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Abstract. 

 Reports that low-intensity microwave radiation induces heat-shock reporter gene 

expression in the nematode, Caenorhabditis elegans, have recently been 

reinterpreted as a subtle thermal effect caused by slight heating.  This study used a 

microwave exposure system (1.0 GHz, 0.5 W power input; SAR 0.9-3 mW kg
-1

 

for 6-well plates) that minimises temperature differentials between sham and 

exposed conditions ( 0.1C).  Parallel measurement and simulation studies of 

SAR distribution within this exposure system are presented. We compared 5 

Affymetrix gene-arrays of pooled triplicate RNA populations from sham-exposed 

L4/adult worms against 5 gene-arrays of pooled RNA from microwave-exposed 

worms (taken from the same source population in each run).  No genes showed 

consistent expression changes across all 5 comparisons, and all expression 

changes appeared modest after normalisation (≤ 40% up- or down-regulated).  The 

number of statistically significant differences in gene expression (846) was less 

than the false-positive rate expected by chance (1131).  We conclude that the 

pattern of gene expression in L4/adult C.  elegans is substantially unaffected by 

low-intensity microwave radiation;  the minor changes observed in this study 

could well be false positives.  As a positive control, we compared RNA samples 

from N2 worms subjected to a mild heat-shock treatment (30ºC) against controls 

at 26 ºC (2 gene arrays per condition). As expected, heat-shock genes are strongly 

up-regulated at 30ºC, particularly an hsp-70 family member (C12C8.1) and hsp-

16.2 . Under these heat-shock conditions, we confirmed that an hsp-16.2::GFP 

transgene was strongly up-regulated, whereas two non-heat-inducible transgenes 

(daf-16::GFP; cyp-34A9::GFP) showed little change in expression. 

 

 

 

 

 

 

 

 

 



Introduction. 

In a previous report, we suggested that low-intensity microwave fields (similar to those 

generated by mobile phones) could induce a non-thermal heat-shock response in the 

nematode Caenorhabditis elegans [de Pomerai et al., 2000]. This effect has since been 

reinterpreted as a subtle thermal artefact caused by small temperature disparities ( 0.2C) 

between exposed and sham conditions [Dawe et al., 2006]. A modified TEM exposure cell 

was used to reduce this temperature differential substantially (to  0.1C), but this also 

abolished any detectable heat-shock response. Moreover, a quantitatively similar increase in 

heat-shock reporter gene expression could be induced by a temperature rise of 0.2C in the 

absence of any applied microwave field [Dawe et al., 2006]. Similarly, slight heating could 

explain why mutant phenotype prevalence is increased by microwave exposure in several 

temperature-sensitive C. elegans mutants grown at an intermediate temperature [Gul-Guven 

et al., 2006].   

 

Although the heat-shock response is useful as a general indicator of cellular stress (see e.g. de 

Pomerai, 1996), it goes without saying that the expression of many other genes and signalling 

pathways could be affected by microwave exposure. Several published gene-array studies 

document significant changes in the expression of a subset of genes following microwave 

irradiation [e.g. Belyaev et al., 2006; Remondini et al., 2006; Zhao R et al., 2007; Zhao T-Y 

et al., 2007], whereas other gene-array studies have reported no significant alterations 

[Gurisik et al., 2006; Qutob et al., 2006; Whitehead et al., 2006]. These published studies in 

all cases use vertebrate cell cultures exposed to simulated GSM fields (at 0.9 or 1.8 GHz) at a 

moderate SAR approaching 2.0 W kg
-1

. The present study utilised the model nematode, 

Caenorhabditis elegans, which was exposed to continuous-wave (CW) 1.0 GHz fields for 2.5 

h at a much lower SAR of 0.9-3 mW kg
-1

 [cf. de Pomerai et al., 2000; Dawe et al., 2006].  

Pooled RNA samples and multiple Affymetrix chips (5 x sham versus 5 x exposed) were 

used to look for consistent microwave-induced changes in the pattern of gene expression. 

Although most pair-wise comparisons within runs (sham versus exposed samples derived 

from the same source population) showed several examples of apparent up- or down-

regulation, very few of these were consistent across 3 or more runs, and in all cases such 

changes were quantitatively small (≤ 40%) after normalisation. After correction for the 

expected false positive rate, none of these changes in gene expression remains significant. By 

contrast, in a smaller-scale positive-control experiment using mild heat shock ( versus 



26C) with just 2 gene arrays per condition, we found numerous genes whose expression 

changed by > 2-fold up or down.  If the two 30C arrays are compared against the original set 

of 5 sham 26C arrays, 1585 genes show significantly altered (≥ 2-fold) expression even after 

correcting for false positives (1029 up-regulated and 556 down-regulated), and these include 

several strongly up-regulated heat-shock genes. Up-regulation of a small heat-shock gene at 

30ºC was confirmed independently using an hsp-16.2::GFP transgene, whereas two other 

GFP reporters (for daf-16 and cyp-34A9) showed little change in expression at 30ºC, 

consistent with the gene-array results. 

