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Abstract

The growth of a cell population within a rigid porous scaffdh a perfusion
bioreactor is studied, using a three phase continuum mddékeaype presented by
Lemonet al. (2006) to represent the cell population (and attendantaegtiular ma-
trix), culture medium and porous scaffold. The bioreactgstem is modelled as a
two-dimensional channel containing the cell-seeded pgidus scaffold (tissue con-
struct) which is perfused with culture medium. The studyamirates on (i) cell-cell
and cell-scaffold interactions and, (ii) the impact of maebtransduction mechanisms
on construct composition.

A numerical and analytical analysis of the model equatiensrésented and, de-
pending upon the relative importance of cell aggregatiahrapulsion, markedly dif-
ferent cell movement is revealed. Additionally, mechaaosduction effects due to
cell density, pressure and shear stress-mediated tissughgare shown to generate
qualitative differences in the composition of the resgtoonstruct. The results of
our simulations indicate that this model formulation (imjonction with appropriate
experimental data) has the potential to provide a meanseuttifging the dominant

regulatory stimuli in a cell population.

1 Introduction

The growth of biological tissue is highly complex, involgitthe interaction of numer-
ous processes which operate on disparate spatio-tempgataks from intracellular gene



networks to tissue-level patterning and mechanics (Peiregé, 2006). Due to their im-
portance in (for instance) tissue engineering, and varpgatkological conditions, tissue
growth processes have inspired a huge range of theoretidab@perimental studies (see
Araujo & McElwain (2004), Cowin (2000, 2004), Curtis & Rieh(2001) and Sipe (2002)
for reviews).

In vitro tissue engineering, which involves creating replacemsstié in the labora-
tory from a sample of healthy cells or small explants, haspbtential to alleviate the
chronic shortage of tissue available from donors (Curtis i&hRe, 2001). Static culture
for cell monolayer and small explants has been emplaygiro for many years; however,
limitations in the diffusion of nutrients and waste produgtean that scale-up to produce
constructs of a size appropriate for implant results in treation of constructs with a vi-
able, proliferating periphery but a necrotic core (Cartr8elEl Haj, 2005). To rectify this,
bioreactors, which enable control of the culture environhwia circulation/mixing strate-
gies and provision of growth factors and other cell-signglmolecules, are widely used.
As well as improving mass transfer, such strategies havefopnd effect on the cells’
mechanical environment, the consequences of which wilpeeific to the cell population
in question. For instance, fluid flow can have deleteriousotéfon cartilage regeneration;
in contrast, many studies have shown that stimulation vid flbear stress enhances bone
tissue formation (Bakkest al., 2004; Haret al., 2004; Klein-Nulenckt al., 1998, 1995b;
Weinbaumet al., 1994; Youet al., 2000, 2001). Many bioreactors are therefore designed
specifically to provide appropriate mechanical stimulatio cell cultures viag.g. fluid
shear stress, or tensile or compressive forces appliedeomttroscale or via magnetic
particles embedded in the cell membrane (see Cartmell & E{2005) and Martiret al.
(2004) for a review). These stimuli are integrated into teButar response via a process
known asmechanotransduction.

Much research has been concentrated on the study of cartilad)bone tissue regen-
eration, motivated by the notorious incapacity of the fortoeself-repair (Lemon & King,
2007) and the response of the latter to its mechanical emviemt; an experimental study
of bone cell response to mechanical loading provided thpiratson for this research.
Advances in the understanding of the mechanisms that negtissue growth via experi-
mental or theoretical studies promise to improve the intggnd viability of the resulting
tissue constructs; idealised theoretical studies aim édipt optimal protocols for tissue
growth, suggest explanations for observed tissue growmpimena and can provide in-
sights useful in the design of bespoke bioreactor systems.

Studies which consider explicitly the stresses experigfgecells at the microscopic



level include Jaecques al. (2004), McGarnet al. (2004) and Tracqui & Ohayon (2004).
The effect of growth-induced (residual) stresses on tigsaeth within a macroscale mul-
tiphase framework was investigated by Roeisa. (2003), employing a poroelastic model
to determine the stress within, and surrounding, a tumolespd. Araujo & McElwain
(2005) also presented a general multiphase frameworkbdeifar the consideration of
such stresses. Employing a two-phase model, Byrne & Piig2i083a) considered the in-
fluence of the cells’ environment on their proliferativesrat the context of tumour growth.
The tumourwas modelled as a viscous fluid phase interactiigan inviscid extracellular
fluid. The proliferation of tumour cells was dependent upaotrient availability (governed
by an advection-diffusion equation) and cell density, agtka function was used to switch
between two different density and nutrient-dependenimeses as the nutrient availability
crosses a threshold value. By introducing a parameter ededavith the cell's response
to growth-induced stress, a critical stress level was ptedi above which the tumour is
eliminated. Chaplairet al. (2006) presented a similar model considering tumour cells,
normal cells, their associated extracellular matricesNEE@nd a matrix-degrading en-
zyme. A mollified step function was used to model the traositietween the proliferative
response of the cells in response to stress. It was showretthated contact inhibition or
sensitivity to the compressive stress (modelled as prapwt to the total tissue volume
fraction) leads to elevated proliferation of the tumouisel

In contrast, O'Deat al. (2008) neglected the solid characteristics of biological t
sue and employed a two-fluid model (representing cells aftdreumedium; each phase
was modelled as a viscous fluid) to investigate the effectexftranotransduction on tissue
construct growth within a perfusion bioreactor. The tissoastruct was defined to be the
region occupied by the interacting cell and culture medidrages; the remainder of the
bioreactor contains only culture medium. Guided by paramestimation, a simplified
model was obtained by exploiting the limit of large interpbariscous drag after Franks
(2002) and Franks & King (2003) in which each phase movesavitbmmon velocity. On
the basis of these results, it was concluded that long bitwesior very low rates of per-
fusion are required to prevent cells from being flushed ouhefbioreactor. For constant
tissue growth rate, the model predicted axially-asymroewnstruct growth both in static
culture conditions and in the presence of perfusion. Inctainditions, the upstream pe-
riphery of the growing tissue remained fixed whilst tissuevgh led to progression of the
downstream periphery along the bioreactor. In perfusiVioe, both up- and downstream
peripheries were advected by the flow; advection of the dbowam periphery was aug-
mented by tissue growth. Additionally, pressure and dgri#pendent cell growth were



considered and differences between the predicted tissupasition in each case illus-
trated the potential use of the model to predict the dominegmilatory stimuli in a cell
population.

Studies which consider specifically tissue growth in porseaffolds include Malda
et al. (2004) in which the development of oxygen gradients in thgeabe of perfusion
was investigated using a simple diffusion-consumption ehoBarameter estimation was
achieved via comparison with experimental data. Threeedsional fluid flow through
porous scaffolds in a perfusion bioreactor was studied byelPet al. (2005) in which a
detailed model of a porous scaffold was obtained via mianajouted tomography imag-
ing and the flow profile calculated using the Lattice-Boltmmanethod. Relating simula-
tion results to experimental results, it was concluded éhaean pore-surface shear stress
of 5 x 10~°Pa corresponds to increased cell proliferation and vigbiRaimondi (2004)
demonstrated that the material properties and cell vigluficonstructs resulting from per-
fusion show a two-fold improvement compared to static ageltaomputational modelling
was used to quantify the fluid-dynamical environment at theoscopic level. Modelling
of both cell growth and fluid flow within a three-dimensione&ffold in a perfusion biore-
actor was considered by Colettial. (2006). The flow through the scaffold was governed
by Brinkman’s equation and nutrient distribution was ddse by a reaction-advection-
diffusion equation. Cell growth was assumed to depend upgad hutrient availability via
an ordinary differential equation.

A weakness of the models presented.m Araujo & McElwain (2005), Jaecquesal.
(2004), McGarryet al. (2004), O’'Deeet al. (2008) and Tracqui & Ohayon (2004) (when
consideringn vitro tissue growth) is that the polymer scaffold is not treated asstinct
phase; rather, many two phase models assume that it may belletbdithin a lumped
“cell” phase, and cell-scaffold interactions are necelsaeglected. In this paper, we
extend our earlier work (O'Deet al., 2008) and employ the formulation of Lemehal.
(2006) to derive a three phase model (representing a celllptipn and attendant ECM, a
porous scaffold and a culture medium) which we use to ingagtitissue growth in a per-
fusion bioreactor; however, the formulation is sufficigrgeneral to be applied to a wide
range of tissue engineering applications. Such multiphesgels (which have been widely
used in industrial applied mathematiesy. Drew & Segel (1971)) naturally capture the
multiphase nature of tissue growth, enabling explicit midagof the interactions between
the constituent phases, and have therefore been employeadalling a range of biolog-
ical phenomena (seeg. Byrne & Preziosi (2003a), Franks & King (2003), Landman &
Please (2001) and Lemast al. (2006) and references therein). In common with these



studies, we represent the cells and associated ECM as aisila@ phase that is distinct
from the culture medium; the porous scaffold is modelled @gid porous medium. The
applicability of the model is therefore restricted to tissonstructs whose solid character-
istics are dominated by scaffold rigidity. We remark, hoeevhat our generic modelling
framework is versatile allowing, for example, elastic sadelastic constitutive modelling
assumptions for the cell or scaffold phases. Since theartiECM are modelled as a sin-
gle phase, the interactions between the cells and the ECMegllected; furthermore, the
replacement of degrading scaffold by proteoglycan andagelh deposition (for example)
is not considered.

