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Abstract

Understanding the response of the Antarctic ice sheets during the rapid climatic change that accompanied the

last deglaciation has implications for establishing the susceptibility of these regions to future 21st Century

warming. A unique diatom δ18O record derived from a high-resolution deglacial seasonally laminated core

section off the west Antarctic Peninsula (WAP) is presented here. By extracting and analysing single species

samples from individual laminae, season-specific isotope records were separately generated to show changes

in glacial  discharge  to the coastal margin during spring and summer months.  As well as documenting

significant intra-annual seasonal variability during the deglaciation, with increased discharge occurring in

summer relative to spring, further intra-seasonal variations are apparent between individual taxa linked to the

environment that individual diatom species live in. Whilst deglacial δ18O are typically lower than those for

the Holocene, indicating glacial discharge to the core site peaked at this time, inter-annual and inter-seasonal

alternations in excess of 3‰ suggest significant variability in the magnitude of these inputs. These deglacial

variations in glacial discharge are considerably greater than those seen in the modern day water column and

would have altered both the supply of oceanic warmth to the WAP as well as regional marine/atmospheric

interactions. In constraining changes in glacial discharge over the last deglaciation, the records provide a

future  framework  for  investigating  links  between  annually  resolved  records  of  glacial  dynamics  and

ocean/climate variability along the WAP.
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1 Introduction

The East and West Antarctic Ice Sheets (EAIS/WAIS), accounting for 90% of the world's freshwater, play a

major role in regulating the global climate system (Mayewski et al., 2009). Antarctic surface air temperature
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has increased by 0.1oC/decade since the 1950s (Steig et al., 2009) and further warming is forecast for the 21st

Century (Chapman and Walsh, 2007; Bracegirdle et al., 2008), hence,  the stability of the EAIS and WAIS

has been identified as one of the largest uncertainties surrounding predictions of future climate change

(IPCC, 2007; Joughin and Alley, 2011; Rignot et al., 2011). The need to develop a detailed understanding as

to how ice sheets respond to abrupt climatic change is emphasised by the potential for a collapse of the

WAIS to trigger a global sea-level rise in excess of 3 m (Bamber et al., 2009; Mitrovica et al., 2009) with

associated impacts on both the regional water column (Meredith et al., 2008a, 2010), aquatic ecosystem

(Montes-Hugo et al., 2009; Schofield et al., 2010), carbon draw-down of the Southern Ocean (Sigman et al.,

2010) and other global scale ocean-atmospheric processes (Hickey and Weaver, 2004; Stouffer et al., 2007;

Trevena et al., 2008; Swingedouw et al., 2009; Holden et al 2010; Menviel et al., 2010; Ma and Wu, 2011).

One solution towards developing a greater understanding of the behaviour and stability of the Antarctic ice

sheets is to analyse the environmental record over intervals in the past known to be marked by equally abrupt

change. A key example of this  is the last deglaciation (c. 19,000 to  11,000 BP) when temperatures across

Antarctica rose by c. 10oC (Stenni et al., 2001, 2010; Vimeux et al., 2002; Kawamura et al., 2007; Jouzel et

al., 2007) triggering melting and glacial retreat around the continent (Heroy and Anderson, 2007; Smith et al,

2011) that continued through the Holocene (Hall, 2009). 

The west Antarctic Peninsula (WAP), the most northerly part of Antarctica (Fig. 1), is particularly vulnerable

to future change having undergone a c. 3oC  increase in surface air temperature since 1950, the most of

anywhere in the Southern Hemisphere (Vaughan et al 2003; Turner  et  al.,  2005;  Thomas et al., 2009).

Accompanying this  increase in  air  temperatures are  increases in summer sea surface temperature (SST)

(Meredith and King, 2005) and the duration of the annual melting period (Torinesi et al., 2003; Vaughan,

2006). With critical thresholds for increased ice sheet/shelf breakup including summer air  temperatures

>−1.5oC (Scambos et al., 2004) and mean annual temperatures >−9oC (Morris and Vaughan, 2003), changes

in air temperature and SST (Shepherd et al., 2003) can be related to the trend of increasing glacier retreat and

basal melting of the ice-sheet  across the WAP since the 1940s (Cook et al., 2005;  Pritchard et al. 2012)

together with the recent collapse of the Larsen A and B ice shelves (Doake et al., 1998; Rignot et al., 2004).

Palmer Deep (Fig. 1) is  a bathymetric depression on the WAP inner continental shelf, c. 30 km south of

Anvers Island, where the combination of upwelling upper Circumpolar Deep Water (UCDW), seasonal sea

ice and injections of glacial discharge (comprised of iceberg and brash-ice discharge together with basal

melting  of  floating  glaciers/ice  shelves)  created a highly productive photic zone that resulted in a

high-resolution sedimentary archive of the  last  deglaciation (Leventer et al., 1996; 2002). In the ODP Site

1098A sediment  core (Basin  I  of  Palmer Deep) (Fig. 1) this is marked from 12,899-11,061 cal BP

