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Abstract

We propose a model for chiral polymerisation and investigate its symmetric and asymmet-
ric solutions. The model has a source species which decays into left- and right-handed types
of monomer, each of which can polymerise to form homochiral chains; these chains are suscep-
tible to ‘poisoning’ by the opposite handed monomer. Homochiral polymers are assumed to
influence the proportion of each type of monomer formed from the precursor. We show that
for certain parameter values a positive feedback mechanism makes the symmetric steady-state
solution unstable.

The kinetics of polymer formation are then analysed in the case where the system starts
from zero concentrations of monomers and chains. We show that following a long induction
time, extremely large concentrations of polymers are formed for a short time, during this
time an asymmetry introduced into the system by a random external perturbation may be
massively amplified. The system then approaches one of the steady-state solutions described
above.

Keywords: autocatalysis, bifurcations, chiral polymerisation, cross-catalysis, growth kinet-
ics, symmetry-breaking.

1 Introduction

Studies of the origins of life raise many associated fundamental questions. Among these, one is
concerned with the origin and propagation of molecular handedness. It is well known that chirality
is a signature of life as we know it. Nucleic acids contain only D-sugars while proteins are made
only from L-amino acids (although D-amino acids do occur in Nature and even occasionally show
up in some proteins, Jung (1992)). What leads to the synthesis of homochiral polymers, in which all
the constituent monomers have the same handedness ? And what is responsible for the evolution
of chiral purity, the more or less exclusive dominance of one macromolecular handedness over its
mirror image? These are questions of great interest and importance and remain the subject of
much discussion.

It is known that, in general, the addition of the correct enantiomer to a growing polymer
chain is more favourable that the wrong one (Joshi et al.2000). Indeed Joyce et al.(1984) showed
that addition of the wrong-handed monomer to a growing oligonucleotide chain acts as a chain
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terminator, stopping all further reaction. For the case of proteins, there is also the driving force of
the beneficial secondary structures, such as α-helices and β-sheets, that may arise from homochiral
polymers. Given these assumptions, that wrong-handed monomers inhibit chain growth, our paper
is concerned with whether, starting from a racemic mixture of monomers, it is possible to produce
a system of homochiral polymers of a greater or lesser degree of chiral purity. Starting from
an achiral substrate, we shall be concerned with whether it is possible to produce a system of
homochiral polymers of high chiral purity by analysing some plausible kinetic models.

There is some discussion of related matters and experimental observations in the recent litera-
ture. Zubay (2000) provides a readable discussion of possible pre-biotic chemistry, while Colonna
et al. (1984) describes a number of alternative self-reproducing systems. Sandars (2002) reviews
the range and importance of chirality in biological systems, as well as the chemical processes which
lead to achiral states. After summarising a possible historical order of events in the origin of life
on Earth Sandars discusses the stages where a bifurcation to a chiral state may occur. He then
applies existing knowledge of chirality on Earth to speculate on the question of extra-terrestrial life
and its chirality.

Luisi’s group at ETH in Zurich has studied various polymeric systems in which left- and right-
handed monomers aggregate together to form larger than expected concentrations of homochiral
polymers (Blocher et al.2001, Hitz et al.2001). Hitz et al. present an analysis of the data and
postulate that the exess of homochiral polymers is due to a high-order Markov process rather
than the feedback mechanism which we analyse in this paper. It is readily understood that the rate
coefficient governing polymer growth may depend on the handedness of the monomer to be attached
to the chain and handedness of the monomer which currently terminates the chain; however, with
a high-order Markov processes this rate coefficient may also depend on the handedness of the
penultimate (and possibly the antepenultimate) monomers in the polymeric chain.

While oligopeptides spontaneously form homochiral sequences, Hitz & Luisi (2002) have shown
that the presence of quartz promotes the production of a high yield of homochiral sequences. More
recently (Hitz et al.2003) this has been quantified and the level of enantiomeric exess in a system
has been amplified from 20% to over 70% and in some cases to 100%, by the presence of quartz.

The model of symmetry-breaking in chiral polymerisation which we explore in this paper is
based on a model suggested by Sandars (2003). Sandars gives an account of the history of chemical
discoveries leading up to the mechanisms of enantiomeric cross-inhibition and autocatalysis upon
which his and our models rely. Sandars integrates the resulting system of ordinary differential
equations numerically to explore the parameter regimes where symmetry-breaking solutions exist.
He observes a ‘phase-transition’ type of phenomenon where a small change in the fidelity of the
feedback mechanism leads to a large-scale change in the steady-state which the system as a whole
converges to. Below a critical fidelity in the nonlinear feedback process the system approaches a
symmetric state where equal amounts of left- and right-handed polymers coexist, whilst above the
critical fidelity a homochiral state is approached in which one chirality of polymer dominates to
the almost complete exclusion of the other.

The model studied here includes the inhibition of homochiral sequences of long chains. This
bears some similarity with our modelling of cement hydration (Wattis & Coveney 1997) in which
larger clusters were susceptible to poisoning by another component. Here the poison is simply the
monomer of opposite chirality, so each monomer can either act as an agent of growth (of polymers of
the same handedness) or of inhibition (of polymers of the opposite handedness). This dual role leads
to some subtle and interesting effects since an abundance of, say, right-handed polymers makes it
unlikely for any left-handed polymeric sequences to form, and the majority of left-handed monomers
produced will be consumed by inhibiting right-handed homochiral sequences - a ‘double-whammy’
effect. This form of competition is distinct to the models of nucleation involving competition we
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have analysed previously; for example in Wattis (1999) and in Bolton & Wattis (2003) there is only
one monomer which assembles to form two morphologies of cluster. Competition is thus between
the growth of one type of cluster and that of another. However, similar mechanisms are operative
in both those examples and in the present paper, since both types of homochiral polymer sequence
(left and right) are ultimately composed from, and hence competing for, the same source material.

We have investigated the growth of RNA chains in an earlier paper, (Wattis & Coveney 1999)
wherein we used a much more detailed and hence complicated model to assess the feasibility of
long self-replicating RNA sequences forming within a realistic timescale. While that model of RNA
polymerisation had no precursor species, it contained four types of nucleotide monomer (A, C,
G and T), both autocatalytic and cross-catalytic polymerisation mechanisms and an important
hydrolysis step that recycled growing RNA sequences. On the basis of plausible assumptions about
the prebiotic soup, and by invoking a number of approximations and coarse-graining procedures,
we were able to show that self-replicating RNA sequences are amplified in such mixtures, while less
capable replicators are driven to extinction.

By comparison, in the present paper we are able to construct a model which is more directly
tractable using standard methods of mathematical analysis. The paper is structured as follows. In
section 2, we specify the basic kinetic model, while in section 3 we study its steady-state solutions.
Section 4 considers the time-dependent achiral solutions and investigates their kinetic stability.
Section 5 then considers the case of perfect chiral symmetry-breaking. It is followed by a discussion
(section 6) and conclusions from our work are presented in section 7.

2 The kinetic model

2.1 Microscopic modelling

We aim to investigate spontaneous symmetry breaking in a system which allows both right- and
left-handed chiral polymers to form. We assume there is some achiral source S which spontaneously
transforms into right- and left-handed monomers at a slow rate ε; we also assume that the presence
of longer chiral polymers (denoted L or R) accelerates the formation of monomers of the same
chirality. Thus we shall be concerned with the following set of coupled chemical reactions:

S
ε−→ L1, S + Q

k(1+f)
2−→ L1 + Q, S + P

k(1−f)
2−→ L1 + P,

S
ε−→ R1, S + P

k(1+f)
2−→ R1 + P, S + Q

k(1−f)
2−→ R1 + Q,

(1)

where L1, R1 are the left and right monomer species respectively while Q (P ) represents some
measure of the total concentrations of left-handed (right-handed) homochiral polymers in the sys-
tem. The precise forms of these rate processes will be specified later (see equation (4)). The rate
coefficients of the reactions are ε, k. We shall assume that ε � k, and that k depends on the
length of the polymer L, R. The parameter f in these rate coefficients is the fidelity of the feedback
mechanism; typically this will not be perfect, that is, f < 1 is likely in general.

