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PREFACE

Yukasiewicz published his classic work on Aristotelian syllogistic
in 1951. Unlike his book, the present monograph makes no attempt to
contribute to Aristotelian scholarship, but it does aim to locate the place
of syllogistic in modern logical théory. Lukasiewicz's syllogistic, which
is simply the result of grafting some special axioms on to propositional
logic, with their term variables having non-empty name-like expressions
as substituends, does not show how syllogistic logic relates to the modern
logic of general propositons, and his interpretation is in any case open
to philosophical criticism. However, as a result of his pioneering study
and of others' subsequent work, I believe that it is now possible to

determine the place of syllogistic far more satisfactorily.

In Chapter 1 BS, a basic syllogistic system based on Aristotle's
logic, is presented in natural deduction form, so avoiding the need to
adjoin propositional principles (apart from veductio) in the manner of
Lukasiewicz and Bochehski. As far as I know, the idea of presenting
Aristotelian logic as a natural deduction system was first suggested by
Robert Feys in a review, and I devised the system BS for teaching
purposes some years ago. In the last few years natural deduction systems
have been published by Corcoran and Smiley, but their concern has been
with exegesis of Aristotle's text. Since I am concerned with a wider
assessment of Aristotle's logic and of his contribution to the whole subject,
I am less interested in representing the minutiae of Aristotelian doctrine
in my basic system and more interested in presenting a system I can use
to relate the syllogistic type of logic to that which has superseded it in
modern times. Deductions in BS are set out in tree form, and are
therefore far easier to construct and follow than deductions in the systems

of Corcoran or Smiley.
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Chapters 2 and 3 treat the metatheory of the basic system. The
exposition is relatively informal, since I have aimed to make the whole
monograph accessible to anyone with an elementary knowledge of formal
logic. 1In any case, it will not be essential for the reader to work
through all the details of metatheoretical proofs in order to understand

the rest of the text.

Since SYupecki proved the completeness of Lukasiewicz's syllogistic
and Wedberg proved the completeness of a system with negative terms,
much more concise proofs of these results have been given by
Shepherdson. Shepherdson's proofs, however, are algebraic, whereas
the proofs presented here are purely logical and are derived (and
simplified) from a completeness proof given by Corcoran for his
syllogistic system mentioned above. The style of proofs in the meta-
theory and the order of exposition were chosen particularly to bring
out a hitherto unnoticed but remarkable feature of Aristotle's attempt to
show that his logic was complete. His approach anticipates modern
Henkin-~style completeness proofs. Aristotle's fundamental insights -
his idea of inferences valid in virtue of their general structure and
his use of variables to reveal it, his construction of what amounts to
a nearly complete deductive system of logic - are well appreciated.

But his attempt to show that his logic is complete has received far
less attention. If it did not give a false impression of his understanding
of logic, we could almost say that Aristotle came close to anticipating

model theory.

For the purposes of the first four chapters, which together with the
fifth are concerned with the formal rather than the philosophical aspects
of the subject, 1 use interpretations in which term variables have
substantival phrases as their substituends. This is because I wanted to
employ an interpretation of the same general sort as that which Aristotle

and the medievals had in mind, and which enabled the formal treatment
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to proceed smoothly. 1 also wanted to avoid prejudging the philosophical
discussion of Chapters 6 and 7. This certainly does not mean that I
really subscribe to a 'two-name' interpretation of general propositions:
far from it. Objections to such interpretations are presented in

Chapter 7, where I conclude that the terms of A, E, I and O proposi-

tions are best construed as predicative in nature.

The investigation of the nature of general propositions takes us into
the heart of contemporary discussion of reference and generality, and
much of Chapter 6 and 7 is concerned with critical assessment of certain
doctrines of Lésniewski, Strawson and Geach, which are also of interest

apart from their relevance to syllogistic.

Syllogistics with negative variables, derived from the nineteenth
century enlargement of traditional logic to cope comprehensively with
syllogisms containing negative terms, are dealt with in Chapter 9 as
class calculi, in which manner the basic systems are construed in the

preceding chapter.

The present work is limited to categorical syllogistic. There is
no treatment of Aristotle's modal syllogisms, nor indeed of any of his

other, more piecemeal, contributions to formal logic.

I should like) to thank those who have discussed some of the contents
of this monograph with me or who have made useful comments on prelimi-
nary drafts, notably my former colleagues Michael Partridge,

David Braine (Aberdeen University) and Norton Nelkin (University of

New Orleans); my former tutor, Christopher Kirwan (Exeter College,
Oxford); and Professor Peter Geach (Leeds University). My thanks are
also due to the University of Nottingham for supplying funds, and to

Mrs. Eileen Long, Mrs. Rose Holman and Miss Christine Flear for
typing the manuscript. And special acknowledgement is owed to

Dr. Richard Cardwell for pioneering and organizing the monograph series
in which the present work appears as the first volume.

Michael Clark
University of Nottingham
April, 1979
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CHAPTER 1
A BASIC SYLLOGISTIC SYSTEM

1.1 Avistotle's theovy of the asseviovic syllogism

1.11 Until the nineteenth century Aristotle's work on the assertoric
syllogism was the most notable achievement in formal logic. Of course,
it by no means exhausts the interesting or important work in the field
up to that time, even by Aristotle himself, but in producing a complete
system of deductive inference, albeit of a very restricted sort, he
undoubtedly justified Leibniz's verdict that 'l'invention de la forme

des syllogismes est une des plus belles de l'esprit humain, et méme

des plus considerables' (1704, IV, xvii, 4, quoted by Couturat (1903) ).*

The basic syllogistic system to be presented in this chapter is
based fairly closely on Aristotle's doctrine of the assertoric syllogism
in the Prior Analvtics. TFor the moment the system will be thought of
as a logic for the four traditional types of categorical proposition, as

exemplified by the following sentences:

Quantity Quality
Every man is a hypocrite universal affirmative (A)
No man is a hypocrite universal negative (E)
Some man is a hypocrite particular affirmative (1)
Not every man is hypocrite particular negative (0)

A proposition will be regarded in the medieval manner as a sentence
with a certain meaning and the issue of whether there exist propositions
in some more abstract sense will be left open. It will be convenient
also to follow the medieval practice of referring to the propositional

forms by means of the letters 'A', 'E', 'I', and 'O’.

* Works referred to by author and date are listed at the back.



Such categorical propositions are to be formed by inserting an
appropriate term into each of the two gaps in any of the following
sentence~-frames:

Every — is a(n)—; No — is a(n)—; Some is a(n)—;

Not every — is a(n _—

Terms may be single nouns or they may be noun phrases, as in

the propositions No Indian elephant is a cheap pet and Some

photogvaph of Wittgenstein is a collector's item; but admissible terms
will be restricted to words which are count nouns or count-noun phrases.
Thus a word or phrase ¢ will be an admissible term iff (if and only if)
you can frame a significant question of the form, 'How many a's are
there?'.? This means that our categorical propositions belong to a
narrower range than the examples used by Aristotle himself, which
include cases like Some snow is white, a sentence in which neither term
passes the test. However, the restriction has certain advantages at
this point in the exposition. Inferences which involve the transposition
of subject and predicate terms cannot be made from propositions like
Some snow is white without idiomatic adjustments (Something white is
snow), whereas no such tinkering is needed in converting a sentence like

Some man is a hypocrite.

~_ One of Aristotle's most significant achievements was the
intrbduction of variables, which reflects his fundamental insight that the
validity of the inferences he was studying depends on their form. For
term variables we shall use small roman letters: the form of Every

man is a hypocrite, for example, will be expressed by Every a is a b.

! Cf. Christine Ladd-Franklin in Baldwin (1901-2), 2, p. 329, cited by A.N. Prior,
(1976), P. 53, where further details will be found.

2 The question need not have a definite answer. however. See David Wiggins on
oily waves and crowns (1968), pp. 39-40.



1.12 Aristotle was primarily interested in those inferences in which
a conclusion is drawn from two premisses which share one of their
terms. These syllogisms normally contain three distinct terms, one of
which appears as subject term of the conclusion and in one of the
premisses (the minor term), another which appears as the predicate
term of the conclusion and in the other premiss (the major term), and
the middle term, which appears in each premiss. A premiss itself is
called 'major' or 'minor' according as it contains the major or minor
term. The definition of major and minor terms by reference to
position in the conclusion is due not to Aristotle but to his commentator
John Philoponus, but it seems the neatest way of understanding them.

As an example we may take the syllogism:

Every hypocrite is a liar

Some man is a hypocrite

Therefore, some man is a Har

The first premiss, containing as it does the major term liar, is the
major premiss, the second the minor premiss, and hypocrite is the
middle term. If we replace major, minor and middle terms respect-
ively by the variables p, s and », the form of the inference, in virtue

of which it is deductively valid, may be expressed like this:

Every mis a p
Some s is an m

Some s is a p

When the major and minor terms have the positions in the premisses
which they have in the example above (major in predicate, minor in
subject position), the syllogism is said to be in the first figure. Clearly
there are three other ways of arranging the major and minor ter:as in
the premisses, and so four figures in all, usually presented by means of

the following medieval schemas:



The conclusion will always be: s p. It is unlikely, though, that Aristotle
himself used schemas of this sort to work out the different figures,
particularly since he does not recognize a fourth figure (though he did
recognize the validity of such arguments and proves them). 3

The mood of a syllogism is specified by giving the quantity and
quality of its constituent propositions, with those of the major premiss
standardly given first: thus the example above is in the mood AII.
Only a minority of moods in each figure is valid. The system to be
presented will enable us to prove all the valid argument patterns which
Aristotle recognized, as well as the weakened moods* which later
logicians included in their treatment. The reference list which follows
gives the medieval mnemonic names whose vowels indicate these moods,

with the names of the weakened moods in brackets:

First figure: Barbara, (Barbari), Celarent, (Celaront), Darii, Ferio
Second figure: Cesare, (Cesaro), Camestres, (Camestrop), Festino, Baroco
Third figure: Darapti, Disamis, Datisi, Felapton, Bocardo, Ferison

Fourth figure: Bramantip, Camenes, (Camenop), Dimaris, Fesapo, Fresison

1.13 In the Priov Analytics Aristotle shows how to reduce the moods
of the 'less evident' second and third figures to the (unweakened) first
figure moods by means of the principles of conversion and reductio ad
absuvdum, (For veductio see 1,14)., For example, he reduces

Camestres in the second figure to Celarent in the first:

% See Lynn Rose (1965).

4 A mood is said to be weakened if its conclusion is weaker than it need be, i.e. if
the conclusion is particular and the universal conclusion of the same quality also
follows from the premisses.



if M belongs to all N, but to no O, then N will belong to
no O. TFor if M belongs to no O, O belongs to no M: but M
(as was said) belongs to all N: O will then belong to no N: for
the first figure has again been formed. But since the
né@tive relation is convertible, N will belong to no O.

(2799-14.)

Aristotle frequently expresses propositions in the manner of this
quotation, a manner which was as artificial in Greek as it is in English.

Expressed in the style we have adopted, Camestres has the form:

Every n is anm

No vis an.m

No o is an»

We are told that the minor premiss is simply convertible.  Simple
conversion involves merely transposing the subject and predicate terms,
and seems to yield valid inferences in the cases of E and I propositions,
but invalid inferences when applied to A and O. We may set out the

simple conversion of the minor premiss thus:

No o is an m
S.C.

No mis an o

No n is an o is then derivable from No m is an o together with the
major premiss of Camestres, Every n is an m, by means of the

principle of the first figure mood Celarent:

No mis an o Every n is an m
Celarent

No n is an o

And the conclusion of Camestres is derivable from No 7 is an 0, again

by simple conversion. Putting these three steps together we get:



No o is an m

— Ss.C,

No mis an o Every n is an m

Celarent

No n is an o
— s.c.

No ois an »n

What we have here is in fact a form of deduction, using the principles
of simple conversion and Celarent as rules of inference. Given the
principle of simple conversion, the question of the validity of the mood
Camestres has been reduced to that of the validity of Celarent. In
general a syllogism (a) is reduced to another syllogism (b) when the
premisses of (a) deductively yield those of (b), and the conclusion of

(b) in turn yields the conclusion of (a).

To take next an example from the third figure, Darapti is

reduced to Darii as follows:

Every s is an r
————ee——— C.D.4.
Every s is a p Some 7 is ans

- Darii

Some 7 is a p

Every s is an v is converted pev accidens, i.e. the term variables are

interchanged and quantity reduced from universal to particular.

1.14 All the assertoric syllogisms which Aristotle dealt with are
reducible to the first figure in the way we have described, apart from
Baroco and Bocardo, which he reduces 'indirectly' by reductio ad

absuvdum. Here is his reduction of Baroco:

if M belongs to all N, but not to some O, it is necessary
that N does not belong to some Q: for if N belongs to all
O, and M is predicated also of all N, M must belong to all
O: but we assumed that M does not belong to some O.
(27237-27%1.)



The form to be reduced is:

Every n is an m

Not every o is an m

Not every o is an n

(The O forms have been given in the manner announced in 1.11, rather
than in the 'Some — is not ...' form. See 1.3 for the explanation of
this.) Aristotle supposes for the sake of argument that the conclusion
is false, that is, he assumes the logical contradictory of the conclusion:
Evevy o is an n, But from this assumption and the major premiss
Eveyy n is an m we can derive Evcry o is an m by means of the
principle of the first-figure mood Barbara:

Every n is an m | Every o is an n)
Barbara

Every o is an m

The supposition has been enclosed within square brackets. The
conclusion now derived is the logical contradictory of the minor premiss,
Not cvevy o is an m. Since logical contradictories must have

opposite truth-values, the truth of the original premisses is not
compatible with the contradictory of the original conclusion: so if the
premisses are true, the original conclusion must also be true. We

shall display the deduction of which this is the rationale as follows:

Every n is an m [ Every o is an nl

Barbara

Every o is an m Not every o is an m

T.a.a.
Not every o is an n

At the final step the contradictory of the supposition is asserted on the
basis of the two (unbracketed) premisses Every n is an m, Not every o
is an m. The question of the validity of Baroco has been reduced to
that of the validity of Barbara, and once again we have a form of

deduction, though less simple than in the previous example. As it is



used here the 7eductio principle is parasitic on other principles like
simple conversion and Barbara, and does not simply involve the direct
derivation of a conclusion from premisses. What justifies the r.a.a.
step is not simply the presence of the two contradictories above the
line but the fact that one of them rests in part on the bracketed
assumption. That assumption is dischavged at the final step and so the

conclusion rests only on Every n is an m and Not every o is an m.

Strictly speaking, we should not bracket any formula until it
is being discharged. Thus, just before the final step, the emerging
deduction should look like this:

Every n is an m  Every o is an z

Barbara
Every o is an m Not every o is an m

The three formulas Every n is an m, Every o is an n and Not every o
is an m jointly yield the contradictories Every o is an m, Not evevry

o is an m. The first three formulas cannot, therefore, all be true,
and if any two are true the third must be false. Consequently, any one
of the three can be discharged by the assertion of its contradictory,
which will follow from the other two. The formula discharged is then

bracketed to show that the formula newly derived does not rest on it.

Reductio arguments are, of course, a very powerful and
important mode of reasoning in logic and mathematics. They are
familiar from the work of Aristotle's conten_lporary, Euclid, and before
that Zeno's arguments had more or less taken this form. As
Aristotle noticed, reductio arguments are available for reducing all
valid syllogisms, though they are not always indispensable.

The reduction of Bocardo may be set out like this:

[Every ris a p} Every s is an r
Barbara
Every s is a p Not every s is a p

r.a.a.
Not every r is a p



Not only did Aristotle show how to reduce second and third figure
syllogisms to the first figure, but, among other things, he showed how
to reduce the first figure moods Darii and Ferio to Celarent via the
second figure, and thereby showed that all syllogisms are reducible to

Barbara or Celarent. Darii is treated thus:

... 1if A belongs to all B, and B to some C, it follows that
A Dbelongs to some C. For if it belonged to no C, and belongs
to all B, then B will belong to no C: this we know by means
of the second figure. (29P8-11.)

Darii has the form: Evevy b is an a, Some c is a b / Some c is an a.
Assume the contradictory of the conclusion, viz. No ¢ is an a. By
Camestres, already reduced to Celarent, we may derive No c is a b,
which contradicts the minor premiss of Darii. Putting this argument
together with the 'reduction' of Camestres we may express the reasoning

in the following tree:

[No ¢ is an a)
—_—_—— s.c.

Noa isa c Every b is ana
Celarent
No b is a c
———————  s.cC.
Nocisab Some ¢ is a b

r.a.a.

Some c is an a

No ¢ is an a must be false if Every b is an a and Some ¢ is a b
are true, since the trio jointly yields a pair of contradictories. Hence
No ¢ is an a is discharged and its contradictory asserted on the basis of

the other two formulas in the trio.

If we put together the tree for the reduction of Darapti to
Darii and the last tree for the reduction of Darii to Celarent, we have

the full reduction of Darapti to Celarent-



[i\lorisap]

s.c.
No p is an r Everys is a p
Celarent .
No s is an 7» Every s is an r
—_— . s.C. - c.p.a.
No ris an s Some 7 is an s

r.a.a.
Some 7 is a p

Using the same principles of inference — s.c., Celarent, c.p.a. and

r.a.a. — it is possible to prove Darii with slightly more economy:®
.No r is a pl Every s is an r»
? Y Celarent
No s isap Every s is a p
-~ s.c. c.p.a.
No p is an s Some p is an s
r.a.a.

Some 7 is a p

The moods now called figure 4 are dealt with by Aristotle at
26°23-27 (Fesapo and Fresison) and 53%3-12 (Bramantip, Camenes and
Dimaris). The weakened moods can be demonstrated in much the same

wav as the others.

.15 Not all of the principles of inference used so far are independent
o one another. When introducing conversion in the second chapter of
tte Prior Analytics Aristotle demonstrates simple conversion of I
propositions and conversion per accidens of A by using r.a.a. and
simple conversion of E. The last principle is itself demonstrated

by ecthesis', but we shall disregard this for the moment. Simple

conversion of I is demonstrated at 25%20-22:

* Even more economy can be achieved by allowing the use of reductio ad absurdum
when the inconsistent formulas derived are not contradictories but corresponding 4
and E formulas — contraries. (Aristotle himself argues Hke this, for example, in
his proof of conversion per accidens at 25°17-19 - see below.) The proof of
Darapt would then have only two steps, an application of Celarent and one of r.a.a.

10



if some B is A, then some of the As must be B. For

if none were, then no B would be A.

[Noa is a bl

No b is an a Some 6 is an a
r.a.a.

Some a is a b

and c.p.a. of A at 25%17-19:

... if every B is A, then some A is B. For if no A were
B, then no B could be A. But we assumed that every

B is A

[No a is a b]

——— s.cC.

No b is an a Every b is an a

r.a.a.

Some a is a b

Notice that the inconsistent formulas derived prior to the application
of the reducltio step are not contradictories (formulas which must have
opposite truth-values) but merely contraries (inconsistent formulas
which can't both be true). This form of the reductio principle will
have the status of a derived rule in the basic system to be presented

in this chapter.

What we have proved in the demonstration above are special
cases of the principles s.c. of I and c.p.a. of A used in the tree
deductions: for example, the last demonstration shows how to deduce
Some a is a b from Every b is an a, but the 'principle' of c.p.a.
for A equally permits the deduction of Some a is an a from Every
a is an a, etc. The tree deductions contain not propositions but
formulas, which we are regarding as propositional forms, and the
rules of inference used in these deductions enable you to derive formulas

of certain patterns from other formulas of certain patterns. To

8 Conversion per accidens of Eynot actually used by Aristotle, can be proved in a
similar way.

11



specify the pattern of a formula we shall use letters, a, 8, vy as
arbitrary term variables. The rule of simple conversion of E, for

example, will be given as:

No o is a §8

No f is an «

And to show that s.c. of I, for example, is a derived rule, we should
really derive Some B is an a from Some o is a B metalogically in a

proof schema.

When we set up our basic syllogistic system in the next section
we shall express the constants Evevy — is a —, No — is a —, etc.,
by means of the single letters 'A', 'E', 'I ' and 'O' preceding the two
variables. Thus for Every a is a b we shall write Aab. This has
the advantage not only of economy but also of making it easier to

consider different interpretations of the system.

If the form of r.a.a. in which the reductio step immediately
succeeds the deduction of corresponding A and E formulas is to be
treated as a derived rule of the systems we are constructing, it seems
that we need to retain c.p.a. of A as a primitive rule. Because this
latter rule is interderivable with the principle of subaltern inference
for A formulas, from Aap to Iaf (sub.@)), we shall treat sub. @)
as primitive, since this seems to yield a slight gain in perspicuity.
We show the two are interderivable by deducing sub. () using

c.p.a.@) and vice versa:

Aap Aap

c.p.a. —— sub.@)
IBa Iap

s.c.(l) —— s.c.
I ap I8 a

And we shall also treat s.c.(l), rather than s.c.(E), as primitive.
The reader can easily verify that, in a system with sub.{), s.c.([l)

and the narrower form of r.a.a. as primitive, s.c.(E), c.p.a.i(E)

12



and sub.(E) are derived rules.

It is obvious that the principles we have used are not limited
to affording derivations of inference patterns with just one or two
premisses and that the patterns of longer inferences ('sorites', etc.)

are also derivable. As an illustration consider the following argument:

No socialist is a conformist
Some humanist is a socialist
Every humanist is a rationalist
Every rationalist is a disbeliever

Every disbeliever is a sceptic

Not every sceptic is a conformist

There is no difficulty in deriving a sequent expressing the pattern of
this inference within our basic system: Elc, Ikl, Ahv, Avd, Adp |+ Opc.
(Letters have been chosen which are suggested by the terms in the
inference, but it must be emphasized that these letters are not to be

thought of as short for the terms, but as variables replacing them.)

Adp [Apc]
—L Barbara
Ard Adc
———————————— Barbara
Ahy Arc Elc
Barbara — s.c.(E)
Ahc Ecl
Celarent
Ih! Ehl
r.a.a
Opc
1.2 Rules of 'identity'.

Many syllogistic systems postulate that formulas of the form
Aaa are necessary truths, which can be done in the present system by

adding the following rule of 'identity':

*

Aaca

13



This is to be understood as licensing you to write any formula of the
form A o« immediately below an asterisk written at a tip (i.e. at the
top of a branch of a tree) to indicate that the formula rests on no
assumptions, The principle was introduced by Leibniz, but Aristotle
himself makes use of the claim that Every b is a b is a necessary
truth in a demonstration at 68%19. Moreover, formulas of the form
Not every a is an « seem to be the patterns of necessary falsehoods;
and if A formulas are the contradictories of the corresponding O
formulas, it follows that formulas of the form Aaa are the patterns of
necessary truths. Aristotle's belief in the necessary truth of proposi-
tions of the form Every a is an a also commits him to the necessary
truth of those of the form Some a is an a, which is deducible from
the A form by subaltern inference. He is also committed to the
necessary truth of the latter when, in Chapter 15 of Book I, he impliesr
that No ¢ is a ¢ is necessarily false, for this means that its contra-

dictory, Some ¢ is a ¢, will be necessarily true.

The view that propositions of this last form are necessary
truths seems to be a very questionable one, however, for surely the
formula entails the existence of some ¢ and is false if there is no c.
Indeed it has often been thought that propositions of the form Every
a is an a are false if there are no a's. These considerations would
count against adding the rule of identity given above and in favour

simply of adding the weaker rule:

Iap

Aaco

So we shall distinguish a stronger system, with the full identity rule
(id.*), from the weaker system, which has instead the weaker rule
(id.). In the opening chapters we shall be concerned principally with

the weaker system.
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1.3 The basic systems

We may now proceed to a formal description of a basic
syllogistic system BS in which the deductions of sections 1.3 - 1.5
can be made. The interpretation of this system to be adopted in the

opening chapters will be described-in the next section.

Language.

LN

Constants: 'A', 'E', '[', 'O’ Variables: ‘'a', '»', 'c' ...

Square brackets: '[ ', ']

Fovmation rule.
A formula (wff) consists of a constant followed by just two
variables. (The terms 'formula' and 'well-formed formula' -

abbreviated 'wff' - will be used interchangeably.)

: 7
Rules of infevence.

(i) s.c. Iap (ii) sub. Aap (iii) Barbara Aap ABy
IR« Iap Aavy
(iv) Celarent Aap EBYy (v) r.a.a. [¢]
Eay v ¥
@

In the statement of r.a.a. '¢' and '¥' are schematic letters for

arbitrary formulas and ¢ is related to (Z thus:

7 1t will be noticed that in the statement of the rules Barbara and Celarert the
minor premiss schema has been given first, contrary to the usual practice. This
is perhaps a little misleading, since the first vowel in the mnemonic names refers to
the major premiss; but the rules are easier to remember in the form given, since
occurrences of the middle term variable occur together in the middle. Indeed, this
may well be connected with the fact that Aristotle more often gave the major
premiss first, for he reversed the subject and predicate letters — recall how he
often speaks of B belonging to all A, etc. If we reverse the order of the term
variables and give the major premiss schema first, we get Ay8, ABa + Ava,
with the middle term letter occurring twice in the middle. See Patzig (1968),

pp. 59-61.
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=lap;
=AaB.

if ¢ =AaB, ¢ =008; if ¢ = EoB,
if ¢ =1IaB, ¢ = Eof;if ¢ = 0aB,
(Similarly for ¥, y.)
(vi) id. Iaop
Aaw
For the stronger system BS* the rule id. is replaced by the
stronger identity rule id.*:

*

Aaa

Unlike most previous formal syllogistic systems the present one
is a natural-deduction system. This has the advantage not only of
making deductions within the system easier to discover, but also of
making it unnecessary‘to adjoin auxiliary principles and symbols of
propositional logic not explicitly deployed by Aristotle, which would be
unavoidable if the postulates were given in axiomatic form, (Since I
started working on this book, natural deduction versions of syllogistic
have been presented independently by Corcoran (1973) and Smiley
(1973). Both defend the approach from the point of view of Aristotelian

exegesis.)

Since the interpretation of the Priov Analytics is not a main
concern of this study, it is of little consequence if the natural-
deduction approach is not completely faithful to Aristotle. In fact,
since he probably thought of his actual syllogisms as inferences rather
than as implications, it may not be so very unfaithful, though he does
seem to have reasoned about the syllogisms in terms of inference

patterns stated in implicational form. (Cf. Prior (1962), p. 116)

For the moment deductions will be given in the form of trees.
It is easy to get an intuitive grasp of the notion of a tree from the

examples, but a rigorous definition will ‘now be given. According to
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this, a tree is not the array of formulas but the set of points
associated with them, though we shall continue often to speak loosely

of the tree as if it were the proof.

For our purposes a tree is a fiiite set of points together with

a binary relation immediately above satisfying the following conditions:

(i) There is a special point R called the voo! (elsewhere it

is called the ovigin).

(ii) Every point except R is immediately above just one (other)

point.

(iii) For any point P in the tree there is definite sequence
of points, called a branch, from R to P in which each point
but the first is immediately above its predecessor. (Obviously,

in view of (ii), there will only be one such sequence.)

(iv) Immediately above a point P there is either:
(a) no point (in which case we call P a tip); or
(b) one point (P is a node);
(c) two points (P is a branch-point).

Provisionally, we may define a deduction (devivation, proof )
in BS as an array of formulas, together with any square brackets

around formulas, which satisfies the following conditions:

(i) There is a tree each point of which has just one formula
associated with it, and such that every formula in the

deduction is associated with (is 'at') some point.