(45.03-40.59 m composite depth) by  an exceptionally preserved, 4.4 m long,  seasonally laminated section
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(Domack et al., 2001; Leventer et al., 2002; Maddison et al., 2005) (Fig. 2). Low-resolution δ18Odiatom

measurements on non-lamina-specific  samples comprised of bulk diatom species show variations of 5.0‰

through this interval (Pike et al., In  press) (Fig. 3), hinting at a highly dynamic deglacial environment

marked by variable levels of glacial discharge. Here we extend this work to  present a unique season and

single-taxon specific δ18Odiatom record from individual laminations between 12,719-12,183 cal BP, an interval

synchronous with the first half of the Younger Dryas/Greenland Stadial 1 (GS1) (c. 12,800-11,500 BP) and

the end of the Antarctica Cold Reversal (ACR) (c. 14,500-12,800 BP). The production of a δ18Odiatom record at

a seasonal-  to decadal-resolution,  the  highest  ever  obtained,  provides an unparalleled opportunity to:  1)

extend the lower-resolution  Holocene δ18Odiatom record into the last deglaciation; 2)  investigate the

environmental conditions that the deglacial laminations formed in; and 3) provide constraints on the link

between  environmental/atmospheric  variability  and  glacial  discharge during  the  last  deglaciation,  and

potential insights on the sensitivity of WAP ice sheets to future climatic changes (Bentley, 2010).

2 Methodology

2.1 Sample description

The deglacial section in cores from ODP Site 1098A are marked by 191 pairs of orange-brown and blue-grey

laminations  (Maddison  et  al.,  2005).  Orange-brown  laminae  are  dominated  by  near-monospecific

Hyalochaete  Chaetoceros spp.  resting  spores  (CRS)  and  are  interpreted  as  representing  austral  spring

deposition linked to increased sea ice melt in the photic zone (Leventer, 1991; Crosta et al., 1997). This leads

to  more  stable/stratified  water  column conditions  that  trigger  high  levels  of  biological  productivity  by

trapping nutrients in the photic zone and enabling diatoms to remain suspended in the water column for

longer periods of time (Leventer, 1991; Leventer et al., 1993, 1996; Crosta et al., 1997; Armand et al., 2005).

In contrast, blue-grey laminae reflect summer  deposition of (i) terrigenous material linked to the seasonal

movement of the nearby grounded ice sheet and (ii) a more diverse diatom assemblage (Leventer et al., 2002;

Maddison et al., 2005; Domack et al., 2006). Of note are a series of intermittent sub-laminae in the blue-grey

laminae characterising the end of  summer,  the  most  common of  which are  dominated by  Thalassiosira

antarctica resting spores (RS) (n = 47; Maddison et al., 2005). Vegetative cells of T. antarctica are linked to

ice-free/lower  nutrient  conditions  that  prevail  in  summer  in  non/weakly  stratified  waters  following  the

melting of sea ice and depletion of nutrients by other taxa (Leventer and Dunbar, 1987; Sommer et al., 1991;

Cremer et al., 2003; Maddison et al., 2005; Pike et al., 2009). As conditions become colder, reductions in

temperature and light availability, together with sea ice advances and increases in salinity via brine rejection,

inhibit diatom growth and lead to the production of T. antarctica RS which dominate the T. antarctica fossil

record.  For  this  study 64  individual  CRS and  42  T.  antarctica RS  seasonal  laminations  were  sampled

(Maddison et  al.,  2005;  Maddison,  2006)  from 44.39-42.50  mcd  (12,719-12,183  cal  BP)  from discrete

intervals where individual laminae are sufficiently thick to prevent sampling across lamina boundaries. In the
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chosen sample intervals, every CRS lamina was sampled together with as many T. antarctica RS laminae as

possible (not all T. antarctica RS laminae were thick enough to sample). The sampling of successive spring

CRS and summer T. antarctica RS across consecutive production seasons allows a detailed investigation of

both  inter-seasonal  and  inter-annual  variations  in  δ18Odiatom and  the  seasonal  evolution  of  deglacial

environmental conditions.

2.2 Chronology

A relatively robust age model has been published for ODP Site 1098 (Domack et al., 2001). However, more

recent studies have developed their own composite depth scales (e.g. Shevenell et al., 2011) due to problems

with the initial shipboard splice. In order to apply the published age data to the δ18Odiatom curve, the published

down core magnetic susceptibility records (Shipboard Scientific Party, 1999) and lamina-to-lamina

correlations were used to re-evaluate the composite depth scale for the A and C hole, and then the published

particulate organic carbon (POC) AMS radiocarbon ages for Hole 1098C (Domack et al., 2001) were used to

produce an age model for our data (Pike et al., In press) that provides ages within 5% of the original age

model. AMS ages were calibrated to calendar years using Calib 6.0.2 (Stuiver and Reimer, 1993), the

Marine09 calibration curve and a reservoir correction of 1,230 years (Domack et al., 2001).

2.3 Diatom extraction and analysis

Diatoms were extracted and cleaned for isotope analysis using adaptations of existing techniques that were

modified for use on coastal Antarctic diatoms (Swann et al., 2008; Snelling et al., in press). In summary,

samples were placed in c. 1 ml of 30% H2O2 at room temperature for approximately four hours to

disaggregate samples without using alkaline chemicals that risk dissolving and causing  isotopic

fractionation. Samples were subsequently centrifuged in sodium polytungstate three times with progressively

lower specific gravities: 2.25 g/ml-1, 2.20 g/ml-1 and 2.10 g g/ml-1 at 2,500 rpm for 20 minutes. Extracted

material was then re-immersed in H2O2 at 70˚C for one week to remove all organic material adhering to the

diatom frustule and then left overnight in 5% HCl to dissolve any carbonates still remaining. Between each

stage samples were centrifuge washed three times at 1,500 rpm for five minutes. To extract single species

samples for isotope analysis samples were sieved at varying size fractions using nylon sieve cloths (Table 1).

