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Abstract

Lateral inhibition, a juxtacrine signalling mechanism by which a cell adopting a
particular fate inhibits neighbouring cells from doing likewise, has been shown to be
a robust mechanism for the formation of fine-grained spatial patterns (in which adja-
cent cells in developing tissues diverge to achieve contrasting states of differentiation),
provided that there is sufficiently strong feedback. The fine-grained nature of these pat-
terns poses problems for analysis via traditional continuum methods since these require
that significant variation takes place only over lengthscales much larger than an indi-
vidual cell and such systems have therefore been investigated primarily using discrete
methods. Here, however, we apply a multiscale method to derive systematically a con-
tinuum model from the discrete Delta-Notch signalling model of Collier et al. (Pattern
formation by lateral inhibition with feedback: a mathematical model of Delta-Notch in-
tercellular signalling, J. Theor. Biol., 183, 1996, 429–446) under particular assumptions
on the parameters, which we use to analyse the generation of fine-grained patterns. We
show that, on the macroscale, the contact-dependent juxtacrine signalling interaction
manifests itself as linear diffusion, motivating the use of reaction-diffusion-based models
for such cell-signalling systems. We also analyse the travelling-wave behaviour of our
system, obtaining good quantitative agreement with the discrete system.

1 Introduction

The development of spatial organisation is fundamental to the construction of multicellular
organisms: starting from a homogeneous initial state, a collection of cells must have the abil-
ity to arrange themselves in a certain configuration to enable the creation of specialised body
parts. This spatial organisation impacts upon cell differentiation and the determination of
cell fate (i.e. the adoption of a particular programme of gene activation). Cell fates are
regulated by a variety of mechanisms, typically mediated by the production and transport
of certain signalling molecules that bind to specific sites on the cell membrane. In many de-
veloping tissues fine-grained patterning is generated, in which neighbouring cells diverge to
achieve different cell fates. Lateral inhibition, a juxtacrine signalling mechanism (in which
the signalling molecule is anchored in the cell membrane and acts only on neighbouring
cells) is one process by which such patterns are generated and is well-documented in flies,
fishes, worms and invertebrates, and has been observed in the developing nervous system in
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particular (Collier et al., 1996; Haddon, 1998; Appel et al., 2001). In all of these systems
the transmembrane proteins Notch and Delta (or their homologues) have been identified as
mediators of the interaction. Within the context of regenerative medicine, Delta-Notch sig-
nalling has been shown to regulate cell fate in stem-cell clusters, with high Delta expression
preventing differentiation and improving cohesiveness (Lowell et al., 2000), maintaining re-
generative potential in muscle cells (Conboy et al., 2003) and regulating stem cell numbers
both in vitro and in vivo (Androutsellis-Theotokis et al., 2006). Many other ligand-receptor
interactions and subsequent intracellular signalling cascades have been identified as cell fate
determination mechanisms and subsequently studied in the mathematical biology literature;
examples include the binding of cyclic AMP to Dictyostelium cells (Shaapa et al., 1986; Dal-
lon & Othmer, 1997), Transforming and Epidermal Growth Factor binding in keratinocytes
(Coffey et al., 1987; Ebner & Derynck, 1991; Wiley et al., 2003) and Wnt binding in a
variety of stem cell types (Nusse, 2008; Mirams et al., 2010). However, in this paper, we
concentrate on the well-understood Delta-Notch juxtacrine signalling system, which pro-
vides an ideal model system for the type of analysis which we seek to pursue and, after
Collier et al. (1996), we neglect any intracellular detail.

Due to its importance in the understanding of tissue formation, the development of
spatial patterning in response to biologically-relevant mechanisms has been widely studied.
Inspired by the study of Turing (1952), who showed that reaction and diffusion of chemi-
cals can produce spatial patterning in chemical concentration that consequently determines
cell fate, reaction-diffusion systems have been employed in modelling a variety of biological
systems. For instance, Painter et al. (1999) showed that patterned solutions of striking
similarity to animal coat patterns can be generated by such a model. An alternative mech-
anism was proposed by Wolpert (1969) in which the level of a morphogen (whose gradient
is established via diffusion from a fixed source) determines cell fate; Lander et al. (2002)
have provided evidence that diffusive transport and ligand-receptor interaction is able to
set up appropriate morphogen gradients. Most such studies employ a continuum approach
(though it is noteworthy that Turing (1952) exploited both discrete and continuous formu-
lations); however, a number of relatively recent studies have employed discrete models to
analyse signalling processes at the cell scale. Collier et al. (1996) presented the first model
of juxtacrine signalling, considering the activity of a protein, Delta, and its receptor, Notch,
showing that lateral inhibition is able to generate fine-grained spatial patterns. The model
was formulated in terms of ordinary differential equations (ODEs) representing Delta-Notch
signalling activity in each cell; Webb & Owen (2004b) extended this model, considering the
dynamics of ligand and free and bound receptors in systems of varying geometry (strings
and square or hexagonal arrays), showing that lateral inhibition can produce patterns with
a lengthscale of many cell diameters. In the limit of slow ligand-receptor binding, this
model is equivalent to that of Collier et al. (1996). Webb & Owen (2004a) investigated the
effects of cell polarity, demonstrating that coherent arrays of polarised cells (analogous to
the polarity of bristles and hairs in Drosophila) can be produced.

The analysis of discrete models can be highly numerical in nature, and realistic simu-
lations demand large numbers of cells; this is presumably in part why much research has
concentrated until recently on continuous reaction-diffusion models. However, as well as
exchanging matter (by diffusion and active transport) cells interact by exchanging signals
via specific signalling mechanisms. Indeed, Plahte (2001) and Plahte & Øyehaug (2007) re-
mark that it is unclear that diffusion is a meaningful approximation for these interactions,
especially when considering juxtacrine signalling. Nevertheless, Roussel & Roussel (2004)
demonstrated that such a mechanism may be represented by a diffusion process within a
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continuum formulation, provided that the signalling-molecule concentration varies slowly
in comparison to the length of a cell – this result, however, is not applicable in the current
context in which neighbouring cells can exhibit very different behaviour. In this paper,
we employ a multiscale technique to derive a continuum model of juxtacrine intercellular
signalling (based on the Delta-Notch model of Collier et al. (1996)) which is nevertheless
able to capture fine-grained patterns with significant variation in signalling molecule con-
centration between adjacent cells. The resulting continuum model allows representation of
the generation of microscale patterns in a tissue in response to macroscale variation in cell
signalling (e.g. that induced by tissue-level chemical or physical stimulation). Our reduced
model takes the form of a semilinear partial differential equation and is therefore amenable
to well-established methods of both analytic and numerical analysis and we demonstrate
that, on the macroscale, the interaction between adjacent cells does in fact manifest itself
as linear diffusion, despite the short-range variation in signal concentration. We employ
this model to investigate the development of fine-grained patterns in response to spatial
variation of the strength of the nearest-neighbour feedback mechanism. Comparison with
simulations of the discrete system shows that, in the appropriate parameter regimes, the
continuum model faithfully reproduces the behaviour of the underlying discrete system.
Quantitative comparison between the continuum and discrete models is made by analysing
their travelling-wave behaviour, in particular.

The method of multiple-scale expansions for partial differential equations is well-developed
(see, for example, Kevorkian & Cole (1996)) and widely used to derive models for a variety
of physical and biological problems. Representative examples include Burridge & Keller
(1981), in which a two-scale homogenisation technique was employed to derive the equa-
tions of linear poroelasticity for a porous material, while, in a biological context, Goel
et al. (2006) have derived a diffusion-type equation for calcium dynamics within the cell
cytoplasm, which was viewed as constituting the endoplasmic reticulum (ER) surrounded
by cytosol: the homogenised diffusion coefficients were found to be dependent upon the
underlying geometry of the ER, and an example calculation for a specific geometry was
given. Such techniques have also been employed to derive continuum representations of
collective movement of adherent cells by, for instance, Turner et al. (2004) and Fozard et al.
(2009). We remark that in many studies which exploit a homogenisation technique to de-
rive a continuum model from an underlying discontinuous system, local periodicity is in
effect imposed by the geometry of the physical system considered, such as the repeating
ER/cytosol pattern in Goel et al. (2006) or the individual material pore in Burridge & Keller
(1981). In contrast, in the Delta-Notch signalling system considered here, periodicity is an
emergent property of the nearest-neighbour interactions between identical cells rather than
being enforced a priori. This periodicity can be exploited by judicious choice of variables
to obviate the complications that arise in many homogenisation problems.

