distribution with parameters a
and b, we find that the prior for the intensity function is

p(x) = e−γ γk

k!

k

∏
i=1

ab

Γ (a)
ha−1

i e−bhi . (13)

Because the number of changepoints is independent from the levels hi, which again
are independent from each other, p(x) factorises into individual contributions [78].
In Fig. 4A we illustrate three candidates for such piecewise constant priors with
different numbers of changepoints and different level values.

0 2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Time (s)

In
te

ns
ity

 (
sp

ik
es

/s
)

A

0 2 4 6 8 10

0
2

4
6

8

Time (s)

In
te

ns
ity

 (
sp

ik
es

/s
)

B

Fig. 4: Candidate intensity functions for (A) a piecewise linear prior and (B) a GP
prior. The different colours indicate (A) different numbers of change points and
different levels and (B) different values of κ . Here, blue corresponds to κ = 5s, red
to κ = 1s and black to κ = 0.2s.
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While piecewise linear intensity functions possess computational advantages —
e.g. the integral in Eq. (22) in Appendix 2 can be computed analytically — one
issue with them is that they are discontinuous, i.e. they have jumps. This might be
undesirable in some situation, which leads us to priors for continuous functions. An
example for this is when cells are challenged with a time-varying stimulus as e.g.
in [67]. Since the stimulus changes smoothly over time, a reasonable assumption is
that the intensity function inherits this smoothness. Among the different choices that
can be made for continuous intensity functions, we here focus on so-called Gaussian
processes (GPs). Consider the intensity function at some time point t. Instead of
fixing a unique value x = x(t), we prescribe a probability distribution g(x). In other
words, for a fixed time t there is a probability g(x(t))dx that the value of the intensity
function lies in the interval [x(t),x(t)+ dx]. We here assume that the logarithm of
the intensity function follows a Gaussian distribution of the form

fGP(x) =
1√

2πσ2
exp
{
(µ− x)2

2σ2

}
, (14)

where µ denotes the mean and σ the standard deviation, respectively. GPs derive
their name from the fact that we employ a Gaussian distribution. The reason for
assuming that logx(t) rather than x(t) itself follows a Gaussian distribution is that
x(t) is always positive, but a Gaussian distribution can yield negative values. By
using the logarithm, we enforce the positiveness of the intensity function. To ensure
that the intensity function is continuous, we need to guarantee that the values of x at
two close-by time points t and s are not too far apart. This is achieved by imposing
a correlation function

Σ(s, t) = σ
2 exp

{
(s− t)2

κ2

}
, (15)

which we have chosen to be Gaussian again. Here, σ is the same as in Eq. (14) and
κ measures how smooth the GP is. The larger κ the smoother the intensity function.
Figure 4B shows three different realisations of a GP for varying values of κ . Observe
that all three functions are smooth, and that there are less wiggles for larger values of
κ , which is consistent with the interpretation above. Since we have to discretise time
for any practical computation, suppose that there at n time points, i.e. we represent
the time of the experiments at n discrete time points ranging from t1 = 0 to tn = T ,
where T is the duration of the experiment. A practical representation for these time
points are the values at which the Ca2+ concentration is measured and is determined
by e.g. the frame rate of the microscope cameras. The prior for a GP is a multivariate
Gaussian distribution and reads as

p(x) =
1√

(2π)n detΣ
exp
{

1
2
(t−µ)Σ−1(t−µ)

}
, (16)

where t is a vector of length n representing the discretised time of the experiment,
µ is a vector of length n denoting the mean of the GP at each time point tn, and Σ is
given by Eq. (15).
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Having introduced different priors for the hyperparameters of the model includ-
ing the intensity function x, we can return to Eq. (11). While it is conceptually
appealing and offers us a full picture of the parameters of the model as constraint
by the experiment, it is computationally challenging. The reason is the integral in
the denominator, which runs over the entire hyperparameter space. Since this can be
high-dimensional, we require computationally efficient methods as a direct integra-
tion is often prohibitively expensive if not impossible. There are various methods
for tackling this problem. For instance, instead of computing p(θ |y) directly in-
cluding the integration of the denominator, we can determine the maximum of the
distribution and its variance [79, 80]. This will provide us e.g. with the most likely
intensity function that is consistent with the data as well as confidence intervals,
see [67]. A different approach is to try and sample from p(θ |y) without having to
explicitly compute it. The main idea is that if we can sample from a probability dis-
tribution, we know the possible values and the associated probabilities (values that
are more likely than others are sampled more frequently) without having to deter-
mine a closed form solution. This often suffices for practical purposes. A technique
that does this is known as Markov chain Monte Carlo [81].

