
An Enhanced Component Connection Method for Conversion of Fault Trees to

Binary Decision Diagrams

R. Remenyte-Prescott; Prof. J.D. Andrews

1. Abstract

Fault Tree Analysis (FTA) is widely applied to assess the failure probability of industrial systems.

Many computer packages are available which are based on conventional Kinetic Tree Theory

methods. When dealing with large (possibly non-coherent) fault trees, the limitations of the technique

in terms of accuracy of the solutions and the efficiency of the processing time becomes apparent.

Over recent years the Binary Decision Diagram (BDD) method has been developed that solves fault

trees and overcomes the disadvantages of the conventional FTA approach. First of all, a fault tree for

a particular system failure mode is constructed and then converted to a BDD for analysis. This paper

analyses alternative methods for the fault tree to BDD conversion process.

For most fault tree to BDD conversion approaches the basic events of the fault tree are placed in an

ordering. This can dramatically affect the size of the final BDD and the success of qualitative and

quantitative analyses of the system. A set of rules are then applied to each gate in the fault tree to

generate the BDD. An alternative approach can also be used, where BDD constructs for each of the

gate types are first built and then merged to represent a parent gate. A powerful and efficient

property, sub-node sharing, is also incorporated in the enhanced method proposed in this paper.

Finally a combined approach is developed taking the best features of the alternative methods. The

efficiency of the techniques is analysed and discussed.

Keywords: Fault Tree Analysis, Binary Decision Diagrams

2. Introduction

The Binary Decision Diagram (BDD) method [1] has been introduced as a method for efficient and

accurate fault tree analysis. This method has been shown to have advantages over the conventional

Kinetic Tree Theory [2]. The main strength of the BDD method is the fact that top event probabilities

can be calculated without the need to apply approximations or the need to obtain minimal cut sets as

intermediate results.

In the BDD method the fault tree is converted to a binary decision diagram, which represents the

Boolean logic expression of the particular system failure mode. The method requires to set the

variable ordering, and if it is not chosen suitably, the size of the final BDD can grow exponentially.

The ordering rules are then applied to construct the BDD (ite method [1]). Alternative conversion

methods are presented in this paper. These include component connection methods [3] where BDDs

for each of the gate types are formed and then joined together according to the type of the parent gate

in the fault tree. The basic component connection method is then enhanced by introducing a form of

sub-node sharing and then by the development of the hybrid technique utilising the advantageous

parts of the component connection method and the ite method.

The efficiency of the alternative approaches is evaluated and compared with the conventional ite

method. Three measures are applied while investigating the suitability of the different techniques.

These measures are the final size of the resulting BDD, the number of calculations undertaken and the

processing time.

3. Binary decision diagram method

A BDD, shown in Figure 1, is a directed acyclic graph, where all paths through the BDD start at

the root vertex and terminate in one of two states – a 1-state (system failure), or a 0-state (system

success). The BDD consists of terminal and non-terminal vertices, connected by branches. Every

terminal vertex represents the final state of the system and every non-terminal vertex – a basic event

of the fault tree. By convention all left branches in the BDD are the 1-branches (component failure

occurs), all right branches are the 0-braches (component functions successfully).

The application of the BDD method for system reliability is based on the fact that the BDD

encodes the logic function of the system failure in its disjoint form. In the example of a fault tree and

its equivalent BDD shown in Figure 2 the logic function is:

Top =a·(b + c)·(b + d) = a·b + a·c·d [1]

where “+” represents Boolean operator OR, “·” represents Boolean operator AND.

There are two possible paths in the BDD shown in Figure 2 that terminate in a system 1 state

(failure):

a,b and dcba ,,, . [2]

Each path is a combination of component states whose existence will result in system failure. Two

cut sets can be obtained from these two paths if only the failure events are considered:

{a,b} and {a,c,d}. [3]

Cut sets consist only of the vertices that lie on the 1 branches from component nodes in the paths.