This model has some similarities with models we have studied in other areas of investigation;
for example, the kinetics of micelle-formation in ethyl caprylate (Coveney & Wattis, 1996). In this
system the breakdown of caprylate ester into monomer occurs spontaneously at some slow rate, but
is massively accelerated by the presence of micelles, which have a catalytic role in the breakdown
of the source species. In the present paper this mechanism is more complex since there are two

monomers, and there is an additional fidelity parameter since long left- or right-handed sequences
can promote the formation of the oppositely-handed (right/left) monomer as well as its own. In
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the caprylate system, unusual kinetic behaviour is observed when the system is initiated without
any product present. The system is then effectively in a metastable state, and very little appears
to happen for a long time. Following this induction time, the kinetics then proceed fairly rapidly.
We expect to see similar behaviour in the current model in the case ε � 1.

Sandars’ model (2003) differs from ours in that his imposes a maximum polymer length, typically
set at five, and only polymers of this maximum length act catalytically in the breakdown of the
source into monomers. We allow polymers to grow to arbitrary lengths, and chiral polymers of all
lengths have some degree of efficacy in the autocatalytic feedback mechanism by which the source
species decays to form chiral monomers.

The monomers will be allowed to combine to form chirally pure polymers, denoted by Ln and
Rn according to

Ln + L1
a−→ Ln+1, Rn + R1

a−→ Rn+1. (2)

We assume that the monomer of opposite handedness may attach to a growing polymer and so
inhibit its growth; such inhibited sequences will be denoted by RLn for a polymer Ln which has
been terminated by an R1 monomer, and LRn for the corresponding RnL1 polymer. We denote
the rate of such reactions by aχ. Thus we have the two rate processes

Ln + R1
aχ−→ RLn, Rn + L1

aχ−→ LRn. (3)

However, the sequences RLn, LRn are treated as inert products which have no influence on the
other rate processes; therefore their concentrations can be ignored in the mathematical modelling
of the chemical reactions. Following Joyce et al. (1984) we assume no further growth of these
products can occur. The system studied by Joshi et al. (2000) corresponds to 0 < χ < 1; however,
we shall consider the full range of possible χ > 0.

Note that our model is left-right symmetric, as for all mechanisms left can be replaced by right
and vice verse, with the rate constants remaining unchanged. Thus we expect the equations which
govern the evolution of the concentrations of species also to have this right-left symmetry, as indeed
will be observed in the next section. We also expect these equations to have a solution in which
right- and left-handed species appear in equal concentrations (again we will see that this is the
case); however, since the model includes a feedback mechanism, there may be other solutions in
which right- and left-handed species do not occur in equal concentrations. In systems which have
multiple solutions, determining which solution is occurs in any experiment requires an analysis of
the stability of solutions, not just their form.

2.2 Macroscopic model

To close the system of rate equations ensuing from the scheme (1)–(3) we shall assume that the
source chemical, S, is added to the system at some constant rate S0. We define macroscopic
quantities for the total concentration of all homochiral sequences of each type of polymer by L and
R, and the mass of monomers in each set of homochiral sequences by Q, P in schema (1) by

L =
∞∑

n=2

Ln, R =
∞∑

n=2

Rn, Q =
∞∑

n=2

nLn, P =
∞∑

n=2

nRn. (4)

Applying the law of mass action to (1)–(3) and using the definitions of (4), we obtain the kinetic
equations

dS

dt
= S0 − 2εS − kS(P + Q) (5)
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dL1

dt
= εS + 1

2
kS[(1 + f)Q + (1 − f)P ] − aL1(2L1 + L + χR) (6)

dLn

dt
= aL1(Ln−1 − Ln) − aχLnR1 (n ≥ 2) (7)

dR1

dt
= εS + 1

2
kS[(1 + f)P + (1 − f)Q] − aR1(2R1 + R + χL) (8)

dRn

dt
= aR1(Rn−1 − Rn) − aχRnL1 (n ≥ 2). (9)

This constitutes a quantitative description of the polymerising system. Equations (7) and (9) hold
for all integers n ≥ 2, that is for all polymer lengths, from dimers (n = 2) to infinitely long
polymers. A diagrammatic summary of the rate processes involved is shown in Figure 1.

R1 R2 R3 R4 R5

LR2 LR3 LR4 LR5

L1 L2 L3 L4 L5

RL2 RL3 RL4 RL5

−→ −→ −→ −→ −→a a a a a

−→ −→ −→ −→ −→a a a a a

↑ ↑ ↑ ↑

↓ ↓ ↓ ↓

aχ aχ aχ aχ

aχ aχ aχ aχ

. . .

. . .

. . .

. . .

. . .

. . .

S

��3

QQs

Figure 1: Diagrammatic representation of the homochiral polymerisation scheme under study.

A considerable advantage of the present model is that it is possible to reduce the complexity
of the corresponding infinite set of rate equations (5)–(9), resulting in a closed system of only
seven equations which contains the dynamics of the full system. This is based on the quantities
S, L1, R1, L, R, P, Q which evolve according to

dS

dt
= S0 − 2εS − kS(P + Q) (10)

dL1

dt
= εS + 1

2
kS[(1 + f)Q + (1 − f)P ] − aL1(2L1 + L + χR) (11)

dL

dt
= aL2

1 − aχLR1 (12)

dQ

dt
= 2aL2

1 + aLL1 − aχQR1 (13)

dR1

dt
= εS + 1

2
kS[(1 + f)P + (1 − f)Q] − aR1(2R1 + R + χL) (14)

dR

dt
= aR2

1 − aχRL1 (15)

dP

dt
= 2aR2

1 + aRR1 − aχPL1. (16)

The rate processes described in terms of equations (10)–(16) are depicted in Figure 2. This
reduction from an infinite system of coupled ordinary differential equations to a system of just
seven ordinary differential equations is remarkable in that it is an exact simplification – no ap-
proximations have been made. Such an exact reduction would not be possible if the growth rate
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coefficients were dependent on polymer length. If appropriate at all it would then have to rely on
approximations, and an accurate approximation may require not just the zeroth and first moments
of the distributions Ln, Rn, but on higher moments as well.
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Figure 2: Illustration of our homochiral polymerisation scheme including the nonlinear feedback
mechanisms. The quantities LRn, RLn are not included in the mathematical model since they play
no role in the reaction scheme. The quantities L, R refer to the total numer of polymers of each
handedness, and P, Q to the total mass of material in polymeric form. It is these latter quantities
(P , Q) which determine the effectiveness of the catalytic breakdown of the source species into
monomers.

2.3 Transforming the system of kinetic equations

Before we analyse the steady-state kinetics, it is useful to recast the system of seven ordinary
differential equations in an alternative form. Instead of describing the concentration of each species
separately, we assign variables for the total concentrations of source material (S), monomers (µ),
sequences (N) and sequence mass (M),

µ = L1 + R1, N = L + R, M = P + Q, (17)

and a set of variables δ, θ, η for the proportions of right-handed molecules in each of µ, N, M
respectively

δ =
R1 − L1

R1 + L1
, θ =

R − L

R + L
, η =

P − Q

P + Q
. (18)

These quantities relate to the chiral purity of the system: δ is the chiral purity of the monomers
(µ), θ and η describe the chiral purity of the homochiral polymer chains, θ being a number-weighted
measure (corresponding to N) and η a mass-weighted measure (corresponding to M).