5 Analysing Ca2+ spike sequences

Having introduced key concepts for a statistical analysis of Ca2+ spike sequences in
the previous sections, we now apply them to different experiments. A crucial input
to our model is the ISI probability density, see Eq. (9). However, we do not know a
priori which distribution is most consistent with the data. To establish this, we can
make use of the following transformation. Let the measured Ca2+ spike times be
given by y1, . . .yn again. We define transformed ISIs by

τk =
∫ yk

yk−1

q(s|yk−1)ds , (17)

with q given by Eq. (6). It can now be shown that if the mechanisms that generate the
observed Ca2+ spikes are consistent with the ISI distribution that we use in Eq. (6),
the transformed ISIs τk are exponentially distributed with unit rate [82]. This leaves
us with the task of comparing two probability distributions: the standard exponential
distribution and the distribution of the transformed ISIs. The quantile-quantile (Q-Q)
plot and the Kolmogorov Smirnov (K-S) plot are two powerful graphical approaches
to examine differences between probability distributions. In Fig. 5 we show Q-Q
and K-S plots for HEK293 cells in a multistep experiment. We tested three different
ISI distributions: a Poisson, an inverse Gaussian and a Gamma distribution. Each
cell was analysed individually and gave rise to a separate sequence of dots; no data
assimilation was performed. For the Q-Q plot, we determine the quantiles of the
transformed ISIs and plot them against the quantiles of the exponential distribu-
tions. For the K-S plot, we compute the cumulative distributions of the transformed
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Fig. 5: K-S (A) and Q-Q (B) plots for data from 23 individual cells. The initial
concentration was 20µM, which was increased to 50µM. The ISI distributions are
inverse Gaussian (blue), Poisson (red) and Gamma (grey). We used piecewise linear
functions as prior for the intensity function.

ISIs and the exponential distribution, respectively, and plot them against each other.
Identical probability distributions possess identical quantiles and identical cumula-
tive distributions, respectively. Hence any deviation from a 45◦ straight line in the
Q-Q and K-S plot points towards differences between the distributions and hence
indicates that we need to improve our assumptions about the ISI distributions.

For both, the K-S and the Q-Q plot, the data points deviate significantly from
a straight line with slope 1 for the Poisson and the inverse Gaussian distribution.
On the other hand, we observe a strong correlation between the 45◦ line and the
data points for the Gamma distribution. This visual inspection is corroborated by
the box-and-whisker plots in Fig. 6. Because we treated cells individually, we can
determine the slope of a linear fit for each cell. The plots in Fig. 6 show the statistics
for these slopes. The box represents the spread of data within the second and third
quartile, and the red line indicates the median. The whiskers provide a measure for
the overall spread of the data. Generally speaking, the smaller the box and the closer
the whiskers to the box, the less spread is in the data. The Poisson and the inverse
Gaussian distribution generally exhibit a larger spread than the Gamma distribution.
Moreover, the median of the Gamma distribution is closer to one. In [67], we found
that for HEK293 cells stimulated with 10µM and 100µM, respectively, the Gamma
distribution worked best. These results and the new analysis presented here strongly
suggest that the ISI statistics for Ca2+ spike sequences are captured by a Gamma
distribution. A further argument to support this conclusion is that the data in [67]
and [65] were acquired independently in different labs with different setups.

In order to obtain the results in Figs. 5 and 6 we had to estimate the intensity
function x(t) for each cell. Figure 7 displays x(t) for two different cells. Since we
analyse step change experiments, we first chose piecewise constant functions as
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Fig. 6: Box and whisker plots for the data presented in Fig. 5 showing results for the
(A) K-S plot and (B) Q-Q plot. The red line represents the median of the distribution,
and the box delineates the range of data from the first to the third quartile. The
whiskers indicate the spread of the data.