(i) Each formula is either at a tip or is derived from one
or two formulas immediately above it in accordance with a

rule of inference.
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The formula at the root is said to be derived from the set
of all those formulas at the tips which have not been discharged
(bracketed) as a result of applying r.a.a. To say that a formula ¢
is derivable from a set I' we shall write: I' + ¢, sentences of this

form, like
{Aab, Abe} F Aac,
being known as 'sequents'.

For the stronger system BS* the definition needs some
extension: a deduction will be an array of formulas and, if id.* is
used, asterisks, plus any square brackets around formulas, which
satisfies conditions (i') and (ii'). Condition (i') will require that every
point be associated with just one wif or asterisk and that every wff or
asterisk be associated with some point; and condition (ii') will state
that each wff is either at a tip or immediately below an asterisk or
derived from one or two wffs immediately below it in accordance with

a rule of inference.

What makes the tree form of deduction so convenient for the
oasic system is the fact that derivable forms can always be proved
by means of trees in which no assumption is associated with more than
one point - what we shall call 'mon-repetitive' derivations. We could,
in consequence, stipulate the exclusion of other types of derivation,
without weakening the deductive power of the systems. (Check the

forms of derivation listed for the proof procedure in 3.3 to verify this.)

1.4 An intevpretation of BS

If only for expository convenience we shall in the first instance
interpret the four propositional forms in the manner which seems to
have become standard in medieval logic. This interpretation, which
we shall call 'Interpretation I', was probably adopted by William of
Sherwood and also by Ockham, and is unequivocally to be found in
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Buridan and Albert the Great. It has even been maintained by

Manley Thomson that it was what Aristotle himself had in mind,

though if so he was not consistent about it. The affirmative forms

are to be interpreted as having existential import and entailing the
existence of something to which the subject term applies, but

existential import is denied to the negative forms. Aab (Every a is a b)
is therefore regarded as true only when there is at least one a and all
the a's are b's, and Iab (Some a is « b) is true when there is some-
thing which is both an 2 and a . Eab (No a is a b) is true when there
is nothing which is both an a and a b, which, of course, includes the
case where there is no a. Finally, the O form, read here as

Not every a is a b, will be true (i) when there is no a or (ii) when
there is an a which is not a 4. In the case of the O form the
medieval interpretation differs significantly from that assumed in most
contemporary textbooks, which usually render the O pattern in a

manner closer to Some a is not a b.

Various different interpretations will be discussed later in
the book, and there is no intention at this point of prejudging that
discussion. It must therefore be affirmed that in adopting Inter-
pretation I at this stage we are not putting it forward as the preferred
interpretation nor are we claiming that the English sentences in which
the categorical propositions are expressed are most accurately
construed in this way. The term intevpretation, it should be added,
is being used throughout this book in the same way as it is used by

Alonzo Church (1956).

If you want an interpretation under which BS is sound, i.e.,
one under which every derivable form is valid, and you do not want to
depart radically from the ordinary senses of the words in which we
have expressed the propositional forms, you are easily led to the present

interpretation. The rule of simple conversion for I formulas requires
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the I form to have existential import, for, otherwise, if there were
no a but some b, Some a is a b would be true but Some b is an a
false. This means that the A form must have existential import;
otherwise, if there were no a, Every a is a b could be true but
Some a is a b false. Now, if the reductio rule is to be sound,
corresponding A and O forms must be contradictories, and the same
goes for corresponding I and E forms: so if the affirmative forms
have existential import, the negative forms must lack it; otherwise

corresponding A and O (or E and I) propositions could both be false.

The weaker identity rule, id., is clearly sound under this
interpretation, since if 7 of is true there is some « and Aawa must be
true. But, as we have already pointed out, the stronger rule is
unsound under this interpretation since A «a will be false if there is
no «. The soundnessv of the system BS is proved formally in the next

chapter (Section 2.2).

1.5 On the admission of vedundant premisses

The assertoric syllogisms which Aristotle studied usually had
three distinct terms. It is not surprising that he is uninterested in
examples like the following, where the minor premiss is manifestly

redundant and the conclusion simply repeats the major:

Every horse is a horse

Every horse is an animal

Every horse is an animal

Yet we ought nevertheless to regard this as an example of a syllogism
in Barbara. For to say that the inference pattern Every a is a b,
Every b is a ¢, Thevrefore every a is a c is valid is in effect to say
that every inference of that pattern is valid. And the example just
given is undoubtedly of that pattern, the term horse replacing both

variables @ and b. In general, all inferences of the specific pattern
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Every a is an a, Every a is a b, Thevefove every a is a b are also
of the more general pattern just given. And it is certainly possible
to establish the sequent { Aaa, Aab} + Aab by the use of the rule
Barbara. The fact that Aaa is redundant does not prevent its being

brought into the deduction,

Now although we cannot reasonably avoid admitting redundant
premisses like this, it might be thought that we should none the less
refuse to admit redundant premisses which cannot be brought into a
deduction in this manner. Maybe we have to allow that Aub is
deducible from {Aaa, Aab}, but need we allow it to be deducible from
{Acd, Aab}? However, we shall resist any temptation to distinguish
between the two sorts of case, for it would unduly complicate the
formal task of assimilating syllogistic to modern logic. It is worth
noting that this distinction cannot be made for propositional calculus
inferences, since any redundant premisses can be brought into a
proof by using the principles exemplified by { P, @} - P & @ and
{P&@ kP (see 4.3). Consider, for example, the inference

Ryle wrote The Concept of Mind
The moon is the earth's only natural satellite

Ryle wrote The Concept of Mind

This inference is of the form {P, @} / P, where @ is clearly
redundant, and the form is derivable in virtue of the other two quoted

sequents.

For present purposes let us say that an inference pattern
is sound or valid iff there is no substitution instance in which the
premisses are true and the conclusion false. Or, rather, to cover
cases where there are no premisses: iff there is no substitution

instance in which the conclusion is false but there is no false
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8  Then a concrete inference exemplifying some pattern will be

premiss.
formally valid iff it exemplifies some valid pattern. In other words, as
Aristotle puts it at 57°36-7, 'if the conclusion is false, the premisses of
the argument must be false, either all or some of them'. Now, clearly,
if an inference has this property it will not lose it if we add further

premisses, no matter what they are.

Applying these considerations to our systems, we redefine a
deduction in such a way that any redundant premiss formulas may be
admitted into the proof. Redundant formulas not brought into the tree part
of the proof may be written in an initial list above the tree. Thus a proof

of the sequent {Aub, Abc, Acd, Afg} F Aac will look like this:

Acd Afg
Aab Abc
Barbara
Aac

A deduction is now an array of formulas etc. on a tree and in a
(possibly empty) initial list. The statement of the rule r.a.a. has to be

revised to take account of these lists: an exact statement would go:

if Tu{@} Fx and TU{@} kX , then T  ¢;
and, if Tu{¢} Fx and TU{y} ky, then
ru{¢} + ¥ and also T'u{y} + o.

The Greek capitals denote (possibly empty) sets of formulas. (Strictly,

a formula in a proof will always rest on a set of one or more formulas -
and in BS* the set may be empty: it will be convenient, however, to go
on talking of a formula resting on another formula when we mean that

the other formula belongs to the set on which the first rests.)

¥ More accurately still: iff every model of the premiss formulas is a model of the
conclusion. But in the present case, where substitution instances are in English,
our working definition has the same effect as the model ~ theoretic one. See Quine
(1970), pp. 53-54.
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We have a deduction of ¢ from I when ¢ is at a root and IT"
contains all the undischarged formulas in the initial list and at the

tips.

Actually, we should have a proof of the sequent of the example
above even if the initial list were omitted from the proof. But initial
lists are not entirely dispensable, since a formula discharged by r.a.a.
may have to appear in one. And it is a consequence of the definition
that we can derive any conclusion we wish from a pair of formulas ¢
and ¢: for example, Acd from the set {Aab, Oab}. We simply assume
Ocd and put it in the initial list. Now {A4ab, Ocd} + Aab is established
thus:

Ocd
Aab

where the initial list consists simply of Ocd and the tree has only one

point, with which Aab is associated. Similarly.

Ocd
Oab

will count as a derivation of Oab from {Ocd, Oab}. Since Aab, Oab
are corresponding A and O formulas, we may apply r.a.a. to discharge
Ocd and derive the corresponding A formula, Acd. The full

deduction is:
[ Ocd] (initial list)

Aab Cab
- r.a.a. (tree)
Acd

Another un-Aristotelian consequence of our admission of
redundant premisses arises in the stronger system BS*. Formulas
of the forms Aaa or Iaa will be derivable separately from each

member of a pair ¢, q; , as for example in the following case:
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Aab Oabd (initial lists)

* *
id.*
Acc Acc

id.* (trees)

These are respectively proofs of {Aab} + Acc and of {Oab} F Acc.
In view of Aristotle's claim in Chapter 4 of Book II fhat 'it is
impossible that the same thing should be necessitated by the being
and not-being of the same thing' (571’3—4), it seems unlikely that he

would have accepted this.

Of course, if our primary interest were the interpretation of
Aristotle, we should not set up a system admitting redundant premisses,
but rather the sort of system devised by Corcoran and Smiley

(loc. cit. ), to which the interested reader is referred.

1.6 The adequacy of BS undevr Intevpretation I

In the two chapters which follow we shall show that BS is
both sound and complete with respect to Interpretation I. Nevertheless
there are weighty reasons for dissatisfaction with the way in which the
system deals with subject-predicate propositions, as compared with
the modern post Fregean articulation. . The restriction of terms to
substantival sortal expressions which we made in 1.11 was, in fact,
designed to mask these difficulties tempc;rarily so that their philoso-
phical discussion could be postponed until the formal treatment of the
systems has been completed. We shall have occasion to discuss this
‘ philosophical issue at some length in Chapter 7, but in the meantime

[ we pass on to the formal metatheory of BS.

24



APPENDIX TO CHAPTER 1
A NOTE ON ARISTOTE LJAN EXEGESIS

The present study makes no attempt to contribute to
Aristotelian exegesis. Since, however, one of the main reasons for
relating syllogistic to modern logic is to throw light on the development
of the subject, a few brief remarks on the exegetical issue will be

added.

Although the basic systems presented in this first chapter are
no more than loosely based on the Priov Analytics, recent work by
Corcoran (1973) and Smiley (1973) to which the reader is referred,
seems to show that they are a good deal more faithful to Aristotle than is
Lukasiewicz's well-known system. Very roughly, Corcoran's system
is like BS with formulas restricted to those with two distinct variable
letters, so that his system lacks any ‘'identity' rule. Derivations
never have initial lists and veductio may be used only once in a
deduction, namely as the final step. According to Corcoran, the
natural deduction formulation has the advantage of showing how Aristotle
can treat the logic of An. Pr. as an underlying logic for the axiomatic

sciences treated at the beginning of the Postevior Analvtics.

Aristotle's tendency generally9 to exclude propositions with
the same subject and predicate terms conflicts with his insight that
the inferences he is treating are valid in virtue of their form alone.
(A éimilar point applies to his failure to provide for redundant
premisses.) For if an inference is valid in virtue of having the form
Barbara, for example, any inference of that form must be valid,

including:

9 He does not ignore them entirely, as we have seen (but cf. Corcoran (1972) p. 99).
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Aab Aba
Aaa

There just is not going to be any system which is consistent with

everything Aristotle says or implies.

Corcoran, like Smiley, interprets his system in such a way
that term letters are never empty. But it can also be interpreted in
the medieval manner (our Interpretation 1), with affirmative propositions
having existential import and negative ones lacking it. Although there
is some textual basis for each of these interpretations, the basis for
the second is admittedly more tenuous. In favour of the first is
Aristotle's view in the Categovies that each secondary substance is
instantiated by at least one primary substance (i.e. by at least one
individual). In favour of the second is the claim put forward in
Chapter 46 of An. Pv., Bk.I that whereas the propositions It is white
and It is-nol white, are contradictories, the affirmative pair It is
white and It is not-white are merely contraries and could both be false.
One explanation for this would be that the second pair both have
existential import, whereas only the affirmative member of the first
pair does, the negative proposition lacking it. On the other hand the
difference between It is not white and It is not-white can also be
explained by maintaining that, while the first is true of something like

a number which could not be white, the second is false of it.

The metatheory of Corcoran's system is easily developed by

adapting details given in subsequent chapters for BS and BS*. 1°

10 six other possible interpretations which are 'suggested by Aristotle's terminology
or incidental remarks' are set out on pp. 64-66 of Kneale and Kneale (1962). The
six in question are those pumbered (1) - (5) and (7) in their text.
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CHAPTER 2

METATHEORY OF BS:
(I) CONSISTENCY, SOUNDNESS AND INDEPENDENCE

2.1 Consistency

Both basic systems, BS and BS*, are consistent in the sense that
no two wifs ¢, @ are derivable as theorems of those systems. By a
theorem we mean a formula provable as the conclusion of a derivation
in which it rests on no assumptions. (Some logicians reserve the word
'proof’ for derivations of theorems, but we shall not follow this practice.)
The consistency results are not very strong ones, and indeed for BS the
result is quite trivial, since it is easy to show that no theorems what-
soever are derivable within it. We shall demonstrate the consistency
of the stronger system BS*, from which the consistency of the included

system BS follows immediately as a corollary.

Metatheovein 1. No wffs ¢, § ave devivable as theovems of BS*.

As one would expect from a cursory glance at the rules, only wffs
of the forms Ao« and Jaw are derivable as theorems. To prove
consistency, however, it is sufficient to show that no negative wffs are
derivable as theorems, since one of any pair ¢, @ is bound to be
negative. The theorem therefore follows from the following lemma:
Lewmma: Evevy negative formula, , in a proof vests on at least one

negative formula.

A formula ¢ in a proof rests on the set containing:
(i) itself, if it is a wff in the initial list;
(i) itself plus any wffs in the initial list, if it is at a tip; otherwise

(iii) all wffs not yet discharged which occur either in the initial

list or at tips linked by branches to ¢.

'Not yet discharged' means not discharged by the application of r.a.a. any-
where in the proff above the formula ¢. When we say that a wif rests on

a wif we mean that the former rests on some set containing the latter.
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Thus in the proof given at the end of 1.15 Ec! rests on {Elc}, Ehl
rests on {Adp, Apc, Avd, Ahv, Elc}, and Opc rests on
{Adp, Apc, Avd, Ahr, Inl, Elc}.

The proof of the lemma is by strong induction on the rank of the
negative wff ¢ in a proof. The rank of a wff is defined as the length
of the longest branch from the wif to a tip, unless it occurs in the
initial list, in which case it is of rank 1. For example, in the follow-

ing derivation Aab, Abc and Ecd are each of rank 1, Aac of rank 2,

Ead of rank 3 and Eda of rank 4.

Aab Abc
Barbara
Aac Ecd
Celarent
Ead
S.Ca
Eda

Basis. The formula ¢ is of rank 1. It is in the initial list or at
a tip. Since no rule has been applied to reach this formula, it will be

among the formulas on which it rests.

Induction step. Consider a formula ¥ of rank k (2 higher than 1)
and assume that every negative wff in a proof of rank lower than 2 rests
on some negative wff. We prove that it follows that the wff y of rank &

must also rest on some negative wiff.

Since ¥ is of rank higher than 1 and is negative, it must be the

result of applying Celarent or r.a.a.

Celarent. ¢ is derived immediately from one negative and one
affirmative wff. On the hypothesis of the induction the negative wif
above ¥ rests on some negative wff. But ¢ rests on the union of the
sets on which the two wifs immediately above it rest. (Thus, in the
derivation above, Aac rests on {Aab, Abc} and Ecd rests on {Ecd}:
Ead therefore rests on {Aab, Abc, Ecd}.) So y also rests on some

negative wff,

28



r.a.a., ¥ is immediately below one negative wff, which on the
hypothesis of the induction will rest on some negative wff. The newly
derived wff y must also rest on that negative wff, unless the latter is
discharged at this point. But it cannot be discharged at this point,
since when a negative wif is derived by r.a.a. the wff discharged is

affirmative.

So if ¥ is of rank 1 it rests on some negative wff, And if every
negative wff of rank lower than %, rests on some negative wif, so does
every wff ¢ of rank k. By the principle of strong mathematical induction
it follows that whatever the rank of the negative wff v it rests on some

negative wff,

2.2 Soundness

A sequent is correct iff any uniform substitution which produces a
false conclusion makes at least one premiss in the premiss-set false.
A system is sound iff every provable sequent is correct. If a system
is sound, clearly we cannot move from a set of true premisses to a

false conclusion.

It is easy to show that BS" is not sound for Interpretation I. Aaa
is derivable as a theorem of this system and has false substitution

instances like Every unicorn is a unicorn.?

The sequent + Aaa has no
premisses and so a fortiori has no premises with false substituends.

Sound interpretations for BS* will be considered later.

The present section is devoted to proving that the weaker system
BS is sound under Interpretation I. To say that the inference from
T to ¢ is sound we shall link designations of the premiss-set and the
conclusion by means of the symbol |~. The metatheorem to be proved

may then be expressed succinctly in the following manner:

1 On the use of such substituends see Chapter 3, where it is pointed out that their
use is open to criticism. The criticism can be avoided by using the decision
procedure of 3.3 to show that {Oaa) is consistent.
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Metatheovem 2. If T bgg @, then T |-; ¢.

The pattern of the proof is similar to that of the lemma above.
This time we wish to show that if a wif ¢ in a proof is false it rests
on some false wff. (We shall continue to speak loosely of true and
false wffs, since the meaning should be clear; in more cumbrous but
more accurate language the last sentence would read: all uniform
substitutions which transform a wiff ¢ in a proof into a false proposition
transform at least one of the wffs on which it rests into a false

proposition.)

Once again the proof is by strong induction, on the rank of the

wif ¢, defined as in the last section.

Basis. ¢ is of rank 1. It is in the initial list or at a tip, and

so will be among the wifs on which it rests.

Induction step. We show that, if the theorem holds for all wifs
of rank lower than k2 (£ > 1), it holds when ¢ has the rank k. It is

necessary to consider each rule in turn.,

s.c. If the final step leading to ¢ is an application of the rule
s.c., ¢ will have the form IBa and will appear immediately below a
wif of the form Jo. If IBa is false and so no 8 is an «, then no
« is a B and IapB is false. By the hypothesis of the induction, it will

rest on some false assumption, and therefore so will JBa.

sub. If the final step leading to ¢ is an application of sub.,
¢ will have the form Iof and will appear immediately below a wif Aof.
If Jap is false, then either there is no « or there is an a but no
«a is a B; in either case Aop is false. On the induction hypothesis

Acp will then rest on some false assumption, and so therefore will Io3.

Barbara. If the final step leading to ¢ is an application of
Barbara, ¢ will have the form Aay and will appear immediately below

wifs of the forms Aep and ABy. If Aay is false, either there is no «,

30



in which case Aap 1is also false, or there is some « which is not a v,
in which case it cannot be true both that every « is a g and that every
B is avy (i.e. at least one of the wifs AaB, ABy must be false). Thus,
if Aay is false, so is at least one of AaS, ABY on the hypothesis of
the induction one of them must therefore rest on some false assumption,
Since Aoy rests on all the assumptions on which Aef and ABy rest, it

too will rest on some false assumption.

Celarent. If the final step leading to ¢ is an application of
Celarent, ¢ will have the form Eay and appear immediately below wffs
of the form AaB and EBy. If Eavy is false, some « is a vy, so that it
cannot be the case both that every « is a g and that no g is a y (i.e.
at least one of AaB, EBy must be false). On the hypothesis of the
induction one of AaB, EBy must rest on some false assumption, and so

therefore must Eavy.

id. If the final step leading to ¢ is an application of the weak
identity rule id., ¢ will have the form Ao« and appear immediately
below a wif J1op. If Acw is false, there is no «, and so JaBf will also
be false. On the induction hypothesis Iog will then rest on some false

assumption, and so therefore will Aaa.

r.a.a. If the final step leading to ¢ is an application of r.a.a.,
¢ will be immediately below a pair of wffs AaB, OaB or a pair
EapB, Iaf. Under Interpretation I one of each of these pairs must be
false, and on the induction hypothesis this false wff will rest on some
false assumption. ¢ will therefore also rest on the false assumption
unless this is the wff which is discharged when ¢ is derived, viz. the
wif ¢. But if ¢ is false, @ will be true and so cannot be the false

assumption in question.

This completes the induction step. We have now shown that all
wifs of rank 1 are soundly derived and that, if all wffs of rank lower
than £ (k > 1) are soundly derived, then so are wffs of rank k. It
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follows by the principle of strong mathematical induction that formulas of
any rank whatsoever are soundly derived. All derivable sequents, then,

are valid. Q.E.D.

The consistency of BS, which we establised in the last section, can
also be proved as a corollary of the metatheorem just proved. If there
were some negative theorém, theﬁ we should have some derivable sequent
- Eap or + OapB, and hence it would be the case that |- EaB or |- OOZB-_
But wifs of both the forms in question have false substitution instances
(e.g. No triangle is a trviangle, Not evevy trviangle is a tn’angle),Q And
we have seen that, if there are no negative theorems, the system is

consistent.,

In a similar way we can also go on to show that the only theorems
in the stronger system BS' are of the form Aaa or Iaa. There are no
theorems of the form 4Aa,8 or Jap (a = B), since they have such false
substitution instances as Every triangle is a civcle and Some triangle is

a civcle.’

The soundness of BS also follows from the fact whose proof is
indicated in Chapter 5, viz. that BS is translatable into a fragment of
the predicate calculus as standardly interpreted, which is known to be

sound.

2.3 Independence

The methods of the last section enable us to show that each of the
six rules is independent of the others, in the sense that none of the six
rules is a derived rule of the system. We take each rule in turn and
produce an interpretation under which the other rules are sound but the

rule under examination is not. The rule must then be independent, since

2 ¢f. footnote 1,

3 Cf. footnote 1.
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it enables you to construct proofs not possible with the other rules alone.
In each case the soundness of the other rules is to be shown by means of

the type of inductive proof given in the last section.

One way of proving independence is to make use of interpretations
in which A, E, I and O signify relations between positive integers and
in which the variables accordingly take numbers as values. To prove

the independence of s.c., for example, we may take
AacB as ¢ =B EaB as a > B lap as a =8 OaB as a = .

Now, clearly, under this interpretation a simple conversion like that
from Jab to Iba is unsound: leta =1, b = 2 and you have:-
1 = 2 (true), therefore 2 =1 (false). The other rules will, however,

be found valid on this interpretation.

sub. Interpret Aaf as o« =8, Eapf as @ =B, Iaf as @ = B and
Oapf as a #= B. The invalidity of the inference from Aab to Iab under
this interpretation is evident if you take ¢ = 1, » = 1; the other rules

are sound.

To prove the independence of Barbara we may follow Iukasiewicz
(1957, p.90) and interpret Aep as a+1 =B, Eaf as a+p =8 +a,
IoB as a+B = f+a and OB as a+1 = B. The falsity of the sequent
{Aab, Abc} F Aac can then be demonstrated by takinga = 2, b = 1
and ¢ = 3, which makes Aal; 2+1 = 1, Abc 1+1 = 3 (both true) and
Aac 2+1 = 3 (false). The other rules can be shown to be sound on

on this interpretation.

A somewhat more complex interpretation seems to be necessary

to prove the independence of Celarent. I propose the following:

Ao : « and B do not differ by exactly 1 and +1 > g.
EaB : «a and g differ by exactly 1.

Iof : «a and B do not differ by exactly 1.

OaB : « and B differ by exactly 1 or a+1 = 8.
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On this interpretation all the rules except Celarent are sound. The
invalidity of Celarent can be shown in the following way. If Celarent
were sound the sequent {Aab, Ebc} b+ Eac would be true under the
interpretation; but it is not, as is clear if you take ¢ as 4, b as 1 and

¢ as 2. Then Aab, Ebc are:

4 and 1 do not differ by exactly 1, and 4+1 > 1
1 and 2 differ by exactly 1,

which are true. Eac is the false proposition:
4 and 2 differ by exactly 1.

Both the strong? and the weak forms of the identity rule can be
proved independent of the other rules by means of the following

interpretation:

take Aaf as a« > B, Eaff as atf # B+a,
— Iop as a+p =B +a, Oof as a < f.

Finally, r.a.a. can be proved independent if all four forms,
AaB, EoB, Iaf and OaB are interpreted as « = . The other rules are
sound on this interpretation, but r.a.a. is not. For consider the

following derivation:

[ Oab]
Acd Ocd
Aab

Tof.a.
If a, ¢ and d each have the value 1 and b has the value 2, ‘the premisses

Acbh and Ocd each become the true proposition 1 = 1 and the conclusion

becomes the false proposition 1 = 2.

*The independence of the strong rule id.* also follows from the fact that BS but not
BS* is sound under Interpretation I.
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CHAPTER 3
METATHEORY OF BS: (II) COMPLETENESS

3.1 Awislolle's method of invalidation

We have shown that our basic syllogistic system BS derived from
Aristotle is sound if interpreted on medieval lines. The present chapter
is mainly concerned with proving the converse result, that it is possible
to derive every valid form expressible within the system. Aristotle him-
self has made an important, though relatively neglected, contribution here,

and we shall begin with some examination of it.

A deductive inference is valid iff one cannot compatibly assert its
premisses and deny its conclusion. For, if the premisses entail the
conclusion, they must be incompatible with any proposition which is itself

incompatible with that conclusion. The inference from
{Every man is a featherless biped, Every Greek is a man}
to
Every Greek is a featherless biped

is valid since the set consisting of the premisses and the contradictory of

the conclusion:

{Every man is a featherless biped, Every Greek is a man,

Not every Greek is a featherless biped}

has incompatible members. In general an inference from {Abc, Aab} to
Aac is valid if the set {Abc, Aab, Cac} is (simultaneously) unsatisfiable.
If we have a set for which we can find substitutions to transform all its
formulas into true propositions, we have thereby shown it to be satisfiable:
for example, the wffs of the set {Oub, Aha} have as instances Not every
animal is a man and Every man is an animal, and so there can be no
valid inference from {Oab} to Oba, since it is possible to assert Oab

and the contradictory of Aba without incompatibility (25%22~6).
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This manner of demonstrating the invalidity of an inference pattern
is the essence of Aristotle's method. He wants to show that his system
is complete in the sense of enabling him to derive all the inference
patterns he regards as valid syllogistic moods. To this end he takes
each of the pairs of premiss forms in the various moods and seeks to
show either that the pair yields aconclusion or that any syllogistic
inference from those premisses is invalid. Thus he takes the syllogisti-
cally 'non-probative'’ pair of premisses AE in the first figure,

{Aba, Ecb}, and provides the trio of terms animal, man and horse as

respective substituends for a, » and ¢, giving us the true propositions

Every man is an animal

No horse is a man

In this way he is able to show that the set {Aba, Ecb, Aca} is satisfi-
able, since substitution in Aca yields the true proposition Every horse

is an animal, which taken with the other two propositions gives us a trio
of true propositions instantiating the wifs of the set. Now if there were
a valid inference from {Aba, Ecb} to Eca, the set would have to be
unsatisfiable, since Aca is the contrary of Eca. And the set would also
have to be unsatisfiable if there were an inference from

{Aba, Ecb} to Oca, since Aca and Oca are contradictories. So the
demonstration of the satisfiability of the set is sufficient to show that

the two inference patterns are invalid.