For the spring laminae, the <10 μm fraction was dominated by CRS and used to produce a taxon-specific

spring bloom isotope record. For sub-laminae present in the blue-grey laminae the >15 μm fraction was

dominated by T. antarctica RS and used to generate a summer isotope record. The spring CRS and summer

T. antarctica RS records form the focus of our results given  their  dominance and the ability to relate

measurements of δ18Odiatom to specific seasons. In order to examine intra-seasonal variations in δ18Odiatom, the

spring >10 μm fraction and summer <15 μm fraction which contain a variety of other taxa were also

analysed. Sample purity was assessed for all samples using a combination of light microscopy and scanning
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electron microscope.

Samples were analysed for δ18Odiatom following a step-wise fluorination procedure (Leng and Sloane, 2008)

verified through an inter-laboratory calibration exercise (Chapligin et al., 2011). In brief, samples were

outgassed in nickel reaction vessels and reacted with BrF5 for 6 minutes at 250oC to remove contaminant

oxygen present in Si−OH bonds. Oxygen from Si−O−Si bonds was subsequently released overnight using

further reagent at 550oC before being converted and collected as CO2 following Clayton and Mayeda (1963).

Isotope measurements were then made on a Finnigan MAT 253 with values converted to the VSMOW scale

using the NIGL within-run laboratory diatom standard BFCmod which has been calibrated against NBS28.

Replicate analyses of sample material indicate an analytical reproducibility (1σ) of 0.3‰  through the

laminated interval.

3. Results

3.1 Spring vs summer laminations

All fossil  diatom samples are exceptionally well-preserved (Fig. 2, Leventer et al., 2002; Maddison et al.,

2005), showing no signs of dissolution or diagenesis which would tend to lower δ18Odiatom (c.f. Moschen et

al., 2006). Of the selected samples, 52 out of 64 spring laminations and 26 out of 42 summer laminations

produced sufficient clean material for single-taxon CRS and T. antarctica RS analysis. Measurements of the

spring CRS samples, ranging from +39.3‰ to +44.3‰, show significant variability through the laminated

interval with values typically higher than those documented in the bulk species δ18Odiatom measurements from

12,820-12,734 cal BP (Fig. 4a). From 12,429-12,203 cal BP and 12,659-12,500 cal BP spring CRS values

range by 1.7‰ and 2.6‰, respectively. Outside of these intervals fluctuations of up to 3.8‰ occur. Results

from the summer T. antarctica RS laminae are, in most instances, lower than those for CRS (Fig. 4a). With

values ranging from +39.0‰ to +43.8‰ and with abrupt changes of >3‰ occurring throughout, values for

T. antarctica RS are broadly similar in range to the bulk species δ18Odiatom data. The scale of δ18Odiatom

variability through the deglaciation in both the CRS and T. antarctica RS  samples is considerably greater

than that seen at any stage in the Holocene samples from Palmer Deep (Fig. 3).

3.2 Intra-seasonal variability

The spring >10 μm fraction is comprised of diatoms including Eucampia antarctica, Corethron pennatum,

Proboscia inermis,  T. antarctica RS,  Thalassiosira lentiginosa and CRS (which failed to pass through the

sieve cloth) as well as other, less abundant species. The summer <15 μm fraction contains a greater diversity

of taxa including CRS, with small amounts of T. antarctica RS also present. Comparison of spring CRS vs

spring >10 μm samples (Fig. 4b) and summer T. antarctica RS vs summer <15 μm samples (Fig. 4c) show

similar changes but with intra-seasonal offsets of up to 4.2‰ in the spring laminations (mean = 0.9‰) and
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2.3‰ in the summer laminations (mean = 1.5‰).

4. Discussion

4.1 Controls on δ  18  O  diatom along the WAP

To date, there have been no studies calibrating the δ18Odiatom signal along the WAP coastal margin. However, a

multitude of work over the last 20 years have developed δ18Odiatom as a palaeoenvironmental proxy in both

marine and lacustrine systems as well as through the use of laboratory cultures (Swann and Leng, 2009).

This  has  shown that  δ18Odiatom is  comparable  to  the δ18O from planktonic  foraminifera  in  reflecting the

temperature and δ18O of ambient water (δ18Owater), although diatoms will occupy the uppermost section of the

water column which is  most sensitive to changes in  atmospheric  and continental  processes.  Within the

context of the WAP four processes are capable of directly altering δ18Odiatom: 1) SST at a coefficient of c.

–0.2‰/oC (Brandriss et al., 1998; Moschen et al., 2005; Crespin et al. 2010; Dodd and Sharp, 2010); 2)

ocean circulation due to the different δ18Owater of individual water masses; 3) sea ice abundance; and 4) glacial

discharge due to its lower isotopic value relative to seawater.