a prior for x as discussed in Sect. 4. The mean intensity function is shown as a
solid blue line, while the 95% confidence interval is represented by the shaded blue
area. We clearly see an increase in the intensity function as the stimulus strength
is stepped up. Moreover, during extended periods of time, the intensity function is
almost constant, which has significant consequences for the interpretation of the
mechanisms that drive Ca2+ spike generation as discussed below.
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Fig. 7: Intensity functions (solid lines) and 95% confidence interval (shaded regions)
for two cells in a multistep experiment. The initial stimulus was 20µM and changed
to 50µM at t = 2581s (A) and t = 2524s (B). The prior for the intensity function
is a GP (red) or piecewise constant (blue). The ticks along the x-axes indicate the
Ca2+ spike times.
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As pointed out in Sect. 4, piecewise constant functions are not the only possible
prior. GPs constitute another possible class, and corresponding results are shown in
red in Fig. 7. Vitally, the intensity function obtained with a GP prior closely follows
that derived from a piecewise constant prior. Given that the two priors represent
significantly different functional forms of the intensity function, the consistency
between the two approaches lends strong support for the validity of the derived
intensity functions. Moreover, if we were to only use GPs as priors, a valid step is
to interpolate the smooth prior with a piecewise linear function, which allows us to
compute the mean ISI.

Having identified intensity functions that are consistent with measured Ca2+

spike sequences, we can now determine the conditional intensity functions q(t|s) =
q(yi|yi−1). We start from Eq. (6), set t = yi, s= yi−1 and then replace f (yi,yi−1) with
g(ui,ui−1|x) from Eq. (10) by using Eq. (8) (see also Appendix 2). In other words,
the conditional intensity function q(t|s) is a highly nonlinear transformation of the
estimated intensity function x(t) given the Ca2+ spike times. In Fig. 8 we plot q(t|s)
for the data shown in Fig. 7. We notice that immediately after a Ca2+ spike q(t|s)
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Fig. 8: Conditional intensity functions corresponding to the data in Fig. 7. The ticks
along the x-axes indicate the Ca2+ spike times.

remains almost zero for some time before it increases. This indicates that during
this period, Ca2+ spikes cannot occur, which is equivalent to saying that there is a
refractory period. Importantly, we did not include an explicit refractory period in
our model, i.e. we did not choose an ISI probability distribution that vanishes for
a certain amount after the last Ca2+ spike. For instance, the Gamma distribution in
Eq. (5) does not per se stay close to zero for small values of (t− s). It only does so
for certain values of α . Since the value of α is part of estimating x(t), the vanish-
ing of the conditional intensity function is an emergent result of the model. These
findings are consistent with the presence of a refractory period Tr in the ansatz in
Eq. (1). There, we chose the conditional intensity function and derived the ISI dis-
tribution, while for Fig. 8, we decided upon a certain ISI distribution and derived the
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conditional intensity function. The agreement between the ansatz in Eq. (1) and the
estimated conditional intensity function in Fig. 8 lends strong support to the former.

In addition to the conditional intensity function, we can also interrogate the ISI
distribution. For a time-dependent intensity function x(t), the corresponding ISI dis-
tribution is time-dependent as well, see Eqs. (21) and (22) in Appendix 2. However,
when the intensity function is constant, this time-dependence is lost, and we can
use the same ISI distribution for the entire period that x does not change. Inspecting
Fig. 7A, we observe that the intensity function obtained with a PWL prior (blue
line) is almost constant between 600s and 2000s, while a similar behaviour is seen
in Fig. 7B during the first 2000s for the GP prior (red curve). Taking these values for
x together with the inferred parameter values for the Gamma distribution, we now
plot the corresponding ISI distributions in Fig. 9 based on Eq. (25). For the stronger
stimulus (50µM, blue line), the ISI distribution is shifted towards the left compared
to the weaker stimulus (20µM, red curve). In addition, the variance is more pro-
nounced in the former than in the latter. To quantify this, we compute the mean µ
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Fig. 9: ISI probability density fG(t,0|x) for the data shown in Fig. 7A (red) and
Fig. 7B (blue) for t between approximately 600 s and 2000 s (red) and t between 1s
and 2000s (blue).

and the standard deviation σ using the inferred intensity function x and the asso-
ciated values of the Gamma distribution. We obtain µ = 159.07s and σ = 22.50s
for the small stimulus and µ = 96.73s and σ = 32.24s for the stronger stimulus,
respectively. We can compare this with the mean and standard deviation determined
directly from the Ca2+ spike sequences shown in Fig. 7. We find µE = 166.57s and
σE = 24.416s at 20µM and µE = 96.31s and σE = 27.03s at 50µM, respectively.
The good agreement between the experimentally determined statistics (µE,σE) and
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the estimated quantities (µ,σ) demonstrates the usefulness of the Bayesian infer-
ence approach that we have employed here.