We investigate two factors which are of key importance ingtevth and adaptation of
engineered tissue constructs: (i) cell-cell and cellfatdinteractions and, (ii) the impact
of mechanotransduction mechanisms on construct morpp¢spegcifically, we consider
density, pressure and shear stress-mediated tissue gravgtihhoted above, despite many
tissues sharing common mechanotransduction pathway#fthence of the mechanical
environment will be specific to the cell population in questi In this paper, we employ
our generic modelling framework to investigate a range ofdgically-inspired mechan-
otransduction mechanisms and, in so doing, demonstratenhertance of such effects
to in vitro tissue growth and the ability of our model to accommodate dewiariety of
such considerations. Conclusions relevant to specifiogigngineering systems may in
principle be obtained by modifying the mechanotransductesponse functions in line
with appropriate experimental data; however, such modifina are beyond the scope of
this paper. The influence of perfusion on construct growtteisionstrated by comparing
the construct composition resulting from static and peviisulture conditions. Nutrient-
limited growth is not considered here so that we may focus entlranotransduction. We
demonstrate that the relaxation of the large drag assumptia consideration of cell-
cell and cell-scaffold interactions result in starkly @ifént cell behaviour to that found in
O’Deaet al. (2008).

The perfusion bioreactor under consideration is based tipatremployed by El-Haj
et al. (1990) which comprises a tissue construct within a cultueslimm-filled cylinder
along which a flow is driven (see figure 1). The bioreactor sigieed to allow cells seeded
in a porous scaffold to be subjected to perfusion with medadirect compression using
a piston. The cell-seeded scaffold has a mean porosity of @##yriaet al., 2005);
perfusion is effected using a peristaltic pump at a raté trinl/min. This system has been
employed to investigate the influence of perfusion and nsaie compression on tissue
growth; in this study, we concentrate on the effect of pedinsnd neglect the macroscale



forcing provided by the piston.

Piston

Media reservoir

4mm
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Pump
Figure 1: The bioreactor system of El-Hajal. (1990).

The structure of this paper is as follows. & we present the three-phase governing
equations; employing the long-wavelength limit (assunthag the bioreactor is long and
thin) and considering constant, spatially-homogeneoafad porosity, we reduce the
system to a pair of differential equations governing thé pbhse volume fraction and
the culture medium pressure, together with appropriatetiaty conditions. Solutions to
these equations are presentedyB and 4.

In §3, uniform growth is considered; numerical simulations pmresented ir$3.1 and
validated against analytic solutions in the limit for whitle cell volume fraction is asymp-
totically small §3.2). In§3.3, the influence of cell-cell and cell-scaffold interacis on
tissue growth is investigated further by considering sifigal functional forms for these
effects. Lastly, irg4, we consider mechanotransduction-affected growth ystgdhe re-
sponse of a cell population to the local density, pressudeshear stress. A discussion of
the model results and their applications within the fieldis§ue engineering is given in
85, together with suggestions for further work.

2 Athree phase model for tissue construct growth

We develop a three phase model relevant to tissue engiggeritesses, employing the
general multiphase formulation given in Lemetral. (2006) and Lemon & King (2007).
For brevity we do not present the derivation in detail: theder is directed to Drew (1983),
Kolev (2002), Lemort al. (2006) and O’Dea (2008) for a more comprehensive discussion
of multiphase modelling considerations.



We consider the growth of a tissue construct within a nutfiéh fluid culture medium
and investigate the effect of cell-cell and cell-scaffohderactions, as well as that of
mechanotransduction, on the growth of a tissue construtiirwa perfusion bioreactor.
The bioreactor under consideration is based upon a systepioged by El-Hajet al.
(1990) (segl1) which we represent as a two-dimensional channel comgimimixture of
interacting phases. A two-dimensional channel geometynigloyed for simplicity; how-
ever, generalisation to a cylindrical geometry is streigiwtard. The multiphase mixture
comprises two viscous fluids and one rigid, porous phase.céhge and ECM, which are
represented by a single phase (henceforth denoted theplttadle”), and culture medium
are modelled as viscous fluids, and the remaining rigid phgsesents the scaffold. Tis-
sue growth is represented by an increase in cell phase vdiatigon, corresponding to
the combined effects of cell proliferation and ECM depositiViscous fluid-based mod-
els for biological tissue growth have been widely used ésgeByrneet al. (2003), Byrne
& Preziosi (2003b), Franks (2002) and Franks & King (2008))ch models are appropri-
ate when the timescale of elastic relaxation is short in cnispn to that of growth (Bittig
et al., 2008; Franks & King, 2003; King & Franks, 2004). Perfusismmépresented by a
pressure-driven flow of culture medium.

*

Y

Iy

Culture medium Tissue construct  Culture medium
w=1 n+w+s=1 w=1

Figure 2: Definition sketch: a two-dimensional channel oigd L* and widthh* con-
taining a construct of lengthi* — a*.

A Cartesian coordinate systeat = (z*,y*) is chosen with corresponding coordi-
nate directions&, ¢) and the channel occupi@s< =* < L*, 0 < y* < h*. Inthis
paper, asterisks distinguish dimensional quantities ftoer dimensionless equivalents.
We associate with the cell, culture medium and scaffold ehas/olume fraction denoted,
n, w, s, respectively, a volume-averaged velocity, = (u}, v}), pressurep; and stress



tensoro; (Where: = n,w, s denotes variables associated with each phase) and assume
that these are functions af* andt*, wheret* represents time.

For convenience, we confine the tissue construct to themegic< z* < b* in which
s > 0 (see figure 2), stipulating that the cell phase must remaifimed within the scaf-
fold. We achieve this by imposing a no-flux boundary conditim the cell phase at the
scaffold edge. Formulating the problem in this way allowdasimplify the governing
equations in the up- and downstream regions, whilst retgittie full complexity of the
three phase system within the construct region. The probt@ybe solved separately in
each region, and the solutions coupled together via apiatearonditions.

The multiphase model takes the form of mass and momentumdeddor each phase,
together with appropriate constitutive laws. Neglectingrtial effects and assuming that
each phase is incompressible with the same density, theieqsigoverning the!” phase
(with volume fractiong;) are as follows (see Lemaat al. (2006)):

, ¢,
conservation of mass: &i +V* - (ppul) = SF + DV (2.1)
conservation of momentum: V* - (¢;0}) + Z Fj; =0, (2.2)

J#i
in which S} is the net material production term associated with pliase that mass is
conserved, we assume S} = 0. F;; is the force exerted by phageon phase which
obeysF;; = —F7,. Conservation conditions may be obtained by summing eopsi2.1)
and (2.2) over all phases and exploiting the no-voids candif_ ¢; = 1.

We remark that a diffusive term has been added to the mas&mr@ti®on equation
(2.1) and for simplicity the diffusivity of each phase is @s®d to be equal; whilst cells
do exhibit random motion, in this model the growth and flovixein velocity field is the
dominant mechanism giving rise to cell movement and difserms are expected to be
negligible (Frankset al., 2003; King & Franks, 2004). However, we retain these terms
for numerical convenience since they eliminate the moviogrularies between the tissue
construct and culture medium, ensuring that we need nd &gglicitly the sharp interface
which is evident wherD* = 0.

We now pause to discuss the constitutive modelling assomgtiWe model the scaf-
fold as a rigid porous phase and, for simplicity, assumeith&blume fraction is spatially-
homogeneous and constant in time. Equation (2.1) is thereémlundant for this phase
and the no-voids condition becomest+ w = 6, whered = 1 — s is the porosity of the
scaffold; in what follows, it is more convenient to work ines ofn andé. The cell and
culture medium phases are modelled as viscous fluids andexveftiie employ the stan-



dard viscous stress tensors for these phases (with dynardibualk viscosities:, Af;
i = n,w). For consistency, we choose the same formdgy taking the limity} — oo,
us — 0.

The interphase forcds;; comprise contributions from interphase viscous drag (Whic
is assumed to be proportional to the volume fraction of edwsp and their relative ve-
locity) and active forces arising between the phases. Wenasshat the cell phase gen-
erates an intraphase pressuxg, resulting from interactions within the cell phase such
as osmotic stresses or surface tension within cell membraheditionally, tractions be-
tween the cell and scaffold phases give rise to an additipressure contributiory;
(see Lemoret al. (2006) for more details). Assuming that interactions bettne culture
medium and scaffold phases are limited to viscous drag wetlffiadthe pressure in the
cell phase is related to that in the culture medium via:

Pp = P+ 35 + (1= 0) Py, (2.3)

and the interphase forces are given by:

F5, = 0p, Vo0 + knw (ul, - u)) = —Fj,, (2.4)
Fr,=0:(1=0)V'n+k*(0 —n)(1 —0)u), = -F , (2.5)
B, = (0}, + 05,) (1— )V — k*n(l - O)u, = —F%,, (2.6)

wherek* is the coefficient of viscous drag which is assumed to be emhsThe interphase
interaction term&’ andy . and the material production rates (accommodating a range of
tissue growth processes) will be specified once the modébéeas cast in dimensionless
form.

We non-dimensionalise as follows:

(2.7)
(0], 25, ¥ns) = K3, (Piy Eon, Yns)

where K, is a typical tissue growth rate and the channel now occupies = < 1,

0 < y < h = h*/L*; the length of the constructis< = < b, where(a, b) = (a*,b*)/L*.