We transform the kinetic equations (10)–(16) into the variables relating to the concentrations
of polymers given by (17)–(18) and hence obtain the seven coupled equations

dS

dt
= S0 − 2εS − kSM, (19)

dµ

dt
= 2εS + kSM − aµ2(1 + δ2) − 1

2
aµN(1 + δθ) − 1

2
aχµN(1 − δθ),

(20)

dN

dt
= 1

2
aµ2(1 + δ2) − 1

2
aχµN(1 − δθ), (21)

dM

dt
= aµ2(1 + δ2) + 1

2
aµN(1 + δθ) − 1

2
aχµM(1 − δη), (22)
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dη

dt
=

aµ2

M
(2δ − η − ηδ2) +

aµN

2M
(δ + θ − η − δθη) + 1

2
aχµδ(1 − η2),

(23)

dθ

dt
=

aµ2

2N
(2δ − θ − θδ2) + 1

2
aχµδ(1 − θ2), (24)

dδ

dt
= −2εSδ

µ
− kSMδ

µ
+

kfSMη

µ
− 1

2
a(1 − δ2)(2µδ + Nθ − χNθ).

(25)

The advantage of (19)–(25) over (10)–(16) lies in the considerable reduction in the amount of
algebra required to derive solutions; for example it is easy to see that δ = θ = η = 0 satisfies
(23)–(25), leaving a system of four equations (19)–(22) for the four unknowns S, µ, N, M .

The equations (19)–(25) will be used throughout the rest of the paper. In later sections we
shall consider the equations for the symmetric growth of homochiral polymer sequences, (19)–(22),
separately from the equations describing the chiral purity of the system, (23)–(25).

3 Steady-state behaviour

For the analysis of the steady-state solutions all the right-hand sides of equations (10)–(16), or
equations (19)–(25) are set to zero. For the later stages of the calculation of the steady-states we
ignore the small parameter ε (that is, we set ε = 0), since this will allow explicit analytical formulae
to be derived and this will not greatly influence the steady-states. The reason for this is that once
there are appreciable numbers of polymers of either handedness present in the system, the catalytic
breakdown of source will dominate the production of monomers of both handednesses. The O(ε)
terms in equations (10)–(16) will be reinstated later where the kinetics of the system starting from
zero initial data are investigated.

We solve the equations (10), (12) and (15) to express the solution in terms of L1, R1

L =
L2

1

χR1
, R =

R2
1

χL1
, P =

R2
1(R1 + 2χL1)

χ2L2
1

, Q =
L2

1(L1 + 2χR1)

χ2R2
1

, (26)

S =
S0χ

2L2
1R

2
1

2εχ2L2
1R

2
1 + k(L5

1 + R5
1 + 2χL4

1R1 + 2χL1R4
1)

. (27)

The microscopic steady-state solution is then found to be

Ln = L1

(
L1

L1 + χR1

)n−1

, Rn = R1

(
R1

R1 + χL1

)n−1

. (28)

In terms of the variables N , M , θ, η, the steady-state solution is then

N =
µ(1 + 3δ2)

χ(1 − δ2)
, M =

µ[1+10δ2+5δ4 + 2χ(1−δ2)(1+3δ2)]

χ2(1 − δ2)2
, (29)

together with

S =
S0χ

2(1 − δ2)2

2εχ2(1 − δ2)2 + kµ[1 + 10δ2 + 5δ4 + 2χ(1−δ2)(1+3δ2)]
. (30)

The average chain length is given by M/N , which can be written as

M

N
= 2 +

1 + 10δ2 + 5δ4

χ(1 − δ2)(1 + 3δ2)
. (31)
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Figure 3: Graph of steady-state values for the chiral purities (θ, η) of the homochiral sequences
against the chiral purity of the monomer, δ. These are given by equation (32), and show the
accentuated effect of symmetry-breaking in the homochiral sequences compared to the monomers.
The solid line corresponds to θ; the dashed lines refer to η. The steepest curve relates to χ = 0,
the next to χ = 1 and that for χ = 2 is the closest to the θ curve.

The most important thing to notice about the second term here is that asymmetric (chiral, i.e.
δ 6= 0) solutions permit longer chains to be produced. For the symmetric solution (δ = 0) we have
M/N = 2 + 1/χ; whereas if δ approaches ±1 then arbitrarily large chains can be produced. We
note that large inhibition rates (χ) reduce the expected sequence length (as one might expect);
however, we shall show later on that this effect is compensated for since larger values for χ make
it easier for the system to adopt a chiral state.

It is more natural to express solutions in terms of µ, δ than L1, R1. The chiral purity of the
polymers can be defined in two ways, one by the mass-weighted purity (η) and the other in terms
of the number-weighted purity (θ). At steady-state we have

θ = δ

(
3 + δ2

1 + 3δ2

)
, η = δ

(
5 + 10δ2 + δ4 + 2χ(1 − δ2)(3 + δ2)

1 + 10δ2 + 5δ4 + 2χ(1 − δ2)(1 + 3δ2)

)
. (32)

Thus if the chiral purity of the monomer, δ, departs from zero, then the chiral purity of the
homochiral sequences (θ and η) also do, and by greater amounts, as illustrated in Figure 3. This
can be seen from the linearisations for small δ which give θ = 3δ and η = (5 + 2χ)δ/(1 + 2χ). For
large χ the curve for η approaches that for θ.

When substituted into equation (20) the above equations yield

µ2 =
2χS0(1 − δ2)

3aχ(1 − δ4) + a(1 + 6δ2 + δ4)
. (33)

Finally we have to determine the chiral purity of the monomers, δ. This is the most complicated
part of the calculation so, for the sake of clarity, we now set ε = 0; δ is then given by either δ = 0,
the symmetric (achiral) steady-state solution or, in terms of the fidelity, by

f =

(
1+10δ2+5δ4 + 2χ(1−δ2)(1+3δ2)

5+10δ2+δ4 + 2χ(1−δ2)(3+δ2)

)(
4(1+δ2) + 2χ(1−δ2)

1+6δ2+δ4 + 3χ(1−δ4)

)
. (34)

We shall discuss this chiral solution in further detail later on (Section 3.2). One question we aim
to address in the remainder of this section is how small f could be, and the system still exhibit a
bifurcation to a non-symmetric state.
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Figure 4: Graph of the chiral purity δ against χ and f for the steady-state values given by equation
(34), for fidelity in the range 0 < f < 1 and with 0 < χ < 2.

3.1 The symmetric, achiral, steady-state solution

It is not immediately obvious that all the solutions given above in equations (27)–(34) for the
steady-state exist for all parameter values, or whether any particular solution is unique. Hence we
start by considering the symmetric solution, where δ = θ = η = 0. This solution exists for all
parameter values and in this case we have

µ =

√
2χS0

a(1 + 3χ)
, S =

χ
√

aχS0(1 + 3χ)
√

2k(1 + 2χ)
, (35)

N =
µ

χ
=

√
2S0

aχ(1+3χ)
, M =

(1+2χ)µ

χ2
=

(1+2χ)
√

2S0

χ
√

aχ(1+3χ)
, (36)

with L1 = R1 = 1
2
µ, L = R = 1

2
N , P = Q = 1

2
M .

We now consider the mathematical stability of this solution, that is we aim to answer the
question: ‘If the system is close to the steady-state solution, will it be attracted closer to it,
or diverge further away from it ?’ To answer this question, we linearise around the solution
δ = θ = η = 0. Note that the formulae for µ, N, M, S all have O(δ2) correction terms, and
no O(δ) terms. Thus these will be treated as constants. We only need to analyse the evolution
of (θ, δ, η) over time, starting from small perturbations away from (0,0,0). Linearising equations
(23)–(25) we obtain

dη

dt
=

aµ2

M
(2δ − η) +

aµN

2M
(δ + θ − η) + 1

2
aχµδ (37)

dθ

dt
=

aµ2

2N
(2δ − θ) + 1

2
aχµδ (38)

dδ

dt
= −kSMδ

µ
+

kfSMη

µ
− 1

2
a(2µδ + Nθ − χNθ). (39)