6 Concluding discussion

Ca2+ spikes constitute a well-established mode of intracellular Ca2+ signalling
across a large number of cell types. We can now draw on a substantial body of
experimental measurements that have identified and characterised the cellular com-
ponents that drive Ca2+ oscillations. Despite these successes, central questions re-
main open. Amongst them is a seemingly innocuous query: given a stimulus, can we
predict the sequence of Ca2+ spikes? Since there is wide-ranging consensus that in-
formation about the stimulus is encoded in the properties of Ca2+ spike sequences,
answering this question is critical for our understanding of intracellular Ca2+ sig-
nalling.

Addressing this issue from a modelling perspective is challenging for two rea-
sons. The generation of Ca2+ spikes is firstly stochastic and secondly driven by the
interaction of spatially distributed clusters of InsP3 receptors. One avenue to make
progress is to simulate partial differential equations for the intracellular calcium
concentration (see [61] for a recent perspective). Here, we have reviewed a different
framework that is a conceptual antipode to the first approach. While partial differen-
tial equations rely on mechanistic details and build oscillations from the bottom-up,
the statistical ideas in this review aim at describing Ca2+ spikes directly at the cell
level.

One advantage of a statistical model lies in its computational demands. It is
considerably cheaper to generate Ca2+ spike sequences from a statistical model
than to solve partial differential equations. This is particularly useful when studying
cell populations, where intercellular heterogeneity calls for multiple Ca2+ spike se-
quences with different parameter values. But statistical models may also help con-
ceptually. Ultimately, Ca2+ dependent signalling is driven in many instances by
the sequence of Ca2+ spikes. Hence, the properties of Ca2+ spikes such as their
ISI distribution are of central interest. Since it is conceivable that different micro-
scopic models based on detailed molecular processes all lead to the same cellular
behaviour, statistical frameworks are ideally placed to capture this common identity
of Ca2+ spiking.

The first step in our statistical analysis is to derive a model for whole-cell Ca2+

spiking. Since Ca2+ spikes are stochastic, we can express their occurrence most
naturally in the language of probabilities. A core ingredient is the ISI distribution
f (t,s), or equivalently the conditional intensity function q(t|s). It is worth noting
that both depend on only two times, i.e. we assume that the generation of a Ca2+

spike only depends on the history since the last Ca2+ spike. This independence of
successive Ca2+ spikes has been shown for astrocytes, PLA cells and HEK293 cells
in [83] for constant stimulation. In general, however, this might be too strong an
assumption. In particular, when cells are challenged with continuously changing
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stimuli — in order to mimic a more realistic cellular environment — correlations
within the signal might be inherited by the Ca2+ spikes. One possibility is to gen-
eralise the conditional intensity function. Instead of depending only on the last time
t, it now relies on the entire Ca2+ spike history Ht , i.e. q = q(t|Ht). This, however,
does not necessarily lead to a mathematically tractable problem. A more practical
approach is the introduction of an intensity function. Essentially, it transforms the
original Ca2+ spike times in such a way that they become independent. As a con-
sequence, we can use the original ISI distributions f (t,s) or conditional intensity
functions q(t|s), which entails that the parameters of the model are those of the ISI
distribution and the intensity function, respectively.

This leaves us with the task of finding the parameter values given the Ca2+ spike
sequences. The last condition is of particular relevance to the current approach. Our
goal is to derive a model that is constraint by experimental data and whose parame-
ter values can be sensibly estimated. We have achieved this by employing Bayesian
ideas, which allow us to determine the probability distribution of the parameters
given the Ca2+ spike sequences, i.e. p(θ |y). This is a distinct advantage of the
Bayesian framework. Other methods, such as maximum likelihood estimators, also
provide information about the parameters of the model. However, they only deliver
one set of parameter values associated with a standard error, not entire probability
distributions. Moreover, these approaches come with numerical challenges and are
hard to pursue in higher dimensions.