The structure of this paper is as follows. In §2, a short summary of the juxtacrine sig-
nalling model of Collier et al. (1996) is given and its pattern-forming behaviour analysed:
the patterning bifurcation structure in small populations of cells is demonstrated and the
range of patterns exhibited by the model discussed. A continuum model for Delta-Notch
signalling in a line of cells based upon this underlying discrete system is then derived in
§3. In §4, numerical solutions to the continuum equations are presented and compared to
simulations of the discrete system; pattern-generating travelling waves are considered, as
well as competition between stable patterns. In Appendix A, an indication of the (surpris-
ingly wide) range of parameter values for which our continuum limit applies is provided
via comparison of the speed of a linearly-selected travelling wave in the continuous and
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discrete systems. In §5, a two-dimensional continuum model is derived by considering an
array of square cells and comparisons to the underlying discrete system are again made.
A discussion, together with suggestions for further work, is given in §6. The analysis is
generalised somewhat in Appendix B, illustrating how the range of applicability of our con-
tinuum approach may be significantly extended (albeit in a rather artificial context), with
a nonlinear diffusion term resulting in the relevant limit.

2 Pattern formation in a discrete Delta-Notch intercellular

signalling model

2.1 Formulation

In Collier et al. (1996), the activity of a signalling protein, Delta, and its receptor, Notch, is
studied. This interaction is known to be important in early animal development. The crucial
aspect of the feedback loop considered is that high Delta expression in a cell downregulates
Delta expression in its neighbours via the Notch receptor. This mechanism, known as lateral
inhibition, is a fundamental cell-fate control mechanism (Mitsiadis et al., 1999), creating
fine-grained patterns in developing tissue that determine subsequent cell development. The
model is formulated in terms of Delta and Notch “activity” (there is some ambiguity in how
this is to be interpreted; see Collier et al. (1996) for a discussion of possible interpretations)
and the key postulate is that the level of activated Notch in a cell determines its fate: low
levels lead to the adoption of the default (primary) fate, whilst high levels relegate the cell
to the secondary fate. In the specific case of nervous tissue in Drosphila, the primary fate
corresponds to the adoption of a neural phenotype, the secondary fate being the maintenance
of the epidermal phenotype (Lehmann et al., 1983; Campos-Ortega, 1993). The details of the
signalling pathways are neglected for simplicity. Cell division is neglected since cell cycle
times significantly exceed the timescale of Delta-Notch-mediated cell-fate determination
(Hartenstein & Posakony, 1990). We return to the idealised model of Collier et al. (1996)
in place of the more complex signalling models discussed in §1 since our intention here is
in large part to investigate the applicability of multiscale methodologies, rather than to
explore in detail the biological implications. Our multiscale approach may be applied
mutatis mutandis to more involved signalling models and other cellular geometries; such
investigations will be presented elsewhere..

The model comprises a pair of ODEs that govern the evolution of the levels of Delta
(dj(t)) and Notch (nj(t)) activity in each cell (j) over time (t). In dimensionless terms these
are (Collier et al., 1996):

ḋj = λ (g(nj) − dj) , (1a)

ṅj = f(dj) − nj, (1b)

where dots denote differentiation with respect to time and λ is the ratio of the decay rates
of Delta and Notch activity. In (1), f(dj) and g(nj) are feedback functions representing the
coupling between adjacent cells and the inhibitory effect of Delta-Notch binding, respec-
tively; dj denotes the mean level of Delta activity in the cells surrounding cell j, i.e.

dj =
1

N

∑

i

di, (2)
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where i runs over all N nearest neighbours of j. In a one-dimensional string of cells (2)
therefore reduces to dj = (dj+1 + dj−1) /2. To model the lateral inhibition exerted by one
cell upon another, the feedback functions employed in Collier et al. (1996) are specified as
follows:

f(σ) =
σk

a+ σk
, g(σ) =

1

1 + bσh
, (3)

key aspects of these expressions being that f is an increasing saturating function and g is
decreasing (to model the inhibitory effect of the bound Delta-Notch complexes upon Delta
production). The positive parameters k, h, a and b determine the feedback strength. The
value of the exponent k expresses whether Delta-Notch binding is monovalent (k = 1) or
cooperative (k > 2); examples of such binding phenomena are given in Webb & Owen
(2004b). We note that, In vivo, Delta-Notch binding and the resulting Delta production
will be dependent on the cell’s biochemical and biophysical environment. We consider
microscale patterning in response to macroscale variation in tissue stimulation, providing
motivation for the consideration of both spatial and temporal variation in the parameters
associated with the feedback functions f and g. Below, we investigate the emergence of
fine-grained patterning in response to variation of these parameters.

2.2 Patterning and stability - bifurcation analysis

We first wish to determine under which parameter regimes fine-grained patterning will be
produced by this model, with adjacent cells adopting different fates. Since the juxtacrine
signalling mechanism under consideration is local, analysing the model equations for a two-
cell domain with periodic boundary conditions gives insight into the period-two patterning
behaviour in more extensive arrays, and their analysis therefore forms an important precur-
sor to what follows. The system (1) then reduces to the following four coupled equations,
for which the solutions are either homogeneous or patterned with a wavelength of two cells:

ḋ1 = λ(g(n1) − d1), ḋ2 = λ(g(n2) − d2), (4)

ṅ1 = f(d2) − n1, ṅ2 = f(d1) − n2. (5)

Clearly, from (4) and (5), the steady states are solutions of:

σ = φ(φ(σ)), (6)

where the notation φ(σ) = f(g(σ)) has been introduced for concision. Via linear stability
analysis, it is straightforward (see Collier et al. (1996)) to show that the homogeneous steady
state is unstable and a pair of heterogeneous steady states exist if

f ′(d∗)g′(n∗) < −1, (7)

where (n∗, d∗) is the homogeneous steady state satisfying n∗ = φ(n∗), d∗ = g(n∗) and ′

denotes differentiation.
The transition from a regime in which the homogeneous steady state is stable, corre-

sponding to adjacent cells having identical fates, to that in which additional solutions to
(6) are generated leads to the creation of fine-grained patterns (with adjacent cells reaching
different fates via the appropriate solution branch). Figure 1(a) shows this transition in
response to variations of the parameter a, which controls the Delta-Notch binding rate,
indicating how patterns in Notch activation are created by local, symmetric divergence in
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each of the two cells at a pair of pitchfork bifurcations, enclosing a region of parameter
space in which period two patterns are generated. The pitchfork behaviour reflects the
symmetry of (4), (5) under the transformation n1 ↔ n2, d1 ↔ d2. The bifurcation points
are denoted a∗1 and a∗2 (for a∗1 < a∗2) and a corresponding bifurcation diagram is of course
also obtained for the levels of Delta activation in each cell (not shown). Figure 1(b) shows
the positions of the bifurcation points a∗1 and a∗2 in (a, b) parameter space, illustrating how
the pitchfork bifurcation structure illustrated in Figure 1(a) changes for illustrative values
of k = h (similar behaviour is observed for k 6= h, but is not shown). We observe that, in
contrast to the enclosed patterning region a ∈ (a∗1, a

∗
2) shown in Figure 1(a), variation of

b induces a single patterning bifurcation for fixed a, k, h. Qualitatively similar behaviour
to that shown in Figure 1(b) is observed under simultaneous variation of b and k = h (for
fixed a) indicating that a pair of pitchfork bifurcations enclosing a patterning region similar
to that shown in Figure 1(a) is obtained under variation of k, h. Figure 1(b) also indicates
that, as b is decreased, the two bifurcations shown in Figure 1(a) approach each other and
the pattern-forming region disappears; as the patterning region shrinks, the amplitude of
Notch up- and down-regulation decreases until only the stable homogeneous steady state
remains. Figure 2 shows how the number of solutions to (6) varies with a, and illustrates
that near the bifurcation point we have σ ≈ φ(φ(σ)) for a relatively wide range of σ: this
proves to be significant in terms of the range of applicability of the multiscale approach (see
Appendix B).