The cut sets obtained in this example are minimal (they contain necessary and sufficient elements),

because the BDD is minimal. Usually it would be necessary to develop a different form of BDD

which encodes only the minimal cut sets [1].

In the BDD method the probability of system failure,
SYS

Q , can be expressed as the sum of the

probabilities of the disjoint paths to a terminal 1 in the BDD. This is possible because paths through

the BDD are mutually exclusive. The probability of system failure in the example is:

d

q
c

q
b

q
a

q
b

q
a

q
SYS

Q 1 . [4]

A number of other properties including system failure frequency and component importance

measures can also be calculated [4].

4. Conventional conversion approach – Rauzy (approach 1)

Rauzy [1] developed a commonly used technique of constructing BDDs. This method applies an if-

then-else (ite) technique to each of the gates in the fault tree. Let f(x) be the Boolean function for the

top event. Then the given ite structure 21,, ffXite describes the following situation: if variable X

occurs (fails) 1f is considered, else 2f is considered. 1f and 2f are Boolean functions, described as

the residues of f, with 1X and 0X respectively. Therefore, if a node in the BDD encodes

variable X, structure 1f lies below the 1-branch and 2f lies below the 0-branch of that node.

While applying the ite method a variable ordering for basic events is introduced. Then according to

the conversion rules every gate in a fault tree is converted to a BDD. The rules are:

If J and H are two events in a fault tree already converted to BDD form and expressed as ite

structures, i.e. 21,,ite ffXJ and 21,,ite ggYG , then for a gate in the fault tree for which

these are inputs:

 if X is before Y in the variable ordering (YX) then

J<op>G=ite(X, f1<op> G, f2<op> G) [5]

 if YX then

J<op>G=ite(X, f1<op> g1, f2<op> g2) [6]

here <op> is the Boolean operator of the gates in the fault tree.

The ite technique is explained using the example in Figure 3. The ordering a < b < c < d < e is

obtained by traversing the fault tree in a simple top-down left-right way. Applying the connection

rules gives the expressions for gates G1, G2 and Top:

G1 = b ∙ c ∙ d

= ite(b,1,0) ∙ ite(c,1,0) ∙ ite(d,1,0)

= ite(b,ite(c,1,0),0) ∙ ite(d,1,0)

= ite(b,ite(c,ite(d,1,0),0),0)

G2 = b ∙ e

= ite(b,1,0) ∙ ite(e,1,0)

= ite(b,ite(e,1,0),0)

Top = a + G1 + G2

= ite(a,1,0) + ite(b,ite(c,ite(d,1,0),0),0) + G2

= ite(a,1,ite(b,ite(c,ite(d,1,0),0),0)) +

ite(b,ite(e,1,0),0)

= ite(a,1,ite(b,ite(c,ite(d,1,ite(e,1,0)), ite(e,1,0)),0))

 The resulting BDD is also shown in Figure 3. The ite technique produces an ordered BDD, where

the variable ordering is retained throughout the BDD. This is observed because every step of the

conversion process is performed taking into account the variable ordering.

The ite method automatically uses sub-node sharing where each ite structure is stored in the

memory only once and is reused if calculated further in the process.

5. Component connection methods

5.1. Basic approach (approach 2)

The basic algorithm of the component connection method is explained in [3]. First of all, gates of a

fault tree which have only basic events as inputs are considered. Every gate is expressed as a BDD

structure for “OR” or “AND” gate types. Then the fault tree structure is ascended considering gates

whose inputs have already been expressed as BDDs. A BDD for an “OR” gate or an “AND” gate

utilising simple rules of connection is created. Initially BDDs are constructed without considering the

repetition of basic events in the fault tree. Then a simplification process for the resulting BDD is

performed.

The connection and simplification rules with some alternative strategies are presented in this

section. The ordering of basic events is not required for this method, because the connection process

can be performed without following a fixed ordering scheme. Only a selection scheme has to be set

which will describe the way in which gate inputs are selected for the connection process.