Note that we have ignored the O(ε) term. Inserting the expressions for µ, N and M from (35)–(36)
we obtain

d

dt




η
θ
δ


 = 1

2
aµχ




−1 1
(1+2χ)

2(1+3χ)
(1+2χ)

0 −1 3
f(1+3χ)

χ2
χ−1
χ2 − (1+5χ)

χ2







η
θ
δ


 , (40)
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which has the characteristic polynomial

0 = χ2λ3 + (2χ2 + 5χ + 1)λ2 +

(
χ2 + 7χ + 5 − 2f(1 + 3χ)2

1 + 2χ

)
λ +

+

(
4 + 2χ − f(5 + 6χ)(1 + 3χ)

(1 + 2χ)

)
. (41)

The Routh-Hourwitz criteria state that all solutions of λ3 + Aλ2 + Bλ + C = 0 satisfy <(λ) < 0
if and only if A > 0, C > 0 and AB > C (for further details, see Murray, 1989). If all values of
<λ are negative then any solution of (40) will have all the quantities η, θ and δ decaying to zero
as time increases. In our example, clearly A > 0 whatever values χ and f take, but the other two
conditions are less clear. The condition C > 0 gives f > fc(χ) with fc(χ) given by

fc(χ) =
2(2 + χ)(1 + 2χ)

(5 + 6χ)(1 + 3χ)
. (42)

This value for fc agrees with f as given by (34) in the case δ = 0. The condition AB > C implies
an instability when f > fc2(χ); however, fc2(χ) lies in the region f > 1 for all χ so this instability
can be ignored, since only f ≤ 1 is physically realisable. So the symmetric solution is stable for
f < fc, and unstable for f > fc. The value of fc lies between 2/9 and 4/5 and depends on χ: at
χ = 0; the achiral solution is unstable for f > 4/5, whereas at large χ, the instability of the achiral
solution occurs for f > 2/9.

In section 2 we derived a model of chiral polymerisation which had right-left symmetry. In this
section we are analysing the form of steady-state solutions of this model, and in this subsection we
have shown that there is a steady-state solution with the same symmetry as the model equations
(i.e. the right-left symmetry). However, we have also shown that this solution is not always stable,
meaning that for certain parameter values this solution will not be realised in a given experimental
situation. Hence we proceed, in the remainder of this section to analyse the asymmetric steady-state
solution which is approached in this case. It is important to remember that although the solution is
asymmetric, the model equations from which it is derived do obey the expected right-left symmetry
condition.

3.2 The chiral (asymmetric) steady-state solution

Once f > fc(χ) we have the existence of two chiral steady-states as well as the achiral steady-state.
Furthermore, since the Routh-Hourwitz criteria are ‘necessary and sufficient’ for the existence of a
solution of (41) with <(λ) < 0, once f > fc the achiral solution becomes unstable, so will not be
observed in any physical system. Thus once the chiral solutions exist, they become the ‘preferred’
steady-state solutions since they are mathematical stable. Even if a system were artificially put
into the symmetric (achiral) state, any small perturbation would cause some chiral imbalance and
the natural kinetics of the model would then carry the whole system to one of the two steady chiral
states in which one handedness of homochiral polymers dominates the other.

At f = fc a bifurcation occurs, and two mirror-image chiral solutions appear. We now briefly
examine the neighbourhood of this point in more detail. These chiral steady-states are governed by
equation (34); from this equation we note δ = 0 implies f = fc. Assuming small δ and expanding
we find f = fc + βδ2 with β > 0 so the bifurcation is supercritical, and the new solutions exist in
f > fc where the achiral solution is unstable. Thus, as expected, the bifurcation occurs at exactly
the same position as that at which the achiral steady-state becomes unstable. This is a standard
result in bifurcation theory; see Guckenheimer & Holmes (1983) or Bergé et al. (1984) for more
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Figure 5: Graph of the chiral purities θ (on the left) and η (right) against χ and f for the steady-
state values given by equation (34). This is to be compared with Figure 4, illustrating that the
polymer concentration and mass show more extreme chiral purities than the monomers (described
by δ).

details. Although this is a curve in (f, χ) space, we shall consider f to be the primary bifurcation
parameter, with the bifurcation point fc depending on χ.

In figure 4 we show the chiral steady-state solutions given by (34) parametrically, plotting δ
against f and χ. The bifurcation occurs at fc = 4/5 if χ = 0, reducing to fc = 2/9 in the limit
of large χ. Thus we see the beneficial effect of sequence inhibition if one wants a system which
undergoes a symmetry-breaking bifurcation at small values of the fidelity parameter f . Figure 5
shows the chiral purities of the polymers, firstly weighted by number (θ) and then by mass (η). Both
show that the chiral purity of the polymers is much greater than that of the monomer (compare
Figure 5 with Figure 4). Note also that for the range of fidelities 2/9 < f < 4/5 the bifurcation to
asymmetric (chiral) solutions can occur by increasing χ.

Another natural question to pose here is whether only small and moderate values of δ can be
accessed; we put ν = 1 − δ with ν � 1 to determine under what conditions δ can approach unity.
We find from equation (34) that f = 1 − χν. In this case we also expect θ and η to be near unity.
In fact the chiral purity of the polymeric sequences is much enhanced over the chiral purity of
monomers, since a two-term expansion of equation (32) gives

θ ∼ 1 − 1
4
ν3, η ∼ 1 − 1

4
χν4, (43)

for ν � 1 (in the special case χ = 0 we have η ∼ 1 − 1
16

ν5). The concentrations scale with ν
according to

R1 =

√
S0χν

2a
, R =

√
2S0

aχν
, P =

√
8S0

aχ3ν3
, (44)

L1 =

√
S0χν3

8a
, L =

√
S0ν5

32aχ
, Q =

√
2S0ν5

aχ
, (45)

together with S = O(ν3/2).
In summary we find that chiral solutions do indeed exist provided f > fc and this is easier

to satisfy at larger inhibition rates (χ). Thus the presence of stronger cross inhibition aids the
manifestation of chiral steady-states. Also, the higher the fidelity (f), the greater the dominance
of one chirality over the other.

We now turn to an analysis of the kinetics of sequence growth, in order to determine at what
stage of the reaction the system is likely to manifest a chiral state.
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4 Kinetics and stability of achiral solutions

In this section we reintroduce the O(ε) term omitted in the analysis following (32) and solve the
kinetic problem for the achiral solution, in the limit ε � 1. We assume that initially there are
no monomers (µ = 0), no polymers (M = N = 0) and no precursor (S = 0), though this source
material is added continuously to the system starting at time t = 0. If ε = 0 then since there are
no polymers, the precursor cannot be broken down and no polymers will ever form, so we need the
O(ε) term to produce some monomer. In section 4.2 we analyse the stability of the solution, that
is, whether small, random perturbations to such a solution grow or are damped out, as the total
number of polymers and monomers grow from zero concentrations.

4.1 Growth of the achiral solution

We assume a set of initial conditions in which η = θ = 0 = δ, and then η = θ = 0 = δ for all
subsequent times. This reduces the system (19)–(25) to a system of three ordinary differential
equations which we solve asymptotically in the limit ε � 1. Our aim is to develop matched
asymptotic expansions for the solution of

dS

dt
= S0 − 2εS − kSM, (46)

dµ

dt
= 2εS + kSM − aµ2 − 1

2
aµN(1 + χ), (47)

dN

dt
= 1

2
aµ2 − 1

2
aµχN, (48)

dM

dt
= aµ2 + 1

2
aNµ − 1

2
aχMµ, (49)

through a series of timescales.