A viscous scaling is employed for the pressure in each phgJesince we assume that

viscous effects dominate inertia. The timescale of intasethat of tissue growth; under

o= L'x, t* = t/K}, w' = K* L*u;, Sf = KX S;, }

perfusion, the flow rate and dimensions of the bioreactaesy®f El-Hajet al. given in§1
indicate a flow timescale of approximatéys minutes. This is short in comparison to the
timescale of tissue growth (employing this system, Webdl. (2006) subjected cells to
perfusion for one week); however, we consider the ratio efglowth and flow timescales



to be of O(1) both in static (in which the flow is a consequence of tissuevgr@nly) and
perfusive culture conditions, employing fast growth ra@sninimise computation time
and to illustrate features of the system.

In dimensionless form, the model equations are:

on

En + V- (nu,) =S, + DV?n, (2.8)
V- (nu, + (0 — n)uy,) = 0; (2.9)
(0 —n)Vpy + kn(0 —n)(wy — uy) + k(1 —0)(0 — n)wy, —

V- [(0 = n)(Vuy + Vul) + 7,0 —n)V - u,I] = 0, (2.10)
V- [ (0pw +nZn + (1 = 0)ns) T+ pun(Vu, + Vul) +
YV - I+ (0 — n) (Vg + Vul) + 7w (0 — n)V - u,I| +
Vn(l — 0)ns — kn(l — 0)u, — k(0 —n)(1 — O)u, = 0. (2.11)

Equations (2.8) and (2.9) are statements of conservatiorass for the cell phase and the
multiphase mixture; equation (2.10) expresses conservafimomentum for the culture
medium and (2.11) is the momentum equation for the two phageura of cells and
culture medium. We employ this equation in preference tontloenentum equation for
the three phase mixture for convenience (see Lemon & Kin@7{P20 Assuming that the
scaffold porosity is constant in space and time enabledfgignt simplification of the
three-phase governing equations, the rigid scaffold pbageappearing via the constant
porosity,d, and the cell-scaffold interactions.
The dimensionless parametdps y,,, k, v, and~,, are defined:

* * * T %2 * *

:%, iy = i k::kj L , fyw:)\—:’, Y = /\:’. (2.12)

* 7 *
) ) Hoy )

D

The physical interpretation of the dimensionless diffastmefficient (or inverse Peclet
number) D, relative viscosityu,,, and drag coefficient is self-evident. The parameter
~; describes the relative importance of the viscosity assediwith the rate of change of
volume of thei*" phase compared to that associated with fluid shear. It isl tsuake

Af = —2u7/3implyingy, = —2/3andy,, = —2u /3uk, (Franks, 2002; Franks & King,
2003; King & Franks, 2004; Lemoet al., 2006) so that in the viscous stress tensor we
havep;, = —o; k1 /3.

10



Appropriate boundary conditions on this problem are aofed!:

0

90, ww=0=wu, ony=0,h, (2.13)
Ay

Pw =Py, vy, =0, onz =0, (2.14)
Pw =Py, vy, =0, onz =1L, (2.15)

where the dimensionless up- and downstream pressuresfaredie
Py Py

Pu: 5 - .
Kipy 0 K

(2.16)

Equations (2.13) guarantee no-penetration and no-slip-at0, » and equations (2.14)
and (2.15) set an axial pressure drop which drives a (urutimeal) flow. In the case of
static culture conditions, we choogt = P; = 0 without loss of generality. Conditions
onn atxz = 0, L are not required since the cells are confined tg = < b.

It remains to specify the functions,s andX,,, whose definition, together with appro-
priate material transfer terms;;(«, t), and initial conditions, completes our model for-
mulation. Following Brewargtt al. (2002), Byrneset al. (2003) and Lemotet al. (2006),
appropriate expressions are taken to be

1)
), Uns = =X + o (2.17)
0—n

)
0—n

En:n<—u+

for constants, §,, x, d, > 0. The first term in each of these expressions reflects the cells
tendency to aggregate at low densities and their affinityHferscaffold, respectively. The
second term represents the repulsive forces between cellbetween the cells and scaf-
fold which arise when they come into close contact (Lerstaat., 2006). Initial conditions
will be specified i3 when numerical solution of the model equations is undertak

The relevance of this formulation to tissue growth procedsages upon the appro-
priate choice of material transfer term;,(x, t). The growth of the tissue construct will
be strongly influenced by the cells’ mechanochemical envitent and we therefore con-
sider the influence of cell density, pressure and shearsstreshe evolution and eventual
composition of the tissue construct, correspondingtén), S, (p.) andS, (7), where
7 denotes the flow-induced shear stress. The ch8ide) enables us to capture the ef-
fect of contact inhibition (Chaplaigt al., 2006) and tissue growth-induced stress (Fung,
1991; Rooseet al., 2003) on cell behaviour. An alternative way to model theetffof
local density on cell behaviour is to consider the press@ithecell phase as an indicator
of cell density; sincep,, is intimately connected to the pressure of the culture nmadiu
this choice has the added advantage of including the respainsells to the local fluid

11



dynamics. The response of cells to culture medium pressunesil documented, espe-
cially with respect to bone tissue growth; for example, mamyhors have shown that
bone cells respond to intermittent hydrostatic compressiih bone resorption inhib-
ited and bone formation stimulated (Klein-Nuleetdal. (1995a) and references therein),
and increased adhesion (Haskiral., 1993) and osteopontin (a protein implicated in the
bone remodelling process) expression (Owaal., 1997). Excessively high hydrostatic
pressure ¥ 200kPa) has been shown to exert an inhibitory effect on boneispgene
expression (Roelofseat al., 1995). Similarly, many studies have reported that bonis cel
are highly sensitive to stimulation via flow-induced sheasess; indeed, many theoretical
and experimental studies propose fluid shear stress as mhiaalat regulatory mechanism
for in vivo bone tissue remodelling (Bakker al., 2004; Hanet al., 2004; Klein-Nulend
et al., 1998, 1995b; Weinbaurmt al., 1994; Youet al., 2000, 2001). Functional forms for
the ratesS,, (n), S,(p») ands,, () will be specified subsequently.

2.1 Long wavelength limit

We simplify the governing equations (2.8)—(2.11) by coesitg the limit for which the
aspect ratio of the channel is small, correspondinfy t& 1. We rescale via:

Yy = h:ga V; = h@ia Pw = ﬁw/hQa En = XA;n/h2a wns = 'J}ns/hQa (218)

and the channel now occupies< =z < 1, 0 < ¢ < 1. Additionally, the dimensionless
valuesz = a,b must now obey:, b —a, 1 — b > h.

The rescaling of the intraphase pressure and interphastéotrifunctions, which en-
sures that cell-cell and cell-scaffold interactions armireed at leading order, implies
(V,84,X,0) = (7,04, X,0p)/h2; the remaining parametets /i, 7., and~, areO(1).

In this limit, the viscosity associated with the rate of cparof volume of each phase,
as well as the interphase viscous drag terms are neglectedtfre momentum equations
(2.10) and (2.11) at leading order. Dropping the carets fevity, we deduce that, at lead-
ing order, the pressure{, andp,) and the volume fractionu{ andn) of each phase are
functions ofz andt only and the flow is unidirectional. The axial velocities andu,, are
given by:

~ 10pw

1 op
= 20w (y—1), =

u -
v 2/t axy

Up =

(y—1), (2.19a,b)

where the lumped pressupér, t) is defined:

8? _ 8pw 10 8wns

(2.20)
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The solution for the culture medium velocity (2d)9s valid throughout the channel; exte-
rior to the regiom: < = < b, we haven = 0, = 1, u,, = 0. Averaging the conservation
of mass equations across the channel and employing themairpgon condition at the
channel wall, we may now express the model as a pair of coujifestential equations
for n(x,t) andp,,(x,t). We obtain:

on 1 0 Opw | _ 0°n
E+12&L{(0—n) }_S + D55, (2.21)
82pw w on 8pw _ 8¢ne
92 Tni60r ox un-+9 { Pat "9)8 ( E )]’(222)

in whichz = 1/u, — 1 < 0 and S, (x,t) denotes the averaged material transfer rate
for the cell phase. For convenience we have employed the omasgrvation equation
for the culture medium phase in place of (2.8); equationZRi2 obtained by averaging
the total conservation of mass equation (2.9). For pressuiependent material transfer
(eg. S, = Sn(n)), this system may be reduced to an equationsfdsy taking a first
integral of (2.22) to obtain an expression for the advedsom dp,, /0z. Equations (2.21)
and (2.22) are to be solved in the region< = < b; in the following, we establish
appropriate boundary conditions to applyrat a, b.