Using contemporary information on the controls of δ18Odiatom and oceanographic conditions along the WAP,

the sub-sections below outline the relative importance of these processes. Estimating the combined influence

of temperature, water masses and sea-ice on δ18Owater, and so δ18Odiatom, is problematic as the controls on each

are at least partially inter-related. Whilst we cannot fully rule out that temperature, water masses and sea-ice

combine to regulate small changes in δ18Odiatom, we believe that any influence is within the δ18Odiatom analytical

error (0.3‰). Instead we conclude that deglacial changes in δ18Owater, hence δ18Odiatom, are primarily regulated

by variations in glacial discharge, similar to the modern day coastal margin.

4.1.1 Sea surface temperature (SST)

Diatom assemblages along the WAP primarily reflect changes in sea-ice, nutrient supply, stratification and

the  proximity/behaviour  of  ice-mass  along  the  WAP.  Whilst  these  parameters  are  linked  to  SST,  any

relationship is indirect and so taxonomic counts cannot be used to provide information on SST along the

margin (Leventer et al., 2002; Maddison et al., 2005). Holocene variations in TEX86-derived SST at ODP Site

1098 (Shevenell  et  al.,  2011)  have only a negligible impact on δ18Odiatom (either close to or within the

analytical error for δ18Odiatom of 0.3‰ (1σ)) (Pike et al., In press). No SST measurements are available for the

deglacial interval analysed in this study (Fig. 4a) and so we assume that any deglacial  SST impact on

δ18Odiatom is also minimal.

4.1.2 Water masses

Water  masses  in  the  region  are  dominated  by  Circumpolar  Deep  Water  (CDW),  separated  into  lower
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(LCDW) and upper (UCDW), with surface waters representing a mixture of UCDW and Antarctic Surface

Water (AASW) formed along the Antarctic continent. Whereas austral winter AASW extends down to depths

of c.  50-100 m, warming spring water and the injection of glacial discharge reduces salinities and splits

AASW into a less dense surface water mass which overlies denser Winter Water (WW) (Smith et al., 1999).

Given the relatively low δ18Owater variation in modern day water masses, (c. 0.6‰ through the entire water

column; 0.3‰ in the upper 100 m) (Schmidt et al., 1999; Meredith et al., 2008a, 2010), deglacial δ18Odiatom

fluctuations of 2-4‰ are highly unlikely to be directly driven by changes in ocean circulation.

4.1.3 Sea-ice

Today the area south of Anvers Island is marked by sea-ice breakup from December to February and open

waters/pack ice from February to May (Stammerjohn et al., 2003). Whilst the subsequent sea-ice formation

locks up large volumes of water and is characterised by significant inter-annual variability, its impact on

δ18Owater can be  discounted  by the low fractionation  factor  of  1.0026–1.0035 for  ice  formed in isotopic

equilibrium with  seawater  (Majoube,  1971;  Lehmann and Siegenthaler,  1991;  Macdonald  et  al.,  1995).

Monitoring has also shown that melting sea-ice in spring/summer on average c. 0.5% (maximum <2%) of all

water  in  the  mixed  layer  along  the  WAP,  altering  δ18Owater by  less  than  0.1‰ (Meredith  et  al.,  2010).

Sensitivity tests have further shown that the impact of sea-ice on δ18Odiatom is negligible for realistic changes

in Holocene/deglacial sea-ice concentrations, with the proportion of surface water derived from sea-ice melt

required to increase from 0.5% to 14% at the expense of UCDW just to alter δ18Odiatom beyond analytical error

(0.3‰) (Pike et al., In press).

4.1.4 Glacial discharge

Mean annual modern day surface water along the WAP can be simplified as comprising 95.5% UCDW (δ18O

= –0.08‰), 0.5% sea ice melt (δ18O = +2.1‰) and 4% meteoric water, comprised of glacial discharge (c.

δ18O = –20‰) with additional contributions originating from precipitation (c. δ18O = –13‰) (Jacobs et al.,

1985; Meredith et al. 2008a, 2010). By assuming that meteoric water during the last deglaciation is similar to

the modern day in being primarily derived from Antarctic glacial discharge, a relatively small change in

volume is capable of significantly altering δ18Owater due to the very isotopically depleted nature of the glacial

discharge. For example, changing the relative proportion of glacial discharge by only 1.5% at the expense of

UCDW in a simple mass-balance calculation (Meredith et al.  2008a) alters δ18Owater beyond the δ18Odiatom

analytical error (0.3‰). This calculation, using a modern day Ryder Bay Antarctic meltwater value of –20‰,

demonstrates the ability for a small change in modern Antarctic glacial discharge to alter δ 18Owater. It is also

reasonable to assume that the isotopic impact of these inputs would have increased in the last deglaciation in

response  to  lower  glacial  discharge  δ18O values.  For  example,  ice-core  records  from across  Antarctica

document c. 6‰ lower values during the last glacial compared to modern day (EPICA Community Members,
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2006; Jouzel et al. 2007).