4.1.1 Timescale I: t = O(ε−1/5)

For this timescale the appropriate scalings are t = ε−1/5t1 together with

S = ε−1/5S1, µ = ε3/5µ1, N = εN1, M = εM1, (50)

thus this is a long induction time over which the leading order equations are

S ′

1 = S0, µ′

1 = 2S1 + kS1M1, N ′

1 = 1
2
aµ2

1, M ′

1 = aµ2
1, (51)

where prime denotes d/dt1. This system has the solution

S1 = S0t1, N1 = 1
2
M1, M1 =

µ′

1

kS0t1
− 2

k
, (52)

where µ1 is given by the solution of

µ′′

1 −
µ′

1

t1
− S0kat1µ

2
1 = 0, (53)

which unfortunately is not explicitly available. However, we can see that the timescale ends abruptly
with µ1, N1, M1 all diverging as t1 → t1c, according to

µ1 ∼
6

akS0t1c(t1c − t1)2
, M1 ∼

6

ak2S2
0 t

2
1c(t1c − t1)3

, (54)
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for some constant t1c. These relationships help us determine the scalings relevant in the next
timescale. In this timescale we have seen the accumulation of source material, but this is only
slowly converted into monomers and chains, so both of these grow very slowly, causing a big build
up of source material until, at the end of this timescale, we see the concentration of chains increase to
the level where the catalytic mechanism becomes active and accelerates the formation of monomers
and chains.

4.1.2 Timescale II: t = ε−1/5t1c + O(ε1/5)

In this timescale all quantities are large and evolve quickly. To be specific we have

S = ε−1/5S2, µ = ε−1/5µ2, N = ε−1/5N2, M = ε−1/5M2, (55)

together with t = ε−1/5t1c + ε1/5t2. Using primes to denote d/dt2, the leading order equations are

S ′

2 = −kS2M2, µ′

2 = kS2M2 − aµ2
2 − 1

2
a(1 + χ)µ2N2,

N ′

2 = 1
2
aµ2

2 − 1
2
aχµ2N2, M ′

2 = aµ2
2 + 1

2
aµ2N2 − 1

2
aχµ2M2,

(56)

As the chains are present in large enough quantities for the catalytic mechanism to be active, and
since there is a large amount of source material present at the start of this timescale, this source
material is rapidly converted into monomers and chains so that µ2, N2 and M2 all increase at the
expense of the source species, S, whose concentration now monotonically reduces, so that the only
significant simplification in the equations is in the equation for S2.

No explicit solution which matches back into Timescale I is available; however, the form of the
large-time solution in Timescale II can be determined. Consider new timescale given by 1

µ2

d
dt2

= d
dτ

,

hence t2 = 2
a

∫ dτ
µ2(τ)

, then the system (56) can be written as

dµ2

dτ
= Q − 2µ2 − (1 + χ)N2 (57)

dN2

dτ
= µ2 − χN2 (58)

dM2

dτ
= 2µ2 + N2 − χM2, (59)

which is a linear system, together with the equation

d

dτ
(log S2) = −2kM2

aµ2
, (60)

from which Q = 2kS2M2/aµ2 is obtained. The solution of equations (57)–(59) is given by a
combination of a complimentary function which solves the system with Q(t) = 0 and a particular
solution which satisfies the Q(t) input term in equation (57). For general parameter values, the
forms of these solutions cannot be explicitly determined, however we shall study the two particular
limits of large and small χ in which approximations can be obtained. These correspond respectively
to the cases where the solution is dominated by the particular solution and the complimentary
function at large times.
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Figure 6: Plot of a numerical solution of S, µ, N and M against time for the case ε = 10−5, a = 1,
k = 0.8, S0 = 1, χ = 3.333. The dotted curve corresponds to S(t), the dsashed curve to µ(t) and
the upper solid curve to M(t) and the lower solid curve to N(t).

4.1.3 The solution in timescale II for χ � 1

If we assume that the input function Q has the form Q0e
−λτ , then the particular solution has the

form 


µ2(τ)
N2(τ)
M2(τ)


 =




µ̂2

N̂2

M̂2


 e−λτ . (61)

In the calculation of Q, we then have S2 ∼ e−λτ too, and this assumption implies λ = 2kM̂2/aµ̂2,
and Q ∼ λŜ2e

−λτ . In the calculation of the prefactors µ̂2, N̂2, M̂2 we then have to solve a cubic,
and there are constraints that all the prefactors must be positive.

Inserting these into the equations (57)–(59) we obtain

N̂2 =
µ̂2

χ − λ
, M̂2 =

µ̂2(2χ − 2λ + 1)

χ − λ
, (62)

and the cubic equation for λ is

λ3 − 2χλ2 +

(
χ2 +

4k

a

)
λ − 2k

a
(1 + 2χ) = 0. (63)

For asymptotically large χ, this has two roots near λ = χ, and one near λ = 0. The larger roots

are at λ = χ±
√

2k/aχ, one of which violates the condition λ < χ and the other leads to a solution

which rapidly decays in time. The physically relevant solution corresponds to λ ∼ 4k/aχ, hence
the solution

(S2, µ2, N2, M2) ∼ A

(
3aχ2

4k
, χ, 1, 2

)
e−4kτ/aχ, (64)

Since this result has been derived on the basis of large χ, we see a slow exponential decay in τ . The
complimentary function also decays exponentially in τ , but with exponents λ1 = 3, λ2 = χ− 1 and
λ3 = χ, hence the complimentary function decays much more rapidly than the particular solution.

In terms of the original timescale t2 the solution (64) leads to

(S2, µ2, N2, M2) ∼
(

3aχ2

8k2t2
,

χ

2kt2
,

1

2kt2
,

1

kt2

)
. (65)
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This agrees with the numerical observed results, which suggest that for χ � 1 we observe that all
quantities decay with 1/t2. Figure 6 shows a numerical solution of the system produced by Matlab
6.5.0 Release 13; the right-hand graph shows in detail the decay of the concentrations at the end of
the second timescale. When the concentrations S, µ, N, M become O(1) then other terms become
relevant in the kinetic equations, and a further timescale is required to describe the final approach
to equilibrium.

4.1.4 Timescale III for larger χ: t = ε−1/5t1c + O(1)

As S2, µ2, N2 and M2 all decay like 1/t2 at the end of the previous timescale, the new first term to
become significant is the S0 input into the S equation. This becomes significant when t2 = ε−1/5,
thus the third timescale is t = ε−1/5t1c + t3. In this timescale all of S, µ, M and N are O(1). Thus
the leading order equations are

dS

dt
= S0 − kSM, (66)

dµ

dt
= kSM − aµ2 − 1

2
aµN(1 + χ), (67)

dN

dt
= 1

2
aµ2 − 1

2
aµχN, (68)

dM

dt
= aµ2 + 1

2
aNµ − 1

2
aχMµ, (69)

and over this timescale the system approaches its steady-state. Since at leading order the εS terms
are neglected, the leading order steady-state solution approached is precisely that described in
Section 3.

Overall, we see that there is a long induction time, of O(ε−1/5), followed by a some rapid kinetics
during which the system explores states a long way from its steady-state, and then over a relatively
fast (O(1)) timescale the system approaches its steady-state. We now derive the kinetics of the
achiral solution for smaller χ before going to address the stability of the growing achiral solution.

4.1.5 The solution in timescale II for χ � 1

Numerical simulations suggest that at the end of TII, S2 and µ2 decay exponentially (in t2) to zero,
with M2 and N2 tending to constant values; eventually reaching their O(1) steady-state values over
subsequent and much longer timescales (see later subsections and Figure 7 for example).