 

Materials and Methods. 

The wild-type (N2) strain of C. elegans was originally obtained from the MRC Laboratory of 

Molecular biology at Cambridge (UK), as was the P90C lac-deleted strain of E. coli used as a 

food source. C. elegans strain CL2070 (hsp-16.2::GFP) was generously donated by Chris 

Link (University of Colorado, Boulder, USA), strain TJ356 (daf-16::GFP) was from the 

Caenorhabditis Genetics Centre (University of Minnesota, St Louis, USA), and strain 

BC20306 (cyp-34A9) was supplied by the GFP fusion-gene project (headed by David Baillie, 

Simon Fraser University, Vancouver, Canada). Trizol was obtained from Invitrogen Ltd 

(Paisley, UK). The commercially available Affymetrix C. elegans Genome Array 

(Affymetrix, Santa Clara, USA) was used for all experiments.   

 

Worm culture: N2 worms were cultured at 15C on large 14 cm  Petri dishes containing 

Nematode Growth Medium (NGM) agar overlaid with a lawn of food bacteria (E. coli strain 

P90C), as described previously [Sulston & Hodgkin, 1988; Dawe et al., 2006].  Worms were 

then synchronised by egg isolation using bleach [Sulston & Hodgkin, 1988] and the L1 

offspring were filtered using 5 μm nylon filters [Mutwakil et al., 1997]. These synchronised 

cultures were grown up to the L4 stage before exposure. L4 worms were washed off the 

plates using ice-cold K medium (53 mM NaCl, 32 mM KCl) [Williams & Dusenbery, 1990], 

filtered using 5 μm nylon filters to remove excess bacteria and then dispensed carefully using 

a magnetic stirrer into two 6-well plates destined for immediate microwave or sham 

exposure, respectively. The sample volume in each well was always 1.0 ml, as previously 

used for dosimetry and temperature measurements (see below). 

 



Microwave and mild heat exposure: One group of worms was exposed to the microwave 

field (CW; 1.0 GHz; 0.9-3 mW kg
-1

) for 2.5 h at 26C in the modified silver-plated TEM cell 

described in Dawe et al. [2006], whereas the other group was sham-exposed (no field) for the 

same length of time at the same temperature in an unmodified copper TEM cell.  The 

temperature difference between exposed samples in the silver-plated cell and sham samples 

in the copper cell has previously been measured at  0.1C [Dawe et al., 2006], thus 

minimising the contribution of thermal artefacts to this study.  As a positive control, we also 

compared gene-expression profiles between N2 worms at 30C (mild heat shock) and at 26C 

(control), using a shorter exposure time of 1.5 h (see text for explanation). 

 

Dosimetry and SAR modelling:  Using 24-well plates containing1.0 ml of K medium per 

well, the specific absorption rate (SAR) was measured using an isotropic IndexSAR IXP-010 

E-field probe (details at www.indexsar.com/dosimetric-probe.htm) with a 900 MHz 

continuous-wave signal at 1.0 W input power.  Output power from the cell was also 

monitored using a calibrated power sensor, and the results were normalized to 1.0 W into a 

50  load.  The single-axis probe has an outer diameter of 1.5 mm and is minimally 

perturbing to the fields being measured; it was calibrated for SAR in K medium, with the 

dipole sensor arranged at an angle of 54.7 degrees to the axis (so that the isotropic field is 

given by the sum of the output voltage measured at 3 positions 120 degrees apart, rotated on 

the probe axis).  The probe was positioned so as to dip into the K medium with its tip midway 

between the meniscus and the well floor, using a precision linear slide. This was repeated for 

each of the 24 well positions.  The isotropy of this probe is better than 1 dB.  These 

measurements were conducted at the UK National Physical Laboratory (NPL) as part of a 

complete calibration of the Nottingham TEM cell used here and previously. 

 

Numerical computer simulations were also used to model the exposure of 1.0 ml of  K-

medium per well in both 6- and 24-well plate formats placed inside this TEM cell,  based on  

the 1.0 GHz field and 0.5 W power input actually used in our experiments.  The computations 

were performed using a commercial software tool XFDTD (Remcom, Inc., State College, 

PA) -based Finite Difference in Time Domain (FDTD) method. The geometry of the TEM 

cell, multiwell plates and K medium (1.0 ml) within each well in the simulation model was as 

close as possible to the experimental setup, and was discretised with a minimum 

discrimination step of 0.5 mm using a variable grid. The dielectric constant of K medium in 

http://www.indexsar.com/dosimetric-probe.htm


simulations was 78.2 (measured using an HP 85070C Dielectric Probe kit) while conductivity 

was 1.16 S/m; SAR was computed for a mass density of 1 g cm
-3

.  The grayscale squares in 

Figure 2B and 2C show average SAR per 0.5 mm
3
 voxel in the basal layer of K medium, 

centred 0.25 mm above the floor of each well. For direct comparison with probe 

measurements (above), we also modelled the SAR distribution in a layer of medium midway 

between the well floor and meniscus in the 24-well format (Figure 2A).  SAR modelling for 

other layers of liquid within the sample is available as a Powerpoint presentation (shown in 

supplementary material 1). 