The  proposition that glacial  discharge  is  the main control on  δ18Odiatom along the  WAP is  supported  by

evidence from the modern WAP environment that: 1) glacial discharge, which primarily occurs in summer, is

a greater contributor of freshwater to the mixed layer than  sea-ice melt, which primarily occurs in spring

(Meredith et al., 2008a, 2010); and 2) meteoric water,  dominated by glacial discharge, play a major role in

regulating seasonal δ18Owater variations of c. 0.4-0.7‰ along the WAP by forming c. 6% of all mixed layer

water in austral summer compared to 2-4% in other months (Meredith et al., 2008a; 2010). 

Whilst  we conclude that the δ18Odiatom record presented here documents changes in glacial discharge and

provides an insight into the stability of glaciers along the WAP during the last deglaciation, the sensitivity of

δ18Odiatom at  ODP Site 1098 to glacial discharge will  alter over time in response to the proximity of the

ice-sheet and its associated advance/retreat. As the Antarctic Peninsula Ice Sheet moves away from the core

site, the increased dilution of the isotope signal from the ice-sheet margin across the mixed layer means that

progressively larger glacial discharges are required to trigger the same magnitude change in δ 18Odiatom. Such

considerations are further complicated by temporal changes in the isotopic composition of glacial discharge,

although the relatively short timeframe, c. 500 years, analysed in this study suggests that these issues may be

negligible over the documented interval. Whilst the presence of mixed layer processes do prevent simple

mass-balance  calculations  from  being  used  to  quantitatively  reconstruct  absolute  changes  in  glacial

discharge, variations in δ18Odiatom nonetheless provide a qualitative indicator of ice-sheet melting and glacial

discharge.

4.2 Intra-seasonal differences in δ  18  O  diatom

If diatom-water fractionation is consistent across species, allowing measurements of δ18Odiatom to be used as

an indicator of glacial discharge from the Antarctic continent, different taxa from the same seasonal lamina

should have the same δ18O value. Whilst δ18Owater will vary through a single season in response to changes in

glacial discharge, these differences should be averaged out across the sediment material analysed in a given

lamination. A surprising finding of this study are the intra-laminae/seasonal offsets between: 1) spring CRS

and spring >10 μm fraction (Fig. 4b); and 2) summer T. antarctica RS and summer <15 μm fraction (Fig.

4c). Issues of secondary isotope exchange (Schmidt et al., 1997, 2001; Brandriss et al., 1998; Moschen et al.,

2006) can be discounted as these processes would be expected to alter different species/size fractions from

the same sediment horizons to the same extent. At present there is insufficient data to understand the summer

lamination offsets (Fig. 5a, b) and no relationship exists between the offsets and the relative abundances of

dominant taxa in the sediment assemblages (e.g., CRS, Fragilariopsis curta, Fragilariopsis cylindrus and T.

antarctica RS).  However a strong linear regression between CRS δ18Odiatom and the intra-laminae spring
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offsets (CRS δ18Odiatom minus >10 μm fraction δ18Odiatom) (R2 = 0.57, p < 0.001) suggests that lower values of

CRS are associated with a more negative offset (Fig. 6a, b). This implies that the intra-lamination offsets in

the spring laminae may be  linked to the magnitude of spring  glacial discharge and diatom depth habitats

rather than a non-equilibrium vital effect.

One explanation is that during deglacial spring seasons of increased glacial discharge (low CRS δ18Odiatom),

increased water column stability inhibits the mixing/dilution of glacial  discharge  (low δ18Owater) with

sub-surface water masses (UCDW - high δ18Owater) (Fig. 7a). CRS, inhabiting the uppermost sections of the

photic zone dominated by greater relative proportions of glacial  discharge, would  therefore form their

frustules from water with lower δ18Owater. Diatoms in the spring >10 μm fraction would occupy deeper parts

of the photic zone where the proportion of glacial  discharge relative to UCDW is reduced, resulting in

frustules formed in ambient water  with a  higher δ18Owater and leading to more negative offsets. In years of

reduced spring glacial discharge reductions in water column stability increase mixing, reducing/eliminating

the vertical δ18Owater gradient between depths inhabited by CRS and those inhabited by other taxa (Fig. 7b).

This  interpretation is in agreement with the observations made here  that the larger offsets, as well as the

interval of greatest variability, are focused towards the early parts of the studied section prior to 12,450 cal

BP when the ice sheet would have been in closer proximity to Palmer Deep, leading to a more dynamic water

column environment and greater inter-annual variability in spring glacial discharge (Fig. 6a, b). Whilst this

scenario explains instances where the spring isotope offset  is negative and is  supported by modern day

observations showing that  changes in the mixed layer depth are linked to amount of surface freshwater

(Meredith et al., 2010), it does not explain positive offsets (n = 6) which remain unexplained. These positive

offsets may be linked to localised variations in δ18Owater in a less well stratified water column, although the

modern day variability through the upper 100 m of the water column is only c. 0.3‰ (Meredith et al., 2010).