2.1.1 Boundary conditions

Boundary conditions at = 0, 1 are given by (2.14) and (2.15); we now derive appropriate
conditions to apply at = a,b. Imposing continuity of flux and normal stress across the
two boundaries = a, b, we obtain the following jump conditions:

[(uw) 17 = [nfun) + (0 = n){uw) ", (2.23)
[Pw]” = [npn + (0 —n)pu) ", (2.24)

where(-) = f01 - - dy denotes averaging across the channel@anid given by the dimen-
sionless version of (2.3). The superscript ‘indicates the limiting valuez = a (or b)
from within e < x < b and ‘-’ denotes the limiting value from the exterior. An additibna
condition governing the behaviour of the cell volume frantatz = a, b may be derived
by requiring that the cell phase be confined within the sédaffNoting from (2.8) that the
averaged flux of cells i$ J(z,t) ) = n{u,) — DIn/ox, we find that no efflux of cells

from the regiom < = < bis assured if, obeys:
on
n) = D— =a,b. 2.2
n(uy) 5 o0 r=ab (2.25)
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Considering equation (2.22) in the absence of cells andaddait is straightforward to
show that continuity of total flux requires that the culturedium pressure in the regions
exterior to the tissue construct is linear with the same igratd

Ab)z + P, 0<z<a,
pulat) = | AT v (2.26)
At)(x — 1)+ Py b<xz<l

In view of (2.19) and (2.26), the conditions (2.23)—(2.26ply:

- —(1- A+12D9"
Pw = Aot Py i — (1 G)nwm’ 20w i , T =a, (2.27ab)
0 ox 0—n
Ab—1)+ Py —nY%, — (1 — e Opw A+412D2%2
Pw = (b )+ d - ( 9)7“/} - ’ 8p = M, Tr = b, (228a,b)
0 ox 0—n
on 1 n—10 An  0(n%,) O0Yns
= = 1—-0)n—— - =a,b. (2.29
ox 12Dn+,un(n—9){9—n Ox +( n or [T O (2.29)

Equations (2.27) and (2.28) provide four conditiongqn two of which may be specified
as boundary conditions, the remaining conditions servganstraints on the function,
A(t). The apparent overspecification dft) is due to the imposition of continuity of
total flux which demands that the up- and downstream preggadients are equal. Either
of the remaining conditions may therefore be used to speift). In the proceeding
analysis, we choose to impose equations (@ .and (2.28) as boundary conditions and
use (2.21B) to determineA(t). The fourth condition (2.28 is employed as an additional
accuracy check in the following numerical scheme, ensutirag continuity of flux is
obeyed.

In the following sections, we investigate the effect of fijdractions between cells and
between cells and the scaffold, and (ii) the mechanicalrenwient, on the growth of a
tissue construct. 163, we consider uniform growth. Numerical solutions presdrin§3.1
are validated by studying the model equations in the limitfbich the cell volume frac-
tion is asymptotically smalls@.2), a limit for which analytic solutions may be construtte
In §3.3, the influence of intraphase pressure and interphastoineon cell behaviour is
demonstrated by considering simplified functional formstfese effects. 11§4, we fur-
ther extend the model by postulating functional forms far thaterial transfer ratey,,,
which allow the influence of a range of mechanical stimuli lo& growth response of the
cells to be investigated.
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3 Solution: uniform growth

3.1 Numerical solution

We first consider uniform growth, in which case the rates sgue construct growth and
death are constant so that
Sn - _Sw - (krn - kd)n7 (31)

wherein the dimensionless parametgr represents the combined rate of cell prolifera-
tion and ECM deposition, whilst; represents the combined rate of cell death and ECM
degradation. These parameters are related to the cormisgodimensional rates via
k;, = k¥/K}, and are assumed to l(1). We remark here that in all of the subse-
quent numerical simulations, the parameter values aretsel¢o illustrate the behaviour
of the model under a particular growth regime; the chosenegére given in the relevant
figure captions.

To illustrate the behaviour of the model, we consider thifaihg initial cell distribu-
tion:

n(z,0) = 0.1 [tanh(75(z — 0.45)) — tanh(75(x — 0.55))], (3.2)

representing a small population of cells distributed in &xel centre of the channel (at
x = 0.5): we arbitrarily chooser = 0.25, b = 0.75. The influence of alternative initial
cell seedings will be investigated in a subsequent study.

Equation (2.21) subject to (2.29) is solved using a semikuitpredictor-corrector
time-stepping method (Peregrine, 1967), and the corralipgrculture medium pressure
is calculated using (2.22), (2.dyand (2.28). A shooting method is used to calculate
A(t) at each time-step via the constraint (bR7p,, is calculated using an initial guess
for A; the error is then calculated using (2&nd a new value chosen according to a
simple bisection routine if the error is too large. Lastigntinuity of flux is checked using
equation (2.2B). The NAG routines DGETRI, DGETRF and DGETRS are employed in
this numerical scheme; DGETRI performs the matrix invarsequired in the re-meshing
routine and DGETRS solves the linear systems associatbegitations (2.21) and (2.22),
using the LU factorisation computed by DGETRF.

The results presented in figure 3 illustrate how the initial distribution given by
(3.2) evolves under the influence of perfusion. In figure 3¢d)ere there is no imposed
flow (static culture:P, = P; = 0), the cell population grows and spreads symmetrically
in response to the net growth ratg, — k4, and diffusion. This is in direct contrast to the
results obtained in O’'Deet al. (2008) where axially asymmetric growth was predicted in
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Figure 3: Evolution of the cell volume fractiom for (a) static culture:P, = P; = 0,
(b) perfusion: P, = 1, P; = 0.1, att = 0 — 0.297 (in steps oft = 0.033). Parameter
valuesik,, = 7.5,kg =0.1,D =0.01,0 =0.97,v = x = 0.3,0, = 6 = 0.1, u,, = 1.3,
a=0.25,b=0.75.

both static and perfusive culture (sgk for details). Figure 3(b) illustrates the effect of
perfusion on the cell phase: the tissue is advected by a smailint along the channel by
the flow and an accumulation of the cell phase is observed-atb. Advection may be
enhanced by increasing the driving pressure gradient. €ighbase profiles in figure 3
indicate that spreading occurs before the threshold valueg v/ (6, +v), 0x /(6 + X))
(at whichX,, andv,,s change sign, corresponding to cell-cell and cell-scaffefzllsion;
see (2.17) and the parameter values given in figure 3) duestprébssence of diffusion in
the model; whem exceeds this value, diffusion is enhanced by repulsiveefolietween
cells which cause the cells to spread more rapidly and p@dunore uniform cell den-
sity profile at the construct centre. This phenomenon ish&rrinvestigated ir33.3 by
employing simplified forms for the functions,, andy,, to facilitate analytical progress.

Figure 4 shows the influence of the cell population on theucalmedium pressure.
Up- and downstream from the centrally-located dense pdpualaequation (2.22) supplies
0%p.,/02% ~ 0 (sincen is small) so we obtain an approximately linear pressure lgtofi
deviation from this is observed as the culture medium flowsugh the more densely-
populated area. Figure 4(a) shows that, initially, whendkasity of the cell phase is
small, this deviation closely mirrors the cell phase disttion (as reported in O'Dest al.
(2008)). The pressure increase is due to the aggregatestier the intraphase and in-
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Figure 4: Evolution of the culture medium pressure for (a)yemes (smalln): ¢t =
0 — 0.231 (in steps oft = 0.033); and (b) later times (larget): ¢t = 0.25,0.27,0.29,
under perfusion. Parameter values as in figure 3(b).
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Figure 5: Evolution of the cell pressure for (a) early timesélln): ¢ = 0—0.13 (in steps
of t = 0.033); and (b) later times (larger): t = 0.21 — 0.29 (in steps oft = 0.02), under
perfusion. Parameter values as in figure 3(b).

terphase pressure functiols, v, (see equations (2.17) and (2.22)) dominating at low
density. The aggregation of cells requires that cultureiomads expelled from the central
region and a positive culture medium pressure gradientdlwhrives a flow of culture
medium) is therefore created at the upstream peripheryeofdimstruct (with the opposite
behaviour evident downstream). As the cell phase becomes demse, the disturbance
to the culture medium pressure increases, and large davitim the linear profile is ob-
served in figure 4(b) due to the dominance of the repulsivagén>:,, andi,,; asn — 0.
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As the cells repel each other, mass conservation demanisuthare medium be drawn
in to fill the void, corresponding to the reductiongr,. At the periphery, where the cell
population remains sparse, cell aggregation and attachimeeflected in an increase in
Pw-

In figure 5 we compare the cell phase pressure for low and héflhpbase density.
Recall,p, is influenced by,, and intraphase and interphase interactigns= p,, + >, +
(1 — 0)vns. Whenn is small, the behaviour is dominated by aggregatop, (/s < 0)
and a small decrease in the cell phase pressure is obseriiadertimes (see figure 5(b)),
asn increases, the contribution from the repulsive terms bexomportantX,,, ¢,,s > 0)
and a sharp increase in cell pressure is observed.

=003
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(@) (b)

Figure 6: Evolution of the cell velocity at the channel cetitre for (a) early times (small
n): t = 0.033,0.066,0.1; and (b) later times (larget): ¢ = 0.2,0.23,0.25,0.27 under
perfusion. Parameter values as in figure 3(b).

The velocity of the cell phaseuf) at the channel centreline is depicted in figure 6.
For low cell density, aggregation and attachment domingfg ¢,s < 0) and we observe
that cells move preferentially towards the centre to forneast aggregate which moves
downstream due to the imposed flow (figure 6(a)). As the céllme fraction increases,
repulsive effects become importadt,(, s > 0) as described above. This effect is illus-
trated in figure 6(b) which shows that cells move outwardsiftbe centre of the aggregate
causing increased spreading at later times, as observepline f8. Inspection of equations
(2.19)—(2.22) and (2.27)—(2.29) shows that the influen¢ke®tell-scaffold attachment pa-
rameter ) is only felt through the boundary conditions; furthermdteese contributions
(and those arising from cell-scaffold repulsion) scaledirly with the scaffold volume
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Figure 7: Evolution of the culture medium velocity at the chal centreline for (a) early
times (smalln): ¢ = 0.033 — 0.165 (in steps oft = 0.033); and (b) later times (larger):
t = 0.25,0.27,0.29, under perfusion. Parameter values as in figure 3(b).

fraction which is small in these simulations. The aggregsltiehaviour described above
is therefore dominated by cell-cell interactions.