Since the ISI distribution is a core component of the model, we first ascertained
if our choices are consistent with the recorded Ca2+ spike sequences. As Figs. 5
and 6 illustrate, the Gamma distribution captures the data well, while the inverse
Gaussian and the Poisson distribution fail to do so. It is worth noting that the data
analysed here were obtained in different experiments than those used in [67], yet
both data sets lead to the same conclusion: Ca2+ spikes are well described by a
Gamma distribution. This might point to the mechanisms that generate Ca2+ spikes.
Since the Gamma distribution returns the probability of the first time that α events
have occurred (see Eq. (5)), it is consistent with the interpretation that the formation
of a critical nucleus of elevated Ca2+, driven by the occurrence of a certain number
of Ca2+ puffs, underlies the generation of a Ca2+ spike. At the moment, we cannot
rule out that other probability distributions that we have not tested yet describe Ca2+

spikes equally well or even better. The advantage of our Bayesian modelling frame-
work is that it works for any probability distribution, which allows us to test more
candidate distributions in the future. Moreover, we have two complementary tests at
our disposal, the Q-Q and the K-S plot. While both approaches check whether two
probability distributions coincide, the K-S plot is more sensitive towards the centre
of the distribution, while the Q-Q plot focusses on the tails.

When testing for the most likely ISI distribution, we had to estimate the inten-
sity function x(t) at the same time, since the ISI distribution explicitly depends on
x(t) (see Eqs. (21) and (22)). Following on from our results so far, we focussed on
intensity functions obtained for the Gamma distribution. The intensity function is
central to our understanding of Ca2+ spike generation. An almost constant intensity
function indicates that Ca2+ spikes originate from stationary dynamics. This means
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that the ISI distribution is identical for each recorded Ca2+ spike time, which allows
us to compute the mean and the variance of a Ca2+ spike sequence (see Fig. 9).
From a biological perspective, this corresponds to a cell with no explicitly time-
dependent processes such as a continuous depletion of the ER or an accumulating
degree of receptor desensitisation. In the latter, this does not mean that receptor de-
sensitisation does not occur, but that the fraction of desensitised receptors across the
cell stays constant. A change of experimental conditions is directly translated into
changes of the intensity functions. For instance, recent experiments with sinusoidal
stimuli led to intensity functions that reflect the rises and falls of the applied agonist
[67]. Moreover, since intensity functions are estimated from Ca2+ spike sequences
of individual cells, they mirror the variability of observed responses. A key line of
research is therefore to quantify and classify such diverse intensity functions.

Using both the ISI distribution and the intensity function we can compute the
conditional intensity function q(t|s), which corresponds to the probability of a Ca2+

spike at time t given that a Ca2+ spike occurred at time s. The shape of q allows
us to discuss potential mechanisms that are involved in Ca2+ spike generation. For
instance, as Fig. 8 illustrates, the conditional intensity function remains small af-
ter a Ca2+ spike before it increases. This period of low Ca2+ spiking probability is
consistent with the observations of refractoriness. Plots like Fig. 8 also allow us to
estimate the range of refractory periods, which we can then compare to the refrac-
tory period obtained from plots of the mean ISI against the ISI standard deviation as
seen in Fig. 1C. In addition, we can compare the rise time of the conditional proba-
bility function with known timescales of e.g. ER refilling or InsP3 receptor recovery
to ascertain whether any of the molecular timescales match the cellular time scale,
or whether we deal with an emergent timescale.

One motivation for pursuing a statistical approach is to obtain distributions for
the parameter values that govern Ca2+ spike generation. The reason for why dis-
tributions exist in the first place — and not a single parameter value only — lies
in the inherent single-cell variability. Consider e.g. the variation of ξ and λ shown
in Fig. 2. The recovery from global cellular inhibition is controlled by ξ . This in-
volves inter alia resequestration of Ca2+ from the cytosol to the ER via SERCA
pumps or recovery of InsP3 levels. Since expression levels of SERCA pumps can
vary amongst cells, recovery proceeds at different speed in different cells, which
is captured by the variability of ξ . As for λ it controls the asymptotic Ca2+ spike
rate. As Ca2+ spikes are believed to occur via the formation of a critical nucleus of
elevated Ca2+ and subsequent propagation of a Ca2+ wave, the spatial distributions
of InsP3Rs and SERCA pumps are crucial. These distributions vary significantly
between cells, which directly impacts on the spread of λ .

