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Abstract 

The relevance vector machine (RVM), a Bayesian extension of the support vector 

machine (SVM), has considerable potential for the analysis of remotely sensed data. 

Here, the RVM is introduced and used to derive a multi-class classification of land cover 

with an accuracy of 91.25%, a level comparable to that achieved by a suite of popular 

image classifiers including the SVM. Critically, however, the output of the RVM 

includes an estimate of the posterior probability of class membership. This output may be 

used to illustrate the uncertainty of the class allocations on a per-case basis and help to 

identify possible routes to further enhance classification accuracy. 
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1.  Introduction 

Supervised classification is one of the most commonly undertaken analyses of remotely 

sensed data. Despite the importance and long history of classification analysis within 

remote sensing, the accuracy of classifications is often viewed negatively (Wilkinson, 

2005). A variety of factors may be responsible for the low classification accuracies 

sometimes achieved (Foody 2002). Considerable research has been directed at addressing 

the various factors that may limit classification accuracy. Much of this research has 

focused on the potential of new classifiers to accurately discriminate between classes.  

 

The limitations of conventional and widely used parametric classifiers such as maximum 

likelihood classification have been recognised and the potential of alternative approaches 

evaluated (Foody and Mathur, 2004a). Recently, considerable attention has focused on 

support vector machine (SVM)-based classification (e.g. Huang et al., 2002; Pal and 

Mather, 2005; Bazi and Melgani, 2006). The SVM-based approach to classification has 

many advantages over other approaches, notably a relative insensitivity to the 

dimensionality of the data set (Melgani and Bruzzone, 2004; Pal and Mather, 2004), a 

potential for accurate classification from small training sets (Foody and Mathur, 2004b; 

Foody et al., 2006; Mathur and Foody, 2007) and, by focusing on maximising the margin 

between classes, an avoidance of over-fitting problems (Chen and Tang, 2005). Although 

originally designed for binary classifications the SVM approach may be used for multi-

class classification. The latter typically involves either breaking the multi-class problem 

down into a series of binary analyses which can be addressed using a basic SVM (Huang 
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et al., 2002) or the adoption of a multi-class SVM (Hsu and Lin, 2002). Critically, multi-

class classifications by SVM have often been found to be more accurate than those 

derived from a suite of popular alternative classifiers used in remote sensing (Huang et 

al. 2002, Foody and Mathur, 2004a).  

 

Despite the current popularity of SVM-based classification there are some concerns with 

its use. The analyst must, for example, select appropriate values for the penalty term C 

and kernel specific parameter (e.g. gamma which controls the width of the widely used 

radial basis function kernel), often via cross-validation exercise that is wasteful of 

computational time and data (Tipping, 2001). The kernel function used must also satisfy 

Mercer’s condition and the output of the analysis is just a class label prediction, 

conveying no information on the uncertainty of the class allocations predicted (Tipping, 

2001; Chen and Tang, 2005). Additionally, the realisation of potential advantages such as 

the ability to use small training for accurate classification requires an ability to identify 

useful  training sites in advance of the analysis (Foody and Mathur, 2004b; Mathur and 

Foody, 2007). In some circumstances it may be possible to address the concerns with 

SVM-based analyses. For example, it is possible to post-process the outputs of a SVM-

based analysis to derive estimates of posterior probabilities but the reliability of this type 

of analysis can be questionable (Tipping, 2001). Alternative approaches to classification 

are, however, also worth exploring. A recent development of the SVM, the relevance 

vector machine (RVM), may offer an attractive alternative for image classification 

applications. The RVM is a Bayesian extension of the SVM. Key attractions of the RVM 

relative to the SVM are the removal of the need to define the parameter C, a reduced 
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sensitivity to the hyperparameter settings, an ability to use non-Mercer kernels, the 

provision of a probabilistic output and a typical requirement for considerably fewer basis 

functions (relevance vectors) for a given analysis (Tipping, 2001; Chen and Tang, 2005).  

 

As with the SVM, the RVM was originally developed for binary applications. There are, 

however, extensions of the basic approach that may be used for multi-class classification. 

It is, for example, possible to undertake a one-against-all strategy in a manner similar to 

that used with binary SVMs or adopt a multi-class approach (Tipping, 2001; Zhang and 

Malik, 2005). 

 

Like the SVM, the RVM may be used for regression and classification problems. 

Although both regression and classification problems are widely encountered in remote 

sensing the RVM has been very rarely used. Indeed, a search of the ISI Web of Science 

(on 21 May 2007) revealed only one previous publication using RVM in the remote 

sensing literature, and this was as a regression tool (Camps-Valls et al., 2006) although 

an embryonic literature base is emerging (e.g. Demir and Erturk, 2007). The aim of this 

article is to evaluate the potential of the RVM-based approach for multi-class 

classification.  

 

 

2. RVM 

The RVM was introduced in Tipping (2001), which includes a detailed discussion on the 

underlying mathematical basis of the technique. Further details and examples of its 
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application may be found in the literature (e.g. Bowd et al., 2005; Chen and Tang, 2005; 

Camps-Valls et al., 2006). This section aims to provide only a brief discussion focused 

on the salient features for a multi-class classification.  