The connection rules are presented below:

1. For a fault tree gate with only basic events as inputs. If a gate is an “OR” gate, the BDD nodes

representing its inputs are connected to each other through the 0-branches of the nodes. If a gate is

an “AND” gate, the BDD nodes are connected through the 1-branches of the nodes (see Figure 4(i)

and (ii)).
2. For a fault tree gate where the inputs are already represented as BDDs. Then the BDDs are

merged to form a BDD of the gate output event. For the two BDDs which represent two inputs to a

parent gate, one of them is set to be the main BDD, to which the other will be attached using a rule

of selection. Then, if two BDDs are inputs to an “OR” gate, the secondary BDD is connected to

every terminal 0-node of the main BDD or if two BDDs are inputs to an “AND” gate, the

secondary BDD is connected to every terminal 1-node of the main BDD (see Figure 4(iii) and (iv)).

Using this algorithm the resulting BDD can contain more than one node representing the same

basic event on a path. In order to remove repeated events in the BDD each path featuring a repeated

variable is simplified using one of the two rules:

1. The first occurrence of an event in the path defines the state of the repeated variable. The node,

that represents the second occurrence of the event, needs to be replaced by the events below it on

either its 1 or 0 branch. The branch depends on the variable state specified by its first occurrence

in the path. For example, if the path passes through the 0-branch of a repeated node, the second

appearance of that event should be removed replacing it by the BDD structure below the 0-branch

of this second node.

2. If the BDD structures below the 1 and 0 branches of any node are identical, this node is irrelevant

and needs to be replaced by the structure below either one of the branches. In other words, if the

state of the system does not depend on the occurrence of the basic event, the insignificant node

must be removed.

This method has been applied to the fault tree illustrated in Figure 3 resulting in the BDD shown in

Figure 5. In this example the fault tree is traversed in the bottom-up manner when constructing a

BDD for every gate. The variables are considered in a left-right variable ordering. The left-most BDD

input for any gate is set to be the main BDD to which the others are joined.

The conversion process starts constructing two BDDs for gates G1 and G2, shown in Figure 5(i)

and Figure 5(ii) respectively. Gates G1 and G2 are “AND” gates, therefore, the resulting BDDs are

“AND” chains.

Then the top event of the fault tree is considered. The left-most BDD, which represents basic event

a, is selected to be the main BDD. Then the two BDDs from Figure 5(i) and 5(ii) are connected one

by one to the 0 branch of the main BDD, because the top gate is an “OR” gate. The first connection

results in the BDD in Figure 5(iii). The BDD after the second connection is presented in Figure 5(iv).

Since there are some repeated events in the final BDD (Figure 5(iv)) the simplification rules are

applied. Only one event, b, is repeated, therefore, its repetitions need to be removed from three

current paths. In the first path F1-F2-F5-F6 node F5 is replaced by the terminal 0-node. This

simplification rule is applied because this path traverses the 0-branch of node F2, the first occurrence

of the repeated event. In the second path F1-F2-F3-F7-F8 the repeated event b is removed, replacing

node F7 by node F8. In the same way node F9 is replaced by node F10 in the third path F1-F2-F3-

F4-F9-F10. The final BDD is shown in Figure 5(v).

While developing this example no global variable ordering system was used and the basic events

were connected according to the order that they appear in the list of gate inputs. However, it is

possible to apply a defined ordering scheme for basic events. A number of structural and weighted

ordering schemes [5] can be used. The chosen ordering scheme can influence the efficiency of the

conversion process.

Using a variable ordering sets the order in which basic events are considered for gates which only

feature basic event inputs which are then placed in an “OR” chain or an “AND” chain dependent

upon the gate type. When gates are encountered where their inputs have been previously generated it

has to be determined how the BDDs will be connected.