Aristotle makes use of similar substituends to show that AE in the
first figure do not have affirmative consequences either. The terms
animal, man and stone are supplied as major, middle and minor terms
and their substitution for @, b, and ¢ in the set {Aba, Ecb, Eca}
generates the true propositions: Every man is an animal, No stone is a
! 1 take the term from Kneale and Kneale (1962). Barnes' word, translating
Patzig (1968), is 'inconcludent', which though somewhat of a barbarism is more

accurate, since proof requires more than validity (as Aristotle himself points
out elsewhere).
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man, No stone is an animal. Tt follows that there is no valid inference

from {Aba, Ecb} either to Aca or to Ica.

It is important to be clear what is being asserted of an inference
pattern when it is described as invalid: it is equivalent to the claim that
it has some invalid substitution instance. (Cf. fn. 8 in Chapter 1.) One
should avoid falling into the mistake of thinking that every substitution
instance of every invalid pattern is itself invalid.2 A pattern is valid iff
every instance is valid, and so therefore a pattern is invalid iff it is not
the case that every instance is valid, i.e. (since if well-formed it will

have instances) iff some instance is invalid.”

Aristotle did not find it necessary to produce fresh substituends for
every non-probative pair ef premisses, since,having shown that certain
pairs yielded no syllogistic consequence, he was able to argue that certain
others must also be non-probative. Having shown that AE, (AE in the
first figure) is a non-probative pair, for example, it is easy for him to
show that the same is true of A01.4 If A0, had some syllogistic conse-
quence, then since E entails O, AE, would have the same consequence;

but this has already been ruled out.

It is evident that the Aristotelian method of providing substituends
suffices to demonstrate the completeness of the system with respect to
sequents with just two premisses. Although Aristotle’s own treatment
falls short of actually doing this in a number of minor respects, which

are briefly detailed below, there is clearly no difficulty in completing

2

* Cf. J. Willard Oliver 1967).

3 Thus an invalid pattern may have a valid instance. For example, the pattern
Aba, Ecb / Eca (AEE in the first figure) has the valid instance: Every animal is
an animal, No stome is an animal; thevefore no stone is an animal. The example
is valid, of course, because it also instantiates the more specific valid pattern
Aaa, Eba / Eba.

4 Actually in this case Aristotle uses both methods.
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the task by means of his technique (which is not to say that the method

is beyond criticism, as we shall see shortly).

1. In one or two cases Aristotle thinks invalidity cannot be
demonstrated by directly proviqylg terms to satisfy the wifs of the
associated set. An example ié EQOg: Emo, Ono / Onm. This pattern
is invalid if the set { Eme, Ono, Anm} is satisfiable. Now having shown
directly that EEO, is invalid, Afistotle can argue that it follows that EQOq
is invalid as well. But why should it not be possible to demonstrate this
directly? It seems easy to think of substituends to transform the wffs of

the set into a set of true propositions:

{No bird is a man, Not every rook is a man,

Every rook is a bird}

Yet Aristotle would not be happy with the second of these propositions, on
the ground that to utter it is falsely to imply that some rook is a man.
He would prefer to confine the use of O propositions to cases where the
corresponding E proposition is false. (This is presumably why he ignores
the weakened moods.) The difficulty is not confined to the particular
example chosen, since Eno will always be true for values which verify
the other two formulas, Emo, Anm - otherwise Celarent would not be a
sound rule. But we should surely not regard this as a genuine difficulty,
since all that matters is that Not every rook is a man, or whatever

O proposition we choose for this purpose, should be true, and that can
scarcely be doubted. It may be a misleading sentence to utter when the
corresponding E proposition is also true, but Aristotle can hardly deny

its truth if he regards subaltern inference as a sound principle.

2. Aristotle restricts his attention to syllogistic moods in the
three figures he recognizes and to patterns with three distinct variables.
A pair of premisses is either shown to yield a conclusion or substituends

are provided for the purpose of showing that the pair is syllogistically
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non-probative. Nothing is said about a case like AAE; which, though
invalid, does not have entirely non-probative premisses (since

AAA,, AAI, are provable).” Sucih cases can easily be dealt with by
providing appropriate substituends, as can the invalid moods of the '
fourth figure and invalid moods with only one or two distinct variables.
In the case of some valid two-premiss patterns with only two distinct

variables, it is necessary to use the weak identity rule id. to prove them.

3. It is, of course, important that the propositions resulting from
the proposed substitutions should actually be true. But Aristotle's
examples do not always meet this requirement: he wrongly assumes the
truth, for example, of the propositions No swor is black and Every swan
is white (as Geach points out (1971), p. 298). 1Indeed, examples like the
last are best avoided anyway, since, even if we knew that there had never
in the past been any swans which were not white, we should probably not
be in a position to knew that none would ever evolve in the future. But
admittedly many of Aristotle's examples are immune from this sort of

objection, because they are analytically true.

What now of inferences with more than two premisses? In I 25
Aristotle seems to be arguing, in effect, that any valid inference with
more than two premisses can be resolved into a chain of valid (two-
premiss) syllogisms. If this argument had been successful, it would
have been sufficient to prove completeness for inferences with two or
more premisses, given a proof of completeness for two-premiss infer-

ences. (For comment on Aristotle's arguments, see Smiley (1974)).

5 No doubt he thought it unnecessary to show that AA4; did not have negative
consequences, since he had shown that you could derive the A conclusion, which
is incompatible with the corresponding E and O forms. And, indeed, if the
derivation is sound and the premisses are themselves mutually compatible, the
set {Aba, Acb, Aca} must be satisfiable. With three distinct variables the two
premiss formulas are, in fact, always mutually compatible, sharing as they do
just one variable. These considerations will not provide for cases like

AlA4 and AIO;, however. A[l3 (Datisi) is validly derivable, but one cannot argue
immediately from this to the invalidity of AIA; and AIO5.
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It is clear, anyway, that we have to go beyond the ad hoc provision
of substituends if we are to show that BS is complete in the sense that
all valid sequents with any fin/i';e number of premisses are derivable,
since there are infinitely man/y such valid sequents. We need to show
that all the infinitely many sets associated with underivable patterns are
satisfiable. Which sets are those, precisely? They turn out to be those
sets which do not yield any pair of wifs ¢ and ¢, sets which we shall
call consistent (sets, that is, which are consistent with respect to deriva-
bility). If such a pair of wffs is derivable from the set we shall call
that set 'inconsistent'. It is not difficult to see that I' | ¢ iff its
associated set I' U {¢} is inconsistent. For if I' + ¢, ¢ is derivable
from I',and ¢ is derivable from itself. And, if ' U {¢} yields corres-
ponding A/0 or E/I wifs, a further step of r.a.a. will permit the
derivation of ¢ from I'.. So if we can show that all consistent sets are
satisfiable, we can show that all underivable sequents are invalid and
therefore that the system is complete. What Aristotle did - in effect -

was to show certain consistent sets with three wiffs were satisfiable.

It is important for the purposes of the present chapter to be clear
about the distinction between the notion of (in)consistency on the one hand
and of (un)satisfiability on the other. A consistent set has the syntactic
property of failing to yield any pair of wffs ¢, ¢ by means of the rules
of inference. A satisfiable set has the semantic property of containing
wifs all of which can simultaneously be turned into true propositions by
means of uniform substitutions on the variables. Satisfiability, unlike
consistency, is therefore relative to an interpretation. A system which
is both sound and complete is one in which all and only consistent sets
are satisfiable, one, that is, in which the two properties of sets of wifs
are extensionally equivalent. (For convenience we shall count the empty

set as satisfiable.)
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It is possible to describe genera.l ways of finding terms to satisfy
the wffs of consistent sets. Bu/i the use of non-logical terms of the sort
supplied by Aristotle will seem an impurity to many logicians, even when
the resulting propositions are analytic; as Geach says: 'if we know a
form to be invalid, it can only be through lack of ingenuity that we fail
to find a counter-example to it outside a specific subject-matter, since
logic applies to all subject matters alike' (1971), p. 279. The
substituends used in the completeness proof which follows in the next
section are consequently of a less subject-bound character, but the
central idea of the proof remains Aristotle's basic insight that there is
no valid inference from I' to ¢ if the members of some instance of
I _ {@) are mutually compatible. This is, indeed, the basic idea behind
all Henkin-gtyle proofs of completeness. The proof is adapted and
simplified from Corcoran (1973).

3.2 Completeness of BS

In the present section we prove that the basic system BS is complete
with respect to the interpretation of the last chapterl (Interpretation I).
We shall indicate in later chapters how this proof may be adapted to
prove completeness with respect to somewhat different interpretations.
But throughout this section 'valid' is to mean valid under Interprelation I,
and similar remarks apply to 'satisfiable', 'unsatisfiable' and 'il-' (the
symbol for semantic entailment). Since we have defined a derivation in
the system in such a way that there are always finitely many premisses,

sets of wifs mentioned in the proof are all meant to be finite.®

s Although it would be possible to extend the system to deal with inferemces from
infinitely many premisses and to develop the methatheory accordingly, it does not
seem worthwhile for so restricted a system.
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Metatheorcem 3 (Completeness). If T I, ¢, e T bgs o,

Prool. @) ¥ T I+ ¢, then I', ® is unsatisfiable.

('T", @' abbreviates 'T = {&:'.)

(2) If I', ¥ is unsatisfiable, it is inconsistent.
(3) I I', ¢ is inconsistent, I'  ¢.
The theorem follows from (1), (2) and (3).
(1) and (3) are easily proved.

(1) I T I+ ¢, then there are no uniform substitutions under which
@ can come out false without at least one wif in " also coming out false.
Any substitutions which turn ¢ into a true proposition must turn ¢ into a
false one, for under Interpretation I corresponding A/0O wifs must have
opposite truth-values for uniform substitutions, and the same is true of
corresponding E/I wffs. Hence uniform substitutions which make @ true
must make some wff in T false: accordingly no uniform substitutions can

make all the wffs of the set ', ¢ come out true, and it is unsatisfiable.

(3) If corresponding A/O or E/I wifs are derivable by the rules
from I', @, then ¢ is derivable from I in one further step by r.a.a. (given

the relation between ¢ and ¢ defined on p. 16 above).

(2) follows from (indeed is equivalent to) (2): Every consistenl set
of wlfs is satistiable.  Its demonstration constitutes the bulk of the

completeness proof:

-Let A be a (finite) consistent set of wiffs;
V, the set of variable letters in the wffs of A;

P(V), the power set of V (i.e. the set of subsets of V).
Then suppose that a set U(») is formed from P(V) in the following wav:

for every wif Aef in A, each set containing the letter o

but lacking the letter 3 (each {ef8']l) is deleted from P(V);

1SS
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for every wiff Eaf in A, each set containing both
« and B (each [aB])is deleted from P(V) (and, consequently,

for every Eaa in A, each [«} is deleted);
for every wff Oa« in A, each [a] is deleted.

The wifs of A are to be turned into propositions by interpreting the
constants A, E, I and O according to Interpretation I and making substi-

tutions on the variables in accordance with the following prescription:

for each variable a substitute the corresponding term

set in U(A) containing the letter a, or '[a]' for short.

Example:
A: {Aab, Oba, Ecb, lab, Abb, Oac, Occ}
V: {a, b, c}

P(V): {A: {a}s {b}’ {C‘h {a3b}1 {arc}: {b,C}, {(l,b,C}}
u@a)  {a, {»}, {a,b}

Occ alone excludes all sets containing ¢, and {a} is excluded by Aab,
leaving three sets in U(A). It is easy to see that on Interpretation I the
substitutions for variable letters in the wifs of A result in true proposi-
tions. Aab, for example, becomes Every set in U(A) containing the letter

a is a set in U(A) containing the letter » or Every [a] is a [b].

We now proceed to show that the prescribed substitutions will always
result in a set of true propositions, no matter what the contents of the

consistent set.

Any formula of the form EaB, Eaa or Oca (Not every ais an «)
will be turned into a true proposition, because any set which could make
it false will have been deleted from P(V) in the formation of U(A). So it
remains to consider wffs in A of the forms AaB, IaB, and (where o and B

are distinct) Oap
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1, Suppose that a wff Aef occurs in A and the prescribed
substitutions render it false. It cannot be falsified by the presence
n UiA) of some set [ @p'l, since all such sets will have been deleted.
S¢ its falsity must be due to the absence of sets containing a.

‘Remember that A wifs are to be interpreted as having existential import.)

Now consider the set {a&, Y1,++0,7,), 7 = 1, in P(V), where
-,ees,, are all the v;'s in V such that A & Aay;. (8, of course,
will be one of the v;'s.) We show that, since A is consistent, this
set will not be deleted from P(V), and therefore that Aaf must after all

e turned into a true proposition.

The set cannot be deleted because of an A wif in A. Such a wif
would have to be of the form Avé or Ay;é&, where 6 did not belong to
‘he set being deleted. But if a wff Awé € A, & is one of the y;'s.
snd if some Ay;6 € A, A yields Aavi: Ay;6, Aay; - Awé in virtue of

.{ the rule Barbara; and so again & is one of the vy;'s.

Nor can the set be deleted because of some E wif in A. Four types
:¢ E wff would lead to the deletion of the set, viz.
£na, Eoy;, Eyja or Evy;y; (where /i may or may not equal j). We can
show, however, that the occurrence of any wff of these types would mean

-nat the set was inconsistent. Thus Aaf + Iaa:

AaB _ qup.
a8 4.
_Aca gyp,

laa

so that the occurrence of Foo in A would make it inconsistent. Again,
suppose Fary; € A: then A yields Aay; and therefore lay;, making the

set inconsistent. The same is true if Ey;o € A, since Ev;a + Eavy;

in virtue of s.c. (F). Finally, suppose Fy;y; € A. Then A } Aay;.

4:v;, Ev;v; F Eay; owing to Celarent, and therefore A F Oay;.

But A will also yield Aay; and so be inconsistent.
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Nor can the set be deleted because of some O wff in A. This would
have to be of the form Oww or Oy;y;, If it were Oca, A would be
inconsistent since Aaf yields Awa. I it were Oy;vy;, A would yield

Aay;, which in turn yields Avy;vy;:

Awy;
— c.p.a.
Iy;o
id.
AvYivi

Thus if Aep belongs to a consistent set A, substitution according to
the prescription must produce a true proposition. And since none of the
argument above for the case of Aap depends on «'s being distinct from g,

this conclusion applies equally to the special case of Aca.

2. Suppose a wff B occurs in A and the prescribed substitutions

render it false. Then there is no [aB8] in U(A).

1y

Now consider the set { &, B, Vi+ee,Vys, 7 = 0, in P(V),
where vy,...,7v, are all the y;'s in V such that A F Aay; or A + ABy;.
If JaB is to turn out false, the contents of A must require the deletion

of this set.

No A wiff can result in its deletion, since, if Awd occurs in A,
6 will be one of the vy;'s; and similarly if ABS occurs in A. And if
some Avy;6 occurs in A, A yields Aay; or ABvy;, which together

with Ay ;& yields Aaé or AB& so that once again & will be one of the y;'s.

If the set is deleted, it must, then, be due to some negative wif
in A, We list below all the possible types of £ and O wff which could
have this effect, together with indications of the reason why in each case

the wiff can occur in A only on pain of A's inconsistency.

Eaa. IapB yields roa.
EBB. IaB yields 1B (by s.c., id., sub.).
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Eaf.
EBa,

Ea‘yi.

E‘YiOl.

EBy;-
Evy;iB.

Evy;v;

Oca.

0BB.

Ovivi»

which yields EoS.

Then either A + Aay;, and so A + Iay;; or A - ABy;,
which together with Evy;a (derivable by s.c.(E)
from Ecavy;) yields Efa, and so Eaf.

Then either A F Aay;, and so A F Jy;a in virtue of
c.p.a.; or A F ABy;, which together with Ey;a
yields EBa, and so Eaf .

Reasons parallel to the last two cases.

(including cases where i =j). Either: A F Aay;, which
with Evy;y; yields Eay;. A will also yield Aay; (and
so Jay;j), or it will yield ABv;, from which it will be
possible, with Eay;, to derive Eaf. Or: A } ABvy,
which with Ev;y; yields Efy;. A will also yield ABy;
(and so IBy;) or it will yield Aay;,. which with

EBy; yields Eop.

Iof F Acca.

IoB + ABB.

A F Aay; or ABy;, both of which yield Avy;vy;.

Thus Iaf can be deleted neither by an affirmative nor by a negative

wiff, and substitution in Jaf according to the prescription must produce a

true proposition.

Since none of the argument above depends on «'s being

distinct from B, the conclusion applies equally to the special case of Jaa.

3.

Suppose a wif Oaf occurs in A and that @ # g. If the

prescribed substitutions make it false, U(A) must contain [a]

(since OaB lacks existential import and is true if U(A) lacks [a])

but no [ap'].
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Consider the set {a, ¥;,+.4,¥,}, n =0, where y;,...,v, are all
the y;'s in V such that A F Aay;. S cannot be one of the y;'s, since A
would then yield Ae3 and so be inconsistent. So, if OwB is transformed
into a false proposition, the set under consideration will have to be
deleted. But, for reasons similar to those given under 1 above, it

cannot be deleted by an A wif.

So it will have to be deleted by a negative wff. We show that none
of the negative wiffs which could have this effect can belong to A without
making it inconsistent, unless it also excludes every [a] and so verifies

the substituend of Oag.

Eoaw. Would exclude every [o].

Eay;, A | Aay;, which yields Iay;.

Evy;a. A |- Aavy;, which yields Iv;a.

Ev;v; (including cases where 7 = j). A |- Aay;, which

with Evy;y; yields Eay;. But A F Acy;, which
yields 1 ay;

Oaw. Would exclude every [al.

OV;vYie A F Aay;, which yields Avy;vy;.

This concludes the proof of Metatheorem 3.
3.3 Decision and proof proceduvres for BS

The completeness proof of the last section gives us a method of
demonstrating the satisfiability of any (finite) consistent set. We now

prove, as a corollary of Metatheorem 2 of the last chapter, that every

satisfiable set is consistent.

Suppose A is a satisfiable set which is inconsistent: then some
pair ¢, ¢ can be derived from the set. Ex hypothesi there is some

uniform way of substituting for the variables in the wffs of the set to
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to make them all come out true under Interpretation I. Substitutions
in ¢, ¢ uniform with these must render one of the pair false. But then

the system would be unsound, contradicting Metatheorem 2.

So we may conclude that a set is consistent iff it is satisfiable,
and so inconsistent iff unsatisfiable. Since every consistent set is
satisfiable by the substitutional procedure of the last section, a set is
satisfiable iff it is satisfiable by that method. This means that we have
an effective procedure for identifying unsatisfiable sets, and consequently
for identifying correct sequents. This decision procedure will often prove
impracticable to operate, however, since if there is any appreciable
number of different variables, say 10, in the formulas of the set being
tested, P(V) will have very many members: 10 variables in V mean 21°
(1,024) members of P(V), which will consequently take rather a long time

to construct without the help of a computer.
Nlustrations

1. Does Oac follow from {Oab, Abc}?

Test the set {Oab, Abc, Aac} for satisfiability. V and P(V) are as in
the example on p. 43. U(4) is:

{A’ {C}, {(I,C}, {b»c}: {asbsc}}v

which verifies the set under the prescribed substitutions. The inference

is therefore invalid.
2. Does Oac follow from {Oab, Acb}?
Test the set {Oab, Acb, Aac}. U(A) is:
{n, {o}, {b,c}, {a,b,c}},

of which it is false that not every [a] is a {b]. The inference is there-

fore valid.
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It is possible, however, to give a fairly brief list of the types of
inconsistent/unsatisfiable set, and to show how to derive corresponding
A/O or E/I wifs from them. This not only gives us a simpler decision
procedure but also a proof procedure, that is, a mechanical way of
generating a proof for any derivable sequent. TFor, since a sequent I' F
is derivable iff I', ¢ is inconsistent and we have a method of deriving
a pair ¢, d—) from any inconsistent set, an additional step of r.a.a. will

complete the derivation of ¢ from TI.

In listing the types of inconsistent/unsatisfiable set the notjon of a
chain of A wifs is employed. An «o-g chain is either the single wff Aaf
or a series of two or more A WIfs Aavi,«ee, AV Vit1y.0:A47,B, n = 2.
A set is said to contain such a chain when it contains all the wffs in
such a chain. Thus a set which contains the wffs Aac, Acd, Adb, Abe

contains an g-e¢ chain,

A chain whose last wff has  as predicate variable is a chain fo B .

If there is an «-B chain we shall say o is chained to 3.

The following are the inconsistent cases, with indications, where

necessary, of the way to make the derivations of inconsistent formulas:

(1) The set contains some negative wif Faa or Qaa as well as
some affirmative wff with a variable letter a. OQcao is
derivable from Eaca or from itself, and

Acca from Aap or ABa or IafB or IBa. For example:

A gub. _ABa _ c.p.a.
—1af __ jq. —faf 4.
Aaa Aoa
(2) The set contains some negative wif OaB, o = B and there
is an «o-f chain. AaqB is derivable from the «-8 chain by

successive applications of Barbara.
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3)  The set contains some wif Fop (o - B) with an «a- chain.

Awp is derivable from the chain, and so therefore is [¢f.

(4) The set contains a wif Fap (o = () with a -« chain.
AP, and hence JafB, is derivable from the chain.

0) The sct contains a wil Fag (« - B) with y~a and y-f chains.
Aya, AyB are derivable from the respective chains.

Then FyB, Iy8 are derivable 2s follows:

Aye Eaop Celarent ——AYB  gub.
Fv3 Ivg

(6)  The set contains some wil Fap (« = B) and a wit Jap or [Ba.

(7) There is a wif Fap (¢ - B) and Iay or Iya with a y- chain.
L« yields Fpw, which with Ayg (derivable from the chain)

yields Evya. [Ive is derivable, cither [rom Iye or from itsclf.

(8) There is a wif Eaf (« - B) and Ify or Iy with a y-a chain.
The chain yields Avye, which with Eag viclds Efa.
IyB is also derivable, either from [8y or from itself.

(9)y There is a wif Fap (¢ = ) and Iy6 or ISy with a y-« and
a & chain. Avya and ASp are derivable from the chains,

and then Eoy and I6y are derivable as follows:

_Ayx EoB  Celarent
—E¥8  s.c. (E)

A EBy Celarent __Wyd) _ s.e.
Ed&y 16y

Hlustvations
1. Is Ogzb a consequence of (and therefore derivable from) the set

{Eab, Icd, Gcd, Ace, Aea, Adf, Afg]?
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Consider the set {Eab, Icd, Ocd, Ace, Aea, Adf, Afg, Agbj. The chains
10 q are:
Aca

*Ace, Aea,

and the chains to b:
Agb
Afg, Agb
*Adf, Afg, Agb.

The starred chain to a begins with the variable ¢ and the starred chain
to b begins with the variable 4, and these two variables are linked in
the formula Jcd. The set therefore falls under case (9). FEdc, Idc are

derivable from the set in the following way:

Ace Aeca

Barbara
Adf A Aca Eab
_f._ig__ Barbara Celarent

Ad, Agb Ecbh
‘ g Barbara s.c. (E)

Icd Adb Ebc
8.C. Celarent

Idc Edc

A proof of the original inference pattern, which has been shown to be both
valid and derivable, is then obtained by applying r.a.a. and dischar-
ging Agb to derive Ogb. Ocd and Egh are written above the tree in an
initial list.

2. Is Ogb a consequence of (and therefore derivable from) the set

{Eab, Icd, Ocd, Ace, Aea, Ahf, Afg}?

Consider the set {Eab, Icd, Ocd, Ace, Aeca, Ahf, Afg, Agb}). The chains
to @ are the same as those in the first illustration and those to » are the
same except that the longest chain begins with Ahf (instead of Adf). There
is no negative formula with two occurrences of the same variable letter,
so that the set does not fall under case (1). There is a wff Ocd, but

no c-d chain: so it does not fall under case (2). Nor is there any a-b
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or b-a chain: cases (3) and (4) are ruled out. No chain to « shares a
variable with any chain to b: this rules out case (5). There is no

wff Iah or Iba, so ruling out case (6). There is no I wff containing
cither a or b, thus ruling out (7) and (8). And although there is a

wif Jed with a c¢-a chain, there is no 4-h chain, so that case (9) is also
ruled out, and we may conclude that the set is consistent and the original

inference pattern neither valid nor derivable.

It is, of course, one thing to describe the decision and proof
procedure and another to prove that it is adequate as such a procedure,

A nroof is given in the Appendix which follows.
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APPENDIX TO CHAPTER 3

PROOF THAT THE PROCEDURE OF 3.3
IS AN ADEQUATE DECISION AND PROOF PROCEDURE

As a preliminary we prove two lemmas, the first relating to the

model set U(A) described in 3.2:

Lemma 1. If a set of affivmative wffs excludes every set
[ay1,eeey,,B'l (where no a; = B), then for some «;

the set contains an «;-p chain.

Proof. Consider the set Z, {Q1,e00,Qyy YiseesYats
n=z 1, =0, where y1,...,v;, are all the y;'s chained to some o;
in the set of affirmative wffs. Then either B € Z, in which case g will

be one of the y;'s and so have an «; chained to it;

or B £ Z, in which case, on the hypothesis of the
lemma, Z is excluded by some affirmative wff Aén, 6 € Z, nn £ Z.
& is either an «; or has an «; chained to it, so that an «; is also
chained to 7, which is therefore one of the y;'s. Consequently n € Z.

Contradiction.

Hence g must belong to Z and be one of the vy;'s to which an «;

is chained. Q.E.D.

Lemma 2. If a wff ¢ is devivable from a set of T containing
move than one negative wff, thenm it is devivable
from some subset of T containing at most one of

~ the negative uffs.

This is proved by showing:~ that every affirmative wff in a proof
which rests on a set T" is derivable from a subset of I" which either
contains only affirmative wffs or is an inconsistent set just one member

of which is negative; and that every negative wif in a proof which rests
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on a set I' is derivable from a subset of I" just one member of which

is negative. (Thesis T.)

The proof is by strong induction on the rank of the wff ¢ in a

proof. (For the notion of rank see 2.1.

Basis. The formula is of rank 1, i.e. in the initial list or at
a tip. The set I' on which it rests will therefore include the wif itself.
But it is also derivable from itself alone, and hence from a subset of T'.
(If it is affirmative, that subset 'is an all-affirmative subset; if it is
negative, the subset has only one member - its sole member - which

is negative.)

Induction step. 1f the thesis (T) holds for all wffs in a proof of
rank lower than 2 (k& > 1), it holds for wifs of rank .

A wiff of rank higher than 1 will be derived in a proof from a wff
or wifs immediately above it by means of one of the rules of inference.

We take each rule in turn.

s.c. ¢ is immediately below just one affirmative wff. If ¢ rests
in the proof on the set I', then so does the wff immediately above it.
By the hypothesis of the induction, that wff is derivable from an all-
affirmative subset of T or an inconsistent subset of I" with just one
negative member. But such a derivation can be continued by an

application of s.c. to derive ¢ from that same subset.
sub. and id. The argument is exactly parallel to that for s.c.

Barbara. ¢ is immediately below two affirmative wffs. If ¢ rests
in the proof on the set I', then the affirmative wffs immediately above it
rest on subsets A and Z which exhaust I'. By the hypothesis of the
induction they are either both derivable from all-affirmative subsets
of A and Z, or at least one is derivable from an inconsistent subset

of A or Z just one member of which is negative. If both are derivable

54



‘rom all-affirmative subsets of A, Z respectively, then the application
of Barbara to the conclusions of the two derivations will result in a
derivation of ¢ from the union of the subsets of A and Z, which will
itself be an all-affirmative subset of I'. If at least one of the two

wffs is derivable from an inconsistent subset of A or Z just one member
of which is negative, then ¢ is derivable from the same set, since any
wif is derivable from an inconsistent set., In this case, then, ¢ is

derivable from an inconsistent subset of I' with just one negative member.