The feedback parameter values employed in the numerical simulations presented in this
work are based on those chosen by Collier et al. (1996) (b = 100, a = 0.01, k = h = 2).
Whilst no explicit discussion of the biological motivation for these choices was given there,
Figure 1 indicates that these parameter choices provide a large disparity between the up-
and down-regulated states, consistent with the postulate that low levels of Notch activation
lead to the adoption of the primary fate, high levels relegating the cell to the secondary
fate. We highlight that in the following, we will employ the terms “up- or down-regulated”
to refer to the level of Notch activation.

Figure 3 shows a typical numerical solution obtained for a line of cells in the parameter
regime for which the criterion (7) applies. A striking feature of the Delta-Notch model
is the robustness of the fine-grained (period-two) pattern. Collier et al. (1996) present
simulations similar to Figure 3, remarking that defects in the alternating pattern tend to
occur at irregular intervals along the cell string and take the form of adjacent cells displaying
high Notch activity. Plahte (2001) analysed the alternating pattern and showed that in a
line of cells at most two cells in succession can express high levels of Notch, breaking the
periodic pattern.

We remark that longer-wavelength patterns are not prohibited in this one-dimensional
system. For example, it is straightforward to show that the uniform state is unstable to
period-three patterns if f ′(d∗)g′(n∗) < −2 (see Collier et al. (1996)). Numerical simulations
(omitted) indicate that these patterns are stable to periodic and aperiodic perturbations but
that their domain of attraction is small and therefore are only observed for suitable initial
data. (In the following we refer to this ‘locally stable’ behaviour.) Such patterns grow more
slowly from the uniform state than those of period two; indeed, linear stability analysis
reveals that the period-two pattern is the fastest-growing mode, providing an explanation
for its robustness (Collier et al., 1996; Plahte, 2001). While the period-two pattern is
distinguished by its dominance, the consideration of other patterning modes is nonetheless
significant in related cell-signalling studies; for instance, in arrays of hexagonal cells, the
fine-grained patterning regime corresponds to patterns containing three cells rather than
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Figure 1: Bifurcation diagrams for the system (1) in a pair cells within a periodic array. In
(a) the level of Notch activity in either of the two cells is represented by the appropriate
solution branch: the two stable solution curves in the central region correspond to the
period-two patterned state, one cell being in each of the two states shown. Unstable states
are represented by dotted lines. For the particular parameters chosen (λ = 1, b = 100, k =
h = 2), the bifurcation points shown in (a) are a∗1 ≈ 1.07 × 10−4 and a∗2 ≈ 8.41. In (b) the
positions of bifurcation points a∗1, a

∗
2 under variation of b are shown; the line-styles denote

sample values of k = h.
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Figure 2: Illustrative plots of the function φ(φ(σ)) indicating the number of solutions to
(6) in the regimes a < a∗1, a ≈ a∗1 and a > a∗1. Qualitatively similar plots are obtained near
a = a∗2. The remaining parameter values are as in Figure 1.

two. In addition, microscopic patterns of considerably longer wavelength can be observed
in developing tissues and Webb & Owen (2004b) have shown that such patterns may be
generated in related models of lateral inhibition. Multiscale analyses of such considerations
will be presented elsewhere.

The bifurcation analysis of larger strings of cells is complicated by the increasing number
of patterning branches that emerge as the string becomes longer. For example, in a string
of three cells bifurcation analysis reveals that there are three possible pattern types: (i) two
identically up-regulated cells and one down-regulated, (ii) two identically down-regulated
cells and one up-regulated and (iii) one up-regulated cell, one down-regulated and one
intermediate. Example bifurcation diagrams of period-three patterns in a string of three
cells are shown in Figure 4, indicating that type (i) and (ii) patterns branch subcritically
from the homogeneous steady state and that an additional branch of type (iii) patterns
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Figure 3: Typical numerical simulation (run to steady state) showing the level of Notch
activity in a line of 60 cells. Initial conditions for Notch and Delta activity are small random
deviations around the (unstable) homogeneous steady state. Parameter values as in Figure
1 with a = 0.01.

connecting the various configurations of type (i) and (ii) is created as k = h is increased.
We emphasise that ‘stability’ as indicated in Figure 4 refers to stability within the three-cell
model, which, in particular, precludes the existence of period-two solutions.

More generally, our investigations indicate that the system may be driven to patterning
modes of period greater than two by appropriate choice of periodic initial conditions and
domain size. In the case of periodic initial data of odd wavelength (which are not themselves
a steady state), the system evolves to a pattern of this odd period. The resulting patterns
are locally stable in the sense outlined above. Initial data of even period seems always
to result in the emergence of the period-two pattern. This behaviour further exemplifies
the robustness of the alternating pattern: longer range patterns of even period appear to
form only from repetition of the stable period-two pattern, whilst locally-stable patterns
of odd period are only observed for suitable initial data, the behaviour being dominated
by the alternating (period-two) state. An investigation of the longer-range pattern-forming
behaviour of this and related signalling models in more extensive cellular arrays will be
presented elsewhere.

Aside from the linear-instability criterion discussed above, Plahte & Øyehaug (2007)
give two further possible mechanisms to explain the dominance of the period two pattern:
(i) the feedback structure of the model (1) fundamentally favours this pattern, independent
of the specific choices of the feedback functions f and g: the apparent negative feedback
loop actually consists of a sequence of interlaced positive loops and negative loops (more
detail is given in Plahte (2001)) that drive Delta and Notch activity into alternate extreme
states, stabilised by the negative loops; (ii) the period-two pattern is the only pattern that
can be produced by a travelling wave invading the unstable homogeneous state.

To summarise, the dominant pattern in the one-dimensional juxtacrine signalling model
of Collier et al. (1996) is that of period two, consistent with the fine-grained patterning ob-
served in the biological system this model aims to represent. Linear analysis, first presented
by Collier et al. (1996), provides a simple condition that identifies the bifurcation of such
patterns from the homogeneous steady state and reveals that this is the fastest-growing
mode of the linearisation around the uniform state. Additional analysis by Plahte (2001)
and Plahte & Øyehaug (2007) provides intuition into the dominance of the fine-grained
pattern. In this section, we have shown in detail how period-two pattern emergence is
dictated by variation of the parameters associated with the feedback strength. The com-
plications arising when considering longer-range patterns are discussed and the bifurcation
structure associated with period-three patterns illustrated. In addition, we note that at-
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Figure 4: Bifurcation diagrams for the system (1) in a string of three cells with periodic
boundary conditions. Unstable patterned states are indicated by dotted lines and the
unstable homogeneous state by a dot-dashed line. Parameter values as in Figure 1 except
in (b) k = h = 3. In (a), only type (i) and (ii) patterns exist: in the central region, the upper
branch indicates the steady-state values of two of the three cells and the lower branch the
remaining cell. Type (ii) patterns are always unstable, type (i) patterns branch subcritically
from the two bifurcation points. Pane (b) indicates similar patterning behaviour to that in
(a) with the addition of a stable type (iii) branch (indicated by a dashed line) connecting
small regions of stable type (ii) patterns.

tempts to generate longer-wavelength patterns of even period result simply in repetition of
the alternating state and that patterns of odd period are observed only in simulations for
appropriate initial data, further demonstrating the dominance of the fine-grained pattern.

Via a multiscale analysis, in the following sections, we construct a continuum model
suitable to describe the generation of fine-grained patterns due to variations in feedback
strength near either bifurcation point a∗1 or a∗2.

3 A multiscale analysis of Delta and Notch

activity in a line of cells

3.1 Model formulation

In this section, we employ a multiscale method to derive systematically a continuum model
based upon the discrete system (1) and capable of describing the dominant fine-grained
(period-two) patterning phenomena examined in §2.2. Figure 1 suggests that introducing
appropriate spatial variation of one (or more) of the model parameters can result in pat-
terning being induced in certain regions of the domain only, and this generalisation from a
uniform choice of parameters will be instructive in terms of the development of the method-
ology. In a biological context, such parameter variation would correspond to differences in
the sensitivity of the cells to Delta-Notch binding, say, leading to the adoption of a partic-
ular programme of gene activation by a subset of the cell population according to spatial
position. The results that we shall derive for spatially non-uniform binding sensitivity in-
clude the uniform case as a particular example, and our analysis will also include explicit
treatment of the latter.