During the connection process BDDs were previously selected according to the order that gate

inputs are listed, i.e. the BDD, presenting the left-most gate, is set to be the main BDD. Other

selection schemes can be used which can result in a smaller BDD and/or in a shorter processing time.

Where a global variable ordering scheme is used BDDs can be ordered according to the position of

their root vertex in the ordering scheme of basic events. Alternatively selecting according to the

smallest number of available branches where connections will be made can offer an advantage in

efficiency. Then the efficiency of different strategies can be analysed over a library of different fault

tree structures.

The component connection method does not require the introduction of a variable ordering in the

conversion process. Therefore, even if the variable ordering is assigned at the start, it is not retained

when merging two BDDs. The resulting BDD is not an ordered BDD as it is if obtained using the

conventional ite approach but it still retains the disjoint path property and can be used for the

quantitative analysis.

The most significant disadvantage of the basic component connection method is that it does not

use sub-node sharing and this can lead to inefficient memory usage. For example, in Figure 5(v) there

are two identical nodes F8 and F10, which are shared in the BDD obtained using the ite technique

(Figure 3). Therefore, a form of sub-node sharing is introduced as an extension to the component

connection method.

5.2. Sub-node sharing (approach 3)

The sub-node sharing is used in the conventional ite technique and provides a significant

contribution towards the efficiency of the approach. This property can also be implemented to an

extent in the component connection method while two BDDs are connected. Consider for example,

merging two inputs for an “OR” gate, as it is shown in Figure 6.

In this example the two BDDs are independent (have no nodes in common), the left BDD is set to

be the main BDD. It has two available connection points, i.e. two terminal 0-vertices. They can be

connected to the same second BDD. This merging is always suitable since no repeated events appear

in the BDDs.

The conversion method of a fault tree to a BDD starts considering those gates which have only

basic events as inputs and applying the first connection rule, presented in the previous section. Sub-

node sharing is applied while performing the second rule and connecting previously formed BDDs

for gate inputs. In this case, when the BDDs contain repeated events the state of each repeated event

needs to be considered. During the connection process the secondary BDD can be connected to all

appropriate terminal nodes if the path from the root vertex to those terminal nodes has each repeated

event in the same state. In other words, the sub-node sharing can be applied if while descending the

BDD from the root vertex the same branches (1-branches or 0-branches) of repeated events were

traversed. Otherwise, a new copy of the secondary BDD needs to be used.

The sub-node sharing rule is:

If two paths to terminal vertices (terminal 1-nodes for BDDs being inputs to an AND gate and

terminal 0-nodes for BDDs being inputs to an OR gate) fall below the same branches of the repeated

events, the same second BDD can be connected to both of the two terminal nodes.

Consider the example from Figure 5, during the last connection of the two BDDs in Figure 5(ii)

and in Figure 5(iii), the BDD in 5(iii) is set to be the main BDD and that of Figure 5(ii) the secondary

BDD. Since these two BDDs have event b in common and represent two gate inputs to an OR gate

the paths from the root vertex to the three terminal 0-nodes of the main BDD are investigated. There

is only one repeated event b in the fault tree. The first path passes the 0-branch of node b, the second

and the third paths pass the 1-branch of node b. The second and the third terminal nodes can be

replaced by the same copy of the secondary BDD because the second and the third paths fix the same

state for the basic event on the repeated node. The final BDD is shown in Figure 7(i) and 7(ii), after

the connection and after the simplification processes respectively.

The resulting BDD in Figure 7(ii) matches the one obtained using the ite technique, Figure 3.

It is important to note that when applying the sub-node sharing in the component connection

method all repeated events in the system must to be considered, not only those between the two

BDDs under the current connection.

5.3. Hybrid approach (approach 4)

This method is introduced to utilise the efficient parts of the two algorithms presented – the ite

technique and the component connection method. It is clear, that:

i) using the gate constructs for basic events and branches without repeated events BDDs can be

immediately formulated without any of processing required by the ite method.

ii) the sub-node sharing feature of the ite method provides a more efficient representation of the

logic function than its equivalent introduced in the component connection method.