Figure 7 shows the centreline value of the parabolic cultneglium velocity profile.
The flow profile remaing:-independent prior to, and after, the densely-populatgibre
under the influence of the linear driving pressure gradieot.both low (figure 7(a)) and
high (figure 7(b)) cell phase density, we observe that the 8peed is decreased from
the upstream ambient flow velocity as the culture medium entos the cell popula-
tion; near the downstream periphery, an increase to the exhfiow is observed. At
low cell density, the culture medium flow increases monatalty between the up- and
downstream peripheries. As the density increases, thefftwidbetween these peripheral
regions changes markedly, reversing flow direction. Thidus to the switch between ag-
gregative and repulsive behaviour of the cell phase desti@bove; to conserve mass, the
culture medium velocity exhibits the opposite behavioeinlg drawn into the construct’s
centre when cells repel each other.

Figure 8 shows the evolution of(¢), which determines the culture medium pressure
and its gradient inc < a andx > b (see equation (2.26)). The magnitude of the pressure
gradient decreases with time, causing the up- and dowmstfileav speed to reduce; we
attribute this to the increase of cell volume fraction whfitls available pore space and
provides increased resistance to flow.

To summarise, the results presented in this section diffgrificantly from those
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Figure 8: Evolution of the functior(¢). Parameter values as in figure 3(b).

predicted by the two-fluid model of O'Degt al. (2008): consideration of cell-cell and
cell-scaffold interactions, together with relaxation bétarge drag assumption, results in
starkly different behaviour to that found in O’'Degal. (2008) in which axially asymmet-
ric growth was predicted both in static and perfusive caadg §1). Additionally, since

in O’Deaet al. (2008) the limit of large viscous drag is employed, each plmasves with

a common velocity and very low perfusion rates are requioegrévent cells from being
flushed from the scaffold. The results presented here stitggsaggregation in regions of
sparse cell density acts to curtail advection, leading teentent of cells towards the cen-
tre of the aggregate; furthermore, due to mass conservdtiercell and culture medium
velocities exhibit opposite behaviour. Inspection of thed®l equations has revealed that
forn < 0v/(6, + v) oréx/(d, + x), the cell behaviour is dominated by cell aggregation,
with contributions from cell-scaffold attachment beingadin

3.2 Asymptotically-small cell density

The results from the numerical scheme may be validated bgidering the limit of
asymptotically-small cell phase volume fraction, in whitdise we may construct ana-
Iytic solutions to the simplified versions of (2.21) and @).2with S,, defined by (3.1)).
Choosing

n(x,t) = ony(x,t) + 8®ng(z,t) + -, (3.3)
pw(x7t) = po(l‘, t) + 5p1(x7t) + (52])2(1‘, t) +ee (34)
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where0 < § < 1, we obtain the following system of linear PDEs:

ony onq . ain

ot Ty~ Um R+ D G (3.5)
?py Ppy  0m

02 =0, 92 = — %, (36a,b)

wherey andg are defined as follows:

1 dpo £ 9po
_ 9Po _ K9P 7
7 124y, Oz’ 0 Ox (3.7a.0)
Considering (2.27)—(2.29) and employing the additionglasion
A(t) = Ao(t) + 5A1(t) + e (38)
it may be shown that appropriate boundary conditions are:
atO(1)
dpo Ao _ Apa+ P, A1)+ Py
833 . - 0 ) Po r—a - 0 ) Po b - 0 ) (39)
atO(d):
é)nl A()TLl 8])1 Al AOm 12D é)nl
— = - — =— ——,(3.10a,b
o | = 10D’ or| ~9 "o e aa B1Y
m| = Aja+ (19— G)an, | = A (b—1) —i—g(l - H)an. (3.11a.0)

We therefore have four conditions on each of the pressuyes;; two of which are im-
posed as boundary conditions, the remaining equationg lnsied to calculatd, andA;.
As previously, the overspecification of the functiofig A; results from the imposition of
continuity of total flux. When satisfied, the additional cdiwhs guarantee continuity of
flux.

For simplicity, we consider the solution of equations (2BY (3.6) in the limitD = 0,
for which the interface between the cell phase and the sodiog culture medium is
sharp. The cell population is then confined within two movogindariesg = I(t), r(t),
within the scaffold regiom < x < b.

It is trivial to show that4, = P; — P, and the leading-order pressugg, is given by

P - Pu + Pu
po(z,t) = (Pa G)x ) (3.12)
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We may now proceed with the solution of equation (3.5) wixk= 0 since the constant;,
is given by equation (3a). We first specify an appropriate initial cell phase disitibn
as follows:

n(@,0) = { n(x) 1(0) < = < r(0), (3.13)

0 otherwise
whereinm(z) is an as yet unspecified function and= [(0), (0) are the initial positions
of the interfaced(t), r(¢); (3.10a) is redundant since; = 0fora < z < l,r <z < b.
The solutionyn; (x, t) takes the form of a travelling-wave:

mn — ( m d)t
(1) = { n(x —vt)e K —k I(t) <z <rt), (3.14)

0 otherwise

wherel(t) = 1(0) + ~t, r(t) = r(0) + ~t, representing exponential growth of a cell
population at a ratg,,, — k4 which is advected along the channel at spgethis behaviour
is valid for the very early stages of cell growth during whisgdhaviour is dominated by
uniform proliferation and cell spreading is negligible.

The correction to the culture medium pressprds given by equation (31§, and, in
addition to the conditions (3.9)—(3.11)at= a, b, must obey the following jump condi-
tions across: = I(t), r(¢):

Op1])" = [x(1 - 0)ni]™, {a%r _ [w

+
o ] . (3.15a,b)

where[..]T and[..|~ denote the limiting values from the cell/culture mediuraféald
region ((¢) < = < r(¢)) and the culture medium/scaffold regions€ = < I(t), r(t) <
x < b), respectively andl.]” denotes the jump across either interface.

To determine the correction to the pressure in the culturdiome, we must specify
the initial cell phase distributiom(x). For simplicity we choos&(z) = 7, wheren is
constant. We obtain:

PeFt[I(t) — r(t)] x a<z<It),
pi(a,t) = PeFt[1+1(t) —r(t)] x + F(x — PI(t))  1(t) <z <r(t), (3.16)
PeFt[i(t) = r(t)] (x — 1) r(t) <z <b,

wherek = ky, — ka, X = x(1 — 0)7/0, i = 1/, — 1 andP = (P, — Py)fin/62.

The evolution of the cell volume fractiony, is shown in figure 9. The corresponding
pressure correction;, and the culture medium pressure ¢4) accuracyyp,, = po +
dp1, are shown in figure 10. The correction to the pressprgié an order of magnitude
smaller than the leading-order pressusg){ in order that the effects are visible in figure
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10(b), the small parameter is chosen todbe- 1. With the exception of the diffusion
coefficient,D, the parameter values are chosen to be the same as those §3ed i

t

0 L L L L L L L
025 03 035 04 045 05 055 06 065 07 075

T

Figure 9: Evolution of the cell volume fractiom,, under perfusion at = 0 — 0.2 (in
steps oft = 0.04). D =0, 0 = 1, other parameter values as§8.1.
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Figure 10: Evolution of (a) the pressure correctipnand, (b) the culture medium pres-
sure,p,, = po+0p1 in a magnified region withia < = < b, under perfusion at= 0-—0.2
(in steps oft = 0.04). Parameters as in figure 9.

As noted above, the solution in the sharp interface limitigris that the cell population
grows exponentially with growth rate,, — k4, while being advected along the channel at
speedy; the width of the population remains unchanged. For validgburposes, the cor-
responding advection speed predicted by the numericahseldeveloped i§3.1 may be
readily calculated by tracking the position of the maximuastue ofn. Figure 11(a) shows
how the position of this numerically-calculated maximuniueacompares to the position
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Figure 11: (a) Comparison of the numerically-computed fimsiof the maximum value
of n () compared to the predicted position of the travelling &vé&v-) and, (b) the %
relative error between the calculated and predicted mosior § = 1/25,1/5,1. The
arrows indicate the direction of increasitig

predicted by the travelling-wave solution (3.14), and fegif.(b) depicts the % relative er-
ror between the numerically-calculated and analyticpligdicted positions over time for
different values of the small parameterAs ¢ is decreased, the numerical prediction for
the advection speed approachesnd the % relative error decreases (foe 1/25, the %
errorisO(1072)).

The perturbationy;) to the culture medium pressure is found to be piecewisaline
with positive gradient in the up- and downstream regionsrehg = 0 and negative
gradient where cells are presebftf < = < r(¢)). Upstream, the sharp interface limit
predicts a small increase to the leading-order pressumgnsiveam, a small decrease is
observed. Comparison of the predicted pressure shown byefi@(b) and the culture
medium pressure calculated §8.1 (figure 4(a)) shows qualitative agreement. Further-
more, considering the boundary conditions (&Rand (2.28) and the behaviour of(t)
(see figure 8 which indicates thdit) < 0 and that A(¢)| decreases with time), we see
that atz = a the culture medium pressure increases over time; at b, the pressure
decreases. This behaviour is evident from figure 10(b)cauitig that the culture medium
pressurey,, = po + dp1) predicted in this asymptotic limit reproduces that of thistem
(2.21), (2.22), (2.27)—(2.29) when the cell densit{igl ).