 

RNA extraction:  Aliquots of L4 worms were either sham-exposed (control; no field) in a 

copper TEM cell, or else exposed to 1.0 GHz, 0.5 W for 2.5 hours at 26ºC in a silver-plated 

TEM cell [Dawe et al., 2006]. In a separate experiment, batches of L4 worms were incubated 

(again in 6-well plates) for 1.5 h at either 26ºC (cf. sham controls) or 30ºC (mild heat shock). 

Post-exposure, the worms were quickly removed from the 6-well dishes using glass pipettes, 

pelleted by centrifugation (3000 x g for 3 min) and then dropped in small concentrated pellets 

(again using a glass pipette) into liquid nitrogen.   These pellets were then crushed using a 

pre-cooled mortar and pestle (-80ºC) in the presence of 2ml of Trizol (Invitrogen).  The 

worm-Trizol slurry was transferred by spatula into a 50 ml tube, left to defrost at room 

temperature with regular agitation, and then transferred to 2 x 1.5 ml microcentrifuge tubes.  

A standard Trizol RNA extraction was then performed according to the manufacturer's 

instructions.  All microcentrifuge tubes, the spatula and mortar and pestle were autoclaved 

and pretreated with RNaseZap (Ambion, Huntingtdon, UK) and diethyl pyrocarbonate- 

(DEPC-) treated water prior to use.  RNA samples from 3 exposure runs (performed on 

different days) were combined for hybridization onto microarrays.  Thus the results below 

derive from 5 sets of sham gene-arrays pooled from 15 sham exposures, compared against 5 

sets of exposed gene-arrays pooled from 15 microwave exposures. RNA was transported on 

dry ice and stored at -80ºC.  Only 2 gene-arrays and 2 replica runs per test condition were 

used for the 1.5 h positive controls, where mild heat shock at 30ºC was compared against 

26ºC shams. Air temperatures were monitored continuously throughout these positive control 

experiments using Gemini TinyTalk
TM

 temperature loggers (RS Components Ltd, Corby, 

UK) with a thermosensor sensitivity of ± 0.5ºC, reporting every 20 seconds.  Temperature 

recordings for these runs are available as supplementary material 2; the average temperatures 

are very close to 25.5ºC and 30ºC respectively, but readings fluctuate as expected  across a 

range of 1.0ºC (mean ± 0.5ºC).  To minimise the time taken for temperature acclimation, the 



6-well plates containing 1.0 ml per well of K medium were pre-warmed for several hours in 

the respective 26 and 30ºC incubators.  These plates were removed very briefly for addition 

of worm aliquots (as above) and were then returned to the same incubator. 

 

 

RNA labeling and hybridization to Affymetrix gene chips:  RNA quality was analysed 

with the Agilent 2100 Bioanalyser (Agilent Technologies, Geneva, Switzerland) using the 

RNA 6000 nano kit. All 14 RNA samples were of sufficient quality for gene array analysis, 

with 28S:18S rRNA ratios of between 1.8 and 2.7. Approximately 5 µg of total RNA from 

each sample was used to produce cDNA using the GeneChip® One-cycle cDNA synthesis kit 

(Affymetrix, USA), as per the manufacturer‟s instructions. Double stranded cDNA products 

were purified using the GeneChip® Sample Cleanup Module (Affymetrix, USA). The 

synthesised cDNAs were transcribed in vitro by T7 RNA polymerase using biotinylated 

nucleotides to generate biotinylated complementary RNAs (cRNAs) using the GeneChip® 

HT IVT labeling kit (Affymetrix, USA), according to the manufacturer‟s instructions. The 

cRNAs were purified using the GeneChip® Sample Cleanup Module (Affymetrix, USA). 