To construct such a continuum model, a homogenisation process is required. In order
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j j + 1j − 1 · · ·· · ·

δ

x = δj

Figure 5: Definition sketch: a line of cells and the spatial coordinates employed in the
multiscale analysis.

that the local periodicity of the system be preserved, the variation of the parameter chosen
to be spatially non-uniform is assumed to be slow compared to the variations of Delta and
Notch activity; that is, we construct a two-scale model. The model is derived as follows.
Considering a line of cells, we denote the size of cells by δ ≪ 1, introduce a slowly-varying
continuum variable x = δj and represent the levels of Delta and Notch activity in the
multiple-scales form dj(t) = d(j, x, t), nj(t) = n(j, x, t), j being the fast, and x the slow,
spatial variable (see Figure 5).

We remark here that a näıve and ad hoc continuum limit of the discrete model (1)
obtained via the assumption of slow variation (dj = d(x, t), nj = n(x, t)) takes the form

∂d

∂t
= λ (g(n) − d) ,

∂n

∂t
= f(d) − n+

f ′(d)

2

∂2d

∂x2
. (8)

Such a model is incapable of capturing fine-grained patterning; in the following, we shall
derive a substantially different continuum model which accommodates such short-range
phenomena. Indeed, a linear-stability analysis of (8) readily shows it to be ill-posed, with
the growth rate of a perturbation to the uniform steady state increasing without bound as
its wavelength tends to zero, implying that the continuum limit is inapplicable. Further
insight into this and to what follows can be obtained by considering the special case of (1)
in which f and g are suitably redefined to be odd functions (and nj and dj are translated
by their steady state values): setting:

dj → (−1)jdj , nj → (−1)j+1nj , (9)

we recover (1) with g(nj) replaced by −g(nj) (so that g is then to be viewed as an increasing
function of nj); with this change of sign, (8) becomes well-posed and, in addition, this special
case provides useful guidance for the systematic calculations that follow.

The variation in feedback strength due to macroscale biochemical or biophysical condi-
tions is for definiteness modelled by introducing a slow spatial variation to the parameter
a that controls the response of the cell to Delta activity in neighbouring cells (keeping the
others fixed for simplicity) – i.e. we set a = a(x). Since we intend to induce differences in
patterning behaviour in the domain, it is natural to expand about one of the bifurcation
points a = a∗1, a

∗
2 (cf. Figure 1):

a(x; δ) = a∗ + δ2A(x), (10)

where a∗ denotes either bifurcation point. In the case a∗ = a∗2, for constant A < 0,
heterogeneous steady states exist and patterning results, whilst for A > 0, the homogeneous
solution is stable. For a∗ = a∗1 the converse is true.

Since neighbouring cells are expected to differ significantly in their Delta and Notch
activity in regimes in which patterning occurs (see Figures 1 and 3), we introduce the

10



following notation to differentiate between “odd” and “even” cells:

d(j, x, t) = d+(x, t), n(j, x, t) = n+(x, t) : j = 2m+ 1, (11)

d(j, x, t) = d−(x, t), n(j, x, t) = n−(x, t) : j = 2m, (12)

for integer m. On expanding in Taylor series, the spatial coupling term dj may be written:

dj =
dj+1 + dj−1

2
= d

±
(x, t) = d∓(x, t) +

δ2

2

∂2

∂x2
d∓(x, t) + O(δ4), (13)

according to whether j is odd or even. Exploiting this notation, in the following we derive
coupled equations governing Delta and Notch activity in odd and even cells separately,
facilitating the inclusion of fine-grained patterning phenomena within our continuum model,
thereby simplifying the multiscale analysis considerably.

Since the bifurcation is of pitchfork type (because in the patterned state either the even
or the odd cells can be upregulated), we expect (d±, n±) = (d∗, n∗)±O(

√
a∗ − a) as a→ a∗.

We therefore consider an expansion of the form:

d±(x, t; δ) = d∗ + δd±1 (x, t) + δ2d±2 (x, t) + · · · , (14)

n±(x, t; δ) = n∗ + δn±1 (x, t) + δ2n±2 (x, t) + · · · , (15)

where d∗, n∗ are the homogeneous steady states.
We wish to analyse the equations at the timescale on which spatial coupling enters the

at O(δ); rescaling time according to τ = δ2t achieves this1. Combining the above, from (1),
we find that Delta activity is governed by

O(1) : 0 = g(n∗) − d∗, (16)

O(δ) : 0 = L (n±1 , d
±
1 ), (17)

O(δ2) : 0 = L (n±2 , d
±
2 ) +

n±2
1

2
g′′(n∗), (18)

O(δ3) :
1

λ

∂d±1
∂τ

= L (n±3 , d
±
3 ) +

g′′′(n∗)n±3
1

6
+ g′′(n∗)n±1 n

±
2 , (19)

and Notch by

O(1) : 0 = f(d∗) − n∗, (20)

O(δ) : 0 = M (n±1 , d
∓
1 ), (21)

O(δ2) : 0 = M (n±2 , d
∓
2 ) + F1 +

d∓2
1

2
f ′′(d∗), (22)

O(δ3) :
∂n±1
∂τ

= M (n±3 , d
∓
3 ) +

f ′′′(d∗)d∓3
1

6
+G1d

∓
1 − f ′(d∗)

2

∂2d∓1
∂x2

+ f ′′(d∗)d∓1 d
∓
2 . (23)

Here L and M are linear operators defined by L (η, ξ) = ηg′(n∗)−ξ, M (η, ξ) = −η+f ′(d∗)ξ
and F1, G1 are the O(δ2) perturbations to f(d∗), f ′(d∗) expanded around a = a∗, defined
as follows:

F1 = A(x)
∂f

∂a
, G1 = A(x)

∂2f

∂d∂a
, (24)

1Considering the speed of a period-two pattern invading the unstable steady-state provides an alternative
motivation for these scalings; see Appendix A.
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and evaluated at a = a∗, d = d∗.
Equations (16) and (20) are the definitions of the homogeneous steady states (d∗, n∗);

(17) and (21) provide relationships between n±1 and d±1 (n±1 = f ′(d∗)d∓1 , d±1 = g′(n∗)n±1 )
and, noting that the bifurcation at which the alternating pattern is created occurs at a =
a∗, f ′(d∗)g′(n∗) = −1, additionally yield (d+

1 , n
+
1 ) = −(d−1 , n

−
1 ) so that Delta and Notch

activity in neighbouring cells diverges symmetrically. The systems at O(δ) and higher are
degenerate, reflecting the fact that we are analysing the behaviour close to the bifurcation
point,

g′(n∗)M (n±i , d
∓
i ) − L (n∓i , d

∓
i ) + L (n±i , d

±
i ) − g′(n∗)M (n∓i , d

±
i ) (25)

being identically zero.
The O(δ3) equations (19), (23) may be reduced to a reaction-diffusion equation for n+

1 .
Equation (17) then provides d±1 = g′(n∗)n±1 which, together with (d+

1 , n
+
1 ) = −(d−1 , n

−
1 )

allows for a complete solution. Equations governing d±1 are obtained via an identical method.
Employing the combination (25) to remove the O(δ3) terms n±3 , d

±
3 between (19) and (23),

equations (18) and (22) to eliminate the O(δ2) terms n±2 , d
±
2 in favour of d+

1 , n
+
1 and (17)

yields:

Λ
∂n+

1

∂τ
=
∂2n+

1

∂x2
+ αn+

1 − βn+3
1 , (26)

wherein α(x) and the constants Λ and β are defined by

α(x) =
d∗2A(x)

(a∗ + d∗2)2

(
4g′(n∗)

d∗
a∗ − d∗2

a∗ + d∗2
+ [g′(n∗)]2f ′′(d∗) + g′′(n∗)f ′(d∗)

)
, (27)

Λ =
2 (λ+ 1)

λ
, (28)

β =
[g′(n∗)]4[f ′′(d∗)]2 + [g′′(n∗)f ′(d∗)]2

2
+

[g′(n∗)]3f ′′′(d∗) + g′′′(n∗)f ′(d∗)

3
. (29)

The corresponding Delta activity in odd cells is given by equation (17). We remark that
this equation is invariant under the transformation n+

1 ↔ −n+
1 , reflecting the symmetric

divergence of activity in adjacent cells near the bifurcation point.
Equation (26) shows that, on the macroscale, the juxtacrine signalling mechanism man-

ifests itself as linear diffusion (with effective diffusivity λ/2(λ + 1)), in keeping with the
use of reaction-diffusion models for such cell-signalling systems. Under a more restrictive
assumption on f and g, a continuum approach applies in a wider parameter regime; the re-
sulting partial differential equation is more strongly nonlinear, however, this analysis being
included in Appendix B.