  

Like the SVM, the RVM was originally developed for binary analyses. In a two class 

classification by RVM the aim is, essentially, to predict the posterior probability of 

membership for one of the classes (0 or 1) for a given input x. A case may then be 

allocated to the class with which it has the greatest likelihood of membership. The basis 

of the RVM may be illustrated following Tipping’s (2001) discussion. Using a Bernoulli 

distribution for P(t|x) the likelihood function in the analysis is, 
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. An iterative analysis is then followed 

to find the set of weights that maximises the function in which the hyperparameters, α, 

associated with each weight are up-dated. When completed, the set of non-zero weights 

defines the relevance vectors. The approach may be extended to multi-class classification 

by generalising (1) to the multinominal form: 
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where K is the number of classes, tnk is the indicator variable for case n to be a member of 

class k and yk is the predictor for class k (Tipping, 2001; Zhang and Malik, 2005). Class 

allocation may then be achieved following the one-against-all strategy sometimes used to 

derive multi-class SVM-based classification. A concern here is that the multi-class 

classification will require a series of binary classifications to be undertaken. An 

alternative based on the principles of multinominal logistic regression and in which yk is 

not considered independently for each class is based on: 
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(Zhang and Malik, 2005). This approach forms the basis 

of the M-RVM software which may be used for classification with class-specific features. 

This software requires the specification of the priors associated with the hyperparameters, 

α, which have a Gamma distribution.  

 

 

3. Data and methods 

Remotely sensed data acquired by a Daedalus 1268 airborne thematic mapper (ATM) 

with a spatial resolution of ~5 m were used to classify crop types at an agricultural test 

site. To facilitate comparison against earlier work with this data set (e.g. Foody and 
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Mathur, 2004a) only the data acquired in three spectral wavebands that provided a high 

degree of class separability were used. These wavebands were located at 0.60-0.63, 0.69-

0.75 and 1.55-1.75 μm.    

 

The test site was the region of agricultural land adjacent to the village of Feltwell in 

Eastern England. At this site, the large fields that dominated the landscape were planted 

to a single crop. A map depicting the crop type planted in each field produced near the 

time of ATM data acquisition was used as ground data. Attention was focused on a 

region comprising mainly six classes: sugar beet, wheat, barley, carrot, potato and grass. 

 

A training set comprising 100 randomly selected pixels of each class was obtained for the 

classification analysis. A further independent testing set was acquired for the purpose of 

accuracy assessment. This testing set comprised 320 randomly selected pixels. As a 

consequence of the sample design, the number of cases of each class in this testing set 

reflected the relative abundance of the classes at the time of data acquisition. The training 

and testing sets were the same as those used in an earlier comparison of contemporary 

image classification techniques (Foody and Mathur, 2004a). The use of these training and 

testing sets, therefore, facilitated the evaluation of the RVM-based approach relative to 

the classification approaches evaluated earlier: discriminant analysis, decision tree, neural 

network and multi-class SVM. Here, the RVM-based approach was evaluated for multi-

class classification. Following, the literature (Tipping, 2001; Zhang and Malik, 2005) the 

priors on the hyperparameters were set to 0. 
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Classification accuracy was assessed with the aid of a confusion matrix and expressed as 

the percentage of the testing cases correctly allocated. An assessment of the statistical 

significance of the difference in accuracy achieved by different classifiers was achieved 

using a McNemar test in recognition of the use of the same testing set in their evaluation 

(Foody, 2004). 

 

 

4. Results and discussion 

Of the 320 cases in the testing set, all except 28 were correctly classified (Table 1). The 

overall accuracy of the RVM-based classification was, therefore, 91.25%. Relative to 

results of earlier work with the same data set (Foody and Mathur, 2004a), this level of 

accuracy is larger than that achieved by classification with a discriminant analysis 

(90.00%) and decision tree (90.31%); the differences in accuracy were insignificant at the 

95% level of confidence. The accuracy of the RVM-based classification was also only 

marginally, but insignificantly at the 95% level of confidence, below the accuracy of 

classification by a neural network (91.88%) and a multi-class SVM (93.75%). It was 

evident, therefore, that the RVM approach yielded a classification of high accuracy, 

comparable to that from a range of popular classifiers. In particular, the accuracy differed 

insignificantly from that of a SVM-based classification but was derived without the 

aforementioned limitations of such an analysis.  

 

The probabilistic nature of the RVM-based classification output may be of considerable 

value. For example, the probabilistic output is valuable in providing an index of the 
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uncertainty in class allocation on a per-case basis. This feature has been found to be 

useful with other classifiers, notably as a means of providing a spatial representation of 

the uncertainty in class allocation, an important feature of classification quality. The 

potential value of this output from the RVM-based approach is indicated by Table 2 

which shows the number of misclassified testing cases lying within quartiles defined on 

the magnitude of the posterior probability of membership to the allocated class for the 

testing set. It was evident that most of the 28 erroneously allocated cases displayed a 

relatively small posterior probability of membership to the allocated class with 17 

(~60%) of the misclassified cases lying within the lowest quartile (Table 2). The posterior 

probability information derived could, therefore, be used to help highlight cases allocated 

with varying degrees of confidence. This information might perhaps be used to help 

direct fieldwork to refine the classification or to mask regions of high uncertainty from 

later analyses.  