The cRNAs were then randomly fragmented at 94°C for 35 minutes in a buffer containing 40 

mM Tris-acetate (pH 8.1), 100 mM potassium acetate, and 30 mM magnesium acetate to 

generate molecules of approximately 35 to 200 bp. Affymetrix C. elegans Genome 

GeneChip® arrays were hybridised with 15 µg of fragmented labeled cRNA for 16 h at 45°C 

as described in the Affymetrix Technical Analysis Manual using the GeneChip® 

hybridization control kit and GeneChip® hybridisation, wash and stain kit (Affymetrix, 

USA). GeneChip® arrays were stained with streptavidin-phycoerythrin solution and scanned 

with an Affymetrix G2500A GeneArray scanner. Following scanning, non-scaled RNA 

signal intensity (CEL) files were generated using GeneChip® operating software (GCOS; 

Affymetrix, USA) and normalised data was generated with the GCOS software using the 

MAS 5 algorithm (Affymetrix microarray suite users guide). The ratios of 5‟ to 3‟sequence 

representation on the final gene-arrays were checked for several housekeeping transcripts 

(catalase, GAPDH, Gly4, ubiquitin and actin): for GAPDH and actin these were mostly close 

to unity, for catalase they were around 0.5, while for Gly4 they were much higher (4.0 to 

nearly 5.0) and for ubiquitin much lower (around 0.2).  These ratios were fairly constant 

across all of the different RNA samples, suggesting that these differences in 5‟:3‟ ratios 

reflect differential probe efficiency.  The most divergent ratios were those seen for sham 1. 

 



GFP reporter expression analysis:  Three transgenic strains carrying integrated GFP fusion 

genes were chosen from a panel of stress-inducible strains.  One of these (CL2070) carries an 

hsp-16.2::GFP fusion gene known to be inducible by mild heat (at 30C), whereas previous 

work (C Anbalagan & D de Pomerai, unpublished data) suggested that neither daf-16::GFP 

(TJ356) nor cyp-34A9::GFP (BC20306) fusion genes is heat-inducible (all three are inducible 

by other stressors). Cultures of each strain were grown at 15C, washed with ice-cold K 

medium as above, and aliquotted equally in liquid K medium (with constant gentle stirring to 

prevent worms from settling) into 24-well plates using 0.3 ml per well (containing about 500 

worms). These liquid cultures were exposed for up to 6 hours at either 26C (control) or 30C 

(heat shock).  Temperature records for this extended run and for 3 shorter 1.5 h runs (used for 

RNA preparations) are shown in supplementary material 2; in essence, these set temperatures 

correspond to measured actual values of 25.5C (occasionally rising to 26.0C) and 30.0C 

(over-shooting to 30.5C initially, then settling back to 30.0C and occasionally dropping to 

29.5C).  Thus a temperature disparity of 4-5C was maintained throughout between the 

control and heat-shock conditions.  After 3 h, and again after 6 h, the contents of each well 

were transferred to a 96-well, black, non-fluorescent microplate with round-bottomed wells 

(Nunclon, Cole-Parmer Instruments Ltd, Hanwell, London, UK), and the worms allowed to 

settle on ice for 10 min.  GFP fluorescence was measured in each worm pellet using a Perkin-

Elmer Victor 1420 plate fluorometer with excitation and emission filters for GFP. Because 

the daf-16::GFP strain showed much higher constitutive GFP expression than the other two 

strains, all GFP measurements (in relative fluorescence units, RFU) have been normalised to 

the 3 h control value (at 26C) for each strain. Each bar in Figure 3 shows the mean and 

standard error derived from 4 independent replicates for that strain.  

 

Data Analysis: The non-scaled RNA CEL files were loaded into GeneSpring analysis 

software (GeneSpring 7.3; Agilent Technologies, USA) using the Robust Multichip Average 

(RMA) prenormalisation algorithm [Irizarry et al., 2003]. Further normalisations were 

performed for each experiment using a three step process: (i) probe-sets with a signal value   

< 0.01 were set to 0.01, (ii) per chip normalisation to the 50
th

 percentile, (iii) each gene signal 

from the microwave treated sample was normalised to the corresponding sham sample and 

the sham samples normalised to themselves. Raw p-values obtained from paired t-tests were 

evaluated in the light of the high probability of making a “false discovery” [Storey & 

Tibishrani, 2003]. We have therefore adjusted the p-values using a standard correction for 



instances of multiple testing [Benjamini & Hochberg, 1995], The minimum false discovery 

rate at which each p-value could be described as significant (the q-value) was estimated using 

the Q value v1.0 library implemented in the statistical package R, v 2.4.1. The data discussed 

in this publication are accessible in the NCBI Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) [Edgar et al., 2002] through the GEO series accession 

number GSE10787. 

 

Results: 

A schematic plan of the Nottingham TEM cell is shown in Figure 1A, indicating the central 

position of the 24-well plate used for sample exposures in previous studies [Dawe et al., 

2006].  Figure 1B shows the measured SAR distribution with a loaded 24-well plate (each 

well containing 1.0 ml of K medium) for a 0.9 GHz CW signal at 1.0 W input power, using 

the NPL measurement equipment and conditions described in the Methods. SAR was highest 

in the input corner wells (up to ~40 mW kg
-1

) and lowest in the central wells (~4 mW kg
-1

).  