For constant α, β, the uniform steady states of (26) are n+
1 = (0,±

√
α/β). We empha-

sise that the non-trivial states are “uniform” in the sense that they are constant in odd cells;
in even cells n−1 = (0,∓

√
α/β). For the parameter choices under consideration (b = 100,

k = h = 2) β > 0 at each bifurcation point a∗1, a
∗
2; inside the patterning region a ∈ (a∗1, a

∗
2),

α > 0, otherwise α 6 0. Considering only the local value of the feedback strength α = α(x),
we therefore expect the generation of patterned states to reflect the pitchfork bifurcations
at a∗1 and a∗2: n ∼ n∗± δ

√
α(x)/β, d ∼ d∗ ± δg′(n∗)

√
α(x)/β. For brevity, hereafter we will

refer to this patterning behaviour as that influenced by “local feedback strength”.
In the following sections we show how simulations of the discrete system (1), with small

and slow variation in feedback strength (a = a∗ + δ2A(x)), compare with the solutions
to the homogenised approximation (26) and with the bifurcation behaviour predicted by
considering local feedback strength only.
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4 Numerical results

4.1 Simulations

We now present numerical solutions of (26) on the domain 0 < x < L in which we choose
A(x) = 2x/L−1 to illustrate how macroscale spatial variation in feedback strength dictates
the emergence of fine-grained patterning in the domain. We compare these to corresponding
numerical simulations of the full discrete system as well as those predicted by considering
the local feedback strength, in which case a pitchfork bifurcation is located at x = L/2
(A = 0). Since we expect macroscale variation over the domain, the periodicity conditions
which we imposed at x = 0, L in the previous simulations (see Figure 3) are replaced by
no-flux conditions. For clarity we highlight that the parameter choices employed below
correspond to analysing the generation of patterns near the bifurcation point a∗ = a∗2;
corresponding behaviour is observed near a∗1.

Numerical solution of equation (26) was achieved by discretising on a uniform spatial
grid and employing the initial value problem solver ode15s in MATLAB. The grid spacing in
the discretisation of (26) is ∆x = 10−4; we note that the grid spacing is not prohibited from
exceeding the diameter of a single cell, since the cell-scale variation has been systematically
averaged out.

In Figure 6, the steady-state levels of Delta and Notch activity predicted by (26) are
compared to a corresponding simulation of the discrete system (1). In each case, fine-grained
patterning is obtained in the left half of the domain; in the right half of the domain, the
perturbations decay slowly to zero. Also shown is the pitchfork bifurcation at x = L/2
(A = 0) obtained from considering only local feedback. Figure 6 shows good qualitative
agreement between the discrete simulation and the homogenised model; however, in each
case, a smooth transition between patterning and spatial homogeneity imparted by the
spatial coupling terms in (1) and (26) is observed in place of a pitchfork bifurcation. Far
from a = a∗, considering only local feedback provides a good approximation to the behaviour
of (1) and (26).

4.2 Travelling-wave behaviour

In this model, spatial patterning can be generated by a wave front, behind which a regular
pattern forms that determines cell fate. Examples of such behaviour in biological systems
include the so-called morphogenetic furrow in the retina of Drosophila, behind which a
regular pattern of photoreceptors surrounded by support and pigment cells is created (Owen,
2002; Plahte & Øyehaug, 2007).

Extensive studies of pattern-forming travelling-wave propagation in discrete signalling
systems have been presented by (for example) Owen (2002) and Plahte & Øyehaug (2007)
and we therefore omit a detailed study of the travelling-wave behaviour of the discrete model.
We consider the travelling waves created in the regime for which the feedback strength is
constant and the homogeneous steady state is unstable (a < a∗); comparison between the
wave speed predicted by our homogenised model and the discrete system gives a quantitative
indication of the accuracy of the former in reproducing the underlying signalling system;
such behaviour may be analysed analytically.

Travelling-wave solutions to nonlinear diffusion equations of the general form ut = uxx+
u(1 − u)(1 + au) have been given extensive treatment in the literature and so we do not
repeat any details here. It suffices to note that two distinct types of travelling wave fronts
exist: for −1 6 a 6 2, the wave front is ‘pulled’ and the propagation speed is determined

13
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Figure 6: The steady-state levels of (a) Notch and (b) Delta activity on a domain of
length L = 40, δ = 0.1 (corresponding to 400 cells) predicted by (1), (26). The solid and
dashed lines indicate the solution in odd and even cells, respectively, representing the long
lengthscale envelope solutions arising from the multiple scales analysis. The dotted lines
represent the homogeneous and heterogeneous steady states arising from local feedback only
and the circles indicate the result from a corresponding simulation of the discrete model
(1). Initial conditions are n+

1 = 0 and small random fluctuations about (nj, dj) = (n∗, d∗),
respectively. Parameter values: A(x) = 2x/L− 1, b = 100, k = h = 2 and the spatial mesh
size in the discretisation is chosen as ∆x = 1 × 10−4.

by the leading edge; for a > 2, the behaviour is termed ‘pushed’. In the latter case, the
propagation speed is determined by the whole wave front and converges uniformly to the
linear propagation front u(x + vt − x0) for wavespeed v and some x0 (Hadeler & Rothe,
1975; Stokes, 1976; Rothe, 1981). Equation (26) (under a suitable rescaling) corresponds
to the choice a = 1 and so, although we may obtain explicit travelling waves of the form

n+
1 (x, t) =

√
α/β

1 − exp
[
±

√
α
2

(
x+ x0 ∓ 3

√
α

2Λ2 t
)] , (30)

the wave front in (26) is pulled with speed v < 3
√
α/2Λ2. Instead, we calculate the

wavespeed of ‘linearly-selected’ pattern-generating waves by analysing the behaviour at the
leading edge via:

n+
1 (x, t) = δNek(x−vt), (31)

where N is an arbitrary constant. We obtain a dispersion relation, defining the wavespeed v
in terms of the wavenumber k. In conjunction with a repeated root condition, the minimum
wavespeed is determined as v = 2

√
α/Λ.