Celarent. ¢ is immediately below one affirmative and one

negative wif. If ¢ rests on I', the affirmative wff on A and the negative
on Z, A Z =T. By the hypothesis of the induction either: (i) the
affirmative wff is derivable from an all-affirmative subset of I" and the
negative from a subset of Z with just one negative member. By Celarent
¢ is then derivable from the union of these two subsets, which is a
subset of I' with just one negative member. O7: (ii) the affirmative wff
is derivable from an inconsistent subset of I' with just one negative
member; but since such a set yields any wif, ¢ is also aerivable from

it. And this set is also a subset of I" with just one negative member.

r.a.a. This case is of some complexity. ¢ is immediately below
one affirmative and one negative wff. If ¢ rests on I', the affirmative

wif on A and the negative on Z, then A U Z = TI', @.

(i) Suppose the affirmative wff above ¢ is derivable from an
all-affirmative subset of A. On the hypothesis of the induction the
negative wif above ¢ is derivable from a subset of Z with just one

negative wif.

If ¢ belongs to either of these subsets, the two derivations can be
extended by discharging ¢ to derive ¢ from the remaining wffs of the
subset by r.a.a. If ¢ is affirmative, @ is negative, so that the remain-

ing wifs will form an all-affirmative subset of I'. If ¢ is negative,
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@ is affirmative, and the remaining wffs will form a subset of I" with

just one negative wiff,

If ¢ belongs to neither of the subsets, their union constitutes an
inconsistent subset of I' with just one negative wff. Any wif is derivable

from an inconsistent set; so a fortiori ¢ is derivable from it.

(ii) Suppose the affirmative ‘wif above ¢ is derivable from an

inconsistent subset of A with just one negative wif.

If ¢ belongs to this subset, ¢ is derivable from its remaining wifs
by r.a.a. If ¢ is affirmative, ¢ is negative and the remaining wifs
form an all-affirmative subset of I'. If ¢ is negative, ¢ is affirmative

and the remaining wffs form a subset of I with just one negative wff,

If ¢ does not belong to the inconsistent subset, that subset is also
a subset of '+ ¢ is derivable from it, since any wiff is derivable from

an inconsistent set.

This completes the proof of the lemma. The lemma means that,
if there is more than one negative premiss, all but one are redundant.
In fact, it can be shown by similar means that there is never more than
one negative wif at the tips of a tree if the set of wffs at the tips is
consistent, a result related to the traditional rule that no syllogistic

conclusion may be drawn from two negative premisses.

Metatheovem 4. The procedure of 3.3 is an adequate decision and proof
procedure for BS.
The theorem follows if we can show that the following list of
inconsistent sets is exhaustive, i.e. that all other types of set are

consistent.

@) A set containing some wiff Eaa or Oaa and some

affirmative wff with a variable «.

(2) A set with some OaB (o # B) and an a-f8 chain.
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(3) A set with some Eof {a = ) and an a-f chain.

4) A set with some EaB (o = 8) and a S-« chain.

(5) A set with some Eaf (o = 3) and y-a@ and -8 chains.

(6) A set with Eaf (a # B) and either Jep or Ifa.

(7) A set with Ea8 («a = B), either Jay or Iya, and a y-f chain.
(8) A set with Eap (@ = B), either /By or IyB, and a y-a chain.

(9) A set with Eop (« = B), either Iyé or 16y, and v-«

and 6-8 chains.

Case I Sets with no more than one negative wff, We show that
every set of this sort which is of none of the types listed above is
satisfiable. Since we have shown that every satisfiable set is consistent,
it follows that every Case I set which belongs to rone of the nine listed
types is consistent. We use the substitution methods of the completeness

proof in 3,2.

(a) The set consists only of affirmatives. V cannot be deleted by
any affirmative wiff, since no affirmative wff will have a predicate letter
not in V. Substitutions according to the prescriptions in 3.2 must there-
fore always result in true propositions, since V verifies all J propositions
and, after the prescribed deletions from P (V), A propositions can be
falsified only if there is no set with the subject variable of the replaced

A wiff., But V will contain all such letters.
(b) There is one negative wif,

(i) The negative wff is Eaa or Oaa. The set is of
type (1) unless « is absent from all the other wffs. But then V — {a}
remains undeleted and verifies any affirmative propositions. The
substituend of the negative wff is automatically verified as a result of the

deletion process.!

lConsequently, if the negative wif is the only wif € A, A is satisfiable.
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(ii) The negative wif is OopB (« # ). Either the set is of
type (2) or there is no a-f chain. No affirmative wff can turn out false,
since V cannot be deleted (Ocp deletes no wifs from P(V)). Suppose now
that there is no «-pB chain. By Lemma 1 there is some undeleted
set [apB'l, which verifies the substituend of OoS. So if there is no «-B
chain, the set is satisfiable. !

In (ii)-(ix) EaB (a = B) is the negative wff and its substituend

is automatically verified by the deletion process. !

Any wff Ayy or Iyy
in the set is verified by {y}, which cannot be deleted either by an
affirmative wff, or by an E wif in which the two variable letters are
distinct. It remains to consider affirmative wifs with two distinct

variables.

(iii) Suppose Aay occurs in the set and its substituend is
false. Then there is no set [a] in U(A) and so no set [aB']. This set
cannot be excluded by EaB, and so it must be excluded by the affirmative
wifs alone. But then, by Lemma 1, there is an @-B chain and the set
is of type (3). So if it is not of type (3) the substituend of Aay is true;

and a fortiori if it is of none of the nine types the substituend is true.

(iv) Suppose ABy occurs in the set and its substituend is
false. Then there is no set [8] in U(A) and so no set [Ba'l. This set
cannot be excluded by EeB, and so it must be excluded by the affirmative
wifs alone. But then, by Lemma 1, there is a f-« chain and the set
is of type (4). So if it is not of type (4) the substituend of ABy is true;

and a fortiori if it is of none of the nine types the substituend is true.

(v) Suppose A'yé2 (y = a, ¥ = B) occurs in the set and its
substituend is false. Then there is no set [y] in U(A) and so no
set [ya'] nor [yB']l. These last two sorts of set cannot be excluded

by Eaf, and so must be excluded by the affirmative wffs alone., But

:Including Avya, AyB as gpecial cases.
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then, by Lemma 1, there is a y-a chain and a y-8 chain and the set is
of type (5). So if the set is of none of the nine types the substituend

of Ayé is true.
(vi) If Iop or IBa occurs in the set it is of type (6).

(vii) Suppose Iay or Ivya (y = «, y = B) occurs in the set
and its substituend is false. Then there is no set [a+y] in U(A) and
so no [ @yB'l. Then, by Lemma 1, there is either an «a-g chain and the
set is of type (3) or a y-8 chain and the set is of type (7). So if the

set is of none the nine types the substituend is true.

(viii) Suppose IRy or IyB (v = o, y = ) occurs in the set and
its substituend is false. Then there is no set [By] in U(A) and so
no [Bya'l. Then, by Lemma 1, there is either a g-a chain and the set
is of type (4) or a y-« chain and the set is of type (8). So if the set

is of none of the nine types the substituend is true.

(ix) Suppose, finally, that Iy6 or 16y, neither variable
identical with o or B, occurs in the set and its substituend is false.
Then there is no set [yé] in U(A) and so no [ysa'] and no [ydp'].
By Lemma 1, there is a y-a or é-« chain and a y-8 or é-8 chain,
and the set is accordingly of type (5) or type (9). So if the set is of

none of these nine types the substituend is true.

Every satisfiable set is consistent. So every Case I set which is

of none of the nine listed types is consistent.

Case 1I. Sets with more than one negative wif,

(@) All the wifs are negative. E wiffs and wifs of the form Oaa
are automatically replaced by true propositions. Suppose a wff
Oaf (a = B) is replaced by a false proposition. Then there is no
wif Eoa or Owa, since either of these would exclude every set [a]

and so make the substituend of Oaf true. But then the set {«} cannot
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be deleted, which makes the substituend of OaB true. Contradiction.
~ Hence if all the wiffs are negative, they will be replaced by true

propositions, and an all-negative set must be consistent.

o) At least one wiff is affirmative. Such a set is inconsistent
only if it has an inconsistent subset consisting of just one of the negative

and all of the affirmative wiffs.

Proof. Suppose ¢ is one of the affirmative wffs. Then if the set
is inconsistent, the wif ¢ is also derivable from the set, since any wiff
is derivable from an inconsistent set. By Lemma 2, if ¢ is derivable
from the set, it is derivable from a subset containing no more than one
(in fact just one) of the negative wffs, and therefore from a subset
containing just one of the negatives and all of the affirmatives. This
last subset will include ¢ and yield ¢, and so will be inconsistent.
Consequently, if a set A with at least one affirmative and at least two
negatives is inconsistent, it has an inconsistent subset with just one
negative. Now if A is of none of the nine types listed above, it has no
subset of any of the nine types. Consequently, it has no inconsistent

subset, and must be consistent.

Cases I and II exhaust the possibilities. So every set which is of
none of the nine listed types is consistent, which means that the list of

inconsistent types is exhaustive.

As was shown in Chapter 3, it follows that the procedures of 3.3
constitute decision procedures both for derivability and validity, as well

as proof procedures, for BS. Q.E.D.

Other decision proceduves
The decision procedure just validated is probably the most
practicable wer have. But for the sake of completeness other procedures

will be mentioned.
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Since it is clear from the indications in 3.3 for deriving inconsistent
wifs from the various inconsistent sets that such wifs are derivable by
means of the non-discharge rules (i.e. those rules distinct from r.a.a.),
it is obvious that there is also the following decision procedure. To
determine whether ¢ is a consequence of I', form the set I', . Take
each wif in turn and apply s.c.(I) where it yields a new wff, Repeat for
sub. (4) and id.". Then take each pair of wffs from the (possibly) enlarged
set and apply Barbara and Celarent wherever they yield new wffs. Continue
to add wffs by repeating the whole process on the growing pool as often
as possible. The procedure is bound to come to an end, since the non-
discharge rules cannot introduce any new variable and there are only finitely
many wifs composed of the variables of the wffs of a finite set (and so only

finitely many wiffs derivable from the wifs of a finite set by means of the

non-discharge rules). The set will be inconsistent (and therefore unsatisfiable)

iff some pair, ¢, # is derived; and the inference from I to ¢ will be valid
iff the set being tested is inconsistent. If a pair @, ¢ is derived, one step
of r.a.a. will complete a derivation of ¢ from I' (so we have another proof

procedure too).

Secondly, the arithmetical decision procedure given by Ivo Thomas

(1952) for kukasiewicz's syllogistic system is easily adapted to BS.

Further procedures are available if inference patterns are translated

into monadic predicate logic. (See Chapter 5.)
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CHAPTER 4
SYLLOGISTIC AND PROPOSITIONAL LOGIC

4,1 Trees and lineav proofs

For the rmoment we shall abandon the compact tree arrangement of
proofs for the more usual linear presentation, consisting of a vertical list
of formulas flanked by columns giving the information which in tree
derivations is largely supplied by the layout. The relation hetween the
two modes of presentation can easily be grasped from the following

example of corresponding tree and linear proofs:

Aab Abc
Barbara
Aac Ecd
Celarent
Ead
S.C. (F)
Fda
In linear form the proof will look like this:

1} 1) Aab As.
{2 (2) Abc As.
{1,2) (3) Aac 1,2 Barbara
14} (4) Ecd As.
{1,2,4) (5) Ead 3,4 Celarent
11,2,4) (6) Edna 5 s.c.(E)

Within each line the left-hand column specifies the set of assumption(s)
on which the formula in the central column rests, assumptions which in
a tree proof appear as undischarged formulas at the tips or in the initial
list. In this linear deduction wffs (1), (2) and (4) are assumptions and
rest on themselves, and so their own number is entered in the left-hand
column and 'As.' for assumption is entered in the right-hand column.

Each wff which results from the application of a non-discharge rule, that
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is any rule of the system apart from r.a.a., rests on the assumptions
which support the formula(s) it is immediately derived from. The
numbers of any wifs from which the wff on the line is immediately derived
are entered in the right-hand column together with the name of the rule

being used.

For a tree proof which includes an application of r.a.a. we may

take the following example, repeated from Chapter 1:

[Apr] Awvb
Barbara
Apb Opd
r.a.a.
Opr
In linear form it comes out as:
{1} 1)y [Aprl As.
{2} (2) Avwb As.
{1,2} (3) Apb 1,2 Barbara
{4} 4) Opb As.
{2,4} (5) Opr 1, 3 & 4 r.a.a.

The formula derived by r.a.a. rests on all the assumptions on which
Apb and Opb rest, apart from Apr, which is discharged. In view of the
presence of the left-hand column, the square brackets round discharged
assumptions could now be dispensed with, but it will do no harm to keep
them - though they need not be mentioned in the definition of a linear

deduction.

A linear deduction in the system may be defined as a finite sequence
of consecutively numbered lines each of which is made up of (the designa-
tion of) a set of assumption numbers (determined as indicated above) and
a wif which is either an assumption or results from the application of one

of the rules of inference.
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The left-hand columns in our examples therefore count as integral parts
of the proofs, whereas the right-hand columns are merely additional
descriptive apparatus. We have a deduction of ¢ from I when and

only when
(i) ¢ is on the last line, and .

(ii) every assumption on which ¢ rests (as indicated by the

assumption numbers of that line) belongs to I'.

It is obvious enough that any tree proof in BS (or BS*) can be
re-written in linear form (e.g. by first writing every wif of rank 1, then
every wif of rank 2, and so on), and every linear proof re-written in
tree form. 1t is less evident that every sequent which has a linear proof
has a proof in the form of a wow-repelilive tree (see 1.3, p. 18), but
this can be proved without much difficulty. The proof is sketched below.
The linear presentations of proofs will make it easier to consider the
formal relationship of the basic syllogistic to modern logic, which cannot
be presented conveniently in the tree form defined in Chapter 1 unless we

use one of Gentzen's calculi of sequents.

Mclathcorem 5. There is a linear devivation of a sequent in BS iff there

is a non-repetitive trce devivation of that sequent in BS.

Sketeh of progr. From what we have just shown, any non-repetitive tree

proof can be re-written in linear form.

To show the converse, suppose that there were a linear proof of a
sequent which has no proof in the form of a non-repetitive tree. We have
indicated on pp. 49-50 how to show that a sequent of BS has a tree proof
iff it has a non-repetitive tree proof. By Theorem 3 a sequent that has
no tree proof is invalid; so a sequent that has no won-repelilive tree proof
is invalide In that case some invalid sequent would have a linear proof.

But it can be shown that all sequents derivable in a linear manner are



valid, by adapting the proof of soundness in 2.2, The rank of a formula

is redefined as its reference number, and the words 'wff(s) immediately

above ¢' replaced by 'wff(s) from which ¢ has been immediately

derived', etc.’

4,2 The Square of Opposition

The basic systems are not rich enough to prove all of the Square of
Opposition relations which Aristotle discusses in De Intevpretatione, these
relations are conveniently summarized in the familiar diagram (Aristotle

does not himself use the terms 'subaltern' and 'subcontrary'):

A contraries E
C 40
1] O’?t <A [}
. X0
= Ly £
2 8,
3| @ <
=] {‘b/ 10[ 1
S oL Or. =]
® () L
I subcontraries 0

We already have rules (sub.(A) and sub.(E)) to reflect the relations of
subalternation. In order to express the other relations in inferential
terms we introduce an operator for propositional negation, '-', together
with two double negation rules (DN):

M _e_ ) —=e

- @

Their soundness is evident for the usual truth-functional interpretation
of '—', The formation rule for the enlarged system must be extended
by adding that —¢" is well-formed whenever "¢” is. We also modify
the system by deleting 'E' and 'O' from the list of primitive constants

and reintroducing them as constants defined in terms of 'A' and 'I':

Df.: Eop = —Iap

Df.: OaB = —Aap

1A similar result is provable for the stronger system BS', given an interpretation
for which it can be proved sound - see Chapter 5.
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(Definitions of this sort were originally proposed by Leibniz.) The
medieval interpretation was tailored to ensure the possibility of such
definitions: with affirmative wiffs having existential import and negative
wifs lacking it, No « is a B is equivalent to It is not the case that some

o is a B, and both OaB and —Aaf will be read as Not every « is a B.

It is now very easy to prove the inferential analogues of the logical
relations of the Square. Two formulas are contradictory iff every pair of
propositions instantiating them has one true and one false member. So we
want to show that an A wiff is interderivable with the negation of the
corresponding O, —A with O, and similarly that E is interderivable with

—I, and —E with /. Here is a sample proof, the rest being left to the

reader:
{1} (1) Aop As.
{1} 2) ——AaB 1 DN
{1} (3) —Oap 2 df.

We shall say that two formulas are contraries iff the members of
instantiating pairs are never both true. We want to show that
Ao b+ —Eof and that Ea8 F —AaB. We prove the former and leave
the other to the reader:

{1} 1) AaB As.
{1} (2) IaB 1 sub.
{1} (3) ——IoB 2 DN
{1} 4) —Eop 3 df.

We shall say that two formulas are subcontraries iff the members
of instantiating pairs are never both false. So we want to show that

—IaB + Oaf and —OaB F Iaf.
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We shall call the newly enlarged version of BS, EBS (and of
BS*, EBS"). All the results stated in this section follow from the fact
that EBS is both sound and complete with respect to Interpretation I

plus the truth-functional interpretation of negation (see 4.4).

(On the definitions of contrariety and subcontrariety used here all
contradictories are both contraries and subcontraries. It is customary
to define contraries by adding that two contraries may both be false, but
if a pair of formulas includes a necessary formula or proposition this
will not be the case. Similarly, it is customary to define subcontraries
by including the requirement that two subcontraries may both be true,
which once more cannot be satisfied if one of them is necessarily false.
The point is made by David H. Sanford (1968), p. 65. Lemmon (1965)
defines contraries and subcontraries as we do, and so does Strawson

(1951).

Now under Interpretation I no formula will either be necessary or
necessarily false, so that under the customary definition A and E formulas
will always be contraries and I and O formulas will always be sub-
contraries. (Once again we are speaking loosely when we speak of true
or false formulas; cf. parenthetical remark p. 30.) But this will not be
true of propositions instantiating them, e.g. the conjoint falsity of
Every triangle is a irviangle and No triangle is a tviangle is not a logical
possibility (in a broad sense of 'logical'), since the former is a necessary
truth; nor is the conjoint truth of Some triangle is a triangle and
Not every triangle is a triangle. This will be so despite the attribution
of existential import to affirmative propositions, provided that we grant
the 'mecessary existence' of triangles. Moreover, on any interpretation
under which Acer and Ioo are necessarily true formulas, it will not even
be possible to hold that corresponding A and E formulas are contraries
nor that correspounding I and O formulas are subcontraries, if we define

these terms in the customary manner.)
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When we confine our consideration to elementary propositions of
the four categorical forms, there is no great harm in talking of
'the contrary' or 'the subcontrary' of a proposition, just as we talk of
'the contradictory's But it should be noticed that a proposition may have
more than one non-equivalent contrary or subcontrary, whereas it may
have no more than one non-equivalent contradictory. (Cf. Geach (1971),
pp. 70-74.) For example, No man is a hypocrite and every man is debtor
and No man is a hypocrite but not every man is a debtor are both

contrary to Every wman is a hypocvite.

4.3 The basic systems adjoined to the propositional calculus

The double negation rules are principles of a more fundamental sort
than the non-discharge rules of the basic systems. They belong to the
logic of unanalysed propositions, which is nowadays presented in the
various versions of the propositional (sentential, statement) calculus. We
shall use a natural-deduction version of the calculus similar to the one
in E. J. Lemmon (1965) (which is virtually Gentzen's system NK), but
unlike Lemmon we shall take only negation and conjunction as primitive
propositional operators ('—' and '&'). As under the usual interpretation
of the calculus these are to be understood in a purely truth-functional way,
so that —¢ is true when ¢ is false and false when ¢ is true; and ¢ & ¥
is true when and only when each conjunct is true. 'P', 'Q', 'R'...are
used as propositional variables (ranging over propositions of any sort) and

the formation rules are as usual for such systems.

The rules of our propositional calculus are, with one exception,
exceedingly obvious and simple principles about negation and conjunction.
The exception is effectively a generalization of the reductio rule we have
been using in BS, and its presence as the only non-trivial rule of a
complete version of the propositional calculus (PC) indicates how powerful
a principle it is. For each primitive operator there is an introduction

_ and elimination rule(s):
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&1 ¢ v &E (¢ & ¥) (@ & )
(¢ & ) @ ¢

DN eliminailon ——¢ Ras ol
¢ —
'
(The schema for RAA is actually short for the rules: if I' U {¢} F x and
T u{e} b —x, then T + —¢; and if T U {@} b x and T U {¢} + —x,
then T U {¢} + —¢ and also T U {¢} + —¢@.)

The operators for ¢» and if are introduced as defined constants by

means of definitions:
Df.: (@ V)= —(—¢ & —i)
Df.: (¢ — ¥) = —(¢ & —¥)
(In practice outermost brackets will be dropped according to the usual

custom. )

A deduction in the system is defined as for EBS. As an illustration
we give a proof of the principle known since medieval times as modus

ponendo ponens: P — @, P |- @.

{1} 1 P —~Q As.

{2} @ P As.

{3} @ [—Q] As.

{1} @) —(P & —Q) 1 df. —
{2,3} (5) P & —Q 2,3 &I
{1,2} 6) ——@Q 3,4 & 5 RAA
{1,2} (M Q 6 DN

Notice that RAA operates in the same way as the similar rule of EBS.
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Suppose we now adjoin. EBS to the propositional calculus (PC) to
give us a system EBS + PC. The rules r.a.a. and DN introduction then
become assimilated as derived rules. Since E is defined as —/, and
O as —A, and as we indicated in the last section A and I are inter-
derivable with —C and —E respectively, ¢ = —¢, and r.a.a. is more

or less a special case of the general propositional rediuctio rule.
The primitive rules of the new system are therefore the following:
&I, &E, RAA, DN(elim), s.c., sub., Barbara, Celarent, id.

An cconomy can be effected in this basis by replacing s.c. and Celarent
hy the single rule Datisi:
IBa_ ARy
Iay
To show that this replacement does not affect the deductive power of the

system we derive s.c. and Celarent within the revised system and Datisi

within the original version(using the linear form metalogically):

SeCe

11 a) Iag As.

11} (2) Aaa 1 id.

11} (3) IBw 1,2 Datisi
Celarent

{1} (1) Aap As.

{2} (2) EBvy As.

{3} 3) [lavyl As.

{1,3} 4) Iv8 1,3 Datisi
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{2}
{2}
{2}
{1,2}
{1,2}
{7}
{1,7}

{1,7}

The syllogistic rules of the more economical system are therefore:

Barbara, Datisi, id.

Celarent (ctd.)

(5)
(6)

(7)

1)
(2)
(3)
4)
(5)
(6)
(1)
(8)

(9)

1By

—Ip

v

—lay

E oy

Datisi

APy

[—1avy!

Exy

Eya

EBw

~I3

IBa

——lay

Tay

[o%

4 s.c.
2 df. E
3,5 & 6 RAA

7 df. E

As.

As.

2 df. F

3 s.C.(E)
1,4 Celarent
5 df. E

As.

2,6 & 7T RAA

8 DN

The same economy can, of course, be made for EBS" + PC.

sub.,

And

in this system the rule sub. is interchangeable with the identity rule

id.* (I):

*

Tea

It is obvious that the latter is a derived rule of the original system, and

sub. can be derived in the revised system in the following manner:
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{1} 1) Aap As.

A @2) Iaa idJt (1)
{1} (3) Iap 1,2 Datisi
A 4) Aca id.*

{1} (5) IBa . 3,4 Datisi
{1} (6) Iap 5 s.c.

It is now easy to see that EBS" + PC is equivalent to the well-known
system of Lukasiewicz, which consists of the following special axioms
adjoined to an axiomatic version of PC (with substitution and modus ponens

as rules of inference):
(i) Aaa (iii) (Abc & Aab) — Aac
(ii) Iaa (iv) (Abc & Iba) — lac

and definitions of the negative constants in terms of the affirmatives.2
These special axioms correspond to our rules id.* , id.* (1), Barbara
and Datisi and are easily derivable as theorems of EBS' + PC once we

have proved the deduction theorem for our version of the propositional

calculus:
Metatheovem 6. If Ty ¢ Fpc ¢, then T Fpc @ — ¥.
{n} (;'2) ® & —p As.
{n} (n+1) ¢ n, &E
{n} (n+2) =i n, &E
Now suppose
thai T, » (n+3) ¢ NS |
then T (n+4) —(@ & —) n, n+2 & n+3, RAA®
r (n+5) ¢ — @ n+4, df. —

2Yukasiewicz (1957) interprets his syllogistic as a theory of object-language sentences:
that is to say, his variables range over terms ('stone', 'man' etc.) rather than
individuals. Furthermore, the terms are treated as names (see 7.1 below).

38ee exact statement of RAA on p.69.
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Axijom (iii), for example, is now proved in the following way:

{1} 1) Abc & Aab As.

{1} (2) Abc 1 &E

{1} (3) Aab 1 &E

{1} 4) Aac 2,3 Barbara
A (6) (Abc & Aac) — Aac 1-4 Met. 6

Conversely, it is not difficult to establish the syllogistic rules
of EBS" + PC as derived rules of Lukasiewicz's system (granted that

natural deduction derivations are permitted within it).

Lukasiewicz has shown that his syllogistic axioms are independent
of one another and of his PC axioms, and his methods can very easily be
adapted to our system EBS+ + PC (see pp. 89-90 of Lukasiewicz (1957)
and cf. 2.3 above).

Another system which features prominently in the literature is
Bochefiski's CS, a system which is in fact contained within Lukasiewicz's.
Bocheriski has Ferio in place of Datisi (there are various possible
replacements for Datisi) and adjoins only a fragment of PC - only those
propositional principles he needs in order to prove the syllogistic ones
in the axiomatic system. Moreover he has only three term variables,
since he does not seem to be concerned with providing for the patterns
of arguments with more than two premisses. The system CS appears
rather unwieldy for the limited task it was designed to perform. (For

details see Bochefiski (1948).)

If EBS is given Interpretation I and PC is interpreted in the usual
manner, EBS + PC is sound, i.e. all sequents derivable in the system
are valid. The proof of this is a routine extension of the proof of the
soundness of BS given in 2.2. The consistency of the system follows

easily from this. The consistency of the stronger system EBS" + PC
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can be rapidly established in the manner of Lukasiewicz (1957), p. 89,
bearing in mind the correspondence between his axioms and our rules.
Lukasiewicz interprets each affirmative wff AeB and Iopf as a propositional
wif (¢ — ¢) & (¢ — ¢). Then all his axioms, both Aristotelian and
propositional, are tautologies and his rules of inference, substitution and
modus ponens, preserve this properfy. (The consistency of EBS + PC

is of course a corollary of the result that EBS* + PC is consistent.)

4.4 Completeness of EBS + PC

By an argument similar to the one at the beginning of section 3.2
we can show that EBS and EBS + PC are complete with respect to
Interpretation I etc. if we can show that every consistent set of wffs in

those systems is satisfiable.

Metatheorem 7. EBS + PC is complete with vespect to Intevpretation I
combined with the usual intevprvetation of propositional

logic.

Proof. Let A be a consistent set of wffs in the primitive notation of
the system, e.g. {P, lab & —Aab, —(Q & —Aab)}. The term
elementary wff will be used for single propositional letters, their

negations and uncompounded positive Aristotelian wifs.