The presence of large spring  and summer  intra-seasonal offsets in δ18Odiatom has implications for future

δ18Odiatom studies  both along the WAP and in other marine/lacustrine systems. Records of planktonic

foraminifera  δ18O have long been derived from single taxa to avoid inter-species vital effects related to

non-equilibrium fractionation and depth/habitat related issues. In contrast, research using δ18Odiatom has been

dominated by bulk species analyses, with a few exceptions (e.g., Barker et al., 2007). Results presented here

suggest that significant offsets can exist between different taxa blooming in the same season due to variations

in depth habitat and life strategies. Together with the large inter-seasonal differences between the spring CRS

and summer T. antarctica RS measurements, this documents the need for careful planning and utilisation of

diatom isotope records in future work. Consideration of the diatom species within the sediment assemblages,

their spatial and temporal distribution in the water column and the desire to extract seasonal or lower

resolution information either throughout or at  specific depths in the water column will determine whether
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bulk, single and/or season-specific taxa should be used in future work. Where bulk species are analysed,

consideration should be given in any interpretation as to the extent to which temporal or spatial signals are

blurred relative to one another. For example, in the post-lamination Holocene interval at Palmer Deep where

spring, summer and autumn frustules are mixed together in the sediment, measurements of δ18Odiatom were

generated on bulk species samples to increase the amount of diatom material extracted and ensure sufficient

material existed for analysis (Fig. 3) (Pike et al., In press). For most samples extracting sufficient material for

a single species analyses would only have been achievable by considerably increasing the temporal span of

each sample. Analysing bulk samples was therefore performed at the expense of a single-taxon

season-specific record to avoid blurring any isotope signal, which would have prevented the detection of the

400-500 year cyclicity during the late Holocene linked to ENSO activity (Pike et al., In press).

4.3 Inter-seasonal evolution of the deglacial δ  18  O  diatom signal

Deglacial δ18Odiatom values are typically lower than those for the Holocene and indicate peak glacial discharge

delivery to Palmer Deep at this time (Fig. 3).  Recurrent variations of >3‰  in both the spring CRS and

summer T. antarctica RS laminae from  12,719-12,183 cal BP, as well as the bulk species samples from

12,820-12,734 cal BP (Fig. 3, 4a), further highlight significant inter-annual and inter-seasonal variability in

the magnitude of glacial discharge. This variability reflects the rapid retreat of regional ice sheet along the

peninsula during the last deglaciation (Domack et al., 2001, 2006; Heroy and Anderson, 2007; Johnson et al.,

2011; Simms et al., 2011; Smith et al., 2011) and is in contrast to both: 1) the comparatively stable Holocene

(Fig. 3); and 2) typical modern day intra-annual and inter-annual variability of c. 0.3‰ (Meredith et al.,

2008a, 2010). Direct comparisons of the deglacial spring CRS and summer T. antarctica RS laminae indicate

increased  glacial  discharge to  the  photic  zone  (lower δ18Odiatom) during  summer months (Fig. 4a), an

observation reinforced by comparisons of neighbouring spring and summer laminations (i.e. those from the

same year, p < 0.01)  with only 5 out of the 23 paired samples showing higher spring  melting relative to

summer (mean seasonal difference =  1.2‰) (Fig. 8). These differences  are  not attributable to seasonal

variations  in SST with modern day summer/spring differences  of c. 1.5oC (Meredith et al., 2008a, 2010)

equivalent to a δ18Odiatom shift  of only  0.3‰ (i.e.  within our analytical  error). Increased  accumulation of

glacial  discharge in the  deglacial summer  photic zone is supported by similar patterns of seasonality

observed in the modern day (Meredith et al., 2008a, 2010) and by the higher levels of glacier-derived

material in deglacial summer laminae (Maddison et al., 2005). However, the absence of any correlation (r =

0.21) and relationship (p > 0.3) between spring and summer δ18Odiatom implies that the magnitude of summer

glacial  discharge during  deglaciation is  not linked to that  occurring  in the preceding spring months,

suggesting that the deglacial ice sheets are responding to seasonal, as opposed to mean annual, conditions.

Whilst  the  isotopic  difference  between  these  paired  samples  provide  information  on  spring-summer

seasonality (Fig. 8b), it is not  currently possible to link variations to an overriding atmospheric or oceanic
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mechanism due to the absence of similar high-resolution records of those potential forcings.

4.3.1     Palaeoenvironmental     forcing     and     the     role     of     glacial discharge     in     forming     deglacial     laminations  

Contemporary observations of freshwater inputs to the WAP have been associated with inter-annual

variability in the El Niño – Southern Oscillation (ENSO) and Southern Annular Mode (SAM). As well as

impacting upon the depth of the mixed layer, and so diffusion of glacial discharge through the water column

via stronger northerly winds (Meredith et al., 2010), changes in the ENSO and SAM have been linked to

alterations in wider atmospheric circulation patterns over Antarctica (Russell and McGregor, 2010) as well

as coastal SST and sea ice cover (Thompson and Solomon, 2002; Turner, 2004; Meredith et al., 2008b;

Stammerjohn et al., 2008; Mayewski et al., 2009; Ciasto and England, 2011) that in turn influence the flux of

oceanic heat delivered to continents and so basal melting (Pritchard et al., 2012). These linkages have been

key to explaining Holocene records of SST and glacial discharge variability at Palmer Deep (Shevenell et al.,