Therefore, a new method has been created based on the effective features of each approach to

obtain the best efficiency for BDD conversion.

As was described before, the variable ordering is not required for the component connection

method. However, since the hybrid approach also utilises the ite method a variable ordering needs to

be introduced. The method then produces ordered BDDs.

While converting a fault tree to a BDD using the hybrid method, a variable ordering needs to be

established. Then the building of BDDs for gates containing event inputs only starts, where events are

put in a chain according to the type of the gate (the component connection approach). This

construction process can be applied regardless of the number of events into a gate without breaking

them down into pairs. In comparison, the rules in the ite technique deal only with two ite structures at

once, therefore each gate needs to be preprocessed. The variable ordering needs to be retained while

putting basic events in a chain. The comparison of the component connection method and its

application in the hybrid method is shown in Figure 8.

Further while building a BDD for a gate, when gate inputs are already represented as BDDs and

they do not contain any repeated events, the straightforward connection can be also applied. In this

case the variable ordering needs to be applied, i.e. tho BDDs can be merged if all the events of the

main BDD stand before the events of the secondary BDD in the variable ordering. This rule is shown

in Figure 9.

Finally, while building a BDD for a gate, when inputs are converted to BDDs and they contain

repeated events, the ite technique rules are applied.

For example, if we are applying the hybrid method for the conversion of a fault tree in Figure 3,

BDDs for gates G1 and G2 are created using the component connection method, i.e. placing its basic

events in “OR” chains as it was shown in Figure 5(i) and (ii). Then the two BDDs are merged

applying the ite rules, given in equations 5 and 6.

6. Comparison of the methods

The efficiency of each of the methods in the conversion of a fault tree to a BDD depends on the

structure of the fault tree. An indication of any advantages of different conversion techniques would

need to be determined experimentally and measured over a large range of problems. The four

approaches presented in this paper were analysed using a set of 11 fault trees from a benchmark set

[6]. Their complexity is indicated in Table 1.

This table describes the complexity of the fault tree in terms of the number of gates, the number of

basic events, the number of repeated events and the number of minimal cut sets. In order to obtain a

consistent comparison of the four techniques the variable ordering was applied not only for the

conventional method but also for the component connection method, i.e. even when it is not needed.

The depth-first ordering scheme was applied [5]. In this ordering the left-most gate is always

explored completely before considering the remaining gate inputs. The basic events with the greatest

number of occurrences are ordered first.

The comparison of the four methods was performed by considering the following measurements:

 the number of nodes in the final BDD,

 the maximum number of lines in the storage array (representing the number of intermediate

calculations performed), and

 the processing time.

The results of the three measurements obtained by applying the four methods to the example fault

trees are shown in Table 2, Table 3 and Table 4. For the analysis a computer with the 2.16 GHz

processor was used.

Remark. Fault trees were simplified [7] prior to BDD conversion process. The simplification

process contains the reduction [8] and modularisation [9] techniques. It allows a more efficient

analysis of fault trees. The time taken to perform the simplification process has been included in the

processing time in Table 4.

The conventional BDD conversion technique (the ite method) resulted in smaller BDDs and

smaller number of lines in the storage array for all the example fault trees than the basic component

connection method. The processing time was also shorter than in the basic component connection

method. More results for the basic approach of the component connection method are presented in

[10].

When sub-node sharing was introduced in the component connection approach the resulting BDDs

were smaller than using the basic component connection method but still larger than from the ite

technique. Calculation time slightly decreased for the majority of example fault trees. Only for those

fault trees with a large number of intermediate calculations (examples 3 and 4) the calculation time

increased, due to an extra time taken while identifying parts in the BDD suitable for the sub-node

sharing. Therefore, the total time increased when the sub-node sharing was used. More results on the

sub-node sharing method were shown in [11].