However, because very large numbers of sham and exposed worms were required for RNA 

preparations and gene-array analysis in this study, we minimised potential problems from 

anoxia and overcrowding by conducting the exposures in 6-well plates.  Similar SAR 

measurements were not conducted in this 6-well plate format, but SAR modelling by FDTD 

was performed for both 6- and 24-well formats.  Figure 2A confirms that peak SAR in the 

middle layer of K medium (halfway between meniscus and floor, as in Figure 1B), is 

essentially confined to the corner wells, with an overall variation from about 2 to 20 mW kg
-1

 

(for a 0.5 W input, rather than 1.0 W as in Figure 1B). Thus SAR measurements for the 24-

well format are generally in close agreement with FDTD modelling, and also with 

independent TLM modelling (N Vasic & D Thomas, unpublished; data not shown).  FDTD 

modelling predicts a somewhat higher and more uniform SAR in the basal layer of K medium 

for the 24-well format, as shown in Figure 2B.  However, we note that FDTD modelling 

predicts 9-fold lower SAR for this same basal layer in the 6-well as compared to the 24-well 

format (Figure 2C versus 2B).  Normalized to 0.5 W of average power supplied to the TEM 

cell at 1.0 GHz, simulations for the basal layer of K medium in 24-well plates gave a peak 1 g 

average SAR of 8.2 mW kg
-1

, a total average SAR in K medium of 4.7 mW kg
-1

, and the 

peak point in the exposed medium was 25 mW kg
-1

 (Figure 2B).  For the 6-well exposure 

system as used here, similar modelling gave a peak 1 g average SAR of 1.0  mW kg
-1

, a total 

average SAR of 0.88 mW kg
-1

, and the peak point in exposed K medium was 2.7 mW kg
-1

 

(Figure 2C). These SAR estimates relate to average voxel values centred 0.25 mm above the 

http://www.ncbi.nlm.nih.gov/geo/


floor of each well, since this basal layer of K medium is where worms (~100 μm in diameter) 

spend most of their time resting or crawling. SAR modelling for other layers of medium is 

available as supplementary material 1, but detailed modelling of the meniscus region requires 

higher resolution and is in any case not relevant to worms residing mainly in the basal layer. 

 

The actual SAR experienced by worms crawling across the well floor in a microwave-

exposed 6-well multiwell plate is therefore likely to vary from < 1.0 mW kg
-1

 in central wells 

up to a maximum of 2.7 mW kg
-1

 in the corner wells (at 0.5 W input power).  Clearly the 

RNA extraction and gene array procedures pool worms from all exposed wells together and 

compare these against unexposed sham controls.  Even when using the 24-well format (where 

SAR is ~9-fold higher – up to 25 mW kg
-1

 in corner wells), we have been unable to detect 

any significant differences in hsp-16.1::lacZ expression between corner and central wells 

after microwave exposure [A Dawe & D de Pomerai, unpublished data].   

 

Table 1 lists the genes that showed possible up- or down-regulation (by ≥20%) following 

microwave exposure, ordered by n-fold change in expression relative to sham controls after 

standard normalisation (see Methods). The maximum increase observed is only 40% (for 

F40F12.5, encoding an orthologue of human CYLD1). One gene that was variably up-

regulated in 3 out of 5 runs (albeit by only 17% on average) is the F59D8.1 locus including 2 

linked vitellogenin (yolk-protein) genes, vit-3 and vit-4. At first sight, this might be consistent 

with a previous report that microwave exposure can speed up egg production in C. elegans 

[de Pomerai et al., 2002], although this observation could also be plausibly explained by 

slight heating. Vitellogenin (vit) genes are expressed in the adult gut to facilitate egg 

production, but not in L4 larvae (which produce only sperm in the hermaphrodite gonad); 

thus the onset of vit gene expression is diagnostic of the transition from L4 to adulthood. 

However, the vit-3/-4 locus is part of a vitellogenin multigene family comprising 5 closely 

related X-linked genes (vit-1 to -5) plus one distantly related autosomal gene (vit-6)) [Heine 

& Blumenthal, 1986].  Most are co-regulated in the adult intestine, being subject to 

repression by the double-sex-related MAB-3 transcription factor, which is in turn negatively 

regulated by the TRA-1 sex-determining transcription factor [Shen & Hodgkin, 1988; Yi et 

al., 2000].  However, none of the other vit genes showed any significant change in expression 

between sham and exposed conditions (expression ratios of 0.9 to 1.1) in any of the 5 runs.  

Thus the apparent up-regulation of vit-3/-4 is unlikely to be of any significance biologically. 

 



As a positive control, we heat-shocked N2 worms for 1.5 hours at 30C and compared 

duplicate gene arrays against parallel 26C sham controls (for each run, two batches of N2 C. 

elegans L4 larvae were split equally between the 26 and 30C conditions prior to exposure). 