2011; Pike et al., In press). Recent research has suggested the presence of a decoupled ENSO state during the

last deglaciation characterised by enhanced La Niña-like conditions (Makou et al., 2010) together with

increased westerlies (Fletcher and Moreno, 2011) indicating positive SAM-like conditions. Alongside the

regional shift to warmer conditions which accompanies the transition from a glacial to interglacial state, the

establishment of La Niña-like and enhanced positive  SAM-like circulation  would generate further

atmospheric warmth along the WAP (Russell and McGregor, 2010), thereby maximising the flux of glacial

discharge into the photic zone and the retreat of the dynamically unstable ice sheets. Variability in the

ENSO/SAM-like states may further explain the significant (>3‰) inter-annual variability in glacial

discharge documented by both spring and summer laminae δ18Odiatom. This, however, remains speculative in

the absence of a comparable annually-resolved record of ENSO/SAM conditions through the last

deglaciation. Indeed, with no synchroneity between  deglacial  changes in δ18Odiatom and Antarctic ice-core

records from coastal or continental locations (Fig. 4a), there is likely  a need to consider internal glacial

processes (Bamber et al., 2007) as well as the regional role of the oceans and other climatic teleconnections

in driving variations in the flux of glacial discharge to the photic zone (Mackintosh et al., 2011). 

Regardless of the processes controlling the rate of glacial discharge and its subsequent flow into the coastal

water column, large inputs of glacial discharge during the last deglaciation would have significantly reduced

sea surface salinity (SSS) along the WAP, increasing water column stability. This stability would have been

enhanced by the increased importance of salinity in regulating water column structures at low temperatures

(Feistel, 2003, 2008) and by the  deglacial blockage of the Gerlache Strait (Sjunneskog and Taylor, 2002)

limiting the northerly export of glacial discharge. The creation of a stable water column in spring months has

further consequences for photic zone biological productivity, first by allowing phytoplankton to remain in the

photic zone for longer and secondly by increased transportation of bioavailable nutrients entrained within
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glacial discharge from the ground ice sheet as glacial-flour (e.g., Dierssen et al., 2002; Raiswell et al., 2006;

2008; Statham et al., 2008; Hood and Scott, 2008; Hodson et al., 2010; Crusius et al., 2011). These events

would have been essential in establishing the low-salinity/nutrient-rich conditions that triggered the highly

productive photic zone and rapid sedimentation that led to the formation of the spring laminations at Palmer

Deep (Leventer et al., 1996, 2002).

T. antarctica RS measurements typically suggest greater glacial discharge in summer than spring and so

similar processes may have also established the high levels of productivity documented in the grey-blue

sub-laminae, only to be terminated by the winter expansion of sea ice over the region. However, the presence

of taxa including Corethron pennatum, Coscinodiscus bouvet, Odontella weissflogii together with T.

antarctica RS in both the blue-grey laminae and sub-laminae has been interpreted to indicate a more

open/mixed water column in summer months (Maddison et al., 2005). Understanding  these  changes  is

important in the context of modern day  glacial discharge and associated discussions on  its  role in driving

water column stratification, sea ice formation, changes in the ecosystem and the associated export of this

water to lower latitudes (Meredith et al., 2008a, 2010; Montes-Hugo et al., 2009; Schofield et al., 2010). If

the diatom assemblages do accurately indicate more mixed conditions in summer, the greater diffusion of an

isotope signal through such a water column would imply that the seasonal difference between spring (less

glacial discharge – higher δ18Odiatom) and summer (more glacial discharge – lower δ18Odiatom) is greater than

that implied from the δ18Odiatom data alone.

4.3.2     Palaeoclimatic     implications     of     deglacial     glacial discharge     inputs     along     the     WAP  

Previous low-resolution work from the Atlantic and Indian sectors of the Southern Ocean south of the

Antarctic Polar Frontal Zone, but distal from the Antarctic continental margin, has documented δ18Odiatom

changes of up to 3‰ through the Holocene and last glacial cycle (Shemesh et al., 1992, 1994, 1995, 2002).

Robust chronologies have never been established for these cores preventing a detailed understanding as to

the origin, timing and/or significance of these changes. Extended intervals of low δ18Odiatom at Palmer Deep

during the last deglaciation characterised by rapid inter-annual variations of >3‰ provide, for the first time,

conclusive well-dated evidence of a series of deglacial discharge pulses into the Southern Ocean along the

WAP. Given the magnitude of these changes, and depending on the spatial representativeness of these

conditions elsewhere along the WAP and Antarctic margin, these meltwater fluxes  could have: 1) reduced

the supply of oceanic warmth to the coastal region by lowering the contribution of relatively warm UCDW to

AASW, influencing climatological  connections between the marine and atmospheric systems and further

glacial  discharge;  2)  altered  surface  water  mixing/stability  which  has  implications  for  understanding

localised changes in ocean-atmosphere fluxes of CO2 (Sigman et al., 2010); and 3) impacted more widely

upon hemispheric/global ocean circulation (Menviel et al., 2010; Ma and Wu, 2011). Given chronological
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uncertainties that exist in radiocarbon dating around Antarctica (Ohkouchi and Eglinton, 2008), it  is not

possible to relate specific injections of glacial discharge along the WAP to known changes in global sea-level

rise  or  oceanic  patterns.  However,  large seasonal  inputs  of  glacial  discharge  over the studied interval

(12,719-12,183 cal BP), in addition to that recorded in the bulk species δ18O samples (12,820-12,734 cal BP),

can be broadly associated with the end of the ACR in Antarctica and the establishment of the Younger Dryas

(GS1)  stadial in the North Hemisphere. This highlights the need to consider the wider climatological and

oceanographic impact of these glacial discharge fluxes over the last deglaciation.