The hybrid method resulted in BDDs that contain the same number of nodes as the ite approach.

Calculation time also remained very similar for all example fault trees. However, the hybrid

technique gave slightly better results in terms of the number of lines in the storage array, except

example 4. The slightly improved efficiency was due to the fact that the hybrid method used the best

rules of the two techniques. Firstly, it was improved because the hybrid method provided the

capability to obtain the BDDs for gates with event inputs only in a straightforward way, i.e. putting

inputs of a gate in a chain one by one. Secondly, more complex parts of the fault tree were converted

to the BDD using the component connection method if repeated events did not appear.

Summarising it is clear that the ite technique performs better than the basic component connection

method. However, the hybrid method, as a combination of the two methods, can provide the

efficiency which is as good as the one of the ite method. Despite the fact that the hybrid method is

more complex than the ite technique, according to the efficiency analysis the hybrid method is a good

alternative technique for constructing BDDs.

7. Conclusions

Four methods of constructing BDDs from fault trees were presented in this paper. The first

approach is the conventional ite technique. The second approach is the basic component connection

method. The third approach investigated enhances the basic component connection method by

developing a sub-node sharing property. The last method, the hybrid method, utilises the more

efficient features of the two basic methods. Some example fault trees were used in order to evaluate

the efficiency of the four methods. Three efficiency measures were considered – number of nodes in

the final BDD, number of nodes in the storage array and calculation time. It was shown that the ite

method performs well, whereas the basic component connection method does not provide a good

efficiency even if the sub-node sharing is used. When the efficiency of the two techniques was

combined and the hybrid method was applied, the efficiency of the conversion method was slightly

improved. Therefore, the hybrid can be used as an alternative approach to the ite technique for

conversion of fault trees to BDDs.

8. References

1. A. Rauzy, “New Algorithms for Fault Tree Analysis,” Reliability Engineering and System

Safety, no. 40, 1993, pp. 203-21.

2. W.E. Vesely, “A Time Dependent Methodology for Fault Tree Evaluation”, Nuclear Design

and Engineering, no. 13, 1970, pp. 337-360.

3. Y.S. Way, D.Y. Hsia, “A simple component-connection method for building binary decision

diagrams encoding a fault tree”, Reliability Engineering and System Safety, no. 70, 2000, pp.

59-70.

4. R.M. Sinnamon, J.D. Andrews, “Improved Accuracy in Quantitative Fault Tree Analysis”,

Quality and Reliability Engineering International, no. 13, 1997, pp. 285-292.

5. K.A. Reay, “Efficient Fault Tree Analysis Using Binary Decision Diagrams”, Doctoral

Thesis, Loughborough University, 2002.

6. A benchmark of Boolean Formulae, http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html

http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html

7. J.D. Andrews, R. Remenyte, “Qualitative Analysis of Complex, Modularised Fault Trees

Using Binary Decision Diagrams”, Proceedings of the IMechE, Part O, Journal of Risk and

Reliability, vol 220, June 2006, pp. 45-53.

8. O. Platz, J.V. Olsen, FAUNET: A program Package for Evaluation of Fault Trees and

Networks, Research Establishment Risk Report, No. 348, DK-4000 Roskilde, Denmark, 1976.

9. Y. Dutuit, A. Rauzy, A Linear-Time Algorithm to Find Modules of Fault Trees, IEEE Trans.

Reliability, 45, No.3, 1993, pp422-425.

10. J.D. Andrews, R. Remenyte, ''Fault Tree Conversion to Binary Decision Diagrams'' ,

Proceedings of the 23rd ISSC , San Diego, USA, August 2005, ISBN 0-9721385-5-2 , [CD-

ROM].

11. J.D. Andrews, R.Remenyte, “A Simple Component Connection Approach for Fault Tree

Conversion to Binary Decision Diagram”, Proceedings of the 1
st
 AReS, Vienna, Austria, April

2006, ISBN 0-7695-2567-9/06.