The linear system (57)–(59) is solved by the sum of a particular solution and a complimentary
function. For smaller χ the large-time solution is dominated by the complimentary solution com-
ponent of the solution (i.e. that with Q = 0) which is given by a combination of exponentials. In
the case χ � 1, the eigenvalues are λ1 = −χ, λ2,3 = −1 ± i

√
2χ, thus applying the special result

for repeated roots, at leading order, we have the complimentary function




µ2

N2

M2


 = C1




0
0
1


 e−χτ + C2




1
−1
−1


 e−τ − C3







1
−1
−1


 τ +




0
−1
0





 e−τ . (70)

The solution in this case corresponds to the scenario in which µ2 → 0 as τ → τc < ∞. Let us
assume

µ2 ∼ µ2(τc − τ), N2 → N2, M2 → M 2, as τ → τc, (71)
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Figure 7: Plot of numerical solution of S(t) (the dotted curve), µ(t) (the dashed curve), N(t) (the
lower solid curve) and M(t) (the upper solid curve). All parameters are as in Figure 7 except
χ = 0.333.

then t2 = 2
a

∫ dτ
µ2(τ)

implies τc − τ = e−aµ2t2/2 so that τ → τc corresponds to t2 → ∞. We thus have

µ2 ∼ µ2e
−aµ2t2/2. The solution of equation (60) yields

S2 ∼ S2(τc − τ)2kM2/aµ2 = S2e
−kM2t2 . (72)

If 1
2
aµ2 > kM 2, then this solution predicts that µ2 decays faster than S2; however, towards the

end of the second timescale the dominant terms in the equation for µ2 are µ′

2 = kS2M2 − 1
2
aµ2N2.

This equation implies that µ2 cannot decay faster than S2, and thus we expect 1
2
aµ2 ≤ kM 2. If

equality holds, then both µ and S reach O(ε1/5) at the same time. In summary, towards the end
of this timescale, we find µ2 and S2 decaying exponentially in t2 with

S2 ∼ Ŝ2e
−kM2t2 , µ2 ∼ µ2e

−aµ2t2/2, (73)

together with N2 → N2 and M2 → M 2. This agrees with our observations of the numerical
solution discussed in the opening paragraph of this subsection. The system then passes straight
into Timescale III, which becomes relevant when kSM ∼ S0. This occurs when S = O(ε1/5) which
happens when t2 ∼ t2c = (2/(5kM 2)) log(1/ε).

However, if kM 2 > 1
2
aµ2 then S2 decays at a faster rate than µ2 and there is an further

timescale between this and timescale III (below) over which S saturates while µ decreases further.
This timescale is given by

S = ε1/5Ŝ, µ = εγµ̂, N = ε−1/5N̂ , M = ε−1/5M̂, (74)

for some −1/5 < γ < 1/5 and t = ε−1/5t1c + ε1/5 log(1/ε)t2c + ε1/5t̂. The governing equations are
then

Ŝ ′ = S0 − kŜM̂ , µ̂′ = −1
2
aµ̂N̂ , N̂ ′ = 0, M̂ ′ = 0, (75)

where prime denotes d/dt̂. Over this timescale, M and N remain constant, Ŝ equilibrates to S0/kM̂
and µ̂ continues to decrease exponentially, with rate − 1

2
aN̂ . When µ reaches O(ε1/5), timescale III

is entered; this occurs when t̂ = O(log(1/ε)), so the relationship between t3 and t in Timescale III
given below remains valid following a redefinition of t2c to incorporate this extra shift in time.
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4.1.6 Timescale III for smaller χ: t = ε−1/5t1c + ε1/5 log(1/ε)t2c + O(ε1/5)

In the new timescale we have

S = ε1/5S3, µ = ε1/5µ3, N = ε−1/5N3, M = ε−1/5M3, (76)

together with t = t1cε
−1/5 + t2cε

1/5 log(1/ε) + ε1/5t3. Using prime to denote time derivative with
respect to the new time variable, t3, the leading order equations are

S ′

3 = S0 − kS3M3, N ′

3 = 0,
µ′

3 = kS3M3 − 1
2
a(1 + χ)µ3N3, M ′

3 = 0.
(77)

Over this rapid timescale, M and N do not change from their values at the end of the TII whilst
µ and S equilibrate to the values

S3 →
S0

kM3
, µ3 →

2S0

a(1 + χ)N3
, as t3 → ∞. (78)

The evolution of M and N occurs over a longer timescale with µ and S constrained to their
respective local equilibrium values.

4.1.7 Timescale IV for smaller χ: t = ε−1/5t1c + O(ε−1/5)

Since all concentrations approached constants at the end of TIII, their magnitudes remain un-
changed for the fourth timescale, only the scaling for t changes, we now write

S = ε1/5S4, µ = ε1/5µ4, N = ε−1/5N4, M = ε−1/5M4, (79)

with t = t1cε
−1/5 + t2cε

1/5 log(1/ε) + ε−1/5t4, and so obtain the equations

0 = S0 − kS4M4 0 = kS4M4 − 1
2
a(1 + χ)µ4N4

N ′

4 = −1
2
aχµ4N4 M ′

4 = 1
2
aµ4(N4 − χM4).

(80)

These imply kS4M4 = S0 and µ4N4 = 2S0/a(1 + χ), thus we have the solution

N4 =
χS0(t4c − t4)

1 + χ
, µ4 =

2

aχ(t4c − t4)
, S4 =

S0

kM4
, (81)

M4 = C(t4c − t4) −
S2

0(t4c − t4) log(t4c − t4)

2(1 + χ)
, (82)

for some constant C. This timescale ends with µ4 and S4 increasing hence becoming larger in the
next timescale, and M4, N4 decaying hence being smaller in the next timescale.

4.1.8 Timescale V for smaller χ: t = ε−1/5(t1c + t4c) + O(1)

The final timescale is given by all of S, µ, N and M being O(1) and varying on an O(1) timescale,
thus corresponds to the approach to the global equilibrium solution given by (35)–(36).
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4.1.9 Summary

For all values of the parameters, the solution starts with a long induction period during which the
concentration of the precursor species S becomes large. There follows a short period of very rapid
kinetics where all concentrations become large, and then the precursor and monomer concentrations
decay. For larger values of χ the concentration of polymers also decays and the steady-state is
reached relatively rapidly. For smaller χ the monomer concentration and that of the source species
become very small and the polymer concentrations (mass-weighted and number weighted) both
remain high and slowly evolve to their steady-state values over a longer timescale, which is of
similar length to the induction timescale. These two distinct behaviours are illustrated in Figures
6 and 7.

4.2 Stability of the achiral growing solution

Having determined the form of the kinetic behaviour for the achiral solution (η = θ = δ = 0), we now
consider the linear stability of this solution. Assuming there is some small random perturbation
during the evolution, we ask whether a perturbation grows or decays as time progresses. We
shall use the already determined solution for S(t), µ(t) N(t) and M(t) (from section 4.1), and
assume that the perturbation does not make any alteration to these total concentrations of source,
monomer and polymer at leading order. This assumption was seen to be valid in the case of
the steady-state solution, and since the kinetic equations are symmetric under the transformation
(δ, θ, η) → (−δ,−θ,−η), we expect modifications to µ, N, M, S also to be of second order in δ, θ, η.
From equations (23)–(25) we have




η̇

θ̇

δ̇


 = 1

2
aµ




−2µ
M
− N

M
N
M

χ+ 4µ
N

+ N
M

0 − µ
N

χ+ 2µ
N

2kfSM
aµ2

(χ−1)N
µ

−2− 2kSM
aµ2







η

θ

δ


 . (83)

4.2.1 Stability of achiral solution in Timescale I

We focus our attention on the linear stability of δ(t), θ(t) and η(t) as given by (37)–(39). In the
first timescale, using the scalings (50), we find the simplified linear stability problem

d

dt1




η

θ

δ


 = 1

2
aµ2

1




− 2
M1

0 4
M1

0 − 1
N1

2
N1

2kS1M1f
aµ3

1
0 −2kS1M1

aµ3
1







η

θ

δ


 . (84)

It is clear that this matrix has a simpler structure than the general case, which has only one zero
entry, as given in equation (40). The eigenvalues of the matrix above are all negative if f < 1/2,
but if f > 1/2 then one is positive, indicating that a perturbation away from θ, η, δ = 0 would
increase in size as time progresses. The temporal evolution of such perturbations is non-trivial
since M1, N1, µ1 and S1 are all time-dependent.
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4.2.2 Stability of achiral solution in Timescale II, larger χ

From equation (83) for the linear stability of the achiral solution to chiral perturbations, and (64)
for the concentrations S2, µ2, N2 and M2, we obtain

d

dt2




η
θ
δ


 =

aχ

4kt2




−χ 1
2

5χ
0 −χ 3χ
3f 1 −5







η
θ
δ


 , (85)

Stability is determined by the eigenvalues of the matrix, which satisfy the cubic equation

0 = λ3 + (2χ + 5)λ2 + (χ2 + 7χ + 15fχ)λ + 2χ2 − 1
2
χf(9 + 30χ). (86)

Applying the Routh Hourwitz criteria (see the end of Section 3.1 for details), we find that an
instability occurs if f > 4χ/(9 + 30χ) ∼ 2/15 (for large χ).