Suppose, now, that an inverted tree is formed by writing the wffs
of A one under the other and transforming non-elementary wifs by

successive applications of the following transformation rules:

(i) DN ——¢ (ii) Separation ¢ & ¥ (iii) Branching —(¢ & ¥)
@ [
¥ —¢ -

(iv) —AceB; —EaB; —JaB; —O0af
Oap IaB EaB Aap
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It is easy to check that the procedure must terminate in elementary wifs

(proof by induction on the number of connectives in a wff).
Example. A = {P, Iab & —Aab, —(Q & —Aab)}
Inverted tree: (1) P
(2) Iab & —Aab
(3) —(@ & —Aab)
lab from (2)

—Aab from (2)

AN
€ — —Aab from (3) by Branching

Aab

Let us call the list of wifs of A at the top of the inverted tree
the initial scgmen!. We can show, by strong induction on the length of
a branch which includes the initial segment, that, if the initial segment
is consistent, so is at least one branch of the whole tree.* Essentially,
this is a matter of showing that each of the transformation rules preserves
consistency down at least one branch. This is very easy in the case of
(i), (i) and (iv), since they are primitive or derived rules of inference
of EBS + PC. Nor is it particularly difficult in the case of ({iii),
Branching. Suppose that —(¢ & y¥) is consistent but that both
—¢ and —y are inconsistent. Then ¢ and ¢ will be theorems, and so
therefore will ¢ & ¢. Hence —(¢ & ¢) F (¢ & ¥) & —(¢ & ¥), i.e.
—(¢ & ¢) will be inconsistent, contrary to hypothesis. Therefore, if
—(¢ & ¥) is consistent, at least one of the wffs ¢, ¢ is consistent.
*The induction hypothesis may be formulated as follows: if the first k wifs on a
branch, B, include the initial segment and form a consistent set, then either that

branch terminates at the kth wff, or there is some #+1th wif on a branch which
ramifies from or continues B, the first ¥+ 1 wifs of which form a consistent set.
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In the example given above, the left-hand branch proves to be
consistent but the other branch is not, containing as it does both

—Aab and Aab.

Consider next the subset of elementary wifs of the leftmost consistent
branch (the set {Iub, Oab, —Q} in the example). This set is simultan-
eously satisfiable, since the subset of Aristotelian wifs is satisfiable (as
shown in 3.2); and the value frue may be assigned to each of the
propositional wffs, because they do not includé any propositional letter
and its negation and no interpretation of the Aristotelian wffs will exclude

any truth-value assignment to the propositional wifs.

Finally, we need to show that, if the set of elementary wifs on a
branch is satisfiable, the set of @il the wifs on that branch is satisfiable,
and so therefore is the subset A of wffs in the initial segment. This may
be done by strong induction on the height of the branch, and will involve
taking each transformation rule in turn and showing that truth is preserved
in an upward direction on the branch - which is simply a matter of

elementary truth-table considerations.

The construction of the inverted tree may also serve as a decision
proceduve. T + ¢ iff T U {@} is inconsistent. Let A = T U {@}.
A will be inconsistent iff every branch contains an inconsistent pair of

elementary wffs (e.g. @, —@Q; or Eab, Iab; or Abc, Obc).5

5In Chapter 5 we indicate how to modify the proof of 3.2 to show that BS*is
complete with respect to a certain interpretation., This may be used to generate
a decision procedure for BS' and consequently for EBS'+ PC, since the proof of
Metatheorem 7 is easily adapted to demonstrate the completeness of the latter
with respect to that interpretation. JLukasiewicz shows in Chapter 5 (1957) that
his equivalent system is decidable, using notions specifically designed to demonstrate
decidability, viz. those of 'rejection' and what he calls 'deductive equivalence’,
notions which can of course be extended beyond syllogistic logic. We have shown,
however, that more orthodox methods are adequate for the metatheory of
syllogistic systems. Oddly epough, although Lukasiewicz raises the question of
the completeness of his system in his book (p. 98)-he never actually proves it,
though he mentions SYupecki's result.
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The syllogistic systems which incorporate PC are not entirely
felicitous assimilations of syllogistic to modern logic. Consisting as they
do of PC plus (in their more economical versions) four syllogistic rules,
Barbara, Datisi, with sub. and id. for the weaker, and id.* and id.* (I)
for the stronger system, they are little more than graftings of syllogistic
nearly intact on to the logic of unanalysed propositions. They enable us
to perform simple inferences turning on every, no and some, as well as
the usual propositional inferences, but the 'quantificational inferences'
permitted are very limited. From a formal point of view, it would seem
more satisfactory if we could ass.milate syllogistic to that part of modern
logic which deals comprehensively with e¢very. some etc., namely predicate

logic. We turn to this task in the next chapter.
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CHAPTER 5

SYLLOGISTIC AND PREDICATE LOGIC

5.1 The predicate calculus and Intevpretation I of BS

The version of the predicate calculus to be used throughout most
of this chapter is once again similar to the system to be found in Lemmon
(1965), to which the reader is referred for a more detailed explanation.
Our version differs in four major respects: (i) the PC basis on which it
is built is the PC system of the last chapter; (ii) the existential quantifier
rules are replaced by a definition of the existential quantifier in terms of
the universal; (iii) there is only one sort of name, no distinction being
made between Lemmon's proper and arbitrary names; and (iv) all its

predicate letters are monadic.

In addition to the symbolism of the propositional calculus there are

the following symbols:
predicate letters: F, G, Hy... names: m, #7,...
individual variables: «x, v, z,...

Fm, for example, is to be thought of as expressing the form of proposi-
tions like Mount Everest is snow-capped. (x)Fx is true when and only
when Fx is true for all values of x, and expresses the form of
propositions like Everything is snow-capped. We add the following
formation rules, using 't' as a schematic letter for a name, 'v' as a

schematic letter for an individual variable:
Any predicate letter followed by a single name is a wiff.
If ¢(t/v) is well-formed, then so is (V)¢ (V).

@(v) is a formula containing v in which all occurrences of v, but no
occurrences aof any other variable, are free, and ¢(t/v) is the formula

obtained by replacing every occurrence of v in ¢ (v) by the name t.
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These rules are to be added to the conventional formation rules for PC,
and there are to be no other wffs, The result is a slightly unorthodox
set of formation rules for a version of the predicate calculus, since they
proscribe expressions with free variables or vacuous quantifiers, and
expressions like (x)(Fx — dxGx) in which a quantifier occurs within the
scope of another quantifier with the same variable. These simplifications
taken over frgm Lemmon do not diminish the expressive power of the

system and will not prove formally inconvenient in the present context.

Rules. 1. Universal elimination (UE). I T' + (v)@(v), then
T + @t/v).

2. Universal introduction (UI). If I' |- ¢(t), where
@ (t) is a wff containing t but not v, and t does

not occur in any wif in I', then T k (v)¢ (v/t).

The first rule is intuitively easy to accept, but the second is a
little more difficult, licensing as it does a move from ¢(t) to its universal
generalisation (v)¢(v). Very crudely it may be justified like this:
if @(t) follows from premises which, making no mention of the individual
denoted by t, give no special information about it, then any conclusion
@(s/t), which is the same as ¢(t) except that it has an s wherever that
formula has t, should also follow from the same premisses; in which

case (v)@(v) should also be a consequence of those premisses.

Definition of 'd'. Df.: Ave(v) = —(V)—@ (V).

It is usual, following Frege and Russell, to express a universal affirma-
tive form Every a is a b in this calculus by means of a formula like
(x)—(Fx & —Gx) (equivalent by definition to (x)(Fx — Gx)); that is, to
construe Every a is a b as 'Nothing which is an a is not a b'.

Some a is a b is rendered, for example, as Ax(Fx & Gx). Now the
latter conforms with Interpretation I for I formulas and clearly the

predicate calculus formula is simply convertible to dx(Gx & Fx) (see
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below). But in translation the A form lacks existential import, and, if
we are to follow the medieval interpretation, this must be restored by
adding an existential conjunct, giving us (x)(Fx — Gx) & dxFx and thereby
validating subaltern inference. R.a.a. requires that the E and O forms
be the contradictories of A and I, and so we may translate formulas of
BS into the predicate calculus symbolism according to the following

prescription (where ¢, ¥ are schematic letters for predicate letters):

Aaff becomes (V)(@v — ypv) & Avev

Eop —dv(pv & Pv)
Iaf Tv(ev & yv)
Oap —((VN @V — ¥v) & Hvev),

which is interderivable with

Av(pv & —ypv) v —Hvpv

BS then becomes a fragment of the monadic predicate calculus, as can
readily be established by showing that the primitive rules of BS are

derived rules of the calculus. In translation the rules of BS become:
s.C. {Gv(ev & Pv} F Av(Pv & @V)
sub. { V)@V — yv) & Tvev} F Av(ev & Pv)

Barbara  {(v)(¢v — ¥v) & HAvev, (V)PV — xv) & Tvpv} -
(V) (@v — xV) & Fvev

Celarent {(v)(¢v — yv) & Avev, —qdv(yv & iv)} F —=dv(ev & xv)
r.a.a. becomes a special case of RAA
id. {Av(ev & yv)} F (V) @V — @v) & Tvev

Anyone who wishes to prove these sequents within the monadic calculus
described in the present section will find his task greatly eased if he

makes use of the following result:
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Metatheorem 8. If T, @(t/v) bk y(t/v) and t does not occuv in y(v)
ov in any wff of T, then T, Avep((v) F v (V).

Suppose :
thae ./ T U{et/V)} (n) &(t/V)

——— o~

{n+1} (n+1) (v)=y(v)  As.

{n+1} (n+2) —U(t/v) n+1l, UE

ru{n+1} (n+3) —@(t/V) veey n & n+2, RAA
{n+4} (n+4) Ivp(v) As.

{n+4} (n+5) —(V)—@(v) n+4, df. I

T u {n+1} (n+6) (V)—@ () n+3, Ul

U {n+d} (n+7) —@)=d(Vv) 'n+1, n+5 & n+6, RAA

Then Tu{n+d} (n+8) AvY(V) n+7, df.d

This metatheorem enables us to prove the translated version of s.c.
for example, simply by proving the schema ¢t & ¥t + ¥t & ¢t. Given
the soundness of the predicate calculus under its standard interpretation,
the translation of BS into a fragment of it furnishes a further proof of

the soundness of BS.

5.2 An artificial intevpvetation of BS*

Unlike BS, BS' is not sound under the above translation scheme
plus the standard interpretation of monadic predicate logic.
Since (v)(¢v — ¢@v) & HUvev has invalid instances under that interpretation,
Aca has such instances when we add the translation scheme; hence the
strong identity rule id.* of BS* permits derivation of invalid formulas.
We can, however, modify and elaborate the translation until we reach

the rather artificial and unnatural scheme which follows:!

‘There is at least one sound alternative, but it is no less artificial.
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The interpretation thus generated, which gives existential import to the
negative wffs rather than the affirmatives, renders BS' sound and makes
all the translated rules of that system including id.* derived rules of

the predicate calculus.

Aap W)@V — V) & (4v — ov))

Eaop —dv(ev & Yv) & dvev & dAvyv
Iap Av(ev & yv) v —~dvev v —Hwpv
0ap AV(@Vv & —yv) v AV(IV & —@V)

5.3 Non-empty terms

If the artificial interpretation given in the last section were the best
that could be done for BS*, one would have to conclude that the system,
and its extensions, EBS', EBS' + PC and FLukasiewicz's system, had no
interesting interpretation. However, Yukasiewicz has pointed out that his
system is sound if term variables are allowed to range only over non-

empty terms.

One way of representing this interpretation (Interpretation II) in the
predicate calculus reflects the device of adding constantiae to be found in
John of St. Thomas. A, E, I and O formulas are translated in the
Frege/Russell manner (Aaf = (v)(¢v — ¢v), OaB = dv(ev & —iv), etc.)
and existential premisses are added to inferences where necessary. Thus,
in translation, the rule of subaltern inference becomes:

{v)(¢v — yv), Avev} F Av(ev & yv). To take a further example, the
sequent {Aab, Abc} F lac becomes: -

{(x)(Fx — Gx), (x)(Gx — Hx), AxFx} V Ax(Fx & Hx). HAxFx is added
(as a constantia) to validate the sequent. Such an addition is required
with valid syllogistic moods whenever a particular conclusion is drawn
from two universal premisses (of which there are nine cases). In EBS*

the inferences from AaB to —EafB, from Eaf to —Aof etc. must also be
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treated in the same way. This manner of translating syllogistic into the
predicate calculus is favoured by Alonzo Church (1972) and E. J. Lemmon
(1965), and has the merit of making the extra-logical existential
assumptions explicit. Nevertheless it turns the immediate subaltern
inference into a mediate one, and no longer represents A and E forms

as intrinsically contrary nor I and O as intrinsically subcontrary. Of
course, if an axiom schema F dAvev were introduced, the addition of
existential cowslantiac would no longer he necessary and these objections
would be avoided; but only at the cost of adding a highly implausible
postulate. It can scarcely be accepted as a truth of logic that every
predicate has application, that every describable sort of thing is actually
to be found in the world: indeed, it is clear that it is just false.
However, suppose we introduce a special predicate letter for predicates
which do have application, where the use of such a letter is to carry the
commitment of application. Then the axiom schema + JAv#v (where .7 is
a schematic special-predicate letter) could be introduced and constantiae
again avoided. It is easy to check that, whichever of these techniques is
adopted, the translated rules of BS" are derivable. Objections to this
mode of translation will be considered in 5.5 when we evaluate translation

into many-sorted logic.

BS' is complete under Interpretation II. (Its soundness is a
corollary of its translatability into the predicate calculus, given the
soundness of the latter.) Completeness can be proved by modifying the

proof of 3.2 in the manner sketched below.

Metatheorem 9. BS* is complete nundev Intevpretation I.
To obtain the model set U(A) from the set of wifs A:

for each Aap delete each [aB‘ ;

for each Eap delete each [aB].
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1) First show that, for every « ¢ V, there is some [ ] in U(@a).
Consider {a,Y1,ee03V¥, )s 7 = 0, in P(V), where yi,...,7, are all
the y;'s in V such that A F Acy;. We can show that this set is
undeletable if A is consistent, in much the same way as on pp. 44-5

of 3.2.

All formulas of the forms AaB, Eap are therefore verified by the

model set.

(2) Every formula in A of the form Iap is verified. The argument
is similar to the argument on pp. 45-6 except that it is not necessary to

consider the possibility of deletion resulting from O formulas.

(3) Suppose a formula Qof occurs in A. If it is false, every set
[ap'] must be absent from U(A). Consider the set {a,¥1,+ses% J»
where vi,...,%, are all the v;'s in V such that A I+ Aay;. B cannot
be one of the v;'s, since A would then yield Aef and so be inconsistent.
Its deletion by any A formula is fuled out by the usual considerations.
The only other possibilities are deletion by some wff Eay; or Ey;a.

But A F Awy;, which yields both Iey; and Iv;o. So OaB can be false

only if A is inconsistent.

5.4 Many-sorted gafedz‘cate logic

From a formal point of view a very attractive way of translating a
system like BS' into a fragment of the prediéate calculus is the one
devised by Timothy Smiley (1961). In ordinary predicate logic provable
sequents are correct for all domains which are not empty.
Thus dx(Fx v—Fx) is a theorem of the system: there is something which
either has F or lacks it, which would clearly not be true of the empty
domain. (Free logics, which apply equally to the empty domain, have been
devised in recent years by logicians who feel that the assumption of a
non-empty domain is an extra-logical one, but such systems need not
concern us here.) Smiley has presented a many-sorted logic, in which

individual variables range over possibly different domains, and the
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non-emptiness of each domain reflects the non-emptiness of the terms in
BS" under Interpretation II. A variation of his system will now be

described.

In the case of the ordinary predicate calculus we suppose a single
non-empty domain over which the individual variables x, y, z etc. range.
In the many-sorted calculus we shall have indefinitely many different
sorts of individual variable, each sort associated with one of the various
domains. (The domains for different sorts need not all be different, and
where they differ they may overlap.) We shall use a different letter of
the alphabet for each sort of variable. For example, we might take
a, a*, a**, g***...t0 range over men, b, h*, b** b*¥x . to range over
hypocrites, and so on. (a)Ca would mean that every man has the
property C, and (b)Cb that every hypocrite has the property C. In order
to avoid breaking out into exotic symbolism, we use some of the roman
letters already used in the basic syllogistics: but the use of a, b, c...
as sorted individual variables as well as term variables should not be
taken to imply that their roles in the respective systems are precicely

the same.

There will be a sortal predicate letter corresponding to each sort
of individual variable. We shall have 'A' corresponding to the variables
in ¢, 'B' corresponding to the variables in b, and so on. If the a's
range over men, 'A' will be understood as 'is a man'; if the b's range

over hypocrites, 'B' will be understood as 'is a hypocrite!, and so on.

Just as the single domain for the ordinary predicate calculus has
to be non-empty, so each of the domains for this many-sorted calculus
will be non-empty, since it duplicates ordinary predicate logic for each

of the many domains.

Finally, there will be many sorts of name, one for each domain.
‘Take the domain of then and suppose the variables in a to range over it.

Then (at least some of) the members of the domain are to be named by
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the letters ay, @o, aq,.+.. Similarly, if the variables b, b*, b**,...
range over hypocrites, a hypocrite will be named by each of the
foilowing: by, b, bg,.... Different names, whether of the same or of
a different sort, may name the same individual. Whereas, then, small
letters (possibly followed by one or more asterisks) irithou! numerical
subscripts are rariables. small letters with numerical subscripts are

naies.

The language of the system will therefore consist of propositional

calculus symbols plus:

sorted individual variables sorted names sortal predicates
(bound)
a, a*, a**, a***, ... @1y Aoy A3y Agyees A
by b¥, B¥F, b¥E L., bis bay b3y byyees B
c, c*, ¥, c¥**, ... C1y C9y C3y Chyens C

. . .

To illustrate the intended interpretation of the symbolism here are some

paradigms:
Logical Formn
Every man is a hypocrite (a)Ba
No man is a hypocrite —HdaBa, or, equivalently, (a)—Ba
Some man is a hypocrite HdaBa
Not every man is a hypocrite —(a)Ba, or equivalently, Ja—Ba

In general, a formula Aaf will be translated into one of the form
w)Uv and a formula Jof into one of the form HvUv; O and E formulas

will be translated into the corresponding negations.
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Now for the rules. The elimination rule for the universal quantifier
needs a little modification from its counterpart in the single-sorted system.
For example, we do not want to be able to derive Ca; from (b)Cb alone,

for this would be instantiated by the inference

Every hypocrite is a liar
Therefore (the man) Jones is a liar

To turn this into a valid deductive inference we obviously need the

additional premiss
Jones is a hypocrite

So, although we do not want to be able to derive Ca; from (b)Ch, we do
want to be able to derive it from that premiss supplemented with the

premiss Baj. Thus the UE rule takes the following form:
I F (vio(v) and T b V(v;), then T |- @ (v;/v)

Again, the rule UI needs modification as a result of the introduction
of different sorts of variable. Universal introduction is confined to the

case where a name is replaced by a variable of the same sort:
T F+ ¢(vy) and v; does not oceur in any wif in T
nor v in ¢(v;), then T F (V)@ (Vv/v;)
'd' is defined as before in terms of the universal quantifier.

An additional rule is needed to reflect the relation between sorted
names and their corresponding sortal predicates, a rule which we shall
call the 'sortal rule' (SR):

*
VVi

This rules gives us indefinitely many theorems like Aa,, Bbs, Kkoq,
where the name is of the same sort as the predicate. UI then secures

the connection between sorted variables and their corresponding sortal
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predicates and generates theorems like (a)Aa, (e)Ee. The addition of
SR also gives rise to the useful derived rule { (v)¢(v)} F @ (v;/v), which
we shall call "UE(S)'. For, given (v)¢(v), we have Vv; by SR, and
hence ¢(v;/v) by UE.

It is now possible to prove all the rules of BS" as derived rules of
this calculus. r.a.a. becomes an obvious special case of RAA and no
more need be said about it. On translation the other rules of BS' become

the following:

s.c. {duvu} F dvUv, which is shorthand for
{-uw)=Vu} F —w)—Uv

sub. {@wvu} + JTuvu, = {@Vu} F —@u)—Vu
Barbara {(u)Vu, (v)Wv} F (u)Wu

Celarent {u)Vu, —dvWv} k —3JuWu

id.* Ak (V)VV

We give proof schemas of all of these except Celarent, the proof of

which is similar to that of Barbara (though slightly longer).

S.Ce {1} @)y [(v)=uv] As.
{2} @) [vuy} As.
{1,2} (3) —=Uu, 1,2 UE
A 4) Uy, SR
{1} (5) —Vu, 2, 3 & 4 RAA
{1} 6) (—Vu 5 UI
{7} 7  —@-—-VU As.
{7} 8) ~—~(v)=Uv 1, 6 & 7 RAA
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sub. {1} 1) @)Vu As.

{2} 2) (u)=Vu As.

{1) )  Vu, 1 UE(S)

{2} 4y —Vvu, 2 UE(S)

{1} (5)  —(u)—Vu 2, 3 & 4 RAA
Barbara {1} ) @Vu As.

{2} @)  (VWv As.

{1} 3y  Vu, 1 UE(S)

{1,2} 4)  Wu, 2,3 UE

{1,2} (5) @)Wu 4 Ul
id.* A 1y Vv, SR

A (2) W 2 UI

Since dvVv is derivable from (v)Vv, we can thereby prove that each

domain is non-empty.

5.5 Objections to essentially non-empty tevms

It has been pointed out (for examples, by the Kneales) that a logic
for non-empty terms is narrower, less comprehensive, than one for
unrestricted terms; but that is not the principal objection to this interpre-
tation. Essentially, the main objection is that in English and similar
natural languages noun expressions like man and white rabbit are not
necessavily-non-empty terms, so that the logic cannot really be applied
in the suggested way to natural language. It is true, for example, that
the inference from Aad to Iab is 'sound' under an interpretation which
restricts the substituends of 4 to terms which are in fact non-empty, for

it will then be impossible to produce a substitution instance with a true
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premiss and a false conclusion, but it is a mistake to think that if A
sentences are to be interpreted as lacking existential import the second

of the following inferences is a genuine entailment:

Every unicorn is a quadruped Every man is a hypocrite

So, some unicorn is a quadruped . S0, some man is a hypocrite

If A sentences lack existential import the first of these is not a genuine
cntailment, because the A premiss is true whereas the I conclusion is
false. But then the second fails to be an entailment too, since although
there are in fact men it is logically possible that there should be none,
and so logically possible (granted that A lacks existential import) that
E-crv man is « hvpocyile should be true and Sowic wan is « hypocride
false. It is all very wcll to say that the system will never take us from
true premisses to a false conclusion provided we use terms which are in
fact non-empty; the non-emptincss of our terms will (except perhaps in
special cases) be an extra-logical matter which will have to bhe established
empirically, and such extra-logical facts as that men exist should be
stated in extra premisses. The modified single-sorted predicate system
with special script predicate letters for non-empty predicates is open to
a similar objection. Ordinary predicates - in English, at any rate - do
not come with their non-emptiness built into their meaning (with the
possible exception of special cases like 'is coloured or not coloured’,

though even these cases are debatable).

It is only an aspecct of the same objection to the suggested use of
the many-sorted system that it presupposes that it is a necessary truth
that there is something which is an A, something which is a B, and so
on. It just is not necessarily true that there are men, hypocrites,

horses, stones, etc.

Of course, this consideration does nothing to undermine the value of
Smiley's interpretation for exegetical purposes, and there is indeed some
reason to think that Aristotle himself did regard terms as essentially

non-empty. (See p.26 above, and Corcoran (1972), p. 104.)
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5.6 A svillogistic svstem for the Bventano/Frege/Russell inlevprelation

of geneval categovicals

The following system goes over into a fragment of the ordinary
single-sorted calculus if A, E formulas are translated in the style of
Brentano, Frege and Russell as lacking existential import, while

1 and O formulas have it.

.

In BS* replace sub. by the two rules:

IaB Oaff £ h 1956
Tao I (cf. Shepherdson (1956).)

This system can be proved complete after the manner of 3.2 with
respect to an interpretation which allows terms to be empty, and takes
A and E as true if the subject term is empty and I and O as false.

(Metatheovem 10.)
Skeleh of proof. The model set U(A) is to be formed as follows:
for every AaB in A, delete each [ wf'] in P(V);
for every EaB in A, delete each [aB] in P(V).

Universal formulas are automatically verified and only two cases have to

be considered, formulas of the forms Iaf and Oaf.

(1) Suppose that, with A consistent, some wff in A of the form
Iap is false. Then there is no set [ @B] in U(A). Show this by consider-
ing the set {a,8,Y1+++»Yn)» Where v;,...v, are, as usual, all the y;'s
in V such that A + Aay; or A F ABv;. The set is undeletable by
an A wff for the reasons given in 3.2 and can also be shown to be
undeletable by an E wff. (Consider Exc«, EBB, EoB, EBw, Eav, Ew
EBYis EviBy, Ev3vi+)

(2) Suppose that, with A consistent, some wiff in A of the form

Oaf (o = B) is false. Then U(A) will contain no set [ ¢f'l. But the set
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{ @Y1y ee+5Y,), formed in the usual way, will prove undeletahle, hoth by
A wifs, for the usual reasons, and by F wffs. Consider Foa, Eavy;,

Evicy, Evivie)
No set A containing Oa« is consistent, since A - Ac: by id.”.

With no rule of subaltern inference, there will be no derived rules
of conversion /pci «ccidens for A and E formulas. (Under the Brentano
interpretation 4 and E also cease to be contraries, I and O to be sub-

contraries.)

5.7  Mulliplc genevalily

None of the basic systems, even when adjoined to the propositional
calculus, is as comprehensive a system as monadic predicate calculus.
Nor, unlike the monadic calculus, can they be extended into a polyadic
system capable of expressing relations. Take, for example, the following

relational sort of inference considered by Ockham:

All men are animals; Socrates sees a man; therefore,

Socrates sees an animal
the form of which can be expressed in the (polyadic) predicate calculus thus:
{(x)(Mx — Ax), Ax(Mx & Ssx)} I Ax(Ax & Ssx)

But the most spectacular advance by modern over syllogistic logic is the
capacity of the full predicate calculus to cope successfully with multiple
generality. Geach (1962) has examined and criticized the medieval attempt
to deal with multiple generality by means of different types of supposilio
(reference), and it is beyond doubt that the problem was not solved until
Frege. The range of inferences expressible in our language which can

be expressed with merely syllogistic resources is narrow in the extreme
compared with those which can be expressed within the predicate calculus.
Syllogistic caunot begin to express and distinguish between the following
pair of inferences devised by Geach (1971, p.102ff.), for example, the

first of which is clearly valid and the second invalid:
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a) @)

(2)

(3)

b) @)

()

(6)

Any thing that counts as the personal property of a tribes-
man is suitable to offer to a guest by way of hospitality

One thing that counts as the personal property of a
tribesman is that tribesman's wife

So she is suitable to offer to a guest by way of
hospitality

Any woman whom every tribesman admires is beautiful
by European standards

One woman whom every tribesman admires is that
tribesman's wife

So she is beautiful by European standards

Within the predicate calculus the patterns of these arguments can be given

in the following way (though Geach himself would not actually approve of

these analyses - see 7.2 below):

@
(2)
(3)
®B) @
®)

(6)

(x)(¥)((Tx & Bvx) — Sy)
(x)(»)(Tx & Mxy) — Byx)

(x}y)(Tx & Mxy) — Sy)

(x)((Wx & (y)(Ty — Ayx)) — Ex)
(YN Ty — Ax(Wx & Mxy & Ayx))

(y Ty — dAx(Wx & Mxy & Ex))

To whatever extent natural language is streamlined when re-expressed

by means of predicate calculus symbolism, the latter is still an

incomparably more powerful tool for the analysis of inferences than

syllogistic. Moreover, there is clearly no hope of developing syllogistic

into a language capable of expressing mathematics. The axioms of set

theory can only be expressed in a symbolism which can cope with multiple
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generality. Consider, for example, the power set axiom (variables here
ranging over sets): (x)dv(z)(zey = z<¢r). This implies that the set of
subsets of any set is itsell a set, which is clearly distinguishable from the
false claim that there is one and the same set which is the power set

of every set, implied by dy(x)(z)(z€v = zZx).