Itis possible to obtain better agreement between the d@oalyind numerical solutions
by relaxing the sharp interface assumption so that- 0. In appendix A we construct
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analytic solutions using Greens functions for the cBse 0.

3.3 Analysis of a simplified model of cell-cell and cell-scédld inter-
action

To investigate further the effect of intraphase pressurkiaterphase traction on cell be-
haviour, especially the switch between aggregative andse behaviour observed in the
numerical simulations (see figures 4-7), we now simplifyititeaphase pressure and in-
terphase traction functions defined by equations (2.1p)acing them with the following
piecewise-constant forms:

—v n <Ny, —Xx 1 < Ny,
Sn(n) = Pns(n) = v (3.17)
da n = Ny, 0y n = Ny,

whereNs, Ny, are the threshold values at which repulsive forces betwebls dominate
those associated with aggregation and at which the celabecepelled from the scaffold,
respectively. For simplicity, in the following we sat; = N, = N and we further assume
that the viscosities of the culture medium and cell phasegqual [i,, = 1). Under these
simplifications, equation (2.22) reduces to:

9%p v &y o N
0o = oz ’ 3.18
0x? { —0q % n > N. ( )
Assumingn < N atx = a, b, the corresponding boundary conditions (2.27)—(2.29) are
A4 12D
pw‘m:a: dar Pt an’ % = - du ) (319a,b)
0 0 |,_.p 0—n
Ab—1)+Ps;+an On An
w = y = = , (3.20a,b
Poloy 0 x|,_,p, (0—n)(v—12D)—12Dn ( )

wherea = v + (1 — 6)x.

We proceed by considering separately the regions in which N andn > N, as-
suming that, on/dx, p,, anddp,, /Ox are continuous at = N. Equations (3.18)—(3.20)
yield expressions for the culture medium pressure in eagibmesubstitution of which into
(2.21) yields nonlinear advection-diffusion equationstfte cell volume fraction (omit-
ted), in which the effective diffusion coefficients are defin
(@ —n)v (0 —n)d,

120 1260

This system requires non-trivial numerical solution, dfig little benefit over numer-

ical solution of the original equations. However, this a3& does provide some insight

D=D— ,n<N; Dn)=D+ ,n>N. (3.21)
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into the behaviour of the cells: the modified diffusion caséfints, indicate that when ag-
gregation dominatesy(< N), the diffusive transport of the cells is reduced; convigrse
whenn > N, repulsive effects dominate and the cellular diffusionfioents are in-
creased.

Aggregation-enhanced cell behaviour is most clearlytithted by considering the cell
phase velocity defined by (2.P In view of the simplified forms (3.17), we find that the
cell velocity at the channel centreline for< N is given by

1 (Opy, vOn
R —— ===, 3.22
“ Siin ( Jdr n 833) ( )
so that for smalh, the second term dominates and cells tend to move up gradiénell
density.
3.4 Summary

In this section, we have considered the uniform growth o$sute construct. We presented
numerical simulations which indicate that the consideratif interactions between ad-
jacent cells and between cells and the scaffold leads tmdilst different cell behaviour
as the construct density increases: cell aggregation aachatent being replaced by re-
pulsion. The accuracy of the numerical simulations washéisteed by constructing ana-
Iytic solutions in the limit of asymptotically-small celledsity. To further investigate the
behavioural switch observed in the numerical simulatioves employed simplified func-
tional forms for the cell-cell and cell-scaffold interamtis. Our analysis indicated that the
cells’ diffusive behaviour is reduced or augmented depagdpon the relative importance
of cell aggregation and repulsion.

4 Mechanotransduction

We now include a simple mechanotransduction mechanismhwhgulates the cells’ pro-
liferative response. By extending our model to considertfect of coupling the growth
of the cell population to the local environment, we can detee the characteristic growth
pattern associated with specific mechanical stimuli; iléan with experimental data, this
will allow optimisation of culture conditions and could pide an indication of which
stimuli regulate cell proliferation. We couple the growthtbe cell population to the
following stimuli: contact inhibition caused by cell-céfiteractions, the effect of stress
caused by increases in local cell density and the influentdeeoéxternal fluid dynamics.
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The relevance of our modelling framework hinges on the apiate choice of5,,; we
pause here to highlight an important restriction on its foEquation (2.21) is derived by
averaging the conservation of mass equation for the cuthedium phase (in the trans-
verse direction), implyings,, = S, (z,t); consequently, explicit coupling between the
shear stress induced by the flow of culture medium (which peddent ory) and the cell
growth response is prohibited. Tigeoss effect of this coupling may still be incorporated
by noting that the averaged flow-induced shear stress experd by the cells is propor-
tional to the culture medium velocity. In view of equation(2a), we therefore model the
shear stress as being proportional to the gradient of thereumedium pressure. In the
following, we consider in turn the following choices;, (n), Sn (1, Pn), Sn(n, |0pw/0z|).

4.1 Cell density dependenceS,, = S,(n)

We identify three distinct stages in the behaviour of thé pepulation: (i) a proliferative
stage,S,, = ki1,n; (ii) an ECM-producing stagey,, = k2, n; and (iii) an apoptotic stage,
S, = —kqn. These represent the effects of contact inhibition andltedistresses caused
by growth on the phenotypic progression of cells. Contagitiition and high stress levels
inhibit cell division, whilst a moderate level of stress apps to enhance tissue growth
(Chaplairet al., 2006; Rooset al., 2003). We therefore choogg,, > ki, so that the rate
of cell phase growth is increased during the ECM-produgpibase; we remark here that
since the cell phase comprises cells and ECM, it is not plessildistinguish between cell
proliferation and ECM deposition or cell death and ECM degt#n in this model. For
simplicity, we assume that the rates of growth and defgh, (k2,,, k;) are constant. The
threshold cell densities that separate these three tygeshafviour are denoted andn),.

We employ step functions to represent this behaviour; theate of growth and death
of the cell phase, denotedn), is illustrated by figure 12 and is related.$q as follows:

Sp(n) = [k:lnH(n'l —n) + kapnH(n — n}) — (ko + kq) H(n — n'z)]n = x(n)n, (4.1)

where H(n) is the Heaviside step function and without loss of gensralite specify
k(n) = kop, at the threshold values = n/, n),. Step functions for density- and nutrient-
dependent growth have been employed by Byrne & Preziosid@0d which the switch
between two density-dependent responses was modelledjllifigd) piecewise constant
response was employed by Chapldial. (2006). Here, we consider three distinct growth
phases in each of which the proliferative rate is constant.

Figure 13(a) shows the effect of this modified mass transien ton the evolution of
the cell phase when subjected to perfusion, and the regiowsich the different growth
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Figure 12: Schematic representation of the progressioheftells from a proliferative
phase to an apoptotic phase, via an ECM-producing phasespiomee to the local cell
density.

responses occur. The corresponding culture medium angblcaie pressures are shown
in figures 13(b) and 14. The velocity of each phase at the aHamentreline is shown
in figure 15; for clarity, only the velocities arising at lat&mes, oncen has reached the
threshold value: = n, at some point in the domain, are shown.
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Figure 13: The evolution of (a) the cell volume fraction< n} andn > n}, (-); n} <
n < nh, (---) and, (b) the pressure of the culture medium¢ at 0 — 0.35 (in steps of
t =~ 0.038) for growth behaviour defined by (4.1) and perfusive culturg = 1, P; = 0.1,
kin = 6.5, ko =7.5,kg=1,D =0.01,60 =0.97,n) = 0.4, n, = 0.6.

Inspection of figure 13(a) reveals that the growth of theplelise ceases when= nl,
due to the progression from a proliferative to an apoptatiage. Despite the presence of
apoptosis in our model, re-entry into the proliferative hansures that, once attained, the
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Figure 14: The evolution of the pressure of the cell phasgdprearly times (smalh:

t = 0 — 0.15, in steps oft = 0.0375) and, (b) later times (larger: t = 0.2 — 0.35 in
steps oft = 0.05), for growth behaviour defined by (4.1) and perfusive citiParameter
values as per figure 13.
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Figure 15: The evolution of (a) the velocity profile of the ttume medium, (b) the velocity
profile of the cell phase (at the channel centreline),-at0.2 — 0.35 (in steps o = 0.05)
for growth behaviour defined by (4.1) and perfusive cultératameter values as per figure
13.

density of the cell phase does not fall belaw= n),. Figures 13(b), 14 and 15 indicate that
the pressure and velocity of each phase exhibit similar\iebato those shown in figures

4(a), 5(a), 6(a) and 7(a). Since excessive cell proliferats prevented, the repulsive
terms in the intraphase pressure and interphase tractianifuns are unable to dominate
and the cells aggregate to a form a dense population, whaudiviscted under the imposed
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flow. Some repulsion is evident in figure 14(b); however, teadviour shown in 5(b) is

prevented by curtailed cell phase growth. Similarly, thandatic flow reversal observed
in figures 6(b) and 7(b) does not occur (limited upstream fléwudture medium due to

cell aggregation is observed at the upstream peripheryeotdmstruct, as in figure 7(a));
rather, the flow attains a constant value in the region whetens,.