4.2.3 Stability of achiral solution in Timescale II, smaller χ

At the end of Timescale II if χ is small then the matrix in equation (83) has the form

d

dt2




η

θ

δ


 = 1

2
aµ2




−N2

M2

N2

M2
χ + N2

M2

0 0 χ
2kfS2M2

aµ2
2

(χ−1)N2

µ2
−2kS2M2

aµ2
2







η

θ

δ


 . (87)

All elements in the bottom row of this matrix are divergent since µ2, S2 → 0 as t2 → ∞. When t2
becomes large the eigenvalues of this matrix are given by solutions of the cubic

0 = λ3 +
2kS2M 2

aµ2
2

λ2 +
2kS2M 2

aµ2
2

[
N2

M2
+

aχµ2N2

2kS2M2

− f

(
χ +

N2

M 2

)]
λ

−

2kfS2χN 2

aµ2
2

+
χ(χ − 1)N

2
2

M2µ2


 . (88)

Applying the Routh-Hourwitz criteria for the signs of the real parts of the eigenvalues, we find
stability of the achiral solution requires A > 0 (which always holds), and C > 0 which fails when
f > aN 2µ2/2kM 2S2; and a similar but more stringent inequality from the condition AB > C. So
if S2 decays faster than µ2 then the symmetric solution is stable, and if S2 and µ2 decay at the
same rate the stability depends on N 2 and M 2 and requires f > 1/(2(1 − kM 2/aN2)).

4.2.4 Stability of achiral solution in Timescale III, smaller χ

With the scalings of (76) the matrix (83) takes the form

d

dt3




η

θ

δ


 = 1

2
aµ3




−N3

M3
ε2/5 N3

M3
ε2/5

(
χ+ N3

M3

)
ε2/5

0 0 χε2/5

2kfS3M3

aµ2
3

−N3

µ3
−2kS3M3

aµ2
3







η

θ

δ


 . (89)

Note that the final row of entries are asymptotically larger than the other entries. Taking only the
leading order entries for each term, the cubic governing stability can be written

0 =
aµ2

3ε
2/5

2kS3M3
λ3 + λ2 +

(
N3

M3
− f

(
χ +

N3

M3

))
λ +

aχµ3N
2
3

2kS3M2
3

− fχN3

M3
. (90)
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Rewriting this as λ3 + Aλ2 + Bλ + C, the Routh-Hourwitz criterion A > 0 is always satisfied. The
condition C > 0 implies f < aµ3N3/2kS3M3 which, at large times, reduces to f < 1, and as such is
met in the large-time limit. Finally, AB > C fails if f > N3/(N3 + χM3) indicating an instability;
whilst this depends on the unknown number-weighted and mass-weighted polymer concentrations,
an instability is certainly possible for large enough values of the fidelity parameter, f .

4.2.5 Stability of achiral solution in Timescale IV, smaller χ

Since the scalings for the concentrations S, µ, N and M are as in timescale III, the only change
from (89) is in the rate of growth of the perturbations since d/dt4 and d/dt3 scale differently with
time and N4, M4 are now time-dependent; we now have

d

dt4




η

θ

δ


 = 1

2
aµ4




−N4

M4

N4

M4
χ+ N4

M4

0 0 χ

2kfS4M4ε−2/5

aµ2
4

−N4ε−2/5

µ4
−2kS4M4ε−2/5

aµ2
4







η

θ

δ


 . (91)

As the solution progresses through timescale IV, the criterion for an instability to exist, namely
f > N4/(N4 + χM4), becomes easier to satisfy, since N4 decays slightly faster than M4, as shown
by equations (81)–(82).

4.3 Summary

In this section we have analysed the kinetics of the concentrations of monomer, source and polymer
as they evolve from zero to steady-state following a symmetric (achiral) solution.

For larger values of χ we have found three regimes through which the system evolves. Firstly
there is a long induction period (of O(ε−1/5)) during which the source material builds up (until S
becomes O(ε−1/5)); during this time the monomer concentrations remain small (O(ε3/5)) and the
concentrations of polymer are extremely small (O(ε)). This timescale ends abruptly as the catalytic
feedback of polymer accelerates the breakdown of S into monomer. In the second timescale, which
is very brief (O(ε1/5)), all monomer and polymer concentrations become large (O(ε−1/5)) and decay
towards steady-state. Finally, over the third timescale all concentrations converge to their steady-
state values.

In section 4.2 we analysed the linear stability of the growing achiral state through the sequence
of timescales. By linear stability we mean that small external random forces which cause a chiral
imbalance will be damped and reduce in amplitude. An instability indicates that such a pertur-
bation will grow and so the system will undergo a symmetry-breaking bifurcation to occur during
the evolution.

As the system approaches steady-state in the third timescale we expect to regain the stability
criteria f > fc(χ) with fc given by equation (42). However, this criterion for the instability of
the achiral solution is not valid in all the timescales; in the first timescale we find the alternative
criteria of f > 1

2
for symmetry-breaking to occur. Note that this is independent of χ, since

in the first timescale the polymer and monomer concentrations are so low that inhibition of a
homochiral polymer by a monomer of the opposite chirality is negligible; this leads to a considerable
simplification of the linear stability analysis during the first timescale. In the second timescale we
find an instability for f > fc with fc potentially as low as 2/15.

At large χ and for f < 2/9 the achiral solution is always stable to such perturbations; whereas
for 2/9 < f < 1/2 the system is unstable to such perturbations only in the final stage of the
kinetics, when the equilibrium solution is being approached and even then only for some values of

20



χ. For 1/2 < f the kinetics are linearly unstable throughout the evolution to equilibrium and the
system will eventually approach a chiral state.

For smaller values of χ the kinetics are more complex: there is still a long induction time followed
by a period of rapid kinetics. This is more complicated, being split into various timescales; however
the end result is always low concentrations of monomer and source species and large concentrations
of polymer. There follows a long timescale over which the polymer concentrations reduce towards
steady-state and the monomer concentrations and source species increase to steady-state.

For smaller values of χ an instability occurs in Timescale I for f > 1
2
, the instability persists in

timescale II, now depending on f > 1/(2(1 − kM 2/aN2)). In timescale III and IV an instability
requires f > N/(N +χM), and at steady-state f > 4/5− 34χ/25. Thus, for smaller χ there is still
the possibility of a symmetry-breaking bifurcation occurring, though it requires a larger fidelity
parameter.

Although there advantages in χ being large if one is seeking a symmetry-breaking bifurcation,
it should be noted that smaller χ has other advantages, in that it allows polymers to form in larger
concentrations, and these persist for longer times.