Frege found that the traditional manner of analysing sentences stood
in the way of developing means of expressing multiple generality. Instead
of treating 'Socrates is a philosopher' as composed of subject—copula-
predicate-term, he found it better to treat the copula as part of the
predicate. The predicate was thought of as referring to a function, of
which the reference of the subject term was the argument. For accounts
of Frege's invention, rightly called by the Kneales (1962, p. 511) ‘one of
the greatest intellectual inventions of the nineteenth century', the reader
is referred to Anthony Kenny, (1973, Chapter 2), P. T. Geach (1971, 1.1)
and Michael Dummett (1973, Chapter 2). In a later chapter we shall turn
to a consideration of subject and predicate and a comparison between the
traditional and predicate calculus treatments of them. Meanwhile, in the
next chapter we shall look at a rather different type of interpretation of

traditional logic, which has received extensive attention in recent years.

APPENDIX TO CHAPTER 5
SINGULAR TERMS

Smiley has compared certain proofs in the many-sorted logic with
Aristotle's use of 'exposed' terms in his proofs by ccllicsis.  Smiley has
free variables where we have names, but we may make a similar

comparison.

In his treatment of assertoric logic Aristotle indicates ecthetic proofs
in four cases: simple conversion of E, Darapti, Datisi and Bocardo,

though no details are given in the case of Datisi. We shall take Darapti



first, th2 mood in which Irp follows from {Asp, Asv}. Having shown that
it is provable both by direct and indirect reduction, he describes a third

mathod of proof:

...if both P and R belong to all S, should on=z of th= Ss, e.g. N,
bz taken, both P anl R will bzlong to this, and thus P will

beloag to som2 R. (28%22)

It is very natural, at least using the Oxford translation, to take N as a
singular term and construz the argument in th2 following way. Every s
is a p and every s is an 7; if one s, call it 'N', is taken, thzn it will

bz both a p and an : hance som2 7 is a p. Such an interpretation,
though it gives us a simple and perspicuoas proof, has been vigorously
disputed in recent times by Lukasiewicz (1957, pp. 59-67) and Patzig
(1968, pp. 156-68), th2 latter providing further textual evidence to support
Lukasiewicz's case., Thay interpret th2 expasad term as a general term
and claim that Aristotle is arguing somewhat as follows. I every s is
both a p and an », then for some term 'z', every n is both a p and an 7,
and so therefore some » is a p. Aristotle's ecthetic proofs are claimed
to be significant, not for the role they play in his logic - which they
regard as quite incidental - but because the notion of existential quantifi-

cation is implicit in them.

Now even though it now seems an unlikelj interpretation of the text,
it seems clear that th2 proof using N as a singular term is both valid
and perspicuous provided that A propositions are taken as having
existential import. Lukasiewicz (1957) criticizes Aristotle's commentator
Alexander for taking N as a singular term and construing ths proof as
an empirical oa2 depanding oa the perception of an individual, which
Lukasiewicz says is 'not sufficient for a logical proof' (p. 62). But,
clearly, oae can use N ia the proof as a singular term without perceiving

its referent, and the demonstration does not have to be construed as
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empirical. Even though Aristotle probably did not intend his exposed

terms as singular terms, it is interesting to follow up this interpretation.

Before presenting the analogue of this proof in the many-sorted
calculus, we prove the following derived principle of the calculus:
P1 {Uv; & Vv;} F dviv

Intuitively this is very clear: if some individual, v;, is both a u and a v,
then some v is a u. This is the principle relied on in the ecthetic

argument if N is taken as a singular term.

{1} 1)y L(v)—=Uv] As.

{2} 2) Uv; & Vv; As.

{2 (3) Uv; 2 &E

{2} (4) Vv, 2 &E

11,2} (5) —Uv; 1, 4 UE

{2} (6) —(v)—Uv 1, 3 & 5 RAA
{2) (7)  HvUv 6 df.d

Now, using this principle we can give the proof of (an instance of)

Darapti in the following form:

{1} 1) (s)Ps As.
{2] (2) (S)Rs As.
{1} (3) Ps, 1 UE(S)
{2} (4) Rs, 2 UE(S)
{1,2} (5) Ps, & Rs; 3,4 &I
{1,2} (6) dArpr 5 Pl

The sorted name here, s;, is the analogue of N taken as a singular term.
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The ecthetic proof of the simple conversion of E is given at

25%15-17:

If no B is A, neither can any A be B. For if some A (say C)

were B, it would not be true that no B is A: for C is a B.

If we take C as a singular term it is again possible to mimic the proof
in the many-sorted system, though we need first to state another derived

principle (which we shall leave to the reader to prove):

P2 If I', ¢(v;/v) F ¢, and v; does not occur
in @(v), ¢ or any wif of T, then
r, Ive) - ¥

This is, in fact, Lemmon's rule of existential elimination, and for
further illustrations and an explanation of its use the reader is referred
to pp. 112-16 of his book. The proof of {(b)—Ab} F (a)—Ba (a typical
instance of s.c.(E) can now be given in the following form (it is not
claimed, of course, that these are necessarily the simplest, most

straightforward proofs of the sequents in this calculus):

{1} (1) [daBa) | As.

{2} (2) Ba, As.

A (3) Aa, SR

{2} (4) dbAb 2,3 P1

{1} (5) dbAb 1, 2-4 P2
{1} (6) —(b)—Ab 5 df.d

{7} (1) (b)—Ab As.

{7} (8) —daBa 1, 6 & 7 RAA
{7} (9) ——(a)—Ba 8 df.d

{7} (10)  (a)—Ba 9 DN
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Ecthesis is concisely indicated as a second way of proving (an instance of)

Bocardo ({Osp, Asr} F Orp) at 28" 20-22.

Proof is possible without reduction ad impossibile, if one of the

Ss be taken to which P does not belong.

Using a singular term, the argument would presumably be reconstructed
like this. Some s is not a p but every s is an 7, So take one of the
s's, say s, which is not a p: it must be an . Then you have an r
which is not a p. Its analogue in the many-sorted system uses P2 and

a principle similar to P1:
P3 {—Uv; & Vv;} + v—Uv

The derivation of P3 is also similar to that of P1., We may now give the

following proof of Bocardo:

{1} (1) 3 s—Ps As.

{2} @) (9Rs / As.

{3} (3) [—Ps,] As.

{2} (4) Rs, 2 UE (S)
{2,3} (5 —Psi & Rs; 3,4 A1
{2,3} (6) @Ar—Pr 5 P3
{1,2} (7y dr—Pr 1, 2-6 P2

It is possible to introduce singular terms into syllogistic in the form
of sorted names along lines suggested by the foregoing. Again we use’
small roman letters with numerical subscripts as sorted names.

'U* and 'U" are introduced as further constants and the formation rule
extended to allow formulas of the forms Uca;B and Ua;B for «; is a f8
and «; is not a B respectively. The system, BS* with names, has the
following primitive rules, the original rules of BS* becoming derived

rules:
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(i)

v)

UoB  Uogy (i) UoyB  Uayy
I8y OBy
(Cf. P1) (Cf. P3)
[Ua;B] Gv). [Ta;8]
laf @ oag ¢
@ @

provided in the case of both rules (iii) and (iv) that ¢ does

not contain «;.

4 (vi) r.a.a. - as for BS*, but add that:
Uaia if @
(Cf. SR)

=UaB, ¢ = Ua;B;

if 9 =UTa;B, ¢ = Ua;B.

The asymmetry between subject and predicezte in singular propositions with

names as subjects is reflected by the fact that names are allowed only in

subject place.

The whole of the original basic syllogistic BS* is now derivable on the

the basis of these quasi-ecthetic principles and r.a.a. As examples we

S.Ce

give the derivations of s.c. and id.*.

{1} @ Iop As.

{2} (2) UasB As.

A 3) Uaya Rule (v)

{2} 4) Be 2,3 Rule (i)

{1} 6) IBa 1, 2-4 Rule (iii)
{1} @) [oacal As.

{2} 2 [Joal As.

A 3) Uoja Rule (v)

{2} 4) Aca 1, 2 & 3 r.a.a.

A B) Aaa 1, 2-4 Rule (iv)



CHAPTER 6

STRAWSON'S INTERPRETATION AND THE
QUESTION OF EXISTENTIAL IMPORT

6.1 Strawson's intevpretation of traditional logic

A categorical proposition with subject term a will be said to
have existential import iff it is a logically necessary condition of its
truth that there is (was/will be) an a. If existential import is under-
stood in this way, Strawson's interpretation, to be found in his article
'On Referring' (1950) and in his book Introduction to Logical Theovy
(ILT) (1952), attributes such import to all four forms. (O propositions
are given in the more customary manner: 'Some ... is not ...') and
predicates are not restricted to the form ¢s @ + noun (phrase).) Under
his interpretation, which is supposed to be faithful to the ordinary
meanings of the categorical sentences - a claim we shall consider in
6.3 - the whole of traditional logic with negative terms is supposed to
hold good. We may consider it as an interpretation of EBS* (since we
shall see that it makes id.* come out valid), and not wait until the
introduction ¢f negative terms in Chapter 9, because it is now clear
that Strawson was actually wrong in thinking that traditional logic with

negative terms is sound under his interpretation.

According to Strawson, a statement in one of the categorical
forms is true or false only if its subject term has application. On

p. 177 of ILT he says:

We are to imagine that every logical rule of the system, when
expressed in terms of truth and falsity, is preceded by the
phrase 'assuming that the statements concerned are either
true or false, then ...'. Thus the rule that A is the contra-
dictory of O states that, if corresponding statements of the

A and O forms both have truth-values, then they must have
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opposite truth-values; the rule that A entails I states that, if
corresponding statements of these forms have truth-values,
then if the statement of the A form is true, the statement of

the I form is true, and so on.

Under this interpretation the semantic analogue of the rule id.* will
read: 'Assuming that the statement expressed by A xa is true or false,
then it is true on the basis of no further assumptions', so that id.% will
turn out sound. (There is reason to think that Strawson did not intend
it to do so — see the note by T.J. Smiley (1967) — but no matter.)

And it is easy to see that the other rules of EBS* are validated as well.
In traditional logic with negative terms one of the principles of
inversion, Eaf F+ I«'8, is made invalid, ! (o' is to be read here as

non-a.)  The following set verifies Eab (interpreted as

No lal is a [b]) and falsifies Ia'd (Some [a'] is a [b]):
{a, {a}
Or, to take a less formal counter-example:

No elephant is a unicorn (true)

Therefore, some non-elephant is a unicorn (false)

Someone attracted by Strawson's interpretation of the English sentences
might respond that this was so much the worse for the traditional logic
of negative terms, which erroneously regarded inversion of E as a

valid step. (We shall have more to say about negative terms later.)

It is true that Strawson has not been consistent in the accounts
he has given of entailment in the writings we are referring to. Some-

times, for example, he seems to adopt a more conventional account:

! see chapter 9. Smiley makes the point in his note.
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It is self-contradictory to conjoin S with the denial of §' if
S' is a necessary condition of the truth, simply, of S ...
The relation between S and S' in this case is that S entails

S'. (ILT. p. 175. See also p. 212.)

In other words. S entails S' iff S' must be true whenever S is true
(i.e. iff S strictly implies S'). But this will not do if Strawson wants
to save traditional logic, since it fails to validate simple conversion of

E: consider

(1) No elephant is a unicorn

(2) No unicorn is an elephant

Strawson must regard (1) as true. since its existential presupposition
is satisfied, and (2) as truth-valueless, since its existential pre-
supposition is false. There can be little doubt, therefore, that his
intended account of entailment is more accurately given above in the
quotation from p. 177. On that account S entails S' iff it cannot be the

case that S' is false and S true.*

Yet there are serious objections to that account of entailment.
In the first place transitivity breaks down in what is surely an
unacceptable manner. This can be shown by the following example,

which would have to count as an entailment on the Strawsonian account:

(3) No dog is a unicorn
(4) (In the U.K.) every animal which is not a dog
may be kept without a Post Office licence
Therefore, (5) some unicorn may be kept without a Post Office

licence

“1t is not clear whether he would want to add the additional proviso that if S' is
false S must be false too, as Hart (1951) does in his similar account of the Square
of Opposition. Smiley thinks Strawson implies this on p. 213 of ILT.
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On any view both premisses are true, while on Strawson's view the
conclusion is neither true nor false. If, however, it did have a truth-
value and there were a unicorn, it would, on the first premiss, be an
animal but not a dog, and, given the truth of the second premiss, an
animal you could keep without a licence. The conclusion would be true,
and on Strawson's account it is therefore jointly entailed by (3) and (4).
Now, on Strawson's account - and on any reasonable view - (5) entails

the somewhat clumsily expressed statement:

(6) Something that may be kept without a Post

Office licence is a unicorn

which on Strawson's view is false, and so cannot be entailed by (3) and
(4). Some logicians have wanted to define a notion of entailment which

is not unrestrictedly transitive, but in such instances transitivity is
sacrificed for the sake of avoiding the Lewis paradoxes and in any case
breaks down only when necessary or impossible propositions are involved.

(For some account of this see the final essay in G.H. von Wright (1957).)

Even more serious is the following consideration. As
Strawson himself clearly recognizes on p. 13 of /LT, logical inference
should never take us from true premisses to conclusions which are not

true:

Though inferring, proving, arguing have different purposes, they
seem usually to have also the common purpose of connecting
truths with truths. The validity of the steps is, in general,
prized for the sake of the truth of the conclusions to which they

lead.

Strawson's account of entailment is unacceptable since it divorces
entailment from inference in this respect. We just do not want to have
true premisses entailing conclusions which are not true. Once we know

that our premisses are true, we should not have to appeal to further
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extra-logical considerations to determine whether their logical
consequences are true, Some other definitions of entailment do not
allow that every inference corresponds to an entailment, since they
restrict the latter's transitivity; but to have entailments which do not
correspond to valid logical inferences is quite unacceptable. Hence, we
should reject the claim that (5) above is jointly entailed by (3) and (4).
The more conventional account of entailment quoted from p. 175 of
ILT was much better, since it was not open to this criticism; but, as
we have seen, it cannot be used to save traditional logic in a
Strawsonian manner. To the extent that it worked, Strawson's inter-
pretation depended on a redefinition of semantic entailment which is

wholly unacceptable to a logician.

One of Strawson's motives for wanting to interpret syllogistic in
the manner described was to underpin his treatment of the grammatical
subject expressions of categorical sentences as genuine logical subjects.
Here he thinks traditional logic is superior to predicate logic, which
construes such grammatical subjects as logically predicative. Yet surely
this is a serious mistake. On Strawson's view, tov say 'Some mammal
is a sea-dweller' is to refer to a particular mammal and say of it that
it is a sea-dweller. But to which mammal? The one the speaker is
thinking of ? But he may not be thinking of any mammal in particular.
And, even if he were, his statement would still be true if the mammal
he was thinking of were not a sea-dweller, provided at least one other
mammal lived in the sea. And, if the statement were false, it would
not be false simply because the particular mammal thought of by the

speaker was not a sea-dweller, but because no mammal was.

6.2 Existential imporl and presupposition
We may, of course, consider Strawson's view of the existential

import of categorical statements quite irrespective of whether he has

provided an acceptable interpretation of traditional logic. Although he
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accepts that, at least in many ordinary cases, all four types have
existential import as we have defined it, he would deny that the
statements expressed by those sentences cniailed their existential
commitments. Rather, they are held to presuppose them. According
to ILT S presupposes S' iff S can be true or false only if S' is true.
But in this case S' cannot be false when S is true, and so, on the
account of entailment attributed to Strawson above, if S presupposes S!

it also entails it."

It may appear that we can deny that presupposition is a case

of entailment by following Hart (see footnote 2 above) and stipulating
that S entails S' iff (i) S' cannot be false when S is true and (ii) S must
be false if S' is false. The extra condition, (ii), however, proves far
too strong. It would disqualify as an entailment the relation from, for
example,

(7) Some unicorn is an elephant
to

(8) Some elephant is a unicorn
since the Strawsonian view requires that (8) be false while (7) is neither

true nor false.*

3 Cf. G. Nerlich (1965); R. Montague (1969).

4 Moreover, use of the revised definition to make presupposing and entailing
mutually exclusive also has the following embarrassing consequence. Consider

(P1) Some famous one-handed pianist is still giving

concerts and anyone still giving concerts must exist.

{P1') There is (exists) a famous one-handed pianist.
Arguably (the statement expressed by) (Pl) entails (that expressed by) (P1'). Now
suppose that (Pl') expresses a false statement: then surely at least one of the
conjuncts of (Pl) must also express a false statement. But it cannot be the
second conjunct, since that expresses a necessary truth. And on the Strawsonian
view the first does not express a statement with truth~-value. Once again, the
only way out would be an unpalatable restriction on the transitivity of entailment.
(It is therefore no consolation that the argument on pp. 96-7 would not show that
entailment as defined by Hart was non-transitive.)
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So there does not seem any obviously plausible way of denying
that presupposition is a special case of entailment: what seemed to be a
distinctive way of dealing with existential import proves not to be so

distinctive after all.

Possibly the most that can be said, then, is that the existential
implication of a categorical statement expressed by a sentence of one of
the four forms is a distinguishable species of entailment. We may say
that S presupposes S' if® both S and its negation entail S'. Now given
that the pairs A/O and E/I contain contradictories, it does follow that,
if statements of each of the four forms entail that the subject term has
reference (to put it rather loosely), they presuppose it in the sense just

defined.

The views discussed in the present and previous sections are
those defended by Strawson from 1950 to 1954. It may be thought
unfair to subject that position to as detailed a scrutiny as we have given
it here, on the ground that it is insufficiently worked out. But, even
if this is so, it has nevertheless received a good deal of attention and
figured in many an introductory logic course, for which reason alone it

could scarcely be ignored.

In a more recent paper ('Identifying Reference and Truth-values!,
1964, reprinted in his (1971)) Strawson has made some concessions,
but he still wants to insist that the statement that some mémmal is a
land-dweller, for example, presupposes and does not entail that there
is a mammal. He thinks that such a view stands irrespective of
whether we regard the former statement as lacking a truth-value when
its presupposition is false. In one respect this does indeed make his
position less vulnerable, since the thesis that A, E, I and O

* Sic. The 'if' is not to be understood as 'if and only if', since the condition which
follows is proposed only as a sufficient one. -
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propositions lack truth-value when their subject-terms are empty is one
which is open to question. For example, the following proposition is

surely true:

If there are unicorns in Loch Ness, then some unicorns are

very elusive creatures’

Yet if its consequent lacks a truth-value, it seems a little odd to
ascribe one to the whole proposition (or, if Strawson would prefer it,

to regard the conditional sentence as expressing a true statement). The
trouble with the revised position of 1964 is that it is impossible to
assess it, since we no longer have any clear account of the notion of
presupposition, the definition of which previously depended on the

possibility of truth-valueless utterances of significant sentences.

6.3 Existential impovt: some furvther considervations

Under both Strawson's interpretation and Interpretation I
affirmative categoricals have existential import; but how faithful is such an
interpretation to the actual meaning of those sentences? We shall
continue to include in our discussion sentences in which the predicate has
an adjective or a verbal phrase after the copula, since the significance
of the applicative particles e¢very and some can hardly be claimed to

differ according to which of the three forms the predicate has.

On the face of it, is seems self-contradictory to say, 'Every
man is a hypocrite but there are no men'. However, whether this is
so or not, there are other propositions of the A form which evidently
lack existential import, like Bradley's example (1) Every trespasser will
be prosecuted, the exhibition of which does not prove to be an empty
threat merely in the event of there being no one who trespasses.
Moreover, it strictly implies the proposition (2) Every blue-skinned

trespassev will be prosecuted. Now suppose there are trespassers and
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each one is prosecuted. Then the first proposition is uncontroversially
true. Suppose also, unsurprisingly enough, that none of the trespassers
is blue-skinned. Then, if the first proposition does indeed strictly
imply the second, the second must also be true, despite its lack of

existential import.

This does not necessarily mean that the Frege/Russell analysis
('There is no one who is a trespasser but who will not be prosecuted',
etc.) is to be adopted. For on this analysis the first proposition is
true if there are no trespassers and so is Every trespasser will avoid
prosecution .. It would be natural to hold that further grounds are needed
for the truth of the first proposition than merely the absence of tres-
passers, e.g. that the owners had made a firm and irrevocable decision

to prosecute anyone who trespassed on their land,

However, this objection to the Frege/Russell analysis is by no
means conclusive. Keynes himself notes that '[as] regards the ordinary
usage of language there can be no doubt that we seldom do as a matter
of fact make predications about non-existent subjects. For such
predications would in general have little utility or interest for us'

(1906, p. 235). In A sentences like those under consideration, the
existential implication might be one of those conversational implicatures
arising out of pragmatic conventions which Grice has drawn our
attention to.® The Frege/Russell analysis of those sentences could then

stand.

It is clear anyhow that the system BS cannot be accepted asv a
logic for all of the A sentences beginning with Every, since at least
some of them lack existential import. And where sentences beginning
with Every lack existential import, the corresponding sentences
beginning with Any, Anyone, Anybody and All will surely lack it too.

6 See H.P. Grice (1961) and (1975), L.J. Cohen (1971), R.M. Hare (1971).
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(Try modifying the examples (1) ‘and (2) above.) The same applies,
I think, even to Fach, in spite of the claims about cvery and each

made by Zeno Vendler (1962): EFach trespassev will be prosecuted no
more entails that there will be any trespassers than does Every

lrespasser, ...

The position with I propositions is relatively uncontroversial,
and it seems difficult to affirm the consistency of Some a is F bul
lheve is no a or its more idiomatic plural form. It is not to the point
to cite an example like Some ghosts arve unfriendly. which might occur
in a story or conversation about a story; for in those contexts it would
be self-contradictory to say that some ghosts were friendly but there
were no ghosts. The following example from an old textbook is

scarcely more disturbing:

(3) Some of the cruisers for which plans were made

in the last budget are not being constructed

For once again it does not seem possible consistently to say that some
of the planned cruisers are not being constructed but that no cruisers
were planned. In any case, the semantics of sentences containing
clauses governed by psychological phrases ('plans were made') are
notoriously problematic, and since those sentences clearly require
special treatment, it is quite reasonable in the present context to restrict

our discussion to straightforward 'non-intentional' sentences.

Since particular affirmative sentences have existential import
and at least some universal affirmatives lack it (or lack it in some
contexts), BS is not always an appropriate logic for affirmatives. It
may even be true that only in special cases, where the existential
commitment is explicitly added, or strictly implied by some special
subject phrases (as in 'Allof the cruisers which were built ...'), is

that logic an appropriate one. Only in those cases, perhaps, are
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subaltern inference and c.p.a. valid (and A and E forms contrary).

By contrast with Strawson's interpretation, Interpretation I gives
no existential import to E propbsitions. No can certainly replace Every in
(1) or (2) without introducing such import, and there is indeed some
plausibility in the claim that the form No a is F because theve is no a

is unrestrictedly self-consistent. Keynes cites such examples as:

(4) No unicorns have ever been seen
(5) No satisfactory solution of the problem of squaring

the circle has ever been published

which are true simply because there are no unicorns and because there
is no way of squaring the circle. Once again, in those cases where
existential import might seem to be carried (No mammal is inverte-
brate?), it may be possible to explain the implication as a non-logical
conversational implicature. To say that no a F's when one knew that
there was no a would be to violate the pragmatic principle not to say
something weak when one is in a position to say something stronger. It
may, then, be the case that existential import is carried by universal

negative propositions only in cases like:
(6) None of the planes became operational

Finally, in the case of O propositions, it seems that, if

Some a F's has existential import, then so does Some a does not F.
This is why, when we wanted to interpret O in accordance with the
practice of medieval logicians like Buridan, we used the form 'Not -
every ...'. But it is not at all certain that this reading secures the
intended result either, as can be seen by adding Notf to the beginning

of (1) or (2). Doesn't Not everyone who passes this examination is lucky
logically imply that there will be some successful though luckless candi-
date? Certainly if an A sentence like Every whale is a mammal has

existential import it is hard to deny it to Not every whale is a mammal.,
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For compare a case where the special nature of the subject term gives

rise to an undeniable existential entailment:

(7) Every ship they built had flaws }
(8) Not every ship the; built had flaws

If we propose to interpret BS in accordance with Interpretation
1, then, the, English sentence forms we have used in previous chapters
are not wholly suitable. A sentence may need to be supplemented with
an existential conjunct, or O sentences with a disjunct cancelling exist-
ential import (Nol crery « is a b oy theve is no ay, And if, as seems
reasonable, the unmodified 4. E, I and O sentences are to be analysed
in the Frege/Russell manner, we emerge with an interpretation under
which neither BS nor BS* is sound. (The syllogistic which fits this

interpretation was given at the end of the last chapter.)

Anyone interested in the question of the existential import of
general categorical propositions will have found the treatment here
sketchy, over-simple and deliberately inconclusive. I believe that the
issue is of too little importance to have warranted all the attention
logicians have given it, and I have therefore not attempted to add
significantly to their discussions., But a lucid and thorough treatment will
be found in Keynes (1906), an elegant historical review by Alonzo Church
(1965), and further summaries and references are given (regrettably

without their virtues of style and organization) by J.S. Wu (1969).
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CHAPTER 7
SUBJECT AND PREDICATE

In the last chapter we generalized the interpretation of Aab to
include not only propositions of the form 'Every — is a —', but all
those of the form 'Every — + predicate’', where the predicate might
consist of 'is' + adjective or verb + object expression; and the inter-
pretations of E, I and O froms were extended in the same way. The
artificial restriction to substantival subject and predicate terms in the
preceding chapters did not reflect the intentions of Aristotle or his
successors, nor was it meant to be offered as a philosophically satis-
factory interpretation. It was adopted to enable the discussion of the
formal logic to proceed as smoothly as possible while still articulating
propositions in the traditional manner., It is the purpose of this chapter
to endorse the Fregean treatment of general propositions which super-
seded the tradional analysis, an issue which we left open in order not

to prejudge the present discussion.

The 'subject' and 'predicate' terms, @ and b in Aab etc., are
treated in syllogistic logic on a par. We shall consider construing them
first as names, 'next as general names and predicates respectively, then
both as predicati'\;e terms and finally, in the following chapters, as
class terms. It is the first that is suggested by the traditional
logicians' propensity for distorting such propositions as Every king is
wise and Some Scot wrote a novel into Ewvery king is a wise man and
Some Scot is a novelist. However, if subject and predicate terms have
different logical roles, if,as Geach argues, such sentences are to be
construed as having the form name + predicate, then syllogistic logic
must be seen as a hopelessly ihappropriate logic for such sentences,

not merely a very restricted one.