Comparisons between the 2 heat-shock gene arrays at 30C and their respective controls at 

26C reveals a large number of gene expression changes that appear significant both 

statistically (p  0.05) and quantitatively ( 2-fold change).  Prominent among the up-

regulated genes are those encoding several heat-shock proteins, notably a major inducible 

hsp-70 (C12C8.1; 16.6-fold) and hsp-16.2 (7.2-fold).  Unfortunately, these changes do not 

stand up to further statistical scrutiny after applying the Benjamini-Hochberg correction, and 

could therefore represent false positives (see Discussion).  This is largely a consequence of 

discrepancies between the two 26C sham arrays (see supplementary material 3); by contrast, 

the two 30C heat-shock arrays show very similar patterns of altered gene expression.  We 

therefore conducted a further comparison between the two 30C heat-shock gene arrays and 

the original set of five 26C sham arrays from the main microwave study (noting that these 

were exposed for 2.5 h rather than 1.5 h at 26C).  This indicates that 1585 genes show 

significantly altered expression at 30C as compared to 26C, with p ≤ 0.05 even after 

applying the Benjamini-Hochberg correction; 556 of these are down-regulated by ≥ 2-fold, 

while 1029 are up-regulated by ≥ 2-fold.  Table 2 lists those genes showing ≥ 10-fold up-

regulation and ≥ 6.67-fold down-regulation.  The latter group mostly encode uncharacterised 

proteins, of which 25% (3 out of 12) are nematode-specific (nspd-4, -3 and -1). The larger 

group of strongly up-regulated genes includes two hsp-70 genes (C12C8.1 by 95-fold; 

F44E5.4 by 63-fold) and two small heat-shock genes (hsp-16.2 by 16.3-fold; hsp-16.11 by 

11.3-fold).  Other heat-shock genes showing significant up-regulation (between 2- and 10-

fold) include:- hsp-16.41 by 8.2-fold, hsp-17 by 8.0-fold,  hsp-43 by 3.9-fold, hsp-16.48 by 

2.8-fold, hsp-3 by 2.4-fold and hsp-4 by 2.1-fold.  Other genes that figure prominently in the 

up-regulated group include several collagen genes (dpy-14, dpy-17, col-74, col-121, col-165) 

and a cuticulin gene (cut-3), presumably reflecting heat-induced changes in cuticle synthesis 

(Table 2).  Three C-type lectin genes (clec-60, clec-17 and clec-86) and 2 lysozyme genes 

(ilys-3 and lys-10) are also up-regulated strongly at 30 as compared to 26C (Table 2). 

 

We have independently confirmed some of the positive control gene-array results by 

monitoring GFP expression in 3 transgenic strains carrying stress-related promoter::GFP 

fusion genes.  As expected, the hsp-16.2::GFP construct is strongly up-regulated by mild heat 



shock at 30ºC – by ~25% after 3 h and by ~200% after 6 h (Figure 3).  This response appears 

slower and lower than implied by the gene-array results (7.2-fold), but in fact a considerable 

proportion of the background „GFP‟ signal at 26ºC is contributed by gut autofluorescence 

rather than low-level fusion-gene expression (hence the true extent of up-regulation is 

partially hidden by this background signal noise). Moreover, the GFP response is delayed 

relative to transcriptional changes in gene expression, because the GFP protein needs to be 

translated, correctly folded and auto-oxidised before any increase in fluorescence can be 

detected (a matter of hours rather than minutes). Thus, in essence, the results for heat-

inducible hsp-16.2::GFP expression (Figure 3) confirm the gene-array data shown in Table 2. 

Similar experiments on strain PC161 (an hsp-16.1::GFP:lacZ double reporter strain) [David 

et al., 2003] revealed a similar but smaller up-regulation after 6 h at 30ºC (data not shown). 

Figure 3 also confirms that two other stress-related genes, daf-16 (encoding a FOXO 

transcription factor central to the ageing pathway) and cyp-34A9 (= dod-16, a cytochrome 

P450 gene which is itself regulated by DAF-16) [Murphy et al., 2003; de Pomerai et al., 

2008], show only marginal down-regulation at 30ºC (approaching 2-fold for daf-16 after 6 h).  

The gene array data for these two genes suggest slight up-regulation for cyp-34A9 (2.18-fold) 

and no change for daf-16 (although there are multiple transcripts from this gene, and 3 of the 

4 probe sets are not specific for daf-16). Broadly speaking, these independent controls 

confirm strong up-regulation for hsp-16-2 but only minor changes for daf-16 and cyp-34A9.   