5 Perfect fidelity

In the extreme case f = 1 the feedback mechanism breaks down the precursor species (S) into
chirally pure monomers with unit probability. Instead of a chirally pure homochiral steady state,
there is a bifurcation to a state in which δ asymptotically approaches ±1. We refer to such a state
as a fully-bifurcated state. From equation (34) we see that such a state cannot arise if f < 1.
The large-time asymptotics of the fully-bifurcated state differ significantly from f < 1 since now
there is no steady-state solution; instead we find unlimited growth of one set of homochiral polymer
sequences and decay to zero for the sequences of opposite handedness. In this case (still ignoring
ε) the large time asymptotics are given by

M = M̂t, N = N̂t1/3, µ = µ̂t−1/3, S = Ŝt−1, (92)

δ = 1 − δ̃, θ = 1 − θ̃, η = 1 − η̃. (93)

Assuming δ̃, θ̃ and η̃ all decay to zero in the large time limit and χ > 1, we find the leading
order equations

S0 = kŜM̂ , M̂ = aµ̂N̂ , 1
3
N̂ = aµ̂2S0 = aµ̂N̂ , (94)

˙̃
δ = −aN̂(χ − 1)t1/3θ̃,

˙̃
θ = −aχµ̂t−1/3θ̃, ˙̃η = −aχµ̂t−1/3η̃. (95)

These imply

Ŝ =
1

k
, M̂ = S0, N̂ =

S
2/3
0

a1/3
, µ̂ =

S
1/3
0

a2/3
. (96)

δ̃ ∼ exp
(
−3

4
aN̂(χ − 1)t4/3

)
, θ̃, η̃ ∼ exp

(
−3

2
aχµ̂t2/3

)
. (97)

Thus in terms of the concentrations of each chirality we have

R1 ∼ µ ∼
(

S0

a2t

)1/3

, R ∼ N ∼
(

S2
0t

a

)1/3

, P ∼ M ∼ S0t, (98)

together with S ∼ 1/kt, and

L1 ∼ L̃1t
−1/3 exp(−3

4
(χ − 1)(aS0t

2)2/3), (99)

{L, Q} ∼ {L̃, Q̃}t1/3 exp(−3
2
χ(aS0t

2)1/3), (100)
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for some constants L̃1, L̃, Q̃.
So in this case no finite steady-state solution is approached. As one might expect from the

asymptotic expansions (44)–(45) in the case δ → ±1 we observe the unbounded growth of one type
of homochiral sequence and, specifically, unbounded growth in the number of chains (N), the mass
of material in polymeric form (M) and the average length (M/N ∼ (aS0t

2)1/3). Concentrations of
the sequences of opposite homochirality decay rapidly, and we expect that the average chain length
approaches two, implying Q̃ = 2L̃.

All the above analysis has been for the simplified case for which ε = 0; however, with one chain
type decaying to arbitrarily small concentrations we may expect that the O(ε) term in (11) is no
longer negligible in this limit. Retaining the O(ε) term in this equation yields a slightly different
scaling in the large time asymptotics for the high-fidelity case f = 1. We now have

R1 ∼
(

S0

3a2t

)1/3

, R ∼
(

3S2
0t

a

)1/3

, P ∼ S0t, (101)

together with S0 ∼ 1/kt and

L1 ∼
ε

kχ(3a2S2
0t

4)1/3
, L ∼ ε2

k2χ3S3
0(3a

2t7)1/3
, (102)

Q ∼ 2ε2

k2χ3S3
0(3a

2t7)1/3
. (103)

Thus once again we see the less common homochiral polymer sequences assuming concentrations
which decay to zero, albeit now with the simpler form of algebraic decay, the typical polymeric
length again asymptoting to two (Q/L). The dominant homochiral sequences grow in number,
mass and average length (with P/R ∼ (aS0t

2/3)1/3). As t → ∞ the chiral purity of the system
approaches unity according to

δ ∼ 1 − 2ε

kχS0t
, (104)

θ ∼ 1 − 2ε2

k2χ3S3
0(9aS2

0 t
8)1/3

, η ∼ 1 − 4ε2

k2χ3S4
0(3a

2t10)1/3
. (105)

Thus, we see the convergence to full chiral purity is more rapid for polymers than for monomers.
In all the above analysis there is another chiral solution in which the left-handed homochiral

polymer sequences are dominant, and the right-handed homochiral sequences have concentrations
which decay to zero asymptotically.

6 Discussion

After introducing our model in Section 2, we analysed its steady-states, and found that the sym-
metric steady-state solution exists for all parameter values, but that there are other solutions when
the relative inhibition rate χ and the fidelity f are large enough. The critical combination is

f > fc =
(4 + 2χ)(1 + 2χ)

(5 + 6χ)(1 + 3χ)
. (106)

At the point f = fc there is a supercritical pitchfork bifurcation, where two unstable steady-state
solutions connect to the solution δ = 0 and make δ = 0 unstable for f > fc. When this inequality
is satisfied there are two stable steady-state solutions with δ non-zero, that is there are chiral
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solutions as well as the achiral solution, and the achiral solution is unstable, so any physical system
will generically be attracted to one or other of the chiral solutions. An important effect to note from
this formula is the role that cross-inhibition plays in making the asymmetric solutions accessible
at low values of the fidelity. For small χ, the fidelity has to exceed fc = 0.8 in order to obtain a
symmetry-breaking solution; whereas at large χ, this bifurcation point reduces to fc = 0.22 – a
dramatic reduction.

In Section 4 we analysed the kinetics of chain growth in a symmetric system, and found that
there is a long induction time, during which a large stock of precursor chemical accumulates; an
approximate, linear stability calculation shows that during this time, the achiral solution is unstable
if f > 1/2. This behaviour is followed by a short timescale over which the precursor species is
converted to monomers which are then polymerised. For this short time, monomers and chains
are present in large concentrations. The concentrations of chains, monomers and precursor then
all decay to their steady-state values, which, if the parameters f, χ are such that an asymmetric
steady-state exists, and the system has experienced some external perturbation away from the
symmetric state, will be the chiral steady-state discussed earlier (section 3.2). In such a state both

monomers and chains have a net chirality or handedness. Even for quite modest values of the chiral
purity of monomer (say δ = 0.7), the chiral purity of chains is extremely close to unity (θ = 0.990,
η = 0.995 at χ = 2); see Figure 3, and compare Figures 4 and 5.

Finally we have described the large-time asymptotics of the ‘fully’ bifurcated case which arises
when f = 1, wherein chiral purities (δ, θ and η) approach unity in the large time limit; this
remains true even when we reintroduce the term which describes the slow spontaneous achiral
decay of precursor species into both enantiomeric forms of monomer.

7 Conclusions

In previous work we showed how qualitatively similar instabilities can lead to the massive amplifi-
cation of self-replicating RNA polymer sequences over less efficient replicators (Wattis & Coveney,
1999). After writing this paper we became aware of work by Brandenburg et al. 2004 which proposes
a modified version of Sandars’ model and presents an analysis of steady-state results, comparing
them to earlier models of homochirality.

In the present paper we have shown that an initially achiral system capable of stepwise poly-
merisation to homochiral polymer sequences with inhibition from the opposite-handed monomer,
is subject to strong instabilities that drive the system overwhelmingly to one or other handedness
for all homochiral sequences present. Mechanisms within this class may have played a rôle during
the early stages of molecular evolution in determining the chirality of biologically relevant macro-
molecules, such as nucleotides and proteins, and there is experimental evidence of this behaviour
in the literature, for examples see Hitz et al. (2001, 2002, 2003) and Joshi (2000). Although in the
system studied by Joshi, addition of the correct enantiomer to a growing polymer chain is more
favourable than the wrong one, we have shown that if this cross-inhibition is stronger, then the
system is more likely to undergo a symmetry-breaking bifurcation.

Studies of this kind confirm the scope and power of modern methods of theoretical analysis for
nonlinear dynamical systems of the kind that abound along the pathway towards the origins of life
(Coveney, 1994).
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