 

The posterior probabilities output may also be used to help in identifying possible routes 

to increase classification accuracy. It may, for example, highlight cases for which 

ancillary information is needed to increase classification accuracy. In particular, the 

output may be used to highlight some of the situations in which the classifier is unable to 

provide accurate discrimination. In helping to define the problematic cases the output 

may, therefore, help in the definition of enhancements that could be used to increase 

classification accuracy. For example, although most of the mis-classified cases displayed 

a relatively small posterior probability of membership to the allocated class, 7 of the mis-

allocated cases lay within the upper two quartiles of posterior probability defined (Table 
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2).  This information highlights that some of the errors in the classification were 

confident mis-allocations, in which cases were allocated with a large posterior probability 

to an incorrect class. Closer inspection of the output of the RVM classifier revealed that 

of the 8 most confidently mis-classified cases 6 were of cases of sugar beet being mis-

allocated to the potato class. The errors arising from the confusion of these two classes 

was the largest source of classification error (Table 1) and the recognition that many of 

the errors were confident mis-allocations involving these classes indicated that further 

discriminatory variables (e.g. additional wavebands, textural information, acquisition of 

imagery at another time period) may be required to derive a more accurate classification 

with this particular classifier. Consequently, the analyst can be directed to focus efforts 

aimed at increasing classification accuracy on a major source of misclassification.  

 

The results highlight the potential of the RVM-based approach for classification in 

remote sensing. The RVM-based approach is not, of course, without its problems. 

Although it may offer the potential for classification with very small training sets 

(Tipping, 2001; Bowd et al., 2005) it may be difficult to predict training sites likely to be 

appropriate relevance vectors. While the extreme nature of support vectors in a SVM-

based analysis makes it reasonably easy to design a training data acquisition programme 

focused upon them (Foody and Mathur, 2004b; Mathur and Foody, 2007) the relevance 

vectors in a RVM analysis are more typical of the classes (Tipping, 2001) and possibly 

difficult to characterise in advance. The RVM may also be relatively unattractive as a 

classifier when training data are plentiful due to the computational complexity in learning 

(Tipping, 2001). Often, however, in remote sensing training data may be scarce or costly 
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to acquire and the RVM offers an attractive method of analysis in such circumstances, 

even if the data set is of high-dimensionality (Bowd et al., 2005). The attractive features 

of the RVM for the analysis of remotely sensed data should be further explored in future 

research.  

 

 

 

5. Summary and conclusions 

The RVM, a Bayesian extension of the SVM, was evaluated for multi-class image 

classification. The results highlighted that the RVM could be used to derive a very 

accurate multi-class classification (91.25%), a level insignificantly different to that from 

a SVM. However, the RVM has some major attractions over the SVM. In particular, the 

probabilistic nature of the RVM-based classification output may be of value from a 

variety of perspectives. It may, for instance, assist later users of the classification by 

indicating class allocation uncertainty on a per-case basis. In the example presented, most 

of the mis-allocations were associated with cases allocated on the basis of a small 

posterior probability of membership. The information on the posterior probabilities of 

class membership may, therefore, be used to provide a per-case guide to the confidence 

of class allocations. The probabilistic output information may also be of value to the 

analyst undertaking the classification, especially in helping to identify possible routes to 

refine the analysis to obtain further increases in classification accuracy. In the example 

presented, the output highlighted that some of the classification errors were the result of 

confident mis-allocations between two classes. This information should help focus efforts 
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to increase classification accuracy on the identification of means to enhance the 

separability of the problematic classes in the analysis. 
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 Sugar beet Wheat Barley Carrot Potato Grass ∑ 

Sugar beet 87 3 0 0 7 0 97 

Wheat 3 90 2 1 0 0 96 

Barley 1 5 45 0 0 0 51 

Carrot 0 1 0 32 0 0 33 

Potato 1 2 0 0 22 1 26 

Grass 0 0 0 1 0 16 17 

∑ 92 101 47 34 29 17 320 

 

 

 

 

Table 1. Confusion matrix from the RVM-based classification. In the matrix, rows 

represent the actual class of membership while columns the predicted class of 

membership. The highlighted main diagonal indicates correctly allocated cases. 
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Posterior probability  Number Number  

Quartile  Min  Max  misclassified classified correctly 

     1   0.9311  1.0000     2  78 

     2    0.8504  0.9307     5  75 

     3    0.7241  0.8497      4  76 

     4    0.3161  0.7241   17  63 

 

 

 

Table 2. The number of testing cases lying within quartiles defined on the posterior 

probability of membership to the allocated class (n=320). 

 