We induce a travelling wave of Delta and Notch activity by considering an initial state
consisting of fine-grained patterning in part of the domain and an unstable homogeneous
distribution in the remainder. As in §4.1, we impose no-flux conditions at x = 0, L in
place of periodicity. We remark that the homogenised model admits true travelling waves,
while those displayed by the original discrete system are modulated since the pattern gen-
erated behind the wave front is oscillatory. Thus, the analysis of pattern-generating waves
is simplified by the continuum limit to a particularly large degree. Figure 7 depicts the
modulated wave front in a simulation of (1), indicating how the period two pattern invades
the homogeneous state, together with the travelling wave of Notch activity obtained from
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simulation of the homogenised model (26). Figure 8 shows the position of the midpoint of
the wave front (defined as the position of the half-maximal value of Notch or Delta activity)
as predicted by the homogenised and discrete models, together with the relative error of the
former prediction, indicating that the numerical solution of the homogenised model faith-
fully reproduces the behaviour of the underlying discrete system; the minimum wavespeed
v = 2

√
α/Λ of a linearly-selected wave provides a good approximation to this nonlinear

behaviour. The deviation between the wavespeed v and that obtained from simulation can
be reduced by analysing travelling waves closer to the bifurcation point; in Appendix A the
dependence of the travelling wave speed on δ in the discrete system (1) and the homogenised
model are compared.
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Figure 7: (a) The modulated travelling wave front in a simulation of (1) in a section of an
array of 400 cells with initial conditions consisting of an “even” pattern (cells 1-100) and a
homogeneous distribution in the remainder at t = 0, 10, 1000; (b) travelling wave behaviour
of the homogenised model (26) at successive times t = (0, 3, 6, 10) × 104 on a domain of
length L = 200, δ = 0.1. The solid and dashed lines represent the levels of activity in odd
and even cells, respectively. Parameter values as Figure 6 with a = a∗ − δ2 (i.e. A = −1).
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Figure 8: (a) The position of the midpoint of the travelling wave of Notch activity predicted
by the homogenised and discrete models, and (b) the relative error between the wavefront
position predicted by the homogenised and discrete model. Parameters as in Figure 7.
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4.3 Competing patterns

In the patterning regime, two heterogeneous steady states are stable: odd cells can exhibit
high Notch activity whilst even cells have low activity (the “odd pattern”); conversely,
even cells may exhibit high Notch activity (the “even pattern”). In the following, we
demonstrate how the system (1) evolves from an initial state containing both types of
pattern and we compare this against the behaviour of the homogenised model. In the latter,
the odd pattern is represented by setting n+

1 (x, 0) =
√
α/β (other variables being calculated

from d+
1 = g′(n∗)n+

1 , (n−1 , d
−
1 ) = −(n+

1 , d
+
1 )); conversely, the even pattern corresponds to

n+
1 (x, 0) = −

√
α/β.

Since the two patterns are equivalent up to a phase shift of a single cell, a priori, neither
has a propensity to invade the other. Below, we consider in turn (i) the domain split
evenly between odd and even patterns, and (ii) a region of even patterning enclosed by
odd patterning to illustrate the differing behaviour. We remark that in the former case
we impose no-flux boundary conditions at x = 0, L; imposing periodicity renders the two
scenarios equivalent.

Figure 9(a) shows that for initial conditions consisting of equal proportions of odd and
even patterns, a smooth transition region is created, separating the two coexisting states.
In the case of an asymmetric split, the initially-larger pattern region engulfs the smaller, as
indicated by Figure 9(b) which shows the evolution from an initial state corresponding to
a region of even patterning enclosed by odd. Here, the latter invades the former and the
system eventually evolves to a state where only odd patterning exists. In each case, it is
clear that the qualitative features of the discrete system are reproduced by the homogenised
model.

We remark that sufficiently far from the bifurcation point, strong discrete effects prevent
such engulfing behaviour and pinned patterning fronts are observed regardless of the propor-
tion of the domain occupied by each pattern additional figure omitted for brevity). While
Owen (2002) explored the propagation failure of waves in a similar model to that analysed
here, smooth concentration profiles or invasion of an unstable state was considered; pinning
between competing stable fine-grained pattern distributions has not been explored in detail
in the literature. Our results indicate two distinct types of pattern competition dynamics
within our simple signalling system; a more detailed examination of this issue in systems
with more stable competing pattern modes will be given in a subsequent publication.

5 Pattern formation in a two-dimensional array of cells

In the preceding section, we have thoroughly analysed the fine-grained pattern forming
behaviour of a string of cells, deriving a homogenised model which faithfully represents
such behaviour. We now consider the behaviour of a two-dimensional array of square cells.
Collier et al. (1996) showed that in two-dimensional arrays of hexagonal cells labelled (i, j),
patterns of period three in i+ j are possible; however, numerical simulations of the discrete
system (1) in square cells indicate that checkerboard patterns (i.e., of period two in each
coordinate direction) are robustly generated in arrays of square cells (data not shown). The
analysis presented in the previous section may be exploited in this case so, for simplicity, we
therefore concentrate on such patterns here. Investigation of discrete patterning behaviour
in hexagonal cells, together with a multiscale analysis will be presented in a subsequent
publication.

The macroscale model is constructed in an equivalent fashion to that outlined above:
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Figure 9: The behaviour of the systems (1), (26) at successive times in a line of 400 cells (L =
40, δ = 0.1) with initial conditions consisting of period two patterns with phase difference,
π. In (a) the domain is split initially between the patterns equally: t = 0, 30, 250, 5×103 ; in
(b) odd patterns initially enclose a region of even patterning: t = (0, 0.05, 0.45, 0.95, 1)×105 .
The solid and dashed lines represent the levels of activity in odd and even cells predicted by
the homogenised model (26) whilst the discrete simulation results are indicated by circles.
Parameters as in Figure 7.

i,j

i,j+1

i+1,j

i+1,j+1

δ

δ

x = δi

y = δj

Figure 10: Definition sketch: an array of square cells and the spatial coordinates employed
in the multiscale analysis. Note that in the discrete model (1) the aspect ratio of the cells
is not explicitly captured so that square and rectangular cells are equivalent.

we consider an array of square cells, denote the horizontal and vertical distances between
the cells by δ ≪ 1 (see Figure 10), introduce slowly-varying continuum variables x =
(x, y) = δ(i, j) and represent the level of Delta and Notch activity in the multiple-scales
form: di,j(t) = d(i, j,x, t), ni,j(t) = n(i, j,x, t). As in the one-dimensional case, we expand
around either of the bifurcation points a∗ = a∗1, a

∗
2 via

a(x; δ) = a∗ + δ2A(x), (32)

and, since neighbouring cells are expected to differ significantly in their Delta and Notch
activity in regimes in which patterning occurs, we introduce the following notation:

d(i, j,x, t) = d+(x, t), n(i, j,x, t) = n+(x, t) i = 2m, j = 2m, (33)

d(i, j,x, t) = d̃+(x, t), n(i, j,x, t) = ñ+(x, t) i = 2m+ 1, j = 2m+ 1, (34)

d(i, j,x, t) = d−(x, t), n(i, j,x, t) = n−(x, t) i = 2m+ 1, j = 2m, (35)

d(i, j,x, t) = d̃−(x, t), n(i, j,x, t) = ñ−(x, t) i = 2m, j = 2m+ 1, (36)
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for integer m. The spatial coupling term di,j may then be written:

di,j =
di,j+1 + di,j−1 + di+1,j + di−1,j

4
=
d∓(x, t) + d̃∓(x, t)

2

+
δ2

4

{
∂2

∂x2
d∓(x, t) +

∂2

∂y2
d̃∓(x, t)

}
+ O(δ4). (37)

Lastly we consider an expansion of the dependent variables of the form:

n±(x, t; δ) = d∗ + δn±1 (x, t) + δ2n±2 (x, t) + · · · , (38)

ñ±(x, t; δ) = d∗ + δñ±1 (x, t) + δ2ñ±2 (x, t) + · · · , (39)

with corresponding expansions for the Delta activity d± and d̃±.
Under the additional rescaling τ = δ2t, we obtain equations governing the Delta and

Notch activity in each of the four cells of the same form as (16)–(23). We find (d±, n±) =
(d̃±, ñ±), (d+

1 , n
+
1 ) = −(d−1 , n

−
1 ) and d±1 = g′(n∗)n±1 (for brevity, we omit the details),

confirming that due to the form of the nearest-neighbour interaction, only checkerboard
patterns may exist in the patterning regime. A complete solution may therefore be obtained
by deriving an equation for (e.g.) n+

1 . Multiscale analysis of striped patterns in a more
complex model of ligand-receptor interaction (Owen & Sherratt, 1998) will be presented
elsewhere.

In the one-dimensional case, the model was expressed in terms of Delta and Notch
activity in odd and even cells; here, we consider activity on “diagonal” cells (i = j) and
“off-diagonal” cells (i + 1, j; i, j + 1) and obtain a reaction-diffusion equation for n+

1 , the
O(δ) correction to Notch activity on diagonal cells. The remaining variables are given
by (n+

1 , g
′(n∗)n+

1 ) = −(n−1 , d
−
1 ). Following exactly the same method as §3, we obtain

(unsurprisingly):

Λ
∂n+

1

∂τ
=

1

2

(
∂2n+

1

∂x2
+
∂2n+

1

∂y2

)
+ αn+

1 − βn+3
1 , (40)

with Λ, α and β defined by (28)–(29). The discrepancy between the effective diffusion
coefficients in (26) and (40) is a consequence of the coupling term (2) which is scaled
according to the number of neighbours surrounding a cell.