112



7.1 The lico-name theovy and Lesniewski's Ontology

The essential features of a two-name account can be brought
out by considering the translation of syllogistic into the interpreted
formal system which its author Lesniewski calls 'Ontology'. This
system has a primitive functor, €, which takes two names as
argument-expressions. The categdry of names is a generously
comprehensive one, including not only ordinary proper names, but also
adjectives like while and wise, and simple and complex substantival
terms like the King and a man who writes a novel, There is a name-

forming functor 'trm< >' to form names from verbs:
(@a)(@)(a € trm<e> -~ (a € a & ¢(a)))

¢ is a proposition-forming functor taking one name as argument-
expression. Three types of name are distinguished: (i) unshared names,
which each designate a single object, (ii) shared names, each desig-
nating more than one object, and (iii) fictitious names (round squave,

unicovn, Vulcan), designating no object at all.

Even nothing turns out to be a name, introduced by the

contextual definition:
(@a € A ~—~(aeca&ada)

Together with the axiom to be given below, this yields @)A ¢ a.

One may already get the impression that the notion of a name has been
stretched beyond breaking point, an impression which is confirmed when
we see that Nolhing is a unicoyn (A € unicorn) must turn out false.

It would no doubt be possible, however, to develop a two-name theory

without this incongruous feature.

Lesniewski's system of Ontology is subjoined to his Protothetic,
a generalized propositional calculus. Universal and existential

quantifiers may bind both names and proposition-forming functors.
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'‘a € b' is to be interpreted as giving the form of a proposition which
is true iff the substituend of a is an unshared name whose bearer is
designated by the name which substitutes for b. b may stand in place
of an unshared or a shared name., 'The Monarch is the daughter of
George VI' contains two unshared names and is true because the bearer
of each name is one and the sam‘e person. 'The Monarch is a woman'
contains an unshared and a shared name and is true because the bearer
of the unshared name 'the Monarch' is among those objects designated
by the shared name 'a woman'. Hence LesSniewski's original (1920)

axiom for Ontology, which is the following rather lengthy formula:
(a)(b)la € b ~—(dc c € a & (c)(c € a —c € b) &
(cHd)(c € a & d € a —c € d)]
That is, 'a € b' is true iff (1) there is an a, and (2) every a is b,
and (3) there is at most one a.
Suppose we now take 'Aab' as an abbreviation for
(c)(c € a—c€ b & dcc € a
'Iab' as an abbreviation for
dc(c € a & ¢ € b)

and 'Oab', 'Eab' as abbreviating their respective negations. It is then
a straightforward matter to verify that the first syllogistic system of
Chapter I, BS, becomes a fragment of Ontology.

The subject and predicate terms of categorical propositions
now become predicate-names to the right of the copula. Despite
Llleir B{edicate position they are nevertheless construed as names,
shared, unshared or fictitious. Universal affirmative propositions are true
iff every object designated by the first name is also designated by the
second. Similarly / propositions are true iff some object is designated by
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both of them. The truth conditions for E and O propositions can be

stated analogously.

To construe both subject and predicate terms of a categorical

proposition as names in this way is entirely unsatisfactory. In the

first place, as Geach has shown, if is a mistake to treat complex terms
in general as amitary referring expressions. So at best we are limited
to simple names. But even with such a limitation, it is counter-
intuitive to treat the predicate terms as names, and there are well-known
Fregean reasons for not doing so. This leaves us with simple singular
subject terms in universal categoricals as the only remaining candidates
for namehood, and undermines the interpretation given by Ontology.
These objections will be developed first, and in the next section we

shall consider the view that simple subject terms are names.

To admit complex terms as substituends of name variables
involves treating them as logical units: thus Ecery man who writes a
novel earns money is construed as Every man-who-writes—a-novel is
a mpg-vho-cayns-money, At first sight this may seem merely
ur;<aomatic English, replaceable in any case by Every novelist is a
ioncey-earner, in which the first term is no longer complex. But
Geach has shown that phrases like man- who- wriles-a-novel have no

more logical unity than the italicized phrase in
The philosopher whose most famous pupil was Plato was tall

Try, for example, replacing 'man who writes a novel' by the single word
'novelist' in Every man who writes a novel is paid for it: this

results in the incomplete proposition Every novelist is paid fov it.
Geach's full argument is given on pp. 116 - 118 of his (1962), where

he shows that there is no plausible way of construing such complex

terms to give them true logical unity.
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Even simple names appear ill-suited to combine with a copula
to form a predicate. If we regard the expression a man in Some
prime wminister is not a man as a name, it would seem natural to ask
'Which man? Which man is it that some prime minister is not?' But
this would be to forget that, on Leéniewski's view, a man is a shared
name, and so there is no implicit claim that such a question should be
appropriate. Nevertheless it is perhaps a consideration which casts

doubt on the very idea of a shared name.

The decisive reasons for rejecting the articulation of the
predicate into copula + name were provided by Frege, whose treatment
of (simple) predicates as single units and replacement of the subject-
predicate analysis of general categoricals by articulation in terms of
function and argument(s) was after all the key to the breakthrough in
formal logic which he achieved a century ago. Consider the proposition
Mavrilyn loved Mavilyn. The formal structure this proposition shares
with Avthur loved Marilyn could, it may seem, be expressed in terms
of the analysis: subject + copula + predicate name (a lover of Mavrilyn).
Even the structure it shares with Marilyn loved Yvés could be
exhibited by means of the sentence~frame ' — was a-person-loved-by-
Marilyn'. But the form it shares with Avthur loved Avthur defies such
an analysis. The relation expressed in both Marilyn loved Marilyn and
Avrthur loved Arthur, in virtue of which what is said of Marilyn in the
first is the same as what is said of Arthur in the second, is not
adequately expressed by the word 'loved' alone, or by any isolable part
of the sentence. Frege can treat both sentences as supplying arguments
for the function'¢ loved ¢'. This analysis has no place for the copula
and no unique subject term. The form shared by Marilyn loved
Mavilyn and Mavilyn loved Yves can be expressed by '(Marilyn-loved)
¢'; and that shared by the first sentence and Arthur loved Marilyn by
'¢ (loved-Marilyn)', where the argument-place is marked by ¢
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and the function-expression occurs in brackets. The Fregean analysis,
unlike the analysis we are criticizing, is adequate, then, for all three
cases. 'In this', said Frege, 'I faithfully follow the example of the
formula language of mathematics, a language to which one would do
violence if he were to distinguish between subject and predicate in it'

((1879), p. 12. Cf. also Geach (1975), pp. 140ff.).

Consequently, the two-name theory is better abandoned even

for general categoricals whose terms are both simple.

7.2 General names as logical subjects
If the subject term of an A, E, I or O proposition is simple,

and determines its reference as a whole without contribution from its
components, Geach regards it as a name. Thus in the proposition
Some rviver caused widespread flooding 'river' is a name which combines
with the predicate 'Some — caused widespread flooding'. On this view
it functions as a common name, and is said to refer not to any
individual river but to all rivers., The sense it which it refers to all
rivers is elucidated by its truth conditions: it is true iff the Thames
caused widespread flooding or the Seine did or the Danube did or ...
and so on. That is, it is true iff there is some true disjunctive
proposition containing as disjuncts all the propositions of the form

'x caused widespread flooding', where x is replaced by the name of
some individual river. (Presumably we must suppose that every river

has a name.)

In place of the Fregean analysis of the proposition,

Something is a river and it caused widespread flooding

Geach would construe it in the following manner:

As regards some river, it caused widespread flooding

since he would deny that being the same river is equivalent to being
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the same thing and being a river. On his view 'same' should be
treated like 'one': and being one river is certainly not equivalent to

being one thing and being a river.

In (1962) pp. 149-151, he offers the following supporting

argument., Consider the propositions:

(1) Heraclitus bathed in some river yesterday and bathed
in the same river today

(2) Whatever is a river is water

(3) Heraclitus bathed in some water yesterday and bathed

in the same water today

It seems clear that (3) is not entailed by (1) and (2); if (1) and (2)

were true, (3) would almost certainly be false.

But now consider the apparent translations of (1) - (3) into

the symbolism of ordinary predicate logic:

(1*) dx{x is a river & Heraclitus bathed in x yesterday &
Heraclitus bathed in x today)

(2*)y (¥)(x is a river —x is water)

(3*) HAx(x is water & Heraclitus bathed in x yesterday &
Heraclitus bathed in x today)

13*) seemingly follows from (1*) and (2*) by unimpeachable principles
of logic. Geach argues that at least one of these must therefore be
rejected as an inadequate translation, and chooses to reject both (1*)
and (3*) on the grounds that they treat being the same river as
equivalent to being the same (something or other) and being a river,
and being the same water as equivalent to being the same and being

water.
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However, it is clear that (3*) will follow from (1*) and (2*)
only if the predicate 'is water' is univocal. (3*) translates (3) only
if its predicate 'is water' means '= water' ('= some mass of water'?),
but as Wiggins (1968) and others have pointed out it is quite implausible
to regard that as its meaning in a proposition like (2). In (2) it

surely means 'is composed/made up of water'.

Even if it remains unobjectionable to treat a word like 'river'’
in a proposition like Some viver caused widespread flooding as a
common name, we may conclude, then, that it is not compulsory.

The Fregean treatment is not undermined by Geach's argument.

Moreover, if we were to treat simple singular terms in
grammatical subject position in A, E, I and O propositions as common
names, those propositions would be construed differently from their

counterparts with plural subject terms. Some rivers caused widespread

Hooding, All rivers caused widespread flooding etc. would still be

analysed in the Fregean manner.!

7.3 The tico-predicate analysis
Frege's treatment of traditional categorical propositions there-

fore emerges as the best of those considered in this chapter. Inter-
preting Aristotelian wifs on these lines will mean that their variables
are regarded as predicate variables and that BS and EBS are construed
as fragments of monadic predicate logic. (For details see Chapter 5
above.) However, A, E, I and O propositions whose terms are
complex present a problem. Their predicate logic paraphrases will
dissipate many of the complex terms, whereas Aristotelian wifs give
their forms as if such terms were logical units. Since syllogistic

logic cannot exploit the finer structure of such propositions, it will

! Strawson (1974, pp. 66-72) has considered (and prefers to reject) the
treatment of both singular and plural subject terms as general names.
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never actually lead us astray - we shall not be able to use it to
validate unsound inferences,at least not as a result of the way it
articulates propositions. But, if he uses this two-predicate inter-
pretation, the purist may well prefer to confine the substituends of
variables in Aristotelian wffs to simple predicate expressions with a

genuine logical unity.
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CHAPTER 8
CLASSES

8.1 (lass intevpretalions

In our treatment of the metatheory of syllogistic so far there is one
significant respect in which the interpretations given differ from those in
more formal modern treatments. ¥or example, a wff Aa8 has been
interpreted as Every [al is a [B ] ('Every class containing the letter «
is a class containing the letter g8' - see p. 43 above), whereas the
standard procedure would be to define Aog as true iff the class of
[a]i's ¢ the class of [B]'s. (The terms class and set are used inter-
changeably throughout this monograph.) The standard extensional
interpretation is quite clearly adequate - though it was not adopted
originally, since I wished to stress the affinity with Aristotle's own
method: it is evident that Every la] is 2 [g} will be true provided,
and only provided, that the class of sets containing « is included in the
class of sets containing 8. For the purpose of basic formal logic
(unless studied in a purely formalistic way) it is the truth-value of
propositions that matters, not their sense; or, rather, their sense
matters only in so far as it determines truth-value, for validity is in
effect defined in terms of truth-value. As Frege put it in an important

article unpublished during his lifetime:

it is of no concern to logic how thoughts follow from
thoughts without reference to truth-value,...the step
from thought to truth-value, from sense to reference,
must invariably be made;...the laws of logic are
primarily laws in the realm of reference [truth-value]®
and relate only indirectly to sense. ('Ausflihrungen
iber Sinn und Bedeutung', in Frege (1969), p. 128ff.

My translation.)

11t will be recalled that Frege held that, if all its components had reference, a
proposition referred to a truth-value.
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The considerations just mentioned naturally suggest that basic
syllogistic systems may be regarded as systems for the inclusion and
intersection of classes. The completeness proof for BS* can easily be
modified to yield the result that it is complete with respect to the
inclusion and intersection of non-empty classes (see 5.2); and the
completeness proof sketched for the Brentano system in 5.6 can be adapted
in the same way to show that the system is complete with respect to

2

unvestricted (i.e. both empty and non-empty) classes. This is simply

because, for example,
Every whale is a mammal

and
The class of whales ¢ the class of mammals

are logically equivalent, if the former is taken as lacking existential import.

They necessarily have the same truth-value, whether or not the class of whales:

or mammals is empty. Again, Some whale is a mammal is logically
equivalent to The class of whales intersects with the class of mammals.
(The symbol ‘o' will be used for intersects.) No doubt it is equivalences
like these which have lead so many textbook writers (not to mention
George Boole) to treat the subject and predicate terms of traditional
propositions as if they were the names of classes, and to use schemas
like 'All S is P' whose substitution instances are so plainly ungrammatical
('All whales is (sic) 2 mammal', etc.) If whales or all whales referred
to a class, one could substitute the class description for the subject term
in Every whale is a mammal without affecting its truth-value. But

The class of whales is a mammal is certainly not true, even if it is
meaningful. Still less is every whale the class of mammals. Parallei

points can be made with E, I and O propositions.3

“BS* is clearly unsound for this latter interpretation. For example, Iaa is a
theorem of BS*, but the intersection of the empty set with itself has no members."

3Even as able a philosopher as Hilary Putnam is guilty of confusing terms with
class names, though he doesn't intrude the solecistic 'is'. @972, p. 9.)
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Strictly speaking, perhaps we should not treat expressions like
'the class of mammals' as names, since they are syntactically complex
and the remarks about complex terms in Chapter 7 apply to them. So
let us suppose that the substituends of a and » in Aab, for example are
simple names of the classes described by such complex expressions as

'the class of mammals'. (See Geach (1962), p. 121.)

It will b:a recalled that when BS' is subjoined to the propositional
calculus we obtain a system equivalent to Wukasiewicz's. Considered as
a logic of classes this system appears a good deal less ad hoc than under
Interpretation II or its author's, which both give it the character of a

grafting of syllogistic, nearly intact, on to propositional logic.

When syllogistic wifs are given a class interpretion, they may

be re-expressed in class symbolism as follows:
Ao = a < B Eaf = —a 0

ad¢ B

1l

I = a o B Oap

'c! expresses class inclusion (« being included in g iff there is no
member of @ which does not belong to 3), 'o' class intersection

(o 0o g iff &, B, have some member in common) and

'ow ¢ ' abbreviates '—o < B'. Thus 'Aab' is now to be interpreted

as 'a is included in b', where 'a', 'b' are variables whose substituends

are simple names of classes.

8.2 The use of diagvams

Most logic textbooks since the late nineteen century which contain
any treatment of the syllogism introduce Venn diagrams as a means of
testing for validity. This tends to reinforce the inclination to treat
subject and predicate terms as denotations of classes, though in view of
the equivalences indicated above their use is quite justified. However
it is less misleading to confine their use to testing inferences whose

constituent propositions are explicitly about classes.
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Inferences concerning the relations of inclusion and intersection
between (one), two or three unrestricted sets can be demonstrated by
means of Venn diagrams in which each set is represented by one of up
to three interlocking circles. For example the inference
a c b, —boc /—aoc (the class of analogue of Celarent) is shown to
be valid by the following Venn diagram, in which @ ¢ & is represented by
shading out that area of the a circle which lies outside the & circle
and —b o c¢ is represented by shading out the area common to the
b and c¢ circles. In consequence the whole of the area common to the

a and c¢ circles has been shaded out, meaning that —a o c.

(Where two sets intersect, a cross is put in the sub-area representing

their intersection.)

The completeness proof shows that an inference of the circumscribed
type about the inclusion and intersection of'unrestricted classes is valid
iff it is valid in a domain of 2” individuals, where n = the number of
class variables in the wffs of the inference schema. Thus a Venn diagram
with three interlocking circles provides a topological model for the case
of three classes. (Each of the eight sub-areas, which include the area
outside all three circles, can be taken as representing a unit class.)

Consequently, it seems to me wrong to deny, as Mendelson does in
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his (1970), that Venn diagrams are 'tools of rigorous mathematical proof'.

Their weakness lies in their limitation to simple cases, i.e. to cases
involving only a small number of sets, though methods of generalising

them may be found in the literature.

Although cases involving four classes may be dealt with by means
of a diagram with three circles and an ellipse interlocking appropriately,
or with four interlocking ellipses (see article 'Logic Diagrams' in
Edwards (1967), Vol. 5), this proves an unduly complex way of testing
the validity of simple inferences. Lewis Carroll's diagrams in which
rectangles overlap to delineate the required sub-areas turn out to be
notably simpler. The frameworks for cases involving three and four

classes respectively are:

(Carroll (1893), p. 39; Geach (1976), pp. 56-60.)

Venn and Carroll diagrams are interpreted in such a way that a
blank sub-area represents a class which may or may not be empty. For
testing inferences concerning non-empty classes, a cross may be

inserted at will in the unshaded part of a circle, though care must be
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taken to ensure that it covers every blank sub-area of that circle.* Of
the following two inferences the first is valid, the second invalid, and all
classes are to be regarded as Aristotelian (non-empty):

(i) —b 0 ¢, a < c; therefore a ¢ b;

(ii) a < b, b 0 ¢; thereforea o c.
Here are Venn and Carroll diagrams for each one. Note that the cross
in the diagrams for (ii) means that the area it covers represents a non-

empty class; it does not mean that each constituent sub-area necessarily

represents a non-empty class.

c c

S
AN
\

AR T3
7

b b b b

4 Another well-known type of diagram, due to the eighteenth century Swiss mathema-
tician Leonhardt Euler, is appropriate for non-empty classes, since each interlocking
circle represents a class with membership. These diagrams are useful for
representing the five possible relations of inclusion and intersection between two
sets, but the validation of inferences involving three classes can entail many
different diagrams, and with more than three classes diagramming becomes
impracticably complex.

126



The soundness of BS" for the interpretation in terms of non-empty
classes, and of the Brentano system for unrestricted classes, can be
shown by using Venn (or Carroll) diagrams within the framework of a
proof by induction on the length of the longest branch of a tree deduction,
provided that it is supplemented with an argument to cover the case of
r.a.a. The use of Venn diagrams to show the validity of rules like

s.c. and Celarent is a very simple matter and may be carried out quite

easily by the reader.
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CHAPTER 9
SYLLOGISTIC WITH NEGATIVE VARIABLES

9.1 Basic syllogistic with negative vaviables
If we enlarge syllogistic to include negated variables, a', b',

c' etc., then, if Every man is intelligent is a substitution instance of
Aab, the corresponding instance of Aa'd' will be Every non-man is ’n'on—
intelligent. Syllogistic systems with negative variables may be obtained
by adding the following definitions to BS and BS*:

Eaf = Aop oaB = Iap'

together with a rule permitting the substitution of o for o' and vice

versa.

Aristotle debarred himself from such a comprehensive treatment
of propositions with negative terms by rejecting the inference from
Eab to Aab' (one of the forms now known as 'obversion'), although he
admitted the converse. It looks as if he confused negative terms like
non~intelligent with terms lke wunintelligent, for thé inference from
No number is intelligent to Every number is unintelligent is certainly
invalid, while the validity of its converse is at least defensible. (Cf.An.
Pr, 51b8.) Systematic treatment of the logical relations which justify
immediate inferences like obversion and contraposition described below
was initiated in the fifth century by Boethius and perfected - by
de Morgan - only in the nineteenth. (See Prior (1962), pp. 126-131.)

The objections to the treatment of words like man and
intelligent as terms which may occupy both subject and predicate
position indifferently apply no less, of course, to negative terms. The
feeling of uneasiness induced by such artificial expressions as non-man
and non-intelligent may be relieved, however, by construals which

avoid them. Aa'8* may be read as Only as are Bs, and Aaf' and
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I o' in the same way as their defined equivalents Faf and Oof,
No a is B and Some « is not 8. Aa'S, Ia'8 and Ia'f' may be
rendered, a little more awkwardly, as Only «as ave not Bs, Not auly

«s ave Bs and Not only as are not Bs (for example).

We cannot extend Interpretation I (of BS) to BS with negatives
(BSn), since, as the reader may easily verify, simple conversion of
IaB' (= OaB) is unsound, and the principle of Barbara fails for the
case where the variable common to both premisses is negative. A
sound interpretation of BS*n can be obtained if we take the variables
to range over non-empty non-universal terms (see Keynes (1906),
Part II, Ch. IV), but we have already had occasion to object to this

type of interpretation (Interpretation II, 5.3 above).

A natural and unobjectionable interpretation of BS*n can,
however, be given in terms of classes, namely the extension of the
interpretation of BS* given in the last chapter. BS*n is both sound
and complete when interpreted as a theory of inclusion, intersection
and complementation of 'Aristotelian’ classes, that is, classes which
are neither empty nor universal. (Cf. Keynes (1906), loc. cit.
Obviously, we cannot exclude empty classes without also excluding

universal, since the empty class is the complement of the universal.)

This interpretation should be distinguished from the analogue
of Strawson's for classes. Under the latter, for example, the 'pred-
icate' variable of an E formula need not range over restricted classes.
Otto Bird (1964) confuses the two on p. 76, and compounds this by also
confusing the interpretation we are now considering with the following
(of the syllogistic part of BS*n subjoined to propositional logic -

p. 77):
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AoB...a,B,a' B #0 — opt = 0;
EaB...a,B,a',p' # 0 — af = 0;
TaB...a,B,a B # 0 — af # 0;
oaB...a,B,a" B # 0 — af' # 0.

This makes any proposition in which either class expression denotes the
empty class vacuously true, as well as making r.a.a. invalid, The
first of these consequences can be avoided by changing — to &, but
r.a.a. will still fail, and id’ (though not the weaker id.) will also

become invalid.

We now set out the system BS*n. With the expansion of the
language of BS* the formation rule is to be modified in an obvious way.
The definition of "' and E make Celarent a special case of Barbara:
AaB, ABY' |- Aay', so that Celarent may be dropped from the list of
primitive rules. The prime, ', is to be interpreted as indicating the
complement of a class, A will signify class inclusion and I inter-

section.

BS*n
Language, As for BS*, but with the addition of the prime.

Formation rule. Call a variable letter followed by finitely
many primes, e.g. a', a', b'"""', a negative variable letter.' Then a
well-formed formula consists of a constant followed by two variable

letters, either one being positive or negative.

! For present purposes, then, a negative variable not definitionally equivalent
to a negative variable with a single prime will be equivalent to a positive
variable. (Thus a' is a negative variable equivalent to the positive variable a).
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Ruics ol inrerence,

(x.p .y, are schematic positive or negative variables.)

sub. Aaf Barbara Aaf A8y r.a.a. (o]

s.c. 1 ap
1pa Tap Aay v @
@
. id.* _*
Aaw

(As before, ¢, @ etc. are corresponding A, O or E, I wifs, but either
member of the pair may be a defined equivalent.)

Derinitions, clc.

Replacement rule: o for «', «' for a.

Eaf - Aap'; OaB =1 ap'.
Sonie deviced principles .
Celarent - see above.

Obversion. 2 (i) Aap (ii) Eap (iii) 1 o (iv) Oap

Eap’ Aap' oap’ Iag’

Derivations of the principles of obversion are obvious. In general, the

obverse of a formula is formed by taking the contrary, if the formula

is universal, or subcontrary, if it is particular, and negating its
s y p s gating

second variable.

Inversion. Aag Eap
8o og'c!
(= OB'w) (= Ig'ay

% Cf. De. Int. 20°20-3. Aristotle Tejects both (1) and (iv). See above on his

rejection of (ii).
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We give the derivation of the first one, as an example, using the

derived rule of s.c.(F):

Aap

obversion
E T

i s.c. (E)

Ef' o

obversion
Ap'a!

sub.
Ipa

In general, the full inverse of a (universal) formula is formed by
taking its contradictory, transposing the variables and adding a prime
to the first variable. Thus AaB becomes Of'a, Alternatively,
reduce the quantity, and transpose and negate the variables (which

yi»lds the definitional equivalents of the inverses).

Contraposition. ° Aap Oap

AB'a! os'a’

Contraposition, valid for A and O, consists in transposing and negating

the variables. We give the derivation of the first case:

Aap

rep."
AaB” p

df. E
EaB'

S.C.(E)
Ef'a

df. E
AB'a’

Contraposition of A may replace s.c.(f) as a primitive rule, Greater
economy in the postulates may be achieved by replacing s.c. and
Barbara by the single rule Datisi.?

3 Cf. Aristotle's Topics, 113°.

* Sub. could be replaced by the rule _* . Cf. Shepherdson (1956).
I aa
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The notion of a derivation is defined as for BS*, except
that mention must also be made of the definitions and replacement

rule as two-way inference licences.

Cluss interpretation of BS*n.
o' is the complement of «.
AapB: « is included in B (w & B).
IaB: « intersects 8 (a o 8).

All classes are Aristotelian,

The following diagram (Cf. Keynes (1906), p. 144) summarises
the principal relations of opposition between the formulas. Any
variable, positive or negative, may be substituted for o or g, and
any resulting double primes eliminated at will. A formula at one end
of an upper horizontal or oblique line is contrary to the formula at
the other end, and, similarly, a formula at one end of a lower
horizontal or oblique line is subcontrary to the one at the other end.

A formula at the top of a vertical line entails the one at the bottom.
And, finally, a formula at one end of a diagonal is the contradictory

of the formula at the other end.

A ¢ ontr ar i e s EaB

contraries-- -~ -|]-\c ~- - == EI R ] DI contraries
Aa'3 = Ea'3’
s s
u u
b b
a a
1 1
t t
e e
T r
A \ n
S .
Ia'3 u e s oua's
subcontraries --~ —o-—f-—~ - <2 ----\-} -- - - subcontraries

Iap subcontraries OoB



Venn diagrams may be used to check simple inferences if
a rectangle is added around the circles to represent the universal
class. The diagram below demonstrates the inversion of AaS to
OB 'a, the dotted area representing the class «. Given that g' has
some member, that member does not belong to a, so that B' is not

included in .

@
(dotted area within
large rectangle)

.. |

Venn diagram for inversion of AoBf to OB'a.

(B' is non-null.)

9.2 Metatheory of BS*n
The metatheorems of this section relate to the interpretation

just presented: the system is to be understood as a theory of comple-

mentation, inclusion and intersection of Aristotelian classes.

Metatheovem 11. (Soundness.) If T' kpg+, ¢, then T Ik ¢.
Proof in the style of the soundness proof for BS in 2.2.

Alternatively, translate the symbolism of BS*n into that of the
predicate calculus, so that Aad', for example, becomes

(x)(Ax — — Bx), Iab becomes Jx(Ax & Bx), and Ax is understood as

x belongs to the class a, -Bx as x belongs to the class b'

(= x does not belong to b). The translated rules are then easily shown
to be derived rules of the predicate calculus, provided that an exist-
ential premiss is supplied in the cases of sub. and id.*. Since the

monadic predicate calculus is known to be sound for the interpretation
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both « and B'.

just indicated, and BS¥ can be translated into a fragment of it, the

syllogistic system must be sound too.?®

Mcluthcoreni 12, (Completeness.) If I' 1l-¢, then T Fpg*, ¢.
By the reasoning of 3.2, it suffices to show that

ceery consistent set of wirs, 4, is (sinmudlancously) satisfiable.

Let A be consistent, and let A be the set of wifs formed from

A by replacing £ and O wffs with their defined equivalents and elim-

inating all pairs of primes. Clearly A is consistent iff A  is

consistent, and satisfiable iff A is.