 

 

 

Discussion: 

The apparent changes in gene expression between matched sham and microwave-exposed 

samples are in all cases quantitatively small (Table 1). Such changes are rarely consistent 

across all 5 runs, and most occur in only 3 (sometimes 4) out of the 5. Moreover, the known 

or inferred functions and gene ontogeny terms for the listed genes do not suggest any 

particular common targets.  None of these apparent gene-expression changes is sufficiently 

large or consistent to justify real-time RT-PCR measurements of transcript levels in order to 

confirm a genuine change in gene-expression levels.  A modest 4-5ºC increase in temperature 

provokes far more numerous changes in gene-expression profile, many of which are 

quantitatively much larger.  This shows that the Affymetrix gene-arrays used here can clearly 

identify major gene-expression changes provoked by fairly mild environmental perturbations.  

Furthermore, using GFP fusion strains, we have validated at least one case of significant up-



regulation at 30°C (hsp-16.2), and confirmed that two other stress-related genes (daf-16 and 

cyp-34A9) are scarcely affected by mild heat (Figure 3). 

 

Given the fact that Affymetrix C. elegans gene-arrays measure the levels of >22,000 

transcripts, and that 5% of these are likely to show apparently significant (p < 0.05) changes 

in expression levels by chance, we would expect to see ~1131 false discoveries under the null 

hypothesis that microwave exposure has no effect on gene expression levels in C. elegans. In 

reality, we observed even fewer apparently significant changes after microwave irradiation, 

as only 846 of the tests yielded p < 0.05.  The q-values that we computed indicate that, if we 

were to reject the null hypothesis for any one of these 846 tests, the chance of making a false 

discovery would be at least 64% (q > 0.641 for all entries in Table 1).  Furthermore, if we 

adjust the p-values using a standard correction for instances of multiple testing [Benjamini & 

Hochberg, 1995], none of the observed gene-expression changes remains significant (p = 

0.873 for all entries in Table 1). Thus, on statistical grounds, there is no reason to reject the 

null hypothesis for any of the genes considered.  Whilst it is impossible to prove a negative 

(i.e. that there is no effect whatsoever), this study provides no clear evidence for microwave-

induced changes in gene expression. Our negative conclusion is reinforced by the fact that 

five pair-wise comparisons between exposed and sham conditions (each pooled from 3 

separate runs, i.e. representing 15 runs in total) have failed to pinpoint any consistent or 

significant changes in gene expression beyond those predicted by chance. This conclusion is 

unaffected by the inclusion or exclusion of 2 data sets (from runs 1 and 3) that showed 

somewhat higher variance than in runs 2, 4 or 5.  In fact, exposed and sham arrays from each 

run were generally more similar to each other than to the remaining 4 exposed or sham arrays 

(see condition tree plots presented as supplementary material 3A). 

 

We also undertook a parallel study using mild heat-shock conditions (30ºC) for comparison 

against 26ºC controls (Table 2).  Because heat induces rapid but transient changes in gene 

expression (especially for heat-shock genes) [GuhaThakurta et al., 2002], we chose a shorter 

1.5 h exposure time rather than the 2.5 h used for microwave exposures (above). Though 

30ºC is well above the normal tolerance range for C. elegans, it is milder than the standard 

heat-shock conditions (33 or 35ºC) tested in other gene-array experiments [Kim et al., 2001; 

GuhaThakurta et al., 2002]. Comparisons between the two 30ºC arrays and the corresponding 

26ºC arrays reveal numerous up- and down-regulated genes, but unfortunately these do not 

remain significant after applying the Benjamini-Hochberg correction, suggesting that some or 



most may be false positives.  The main reason for this is an unexplained disparity between 

the two 26ºC sham arrays, in contrast to the two 30ºC arrays which are closely similar (see 

condition tree plots presented in supplementary material 3B).  We therefore re-analysed the 

gene-array data by comparing the two 30ºC arrays against the original set of five 26ºC sham 

controls from the main microwave experiment.  This analysis reveals a total of 1585 changes 

in gene expression that are ≥ 2-fold and remain significant after applying the Benjamini-

Hochberg correction.  Amongst the most strongly up-regulated genes are several encoding 

heat-shock proteins, cuticle components, C-type lectins and lysozymes (see Table 2). Thus a 

few functional categories predominate amongst the heat-inducible genes, in contrast to the 

very mixed bag showing marginal changes in response to microwave irradiation (Table 1). 