4.2 Cell density and pressure dependences,, = S, (n, p,)

An alternative way to model the tendency of cells to adapir thehaviour in response
to their local density is to consider the pressure of the pllise as an indicator of cell
density;i.e. S, (n,p,). Sincep, is intimately connected to the pressure of the culture
medium, this choice has the added advantage of including#p®nse of cells to the local
fluid dynamics.

We model the cells’ pressure-dependent response in a simédaner to that outlined
above and assume that at intermediate pressure, the ckllsiteenhanced proliferation
and ECM deposition; at low pressure, the cells enter a sthtelative quiescence in
which proliferation and ECM deposition are greatly reducaidhigh pressure, the cells
become apoptotic. This behaviour is consistent with Reeloét al. (1995) in which it
was reported that excessive hydrostatic pressur@{0kPa) has an inhibitory effect on
bone-specific gene expression in murine osteoblast-liks. ckmtroducing threshold cell
pressures at which the cell proliferation is heightengd X and apoptosis is stimulated
(p),5), we represent the mass transfer term with step functiendeéined below and illus-
trated by figure 16(a):

Sn(n,pn) = [klpH(p;v,l —Pn) + kapH(pn —pr,1) — (k2p + ka) H(ps _p;ﬂﬂ n = K(pn)n.
(4.2)
Within our numerical scheme we choas@,,) = ks, atp, = pl1, Pha-

Comparison of figures 13(a) and 16(b) demonstrates thetedfe§,, (n, p,) on the
growth of the cell phase: rather than being arrested at ashiotd density, the growth
of the cell phase is skewed towards the downstream boundasyb. This is due to the
interplay between the imposed pressurg, (which dominateg,, whenn is small) and the
repulsive intraphase pressure and interphase tractianiisotions (which cause a dramatic
increase ip,, whenn becomes larger; see equation (2.17)). Growth of the ceB@haar
x = ais inhibited because the culture medium pressure is higle thgp,,) = —k4); near
x = b, growth is reducedr(p,) = k1, < k2;); and between these two regions, enhanced
growth is initially observed until the cell pressure aclgigthe threshold, , (see the last
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Figure 16: (a) Schematic representation of the progressidhe cells from a quiescent
phase to an apoptotic phase, via a proliferative phase poree to the pressure of the
cell phasep,,; (b) the evolution of the cell volume fraction at= 0 — 0.28 (in steps of

t =0.02), pn > Phoy () Pr1 < P < Phay (5)i Pn < ppya, (- ), for growth behaviour
defined by (4.2) and perfusive cultur®, = 1, Py = 0.1, ki, = 4, kop = 7.5, kg = 2,

D =0.01,0 =0.97, p,; =0.35,pl, = 0.6.
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Figure 17: The evolution of the pressure of the culture medior (a) early times (small
n): t = 0 — 0.2 (in steps oft = 0.04), (b) later times (largen): ¢ = 0.22 — 0.28 (in
steps oft = 0.02), for growth behaviour defined by (4.2) and perfusive c@tiParameter
values as per figure 16.

line in figure 16). Comparison between figures 5 and 18 showeistkie cell pressure is
not dramatically affected by this changed cell distribntimtil the upper thresholgd,
is reached within the densely-populated region. Here sttiam to the apoptotic phase
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Figure 18: The evolution of the pressure of the cell phasddpearly times (smatlh):

t =0 —0.12 (in steps oft = 0.4), (b) later times (largen): ¢t = 0.16 — 0.28 (in steps of
t = 0.03), for growth behaviour defined by (4.2) and perfusive c@tuParameter values
as per figure 16.
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Figure 19: The evolution of the cell volume fractiontat 0 — 0.3 (in steps of = 0.033),
D < Dhis Dn > Dhoy (4); Pl < pn < Dhs, (- +), for growth behaviour defined by (4.2)
and static culture:P, = 0 = Py, ki, = 7.5, kap = 9, pn1 = 0, pl, = 0.01, other
parameters as in figure 16.

prevents,, from exceeding),, (see the last line in figure 18(b)). Similarly, figures 4 and
17 show that the culture medium pressure is qualitativehilar to that found previously.
For brevity, the velocities of each phase are not given haszgexcept at late times) they
will be qualitatively similar to those found i§3.1.

Figure 19 shows the predicted construct morphology obthinestatic culture con-
ditions (P, = P; = 0), indicating that in the absence of perfusion, pressugeHested
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growth results in a construct whose composition is qualiat similar to that resulting
from density-regulated growth. Comparison with figure }3¢aich depicts the construct
morphology resulting from density-regulated growth ungerfusion, shows that the con-
structs may be distinguished by the asymmetry introducethéylow. Qualitatively in-
distinguishable constructs are obtained in static comiti{results omitted).

Using a two phase model, O’De# al. (2008) have also demonstrated that in the
absence of perfusion, cell density and pressure-mediatedigresult in indistinguishable
constructs; the similarity of the constructs produced wasrassequence of the simplified
model in which the pressure was directly proportional todgk distribution. In this three
phase model, where the relationship between the cell phasédtion and its pressure
is more complex, the net result is the same; however, the amsim is different. In
static culture, dominance of the aggregation and scaffffidity parameters at low cell
density ensures that, < 0 and tissue growth is determined by the reduced growth rate,
k(pn) = k1p; as the density increases, the repulsive terms become famtpcausing an
increase in cell phase pressure uptilachieves the upper threshold and the cells become
apoptotic, preventing the cell density from further inceaCells near the periphery of the
aggregate (where the density and associated cell pressuteveer) proliferate at a rate
k1, or kop depending upon the value pf (cells proliferating ak(p,,) = k2, are indicated
by the dotted line in figure 19). Eventually, these cells achisufficiently high density to
cause the pressure to attain the upper threshold, resiiticgrtailed growth. In this way,

a construct whose density is approximately uniform is atidi We note that these results
were obtained for the cade, = P; = 0; similar behaviour is obtained fa?, = P; > 0
depending upon the choice of threshoids, p!,,.

4.3 Shear stress dependence,, = S, (n,

Opw/0z))

We now consider the effect of coupling the growth of the célage to the shear stress
induced by the external fluid dynamidse. S, (n, |0p.,/0z|). We employ the same mod-
elling techniques as previously, and assume that at ametdiate level of shear stress, the
rates of proliferation and ECM deposition are heightened|dw shear stress, the prolif-
eration and ECM deposition rates are reduced; and for exedgsigh shear stresses the
cells become damaged and enter apoptosis. In this caseyé@owe find that to ensure a
smooth numerical solution, we must employ a smoothed verdithe functional form for
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the mass transfer terns,, (n, |dp.,/dz|) defined as follows, and depicted in figure 20(a):

kT_kT 8pw /
s (| e ) = {22 (to o (|5 - 1) )
o tka <tanh [g ( Opw —PQ’)] — 1) —kd}n

2 ox
_ Ipw
o[22 @9

Opuw
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In (4.3), the threshold values at which the rate of cell ffeotition and ECM deposition are
heightened and the necrotic phase is entered are deftedd P, respectively and the
parametery, determines the closeness of the approximation to thefategiion behaviour
used previously.

Inspection of figures 20 and 21 shows how the cell phase istaffdy shear-dependent
proliferation. When the cell population is relatively smalisturbance to the culture
medium flow is minimal and the shear remains within the peodifive region: P| <
\8p“,/8x\ < Pj. As the cell population increases, the increased constiertsity causes
a reduction inu,, near the upstream periphery, and an increase downstreanfigsee
7(a)), causing the upstream shear to fall below®i¢hreshold and resulting in decreased
proliferation there (figure 21(a)). A further increase i itell population causes the flow
disturbance to increase (see figure 7(b)) resulting in flovengals at a number of points
within the domain. This causes the shear to increase tB4tiereshold and to cross th#&
threshold repeatedly (see figure 21(b)), resulting in dedige death and reduced cell phase
growth at various regions within the cell population, legglto highly heterogeneous con-
struct composition. Inspection of figures 20(b) and 21 (lmyahthat the influence of fluid
shear stress on cell phase growth is clearest at late tinteshigh level of shear near the
construct centre and reduced shear near the upstream egrigduses cell phase growth
to be skewed in the downstream direction.

5 Discussion

We have presented an analysis of a multiphase model whichides tissue growth within
a perfusion bioreactor, modelled as a two-dimensional mbboontaining a three phase
mixture. The inclusion of a third phase allowed the intermat between cells and the
polymer scaffold to be considered. The “cell phase” (cosipg both cells and ECM) and
the culture medium were modelled as viscous fluids; the ftattan was greatly simplified
by considering the scaffold to be spatially-homogeneodsiaert.
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Figure 20: (a) Schematic representation of the progressidhe cells from a quiescent
phase to an apoptotic phase, via a proliferative phase fiorese to the flow-induced shear
stress; (b) the evolution of the cell volume fractip,..| < P{, (--); P{ < |pwe| < P,
); |pwa| > P4, (-++), att = 0 — 0.4 (in steps oft = 0.05) for growth behaviour defined
by (4.3) and perfusive cultureé?, = 1, P; = 0.1, ky, = 7.5, ky, = 4, kg = 2, D = 0.01,

6 =0.97, P =0.5, P, =1.5,g9 = 60.
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Figure 21: The evolution of the pressure gradient of theutalimedium for (a) early
times (smalln: ¢ = 0.02 — 0.22 in steps oft = 0.05), (b) later times (largen: t =
0.25,0.3.0.35), for growth behaviour defined by (4.3) and perfusive c@tuParameter
values as per figure 20.