Let V be:
W:

Q(W):

the set of all variable letters in the wifs in A,
the union of V with the set of all the complements
of the letters in V. (For convenience we use

the term complciment to apply in an obvious way
to letters as well as to classes. « is to count
as the complement of «', and «“ will, for
example, denote that complement of « which has

no double primes. )°

the set of all the subsets of W which contain as
members just one variable from each of the pairs
of complementary variables in W, For example, if
A is {Eab',la'p".0ba'}, A is {Aab,la'b,lba},

V ={a,a', b}, W = {a,a",b,b'} and

QW) = {{a, b}, {a,0", {a', b}, {a', b}

Yet another alternative is to use Venn diagrams in the manner indicated in

the last chapter.

¢ Hitherto we have used [ ap'] to mean: set containing « but not B. Now that

a' is being used for the complement of o, we must read [ af'] as: set containing
If B is positive, of course, the two italicized phrases are
extensionally equivalent, since, by the construction of Q(W), all and only those
constituent sets lacking 8 must contain 5'.
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Now A is satisfiable iff the (finite) maximal consistent set
A * is satisfiable. This set is formed from A-, in a standard way
as follows. List in some order all possible wiffs, ¢i, ...,¢@, with
variable letters in W, and, starting with A™, take each ¢; in turn and
add it to the set provided the addition preserves consistency. This

maximal set has the usual properties:

(i) just one member of each pair of contradictories,
@i, @i belongs to the set;
-k _*
(ii) for each ¢;, ¢; ¢ A iff A o

= 3
(i) ¥ A contained both ¢; and @;, it would be inconsistent. If it
=% %
contained neither, both A~ U {¢;} and A" U {®;} would be incon-
sistent, so that, by r.a.a., both 5,- and ¢; would be derivable from

%
A. , which would again be inconsistent.
% 3
(ii) I ¢; € A , then (trivially) A - @i

_* _x :
If ¢; £ A , then A Ul{p;} is inconsistent, and &; is

-k
derivable from it. ¢; cannot then be derivable if A is consistent.

To each variable @ we now assign the corresponding class of
[ ol's in the model set, U(A-*), which is formed from Q(W) by
deleting every [ @] which lacks B for every wif Aaj € A_*. (a,8,
may be positive or negative. In particular Aay® deletes every

[ay], Aaa' deletes [a] and Aa'a every [a'l.)

%
Suppose a wif Iaf € A . (B# af. Note that Iaa® is
ok
inconsistent.) We show that there is a class [af] € U(A ), by

induction on the number, n, of complementary pairs in W.

Basis, n = 1. W contains just two variables, one the
complement of the other. Then the I wff has the form Iaa. {af
belongs to the model set, since only Aaa® could delete it, and the

—k
presence of such a wif in A  would make it inconsistent.
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Induction step . I, when W has just » complementary pairs,
=k =%
there is an [aB] € U(A ) when I € A , then this also holds

true when W has n+1 complementary pairs.
So, by the induction hypothesis, the model contains some set

{Vl, Y,y eee s Ymty 1 = m= n, wherey1 - a =B or vy, = a, v, =B,

%
which is not deleted by any A wff in A . Consider the case where
W has n+l complementary pairs, so that, in addition to v , ..., W
and their complements, there are also the variables v,+1 and

Yu+1 . It will not be possible to delate both the sets

(s Tys oee s Yo st
s s oo s s Yo 1}

X
For if it were, A  would contain wifs Ay;v,+1 and

ijy,iﬂ , for some v;, v;, ¢, j, = m. (The sets could also be
deleted by their contrapositives, but, if their contrapositives belong to
the maximal set, then so do they.) By contraposition and Barbara
these two wifs yield Av;Y5, which would therefore also belong to

_*

A . But this would delete the set {71 » Ypr e Yms when W contains

only » complementary pairs, which contradicts the induction hypothesis.

—* _*
Hence, if IaB € 4 , there is an LBy in U(A ),

and the classes of {a]'s and [B]'s are obviously non-null and (by the

_k
construction of (A ))non-universal.

% .
Suppose next that a wff Aef € A (a # 8°). Then so does
I«f (by sub.) and the model set contains an [a@f]. The construction

_x
of U(A ) then guarantees its truth in the model.

K
Therefore both the particular and the universal wiffs of A
are true in the model, and a fortiori so are all the wffs of its

—_%
subset A ,
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Decision procedures

The decision procedures given in Chapter 3 (p. 47ff.) for

" To determine whether a set of wifs,

BS may be adapted for BS*n.
A, is satisfiable (or consistent), we test the corresponding set,
N Appropriate changes must be made in the clauses listing the

types of unsatisfiable (inconsistent) sets.

For the use of Venn diagrams in cases with no more than

three different variables, see the end of the last section.

9.3 Unvestrvicted classes

The restriction to Aristotelian classes can be removed by

substituting the following rule for sub.:

Iap

lTaa

Aaa' / Aap would do as well.) This gives us a system which is
a sound and complete theory of the complementation, inclusion and inter-

section of unrestricted classes (classes which may be null or universal.)

Metatheorem 13. Completeness of modified BS™n.

Sketch of proof, Construct U(A_*) as before. The deletions
from Q(W) give a model set which verifies every A wff, Aaf, in the
maximal consistent set, since no class with o lacks B. If every
[ @] is deleted, the class of Lal's is the null set, and AwB is

verified because the null set is included in every set.

Iaa' and Ia'a are still both inconsistent, of course. And,
although Aca' ceases to be inconsistent with A a'a, the former is

not consistent with Iaa nor the latter with Iao'a'. Once again it

™ If you use the decision procedure based on the completeness proaf, you need
only construct the set A”. Indeed the proof of completeness can be formulated -
rather less economically - without recourse to maximal sets.
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_*
can be shown that there will always be an [ o] in U@ ) to verify

anv I @3 in the maximal set. End of sketch.

It should be noticed that the usual translation into the standard
predicate calculus fails to preserve the soundness of the interpretation,
since U(A_*) may be empty. If A—* contains two wffs of the form
Axa', Ax'w,, every set in Q(W) will be deleted and the model set will
be empty. To obtain a system interpretable only in terms of a non-

null domain, we may add to the last system the rule

Aaa'

Taa'
f o ¢ a',a’ o ' i,e. if « is null, @' is non-null,

The new rule makes Aaca' and Aca'e mutually inconsistent, so
that the maximal set will contain just one of them. If
_%
Aaa' £A | some [a'] will be undeletable from Q(W); and if
*

Ac'a ¢ A . some [ @i will be undeletable. Either way the model

set will be non-null.

9.4 Complex "tervmms' and Boolean algebya

Complex 'term' variables may be formed by using the symbols
U and N to form expressions for the union and intersection of classes.
Single letters continue to be class variables, and if «, 8, are class

wifs. so are a', (¢ J B) and (a N B).

To interpret these formulas as ranging only over Aristotelian
classes would trivialize syllogistic. For, since the intersection of
any two classes would have to be non-null, both ¢ N 8 and « n p'
would be non-null, and consequently I af would always be true and
Aof always false. Then any inference with a 'particular' conclusion
or 'universal' premiss would be valid. Indeed, unless the formation

of terms like o 1 o' were expressly forbidden, any adequate system
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would have I va' ( = Oaa) as a theorem and would accordingly be

inconsistent in the sense of 2.2.

The only reasonable interpretation of such an extended
syllogistic will therefore be in terms of unrestricted' classes. The
last system discussed in the previous section (BS*n modified with
Iap / Ia« in place of sub., and with the extra rule Aaa' / Ia'a')
may be extended to a Boolean algebra of classes by admitting complex
terms and making the following additions (the object language being

further enlarged to include = and 0):

1. Aap ABa a =8 a=f
a =f Aap AB«a

2. Dfs. AaB =4qf, a N B =a Iaf =4r.a N B # 0.
3. aﬂa‘:,o QU0 =« N

anp =pna aﬂ(ﬁﬂy):(aﬂﬂ)ﬂyj Axioms.
4. Dfs. 1 =41, 0' a U B =45 (@' N B,

In their present context the rules under 1. give the essential logical
properties of identity. The whole system, like any of those in this
chapter, can be subjoined to the full propositional calculus. (Cf.
Lukasiewicz's syllogistic, which seems far less ad hoc when the

syllogistic component is interpreted in terms of Aristotelian classes.)

It is not claimed that the formulation of Boolean class
logic given here is superior in elegance, still less ir{ economy, to
other versions. It is merely described in order to illustrate the now
familiar fact that syllogistic, extended in the most plausible way to
embrace complex terms, is under its class interpretation a mere
fragment of Boolean class algebra. Nevertheless, this brings us to
the historical threshold of contemporary logic, since it was Boole's
development of the logic of classes and his treatment of it as an
abstract system that were among the most significant steps culminating

in the modern breakthrough to be achieved by Frege.
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PRINCIPAL SYLLOGISTIC SYSTEMS DISCUSSED IN THE TEXT

BS  Rules: s.c., sub., Barbara, Celarent, r.a.a., id.
Sound and complete under Interpretation I (only affirmatives have
existential import).
(See 7.1 for interpretation in terms of Ontology.)

BS" Rules: as for BS. except that id.* replaces id.
Sound and complete under Interpretation II (all 'term' variables non-empty).
Sound and complete interpreted as a system for the inclusion and inter-

section of Aristotelian classes.

Brentano/Frege/Russell system
Rules: s.c., IaB, OQcpB, Barbara, Celarent, r.a.a., id.*.
Ioa Ooaw
Sound and complete for interpretation under which only particulars have
existential import.
Sound and complete interpreted as a system for the inclusion and inter-
section of unrestricted classes.

EBS + PC
&, =-, A, I primitive; v, —, E, O defined.
Rules: &-introduction, &-elimination, DN-elimination,
RAA, s.c., sub., Barbara, Celarent, id.*.
(Datisi may replace s.c. and Celarent.)

EBS* + PC (equivalent to Lukasiewicz's syllogistic)
Rules: as for EBS + PC, except that id.* or */Iawa replaces id.

BS*'n A4, I primitive. Primed variables introduced. E, O defined.
Replacement rule: o' for «, and vice versa.
Rules: s.c., sub., Barbara, r.a.a.
Sound and complete interpreted as a system for the inclusion, inter-
section and complementation of Aristotelian classes.

BS*'n modified to produce a system sound and complete when interpreted in
terms of the inclusion, intersection and complementation of unrestricted
classes.

Rules: as for BS*n, except that_Iaf replaces sub. (Cf. Brentano system).
Iaa

141






BIBLIOGRAPHY

Only works cited in the text are listed here

ARISTOTLE

ARISTOTLE

ARISTOTLE
BALDWIN, J.V. (1901-2)
BIRD, OTTO (1964)

BOCHENSKI, 1.M. (1948)

CARROLL, LEWIS (1893)

CHURCH, A (1956)

CHURCH, A (1965)

CHURCH, A (1972)

COHEN, L.J. (1971)

CORCORAN, J. (1972)
CORCORAN, J. (1973)

COUTURAT, L. (1903)

DUMMETT, M. (1973)

Pyiov and Posterior Analyltics. W.D. Ross ed.,

in Vol.I of Twvanslated Wovks (Oxford, 1928).
The Topics, reierence as for previous entry.

Categovies and De Intevpretatione, tr. by
J.L. Ackrill (Oxford, 1963).

Dictionavy of Philosophy and Psychology
(London).

Syllogistic and its Extensions (Englewood
Cliffs, N.dJ.).

'On the Categorical Syllogism',
Dominican Studies 1.

Symbolic Logic (New York).

Intvoduction to Mathematical Logic
(Princeton).

'History of the Question of Existential
Import', in Y. Bar-Hillel ed., Logic,
Methodology and Philosophy of Science
(Amsterdam).

'Traditional Logic', in Encyclopaedia
Britannica 14 (London).

'Some Remarks on Grice's Views About

the Logical Particles of Natural Language’,
in Y. Bar-Hillel ed., Pragmatics of Natural
Language (Dordrecht).

Ancient Logic and Its Modevn Intevpvetations
(Buffalo).

'Completeness of an Ancient Logic’,
Journal of Symbolic Logic 37.

La Logique de Leibniz (Paris).

Frege: Philosophy of Language (London).



EDWARDS, P. (1967)

FREGE, G. (1879)

FREGE, G. (1951)

FREGE, G. (1969)

GEACH, P.T. (1962)

GEACH, P.T. (1971)

GEACH, P.T. (1975)

GEACH, P.T. (1976)

GRICE, H.P. (1961)

GRICE, H.P. (1975)

HARE, R.M. (1971)

HART, H.L.A. (1951)

KENNY, A. (1973)
KEYNES, J.N. (1906)

KNEALE, W. &
KNEALE, M. (1962)

LEIBNIZ, G. (1704)

LEMMON, E.J. (1965)

Ed., The Encyclopedia of Philosophy
(London).

Begriffsschvift, English translation in
J. Heijenoort ed., IFrom Fvege lo Gdel
(Cambridge, Mass., 1967).

Tvanslations from Frege, P.T. Geach and
M. Black edd. (Oxford).

Nachgelassene Schyiften (Hamburg),
H. Hermes et al. edd.

Refervence and Genevalily (Ithaca and
London).

Logic Malters (Oxford).

'Names and Identity', in S. Guttenplar ed.,
Mind and Language (Oxford).

Reason and Avgument (Oxford).

'The Causal Theory of Perception', Proc.
of the Awvistotelian Soc., Suppl. Vol. 35.

'Logic and Conversdtion', in J. Kimball ed.,
Svntax and Semanilics, Vol.3 (London).

'Some Alleged Differences Between
Imperatives and Indicatives', in his

Praclical Inferences (London).

'A logician's Fairy Tale', Philosophical
Review 60.

Witigensiein (London).

Formal Logic, 4th ed. (London).

The Development of Logic (Oxfofd).
Nouveaux Essais, in C.I. Gerhardt ed.,
Philosophische Schvifien 5 (Berlin,
1875-90).

Beginning Logic (Edinburgh),

144



EUKASIEWICZ, J. (1957)
MENDELSON, E. (1970)

MONTAGUE, R. (1969)

NERLICH, G. (1965)
OLIVER, J.W. (1967)
PATZIG, G. (1968)

PRIOR, A.N. (1962)

PRIOR, A.N. (1976)

PUTNAM, H. (1972)

QUINE, W.V.  (1970)
ROSE, L. (1965)

SANFORD, D. (1968)

SHEPHERDSON, J.C. (1956)
SMILEY, T.J. (1963}
SMILEY, T.J. (1967)
SMILEY, T.J. (1973)

STRAWSON, P.F. (1950)

STRAWSON, P.F. (1952)

Avistotle's Syllogistic, 2nd ed. (Oxford).
(st ed. 1951.)

Theory and Problems of Boolean Algebra
(New York).

'"Presupposing', Philosophical Quarterly 19,

'"Presupposition and Entailment’,
American Philosophical Quarterly 2.

'Formal Fallacies and Other Invalid
Arguments', Mind 76.

Avistotle's Theory of the Syllogism, tr.
by J. Barnes (Dordrecht).

Formal Logic, 2nd ed. (Oxford).

The Doctrine of Propositions and Terms
(London).

Philosophy of Logic (London).

Prilosophy of Logic (Englewood Cliffs,
N.J.).

'Aristotle's Syllogistic and the Fourth
Figure', Mind 74.

'Contraries and Subcontraries', Nous 2.

'On the Interpretation of Aristotle's
Syllogistic', Jouwrnal of Symbolic Logic 21.

'Syllogism and Quantification', Journal of
Symbolic Logic 2°F.

'Mr. Strawson on Traditional Logic’,
Mind 76.

'What is a Syllogism?', Journal of

Philosophical Logic 2.
'On Referring', Mind 59.

Introduction to Logical Theory (London),

145



STRAWSON, P.F. (1971)

STRAWSON, P.F. (1976)
THOMAS, I. (1952)

VENDLER, Z. (1962)
VON WRIGHT, G.H. (1957)

WIGGINS, D. (1968)

WU, J.S. (1969)

Logico-Linguistic Papers (London),

Subject and Pvedicate in Logic and
Grammavr (London).

'A New Decision Procedure for Aristotle's
Syllogistic', Mind 61.

'Each and Every, Any and All', Mind 71.
Logical Studies (London).

Identity and Spatio—Tempoval Continuity
(Oxford).

'The Problem of Existential Import’,
Notre Dame Journal of Formal Logic 10.

146



INDEX

Albert the Great, 19 soundness under Interpretation I,
Alexander, 95 29ff., 48
Aristotle, vii, viii, 1ff., 35ff., BS* 16, 18, 23, 26, 111, 141
90, 94, 95, 96, 121, 128 complete with respect to inclusion
Categovies, 262 and intersection of non-empty
De Intevpretatione, 65, 131 classes, 122
his method of invalidation, 35ff. completeness under Interpretation II,
Postevior Analytics, 25 76n., 83f.
Priov Analylics, 1, 4ff., 25f., consistency, 27ff., 32
35ff., 128 decision procedure, 76n.
Topics, 132 ’ independence of the rules of
Aristotelian classes, see classes inference, 32ff.
asterisk, see rules of inference, sound under artificial interpretation
'identity' of 5.2, 81f,
sound under Interpretation II, 82f.
Barnes, J., 36 unsound under Interpretation I, 29
Bird, O., 129f. unsound with respect to inclusion
Bocheniski, 1. M., vity 73 and intersection of unrestricted
his CS, 73 classes, 122n.
Boethius, 128 BSn, 129ff.
Boole, G., 122 BS*'n, 129ff., 142
Boolean algebra, 140 decision procedures, 138
Braine D. D. C., vii modified for unrestricted classes,
branch, see tree 138, 142; completeness of modified
branching, see tree, inverted system, 138f., further modified
Brentano, F., 91 to be interpretable in terms only
Brentano/Frege/Russell system, of a non-null domain, 139
91, 141 language and formation rule, 130
completeness 91f., 122, 127 rules of inference, 131
BS, vii,15ff., 26, 73, 109, sound and complete as a theory of
111, 119, 129, 141 inclusion, intersection and
adequacy of decision and proof complementation of Aristotelian
procedure of 3.3, 55ff. classes, 129, 133, 134ff.
completeness under Buridan, 19
Interpretation I, 41ff,
consistency, 27ff., 32 Cardwell, R.A., ix
decision procedures, 47ff., 60f. Carroll, L., diagrams, 125ff., 127
deductions, 17 chain of A wffs, 49ff.
formation rule, 15 Church, A., 19, 83, 111
inconsistent sets listed, 49ff. class, 121ff,
independence of rules of Aristotelian, 129, 134ff., 140
inference, 32ff. non-empty, 122ff.
interpretations, 18ff. unrestricted, 122, 138
language, 15 Cohen, L. J., 108
proof procedures, 47ff., 60f. conversion
rules of inference, 15f. per accidens, 6

147



conversion (contd.)

simple, 5

see also rules of inference
constantia, 82f.

contradictory, 7ff., 20, 26, 35,
65ff., 133

contrary, 10, 26, 36, 65ff.,, 133
Corcoran, J., vii, viii, 16, 25n.,

26, 41, 90

count noun, 2
count-noun phrase, 2
Couturat, L., 1

Cs, 73

deduction (derivation) 17, 23
De Morgan, A., 128
derivation, see deduction
discharging an assumption, 8
non-discharge rule, 62f.
Dummett, M., 94

EBS, 65ff., 119

sound and complete under
extended version of Interpre-
tation I, 67

EBS", 65ff.

sound under extended version
of Interpretation II, 73
sound under Strawson's inter-
pretation, 100ff.

EBS + PC, 70, 77, 141
completeness under extended
version of Interpretation I,
74ff.

consistency, 74

elementary wif of, 74

sound under extended version
of Interpretation I, 73

EBS" + PC, 72, 77, 141
completeness under extended
version of Interpretation II,
76n., 83

consistency, 73

equivalent to Fukasiewicz's
syllogistic, 72f. )
independence of postulates, 73

ecthesis, proof by, 10, 94ff.

Edwards, P., 125

entailment, 100ff.

existential import, 19f., 100ff., 122
existential quantifier, 78f., 100ff.
definition, 79

Euclid, 8

Euler, L., 126n.

Feys, R., vii

figure, syllogistic, 3f.

fourth, 4, 39

free logic, 84

Frege, G., 24, 79, 82, 91, 92, 94,
111, 112, 116f., 119, 121, 140

Geach, P. T., ix, 39, 41, 68, 92,
94, 112, 115, 117ff,, 123, 125
Gentzen, G., 64, 68

Grice, H. P., 108

Hare, R. M., 108
Hart, H. L. A., 102

initial list, 22

initial segment, see tree, inverted tree

interpretation of a syllogistic logic, 19
1, 18, 26, 41, 67, 74ff., 7Sff.,
100, 107

o, 76n., 82ff., 123
Brentano/Frege/Russell interpre-
tation, 91

inclusion, intersection and comple-
mentation of Aristotelian
classes, 129

inclusion and intersection of non-
empty classes, 122

inclusion and intersection of
unrestricted classes, 122

of BS, 18ff., 41

of BS*, 76n.; 82ff,, 111, 129;
artificial interpretation of BS*, 81f.
of BSn, 129

of BS'n, 129

of EBS' + PC, 76n.

Strawson's interpretation, 100ff.

John of St. Thomas, 82

Kenny, A., 4



Keynes, J. N., 111, 129, 133
Kirwan, C. A., ix

Kneale, W. and Kneale, M., 26,
89, %4

Ladd-Franklin, C., 2n.
Leibniz, G., 1, 66
Lemmon, E.J., 67, 68, 78,
83, 97
Lesniewski, S., ix,
his Ontology, 113ff.
his Protothetic, 113
Lewis, C. I., 103
linear deduction, 62ff,

definition, 63
Yukasiewicz, J., vii, viii, 72, 73
74, 76n., 82, 95, 123

his syllogistic, 72f., 76n.,

82, 140

113

Mendelson, E., 124f.
metatheorems

1. consistency of BS", 27ff.

2. soundness of BS under Inter-
pretation I, 29ff., 48
completeness of BS under
Interpretation I, 42ff.
adequacy of a decision and
proof procedure for BS, 56ff;
preliminary lemmas, 53ff.
correspondence of linear and
non-repetitive tree derivations
in BS, 64f.

deduction theorem for PC, 72
completeness of EBS + PC
under Interpretaticn I etc,
741ff.

a derived rule of the predicate
calculus, 81

completeness of BS" under
Interpretation II, 83
completeness of Brentano
system, 91f,

soundness of BS*n as a theory
of Aristotelian classes, 134f.
completeness of BS'n as a
theory of Aristotelian
classes, 135ff.

6.
7.

10.

11,

12.

149

13. completeness of BS'n modified
for unrestricted classes, 138f.

Montague, R., 105

mood, syllogistic, 4

Barbara, 7, see also rules of
inference

Baroco, 6f.

Bocardo, 6,8

Camestres, 4f., 9

Celarent, 4f., see also rules of
inference

Darapti, 6

Darii, 6, 9

Ferio, 9

list of moods, 4

weakened mood, 4

multiple generality, 92ff.

necessary truths, 13f., 24
Nelkin, N., ix

Nerlich, G., 105

nothing as a name in Le$niewski's
Ontology, 113

Ockham, William of, 18, 92
Oliver, J. Willard, 37
Ontology, see Lesniewski

Partridge, M., iv
Patzig, G., 15, 36
Philoponus, John, 3
predicate logic, 77
formation rules, 78

many-~sorted, 84ff., 86; language of,

85f.; rules, 87
predicate calculus, 78
premiss
major, 3, 5, 15
minor, 3, 5, 15
redundant, 20ff.
presupposition, 105ff.
Prior, A. N., 2n., 16, 128
proposition, 1
four traditional types of general
categorical, 1

propositional calculus (PC), 68ff., 77
deduction theorem (Methatheorem 6),

68, 72



propositional calculus (PC) (contd.)
definition of a deduction, 69
modus ponendo ponens, 69,

see also rules of inference

see alsoEBS + PC; EBS' + PC
Protothetic, see Lesniewski
Putnam, H., 122n.

Quine, W. V. 22n.

rank of a wif
in a linear deduction, 65
in a tree deduction, 28, 54
reduction
direct, 6ff.
indirect, see rules of inference,
veductio ad absuvdum
root (origin), see tree
Rose, L., 4
rules of inference
and-elimination (&E), 69
and-introduction (&I), 69
Barbara, 7, 13, 21, 25f., 71,
72, 77, 80, 88f., 131
Celarent, 6, 9ff., 15, 70, 80, 88
conversion per accidens, 6, 9ff.
Datisi, 70, 71, 72, 73, 77, 132
derived rules of BS'n
contraposition, 132
inversion, 131, 134
obversion, 128, 131
double negation (DN), 65
Ferio, 73
'identity'
(id.), 14, 16, 20, 25, 72, 77, 80
(id.*), 13, 16, 18, 20, 25, 72,
77, 87f., 101, 131
id.* @y, 71, 72, 77
modus ponendo ponens (MPP),
72, 74
reductio ad absurdum
(r.a.a.), 4, 7ff., 15f., 22,
23, 80, 98, 131
(RAA), 68f., 72n.
rule of substitution, 72, 74
rules for BS* with names, 99
simple conversion (s.c.), 6, 12,
1sf., 70, 80, 88, 131

universal elimination (UE), 79
in many-sorted logic, 87; UE(S), 88
universal introduction (UI), 79
in many-sorted logic, 87
Russell, B. A. W., 79, 82, 83,
91, 111
Ryle, G., 21

Sanford, D., 67

satisfiability, 35ff.

under Interpretation I, 41ff.
schematic letter, 15

separation, see tree, inverted
sequent, 18

set (see also class)

consistent, 40ff.

satisfiable, 35ff.

Shepherdson, J.C., vii, viii, 91, 132
Sherwood William of, 18

Stupecki, J., viif, 7.

Smiley, T. J., vii, {8, 26, 39, 84,
90, 94, 101

sorites, 13

Square of Opposition, 65ff.
Strawson, P.F., ix, 67, 100ff.,
119n., 129

subaltern, 65ff., 133
subcontrary, 65ff., 133

subject and predicate, 112ff.
suppositio (reference), 92
syllogism, 3ff., 20

non-probative ('inconcludent'), 36

term
complex, 115, 129
major, 4, 36
middle, 4, 36
minor, 4, 36
negative, 100, 101
non-empty, 82ff.
objections to essentially non-empty
terms, 89ff.
singular, 94ff.
Thomas, Ivo, 61
Thompson, M., 19
tip, see tree
tree, 14, 16ff.
branch of, 14, 17

150



defined, 17

inverted, T74ff.

non-repetitive tree derivations,
18, 64

rank of wff in a tree derivation,
28

root of (origin of), 17

tree and linear derivations, G62ff.

two-name theory, 112ff.

validity, 21f., 37ff.

under Interpretation I, 41ff.

variables

negative, 128ff.

term, 2, 15

Vendler, Z., 109

Venn diagrams, 123ff., 127, 134,
135n., 138

Von Wright, G. H., 103

Wedberg, A., viii
Wiggins, D., 2n., 119
Wu, J. A,, 111

Zeno, 8

151



	Binder1
	Binder1
	Binder2
	SYLLOGISTIC
	SYLLOGISTIC2
	SYLLOGISTIC3
	SYLLOGISTIC4
	SYLLOGISTIC5a
	SYLLOGISTIC5b
	SYLLOGISTIC6
	SYLLOGISTIC7

	Binder03
	SYLLOGISTIC9
	SYLLOGISTIC90001


	SYLLOGISTIC10

	SYLLOGISTIC11
	Blank Page