The behaviour of this model reproduces that analysed in detail in the one-dimensional
case. For brevity, we therefore present only illustrative numerical simulations demonstrat-
ing the pattern-forming capability of this two-dimensional system and the correspondence
between the discrete and homogenised models. So that patterning effects are visible, in
Figure 11(a) the steady-state pattern in a small array of 30 × 30 cells (δ = 0.5, L = 15) is
shown, illustrating the emergence of the checkerboard pattern under the feedback variation:

A(x) =
x+ y

L
− 1. (41)

As in the one-dimensional case, fine-grained patterning is obtained where A < 0 and the
solution tends smoothly to the homogeneous steady state as a crosses the bifurcation point
a = a∗2 (corresponding behaviour is found near a∗1). Figure 11(b) indicates that the ho-
mogenised model agrees well with the underlying discrete system, whilst the accuracy of
the prediction based only the local feedback strength is poor.

In this two-dimensional system, an identical analysis to that presented in §4.2 reveals
linearly selected diagonally-travelling pattern-generating waves travel with wavespeed v =
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Figure 11: (a) The steady state level of Notch activity predicted by the discrete model (1)
in a two-dimensional array of 30×30 cells (δ = 0.5), and (b) a comparison between the levels
of Notch activity on diagonal cells indicated by the discrete and homogenised models in an
array of 300×300 cells (δ = 0.1) along the line y = x. The dotted line indicates the steady
state arising from local feedback only. A(x) defined by (41), other parameters as in Figure
6 except δ as stated. (40) is solved using a spatial discretisation ∆x = 1 × 10−4 = ∆y.

√
2α/Λ; Figure 12 shows a comparison between the midpoint of the wavefront (travelling

along y = x) predicted by the numerical simulations of the discrete and homogenised
model as well as that predicted by the linear analysis. Clearly, the homogenised model
provides an excellent approximation to the behaviour of the discrete system; the linear
prediction performs less well. Reducing δ (see appendix A) improves the accuracy of the
linear approximation.
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Figure 12: The position of the midpoint of the wavefront (travelling along y = x) of Notch
activity predicted by the two-dimensional homogenised and discrete models on a square
domain of side L = 100, δ = 0.1 (corresponding to 1000×1000 cells). Initial conditions
comprise a region of diagonal patterning (0 6 x 6 5, 0 6 y 6 5) surrounded by the
homogeneous state. Parameters as in Figure 11.

Competing patterns also display behaviour corresponding to that observed in the one-
dimensional case. Figure 13 shows that a region of “diagonal patterning” (in which diagonal
cells exhibit high levels of Notch) surrounded by an “off-diagonal” pattern is engulfed,
evolving to a state with only the initially larger pattern remaining. Also shown is the
position of the engulfing wave front in the discrete simulation (the position of the point
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of equal Notch activity in odd and even cells – i.e., n(x, t) = n∗), indicating that the
enclosed region becomes circular as is the case in the continuum limit (we note that the
region of diagonal patterning becomes square again as it approaches extinction, reflecting
the breakdown of the continuum limit). Due to invasion from all four directions and the
smaller domain employed, the diagonal pattern region is replaced with off-diagonal more
quickly than in the corresponding one-dimensional case. Competing patterns with only one
grain boundary exhibit behaviour corresponding to that shown in Figure 9 (results omitted).
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Figure 13: (a) The behaviour of the systems (1), (40) plotted along the line y = 15
at successive times t = (0, 0.45, 0.75, 1.7, 2.5) × 104 in a square domain of side L = 30
(δ = 0.1) cells with initial conditions of consisting of an off-diagonal pattern of Notch
and Delta activity enclosing a square region of diagonal patterning. The solid and dashed
lines represent the levels of activity in diagonal and off-diagonal cells predicted by the ho-
mogenised model (26) whilst the discrete simulation results are indicated by circles; (b)
contours showing the position of the point of equal Notch activity in odd and even cells at
t = (0, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6) × 104. Parameters as in Figure 7.

6 Discussion

In this paper, we have employed a multiscale technique to construct a continuum model
which is capable of describing the fine-grained patterning which arises in certain parame-
ter regimes associated with signalling feedback strength within the Delta-Notch signalling
model of Collier et al. (1996). While many authors have considered the derivation of contin-
uous models from an underlying discrete systems (indeed, Roussel & Roussel (2004) consider
a similar signalling model to that analysed here obtaining a reaction-diffusion equation pro-
vided that the variation in signalling molecule concentration is smooth), here we formulate
a continuum model capable of describing variation in signalling activity between adjacent
cells. In the main, such systems have hitherto been analysed using discrete techniques,
whilst continuum models have been restricted to smooth concentration profiles or travelling
wave behaviour of juxtacrine activation. Via the assumption of slow variation in feedback
strength and judicious choice of variables, we derive a semilinear partial differential equation
governing receptor and ligand activity on alternate cells under particular assumptions on the
model parameters. The governing equations obtained demonstrate that on the macroscale,
a juxtacrine signalling mechanism in a line of cells does in fact manifest itself as linear
diffusion, even in the regime of fine-grained patterning. This provides motivation for the
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use of reaction-diffusion-type modelling of intercellular signalling. Under a more restrictive
condition on the feedback functions specified in Collier et al. (1996), we derive a continuum
model which applies under a wider parameter regime; this model is more strongly nonlinear
however.

We have employed our model to investigate the emergence of patterns in a line of
cells in response to slow spatial variation of the feedback strength within the Delta-Notch
feedback mechanism and compared the model results to that predicted by corresponding
simulations of the discrete system. Additionally we compare these numerical solutions to the
bifurcation behaviour indicated by considering only the local vale of the feedback strength.
It is evident that, near the bifurcation point, the homogenised model provides a much
closer approximation to the behaviour of the underlying discrete signalling system than
that predicted by analysis based upon the local feedback. Far from the bifurcation point,
the local analysis provides a reasonable approximation to the behaviour. By analysing
the evolution of travelling waves of Notch activity, we demonstrate excellent qualitative
agreement between numerical solution of our homogenised model and the behaviour of
the underlying discrete system. We also derive analytically the minimum wavespeed of
a linearly selected travelling wave, indicating the (surprisingly wide) range of parameter
values for which our continuum approximation applies. The evolution of two competing
stable patterns was also investigated. Such behaviour is mathematically interesting and
has not been examined thoroughly in the literature. Here, we indicate two distinct types
of dynamics, as a precursor to a more comprehensive study. In particular, we show that,
in general, near the bifurcation point, the system is unable to support coexistence of such
patterns, evolving to contain only the pattern initially occupying the larger proportion of
the domain; far from the bifurcation point, strong discrete effects allow pinning of such
patterns. In the specific case of the domain being split equally between the pattern types,
pinned behaviour is observed in both the continuum and discrete models; in general, such
behaviour is precluded from the continuum representation. Further discussion is given in
Appendix B.

By considering an array of square cells, we extended this formulation to derive a two-
dimensional continuum model which, since it supports checkerboard patterns only, is essen-
tially equivalent to the one-dimensional model (the scaling of the coupling term provides
a discrepancy) and corresponding behaviour was observed. Numerical simulations of fine-
grained pattern generation, travelling wave invasion and pattern competition were presented
showing that the homogenised model faithfully reproduces the underlying discrete system.

To summarise, in the case of strong discrete effects, especially in the case of small cell
populations, it is appropriate to treat cells as independent, obtaining a small system of ODEs
to analyse; here, the converse limit has been identified and the appropriate mathematical
description formulated and shown to be equivalent to PDE models of similar phenomena
that are already well-understood. We remark that a disparity between the continuum
and discrete representations of this system is revealed by considering a string of cells with
periodic boundary conditions. Since the multiscale technique presented herein relies on a
periodic unit of two (or, in two dimensions, four) cells, its application to an odd number of
cells introduces a boundary layer of width on the order of a single cell at the domain edges;
in contrast, the discrete model supports an arbitrary number of cells.