This model represents a significant extension of the two e@masdel analysed by
O’Deacet al. (2008) due to the retention of the individual phase varigbled considera-
tion of interphase tractions and intraphase forces, regulh a more complex coupling
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between the dynamic culture environment and the tissuenssp In contrast to O’'Dea
et al. (2008), our model predicted axially-symmetric growth i thbsence of perfusion
and showed that cell aggregation in regions of low densitjuces the advection of the
cell phase allowing the stringent restriction on perfusiate implied by the large-drag
analysis of O’'Deat al. (2008) to be relaxed. Furthermore, by considering cell-zed
cell-scaffold interactions, we have revealed markedlfedént cell behaviour depending
upon the relative importance of cell aggregation and repnls

The numerical results and analysis presented here shoveedh cell population
grows, spreads and is advected downstream to a limited tewithin the scaffold. Fur-
thermore, interactions within the cell phase and betweerctils and the scaffold mean
that, at low cell density, the model predicts movement ofsdebm sparse peripheral re-
gions to form a dense aggregate; as the density increapessite interactions cause cells
to be expelled from the aggregate (inspection of the modea#ons revealed that the
cells’ aggregative behaviour is dominated by cell-celemctions). The switch between
aggregative and repulsive behaviour as the cell densitg@ases was highlighted and anal-
ysed by using a simplified form for the relevant functiob;, ¢,,s. This simple analysis
showed how the diffusive behaviour of the cells is reducealummented depending upon
the relative importance of cell aggregation and repulsion.

Analytic results, constructed in the limit of asymptotigasmall cell volume fraction,
take the form of a growing travelling-wave. Comparison & ghredicted wave speed with
that calculated from numerical simulations showed exoéligiantitative agreement, and
qualitative agreement was observed in the behaviour ofisolst

We  further extended this model formulation to account for
mechanotransduction-mediated tissue growth. This wasesthby replacing the constant
growth and death rates,(,, k) with appropriate functional forms. To illustrate the atlyil
of our modelling framework to accommodate mechanotransolucechanisms relevant
to a variety of tissue types, and motivated by a range of stuee;2), we compared
the response of a cell population to the local density, piresand shear stress. Simula-
tions were presented showing that the growth of the cell fadjoun is profoundly altered
by these effects, dramatically changing the compositiothefconstruct. These simula-
tions clearly demonstrate the importance of consideriegeffect of mechanotransduction
mechanisms within tissue growth models. Our model sugdkeatsn static culture, reg-
ulation of proliferative behaviour by cell density and cuit medium pressure results in
indistinguishable tissue constructs; the addition of p&dhn results in markedly different
construct composition. In principle, on provision of appriate experimental data, this
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conclusion provides a simple mechanism for the identificatif the dominant regulatory
mechanism in a given cell population. However, we note thathave not considered
nutrient-limited growth which is expected to become sigaifit in the absence of perfu-
sion (indeed, after many days in culture, delivery of nutitseto downstream sections of
the scaffold may be problematic even under perfusion, éalbemn scaffolds of relevant
clinical thickness) and may affect the robustness of oudipt®ns. A similar formula-
tion in which nutrient-limited growth is considered is peased by Lemon & King (2007);
other studies which account for this include, for examplaylset al. (2005) and Wilson
etal. (2007).

We concede that the functional forms used to model mechameduction-mediated
growth are highly idealised and that each stimulus was densd in isolation; physiolog-
ically, these phenomena are likely to interact in a complay % produce the cells’ overall
response. However, we remark that the mathematical fotionland numerical scheme
developed is highly versatile, permitting the study of mooenplex functional forms and
an investigation of the interplay between many competirogwgn stimuli.

We have assumed that the degradation of the rigid scaffolelgiigible on the timescale
of interest, corresponding ® = constant. This greatly simplifies the three phase model
equations and, in conjunction with other simplifying lisiallowed analytic progress to
be made. Re-interpreting the scaffold phase as a lumpetbktahd ECM phase and
introducing an equation governing its evolution providesraple way to analyse the in-
terplay between scaffold degradation and nascent tissmetlgr such investigations are
largely numerical in nature and will be presented in a subsetjstudy together with an
investigation into the effect of choosing more biologigaklevant initial cell distributions
(such as the more uniform distributions achieved via dywaseeding on a cortical shaker
(Woodet al., 2003) or peripheral seeding) and the influence of nutrieail@bility on the
model behaviour. We emphasise that, as in the present stindy the cell phase is mod-
elled as a viscous fluid, the predictions made in this papkbeidirectly relevant only to
those tissue constructs whose solid characteristics anéndted by scaffold rigidity.

Lastly, we remark that we exploited the long-wavelengthitliit@onsequently, at lead-
ing order, the contribution of, for instance, interphasgceus drag terms are neglected
from the momentum equations (2.10) and (2.11). The dradictesft, k is expected to be
large (O’'Deaet al., 2008) so this effect should, perhaps, be considered (wethat this
may be remedied by choosikg= O(1/h?), wherek is the coefficient of viscous drag and
h is the channel aspect ratio). Furthermore, the dimensibtisedbioreactor system are
inconsistent with this limit (see figure 1). However, thereiactor systems employed in
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tissue engineering applications are necessarily bespgokeing in many different shapes
and sizes; this analysis is particularly appropriate fosthwith a small aspect ratio.

Acknowledgements

We gratefully acknowledge funding from the EPSRC in the fofra studentship (R.D.O)
and an Advanced Research Fellowship (S.L.W). Collabanatigth A. El-Haj (ISTM,
Keele University) is also acknowledged. We are grateful toRbnald Fowler (CCLRC,
Rutherford Appleton Laboratory, Didcot) for help with themerical code.

A Asymptotically-small cell density: D # 0

We now consider the solution of (3.5) and (3.6) subject tdathiendary conditions (3.10)
and (3.11) without additional simplification. Noting thhttconstanty is given by equa-
tions (3.7) and (3.12), we make the following transformiatio

ni(z,t) = elbm=klg(¢ 1), ¢ =2 —qt, T=Dt, (A.1)

and we may then express equation (3.5) and its attendantlaogconditions as follows:

dp  0%¢ op  ~
kg - = Q A.2ab
5~ e SE% 5 = A onog, (A-2ab)
whereA = —A4,/[1211,0D] and the region of interest, € [L, R], is denoted? with
moving boundary)Q); L(t) = a — vy 7/D andR(1) =b—~ 7/D.
A solution to (A.2) may be constructed by considering thefspace Green’s function
of the simpler problem:
dp  0%¢
o _99 A.3
5 = ge (0, de(Fo0,m) =0, (A3)

which is found to be:

Gr(&, 15, T) =

B 1) e 77)2] | A

dr(T —7) 4t —1)

wheren is an arbitrary point in the domain and> 7 (see, for example, Zauderer (1989)).
The Green'’s function for the problem (A.2) can then be exgedsn the form

G 7n,7)=Gp(&n,7) +Gp(§,5m,7T), (A.5)
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whereGr is the free-space Green's function defined above @gdis specified via the
method of images to satisfy the boundary conditions. TeBatihe Robin boundary con-
dition at¢ = L(7), we consider a source pointét= L(7) 4+ n and introduce an image
atT’ = L(7) — n and a line of image sources extending from our image pding T, to

& = —oo, weighted by a density functiop,, to be determined (Zauderer, 1989):

T
G = Cr(e,mT,T) + / p_(s) Gr(E,755,7) ds. (A6)

In order that the condition & = R(7) is satisfied, we must add images with respect to
¢ = R(7) of the source and images pointséat= L(7) + n and a second line of image
sources extending from the poift= 2R(7) — L(7) — n (denoted)) to £ = oo, weighted
by a density functiony, (s), to be determined. Each of these images must, in turn, have
images with respect tdé (), R(7) and we are led to consider an infinite sequence of
image source points and image source lines. The weightimctifins for each image are
determined from the boundary condition (&)2

The Green'’s function;z, may then be expressed:

(E£n—2nR+ (20— 1)L)2]

GleminT) = \/zhrTT%{nz:o P A(t—1)
—2E/Zexp g(s—l"n)} exp[ (T_7)_2]

)
+§:exp (E£n+2nR- 2n+1 ]
n=1

4(t—1)
—24 . exp [E(Cn - s)} exp [ ) ds} , (A.7)
whereinl',, and(,, are defined as follows:
'y, =-2nR+ (2n+ 1)L — 7, n=0,1,2,..., (A.8)
(n=2nR— (2n— 1)L — 1, n=12,3,... (A.9)

Noting that the Green’s function for the problem (A.2) siis the following equation:

oG 0°G

6’7' 35 (g 77) (T - T)a ga ne Q? 7, T< Ta T> Oa (AlO)
(whereT is the temporal end point) with end and boundary conditions:
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it can be shown,€g. Zauderer (1989)) that the solution, at an arbitrary poin{r, 1) is

given by

P(n,T) = ¢(§0)G(&,05m, 1) dS. (A.12)

Q0

Using initial conditions given by (3.2), equation (A.12) yrize evaluated numerically and

the corresponding correction to the pressure may be cadzulay solving equation (3.6)
subject to the boundary conditions (3.10) and (3.11). Weiaha diffusing, growing,
travelling-wave solution for,;. Numerical results omitted for concision.
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