As with all modelling approaches, the methodology presented here is not without
its caveats. In its current form, we only consider Ca2+ spike times and leave aside
other Ca2+ spike properties such as amplitude, duration, shape, or baseline Ca2+

concentration levels. However, these characteristics have been shown to impact on
a number of Ca2+ dependent processes [4]. An interesting point in this respect is
a potential interplay between release amplitude, release duration and the absolute
refractory period. Our results in [65] suggest that the absolute refractory period is
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not controlled by cell variability and hence that there is only one value for all cells.
We can further test this hypothesis by extending the model for a Ca2+ spike as in
Eq. (25) in Appendix 3 to explicitly include a distributed refractory period. The
advantage of the Bayesian approach is that the estimation process remains concep-
tually the same, but we need to estimate additional parameters. As stated above, one
incentive for the current work is to relate the estimated parameter values to biophysi-
cal processes. Care needs to be taken here as different processes can potentially give
rise to the same whole cell parameter values that we infer. Hence further tests are
needed to discriminate between different alternatives. A consequence of this con-
sideration is that cells might employ a number of different strategies to generate the
same whole cell signal, and it will be fascinating to tease apart the advantages and
disadvantages of specific routes to global Ca2+ signals.

The preceding discussion illustrates that advanced statistical modelling can pro-
vide valuable insights into the dynamics of Ca2+ spiking. Vitally, our approach
works for cells that are dynamically stimulated with agonist time courses that mimic
physiological conditions in vivo, which allows us to model cellular Ca2+ spiking in
a realistic environment. By inferring parameter values from single cell measure-
ments, we can determine their ISI distribution, which is a central ingredient to mod-
elling Ca2+ spikes. Moreover, it allows us compute statistical properties such as
means and variances, which in turn quantify stochastic Ca2+ spikes. In addition,
we showed how the statistical model allows us to infer potential mechanisms of
Ca2+ spike generation. This connects the statistical approach with the mechanistic
framework of simulating partial differential equations for Ca2+ signalling. In the fu-
ture, it will be desirable to see these two complementary techniques working hand
in hand, which has the potential to significantly enhance our understanding of the
Ca2+ signalling toolbox.

Appendix 1

We here show the equivalence of Eqs. (3) and (6). For this, it is convenient to intro-
duce

F(t,s) = 1−
∫ t

s
f (u,s)du . (18)

The right hand side of Eq. (6) can be written as a full derivative in the form

q(t|s) =− d
dt

lnF(t,s) (19)

Multiplying through by (−1) and integrating both sides with respect to t yields

−
∫ t

s
q(u|s)du = lnF(t,s) , (20)
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noting that lnF(s,s) = 0. When we exponentiate both sides and use the fact that
F(t,s) = f (t,s)/q(t|s) as per Eq. (6) we arrive at Eq. (3).

Appendix 2

Here, we demonstrate how to practically apply Eq. (10) when f is given by the
density for the Gamma distribution as in Eq. (5). We obtain

gG(ui,ui−1|x) = x(yi)
β α

Γ (α)
Xα−1

i,i−1e−βXi,i−1 , (21)

where
Xi,i−1 =

∫ yi

yi−1

x(v)dv , (22)

since the difference (t− s) in the transformed time u is given by

u(t)−u(s) = u(yi)−u(yi−1) =
∫ yi

0
x(v)dv−

∫ yi−1

0
x(v)dv =

∫ yi

yi−1

x(v)dv . (23)

A common choice for f1 and fn is a Poisson distribution, which leads to

g1(u1,0|x) = x(y1)e−X1,0 , gn(U,un|x) = e−Xn+1,n , (24)

in the transformed time, where we have set y0 = 0 and yn+1 = T .

Appendix 3

To generate the Ca2+ spikes that underlie the histogram in Fig. 3 we use inverse
sampling [84]. Since x(t) is non-constant, we need to use the time-dependent ISI
density g(ui,ui−1|x) from Eq. (10). For ease of presentation, we rewrite Eq. (10) in
terms of the non-transformed Ca2+ spike times yi using the results from Appendix
Appendix 2 as

fG(yi,yi−1|x) = x(yi)
β α

Γ (α)

[∫ yi

yi−1

x(v)dv
]α−1

exp
{
−β

∫ yi

yi−1

x(v)dv
}
, (25)

which we use in the definition of the cumulative probability function

FG(t,yi−1|x) =
∫ t

yi−1

fG(s,yi−1|x)ds . (26)

Suppose now that the last Ca2+ spike occurred at time yi−1. We find the next Ca2+

spike time as yi = yi−1 +∆ , where
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∆ = inf{t|FG(t,yi−1|x)> ω} , (27)

and ω is a random number that is uniformly distributed between 0 and 1. To put it
another way, we need to integrate the ISI probability density fG from yi−1 until we
obtain a value of ω for the integral and then add the corresponding upper bound of
the integral to the previous Ca2+ spike time yi−1.
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