We have exploited the simple nature of this intercellular signalling model to derive a
continuum model capable of describing fine-grained patterning which, nevertheless, does
not infringe the requirement that the lengthscale of significant variation must be large in
comparison to the cell length. The specific signalling model under consideration was cho-
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sen in large part for illustrative purposes; however, the mathematical techniques employed
are applicable to more elaborate scenarios in other spatially discrete models. Considera-
tions to be investigated elsewhere include more complicated signalling models, mechanisms
which generate patterns with a longer characteristic scale (such as lateral induction, a corre-
sponding juxtacrine mechanism with positive, rather than negative, feedback), multi-mode
pattern competition and pinning, and the analysis of patterning behaviour in hexagonal
cells.
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A Travelling wave invasion

In this appendix, we consider the invasion of the unstable homogeneous steady state (n∗, d∗)
by a linearly-selected modulated (period-two) travelling wave solution to (1). The invasion
speed of such a wave is compared to a similar analysis on the continuum model (26) (see
§4.2) and to simulations of the discrete system (1) to indicate the parameter range for
which our continuum analysis is applicable. We remark that similar investigations have
been presented in Plahte & Øyehaug (2007), in which the dependence of the wavespeed
on the feedback parameter k = h (which controls the steepness of the sigmoid feedback
functions) was considered and the results compared to corresponding wavespeeds obtained
from simulations of a discrete system similar to (1).

We seek travelling wave solutions of the form

(nj, dj) = (n∗, d∗) + δ(n1, d1)e
iσt−k(j−ct); σ, c ∈ R, k ∈ C, (42)

where σ is the linear growth rate, k = kR + ikI is the complex wavenumber and c is the
wavespeed. From equations (1) we then obtain:

k2c2 + (2iσ + (λ+ 1))kc+ λ(1−f ′(d∗)g′(n∗) cosh(k)) − σ(σ + i(λ+ 1)) = 0, (43)

2kc2 + c(2iσ + λ+ 1) − λf ′(d∗)g′(n∗) sinh(k) = 0, (44)

the second of which being a repeated root condition on the former dispersion relation.
Numerical solution of these equations provides the speed of invading travelling wave together
with the associated complex wavenumber (we note that we obtain k = kR + iπ, σ = πc,
reflecting the period-two nature of the modulated invading wave). Comparison between
the solution of (43) and (44), the corresponding linearly-selected wavespeed v = 2

√
α/Λ

predicted by the homogenised model (§4.2), and numerical simulations of the discrete system
(1) gives an indication of the range of applicability of the asymptotic analysis. We remark
that the results presented in this appendix apply to the travelling waves near the bifurcation
point a∗2; corresponding results may be obtained at a = a∗1.

We induce a travelling wave in the model (1) in the same way as described in §4.2,
employing a string of 3000 cells and calculating the wavespeed from the middle part of
the string to minimise boundary effects. Figure 14(a) shows how the predicted wavespeeds
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differ as δ is increased, indicating that both the linearly selected wave speed predicted by
the continuum model (26) and that obtained from solution of (43) and (44) provide an
excellent approximation to that observed in numerical simulations of the discrete system,
even for parameter values far from the bifurcation point.
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Figure 14: A comparison of the minimum linearly-selected wavespeed in the discrete sys-
tem and continuum approximation (obtained via equations (43), (44) and, from (26),
v = 2

√
α/Λ) and the observed wavespeed in simulations of the discrete system (1) at

different values of δ (a = a∗2 − δ2). The remaining parameters are as in Figure 7.

The solution of (43) and (44) may be simplified by considering the behaviour near the
bifurcation points a∗1, a

∗
2 (denoted a∗ hereafter). In view of the expansion a = a∗ ± δ2

and the period two nature of the invading wave, we have f ′(d∗)g′(n∗) = −1 + O(δ2) and
k = k + iπ (where 0 < δ2 ≪ k ≪ 1); linearising, we obtain:

k ∼
√

2(f ′(d∗)g′(n∗) + 1) , c ∼ λ

1 + λ

√
2(f ′(d∗)g′(n∗) + 1) , (45)

motivating the scalings x = δj, τ = δ2t employed in §3.

B Quasilinear continuum model for fine-grained pattern for-

mation

In this appendix, we derive a continuum model capable describing fine-grained patterns in
a more general context via an approach in which odd and even cells are treated separately
from the outset.

We consider a line of cells as illustrated by Figure 5, take the continuum limit, adopt
the notation given by equations (11) and (12) for the levels of Delta and Notch activity in
odd and even cells and scale time according to τ = δ2t.

Employing the continuum version of equation (1), the spatial coupling term, d
±

j , may
be written:

d
±

j = g(n∓) − δ
∂

∂x
g(n∓) + δ2

(
∂2

∂x2
g(n∓) − 1

λ

∂d∓

∂t

)
+ O(δ3). (46)

A crucial assumption in the analysis that follows is that (to leading order) φ(σ) = f(g(σ))
is its own inverse. As Figure 2 shows, this is the case near the bifurcation point a = a∗ at
which the alternating pattern is created (see Figure 1). By choosing the nonlinearities f and
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g such that this condition is satisfied for all relevant σ we are able to extend significantly
the range of applicability of the continuum limit; specifically, we set:

f(g(σ)) = φ(σ) + δ2ψ(σ) with φ(φ(σ)) = σ, (47)

and introduce the expansions:

d±(x, t; δ) = d±0 (x, t) + δd±1 (x, t) + δ2d±2 (x, t) + · · · , (48)

n±(x, t; δ) = n±0 (x, t) + δn±1 (x, t) + δ2n±2 (x, t) + · · · (49)

The equations governing Notch activity on odd and even cells are then

O(1) : 0 = φ(n±0 ) − n∓0 , (50)

O(δ) : 0 = φ′(n±0 )n±1 − ∂

∂x
φ(n±0 ) − n∓1 , (51)

O(δ2) :
∂n±0
∂τ

= ψ(n∓0 ) +
n∓2

1

2
φ′′(n∓0 ) +

1

2
f ′′(g(n∓0 ))

(
∂

∂x
g(n∓0 )

)2

+

(
∂2

∂x2
g(n∓0 ) − 1

λ

∂d∓0
∂τ

)
f ′(g(n∓0 )) − ∂

∂x

(
n∓1 φ

′(n∓0 )
)

+ φ′(n∓0 )n∓2 − n±2 . (52)

These equations are written in terms of Notch activity only via d±0 = g(n±0 ). Employing
(51) to eliminate n±1 and combining (52) to eliminate n±2 (noting that φ′(n±0 )φ′(n∓0 ) = 1),
we obtain the following quasilinear diffusion equation for the leading-order Notch activity
in even cells (dropping superscripts for brevity):

λ
∂n0

∂τ
= ψ

(
φ(n0)

)
+ φ′

(
φ(n0)

)
ψ(n0) +

∂2n0

∂x2

+

(
∂n0

∂x

)2 {
φ′

(
φ(n0)

)
g′′(n0)f

′(g(n0)) − [φ′(n0)g
′
(
φ(n0)

)]2
f ′′

(
g(φ(n0)))

)}
. (53)

We remark that a nonlinear diffusion term may be introduced by writing this in the standard
form:

∂

∂t
Φ(n0) =

∂

∂x

(
Ψ(n0)

∂n0

∂x

)
+ Ω(n0), (54)

where Φ, Ψ, Ω are straightforward to obtain from (53).
While the constraint (47) of course holds for a wide range of σ only in very special

circumstances, it has the following (albeit somewhat fanciful) biological interpretation. In
discrete systems of the type studied here, a continuum limit is applicable in those cases
for which regimes of front pinning (propagation failure) are minimised – thus if patterning
defects associated with pinning are undesirable, it would be advantageous for the biological
system to fine-tune its kinetics in an attempt to satisfy (47). Conversely, if propagation
failure is favoured, a strongly discrete regime would be appropriate (typically associated
with weak coupling between cells).
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