 

In conclusion, this study provides no evidence for major changes in gene-expression 

following exposure of wild-type Caenorhabditis elegans to weak microwave fields (2.5 h at 

26ºC; SAR 0.9-2.7 mW kg
-1

).  The slight changes observed are quantitatively small and likely 

to represent false positives. The fact that far more genes show marginal up-regulation than 

down-regulation might be consistent with the very small residual temperature rise (~0.1ºC) 

experienced within the modified TEM cell during microwave exposure [Dawe et al., 2006], 

since a similar preponderance of up-regulated genes over down-regulated genes is also seen 

at 30ºC (Table 2).  This does not exclude the possibility that some genes may show altered 

expression following exposure to stronger fields (of the order of 2.0 W kg
-1

, as used in many 

other studies), nor that susceptible mutant strains might show greater sensitivity.  However, 

despite its many advantages of convenience and excellent genetics, C. elegans may be too 

resilient as a test organism to offer sensitive biomarkers for microwave exposure and effect.    
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Figure Legends. 

Figure 1.  Measured SAR distribution in K medium for a 24-well plate. 

Part A shows a schematic cross-section of the octahedral Nottingham TEM cell, with a 

24-well multiwall plate placed centrally on the waveguide septum.  The SAR 

measurements shown in part B were performed as described in Methods, using an 

isotropic IndexSAR IXP-010 E-field probe dipping into 1.0 ml of K medium (midway 

between meniscus and floor), which had been dispensed beforehand into each well of the 

24-well plate. In this experiment, a 0.9 GHz CW field was applied, and results were 

normalized to a 1.0 W power input (NB these conditions differ somewhat from those used 

in the simulations shown in Figure 2, and in the gene-array experiments described here).  

 

Figure 2.  Modelling of SAR distributions for 24- and 6-well plates in K medium. 

Numerical computer simulations were used to simulate SAR for 1.0 GHz CW fields at 0.5 

W input power in 1.0 ml samples of K medium dispensed into each well of a 24-well 

(parts A and B) or 6-well (part C) plate inside the TEM cell as above (Figure 1A). The 

computations were performed using the XFDTD commercial software tool (Remcom, 

Inc., State College, PA), as described in Methods, and the geometry of the simulation 

model was as close as possible to the actual experimental setup. The SAR estimates are 

averaged for each 0.5 mm
3
 voxel in either:-  (i) the middle layer of K medium (midway 

between meniscus and floor, corresponding to the probe location in Figure 1B) as shown 

in part A; or (ii) the basal layer of K medium above the well floor in both plate formats 

(centred 0.25 mm above the floor) as shown in parts B and C. The grayscale bar on the 

right of each figure shows the SAR in W kg
-1

. Each plate is shown in the same orientation 

with row A (closest to input; Figure 1A) uppermost.   

 

Figure 3.  Effect of heat shock at 30ºC on expression of selected GFP reporters. 

Equal aliquots of transgenic worm strains carrying integrated hsp-16.2::GFP (CL2070), 

daf-16::GFP (TJ356) and cyp-34A9::GFP (BC20306) constructs were exposed at 26ºC or 

30ºC for up to 6 h, and the GFP fluorescence measured after 3 h and 6h, as described in 

Methods.  Relative fluorescence was normalised relative to the basal expression at 26ºC 

after 3 h for each test strain.  Each histogram bar shows the mean and SEM derived from 

four independent replicates. Each group of 4 bars (one strain) shows, from left to right, 

the relative GFP fluorescence at:-  26ºC after 3 h (set at 100%; no shading); 30ºC after 3 h 

(solid shading); 26ºC after 6 h (speckled); and 30ºC after 6 h (chequered). 



 

Supplementary Material 1. 

A series of  Powerpoint slides showing the computed SAR distribution at different levels in 

the medium contained in 6-well and 24-well plates (1.0 ml of K medium per well).  False 

colour scales are indicated in the key provided on each slide.  Figures are reproduced 

courtesy of Dr G. Bit-Babik (Motorola Research Laboratories). 

 

Supplementary Material 2. 

Temperature records for the heat-shock (30C) versus sham control (26C) experiments, 

including three 1.5 h runs used for RNA isolations and one longer (6 h) run used for the GFP 

reporter studies (Figure 3).  Data were recorded using TinyTalk temperature loggers 

(reporting every 20 sec), whose measurement accuracy is approximately  0.5C; 

temperatures are recorded to the nearest 0.5C throughout. 

 

       Supplementary material 3. 

Condition tree plots from GeneSpring analysis of the gene array data.  The tree above each 

set of columns indicates which gene-expression patterns cluster most closely together. 

Part 3A.  Condition tree for the 10 arrays used in the main study of microwave effects. Note 

that the sham array within each run clusters most closely with the exposed array in that same 

run, and not with the sham arrays from other runs.  This supports our contention that there is 

little or no effect attributable to the weak microwave fields applied to the exposed samples. 

Part 3B.  Condition tree for the 4 arrays used in the positive control (30C heat-shock) study.  

Note that the two heat-shock arrays cluster closely together, whereas the two sham 26C 

arrays are much less similar. Because of this disparity, the two heat-shock arrays were further 

compared against all 5 sham controls from part A (also at 26C, but for 2.5 rather than 1.5 h). 

 