5. Conclusions

The construction of single-taxon and season-specific δ18Odiatom records from the deglacial laminated interval

at Palmer Deep (ODP Site 1098A), WAP, highlights the considerable potential that exists in using diatom

isotope measurements to document atmospheric-terrestrial-marine interactions in sediments which do not

contain biogenic/endogenic carbonates. However, with individual spring and summer laminae documenting

inter-species variations linked to the life-habits of individual taxa, any future work both around the Antarctic

margin as well as in other marine and lacustrine sediment cores is contingent upon the consideration of the

origin of the δ18Odiatom signal.

Evidence of lower δ18Odiatom in summer months during the deglaciation is  supported  by  modern day

observations  that glacial discharge fluxes from the Antarctic continent peak at this time (Meredith et al.,

2008a; 2010). However, the absence of a relationship between: 1) the magnitudes of spring and summer

glacial discharge; and 2) glacial discharge and ice-core records from the continental interior, suggests the

need to investigate the past/future stability of ice sheet along the WAP from a seasonal and regional, rather

than a mean annual perspective. In extending the lower resolution centennial scale Holocene δ18Odiatom record

for ODP Site 1098, conclusive evidence is documented showing significant, up to 3‰, inter-seasonal and

inter-annual variations in the magnitude of glacial discharge from the Antarctic continent during the last

deglaciation (Figs. 3, 4). This is significantly greater than the c. 0.3‰ variability observed in the modern day

(Meredith et al.,  2008a, 2010).  With these pulses having the potential to impact upon both regional and

global ocean  circulation and  ocean/atmosphere interactions, further work is now required to examine the

spatial representativeness of these changes both along the WAP and elsewhere across the coastal Antarctic

margin.
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Supplementary data

Supplementary Table 1: Deglacial lamination δ18Odiatom data from ODP Site 1098.

Figures

Figure 1: Location of ODP Site 1098 (64°52.72'S, 64°12.47'W) along the WAP. Core recovered during ODP

Leg 178 from 1012 m water depth (Shipboard Scientific Party, 1999). Figure adapted from Hey (2009).

Figure 2: A) Backscattered secondary electron imagery (BSEI) photomosaic from the deglacial  seasonally

laminated  core  section  at  ODP Site  1089  showing  the  progression  from  (i)  spring  biogenic  laminae

dominated  by  CRS  through  to  the  (ii)  summer  terrigenous  laminae  and  (iii)  late-summer  sub-laminae

characterised by increases in  T. antarctica RS. B & C) Secondary electron imagery (SEI) photographs of

CRS and T. antarctica RS  from  the  spring  and  late-summer  respectively.  SEI  images  taken  prior  to

extraction/cleaning for isotope analysis and highlight the excellent preservation of diatoms in the sediment

matrix. Scale bars = 3 mm (A); 20 μm (B/C). Figure adapted from Maddison (2006).

Figure 3: Holocene and lamination bulk species records of δ18Odiatom from Palmer Deep (Pike et al., In press)

together with spring and summer laminae measurements (this study). Shaded interval represents the

seasonally laminated deglacial interval analysed in this study.

Figure 4: A) Comparison of spring CRS and summer T. antarctica δ18Odiatom data with ice-core δ18O data from

Dronning Maud Land (EPICA Community Members, 2006). B) Comparison of spring CRS and spring >10

μm fraction δ18Odiatom. C) Comparison of summer T. antarctica RS and summer <15 μm fraction δ18Odiatom.
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Figure 5: A) Comparison of summer T. antarctica RS and the summer isotope offset (T. antarctica RS minus

>10 μm fraction). B) Linear regression of summer T. antarctica RS against summer isotope offset (solid line)

(n = 6).

Figure 6: A) Comparison of spring CRS and the spring  isotope offset (CRS minus  >10 μm fraction). B)

Linear regression of spring CRS against spring isotope offset (solid line) with the 95% confidence intervals

(dashed line) (n = 21) (R2 = 0.57, p < 0.001). If only negative offsets are considered R2 = 0.68, p < 0.01. If

the  two lowest  CRS δ18Odiatom values  are  removed  R2 =  0.16,  p  =  0.08 and R2 =  0.32,  p  = 0.03 when

considering the whole dataset and negative offsets respectively.

Figure 7: Schematic diagram attributing the isotope offset between spring CRS and the spring >10 μm

fraction to increased glacial discharge and water column stratification. A) Increased glacial discharge leads

to greater water column stability. CRS bloom close to the surface in water with a higher proportion of glacial

discharge, leading to frustules with low δ18O. Taxa in the >10 μm fraction occupy water at deeper depths that

contains less  glacial  discharge, leading to frustules with higher δ18O relative to CRS. B) Lower  glacial

discharge input reduces water column stability, leading to increased homogenisation of the isotopes between

the water column depths occupied by CRS and >10 μm fraction taxa and  bringing the magnitude of the

spring offset closer to zero.

Figure 8: A)  Comparison of spring CRS and summer T. antarctica RS  δ18Odiatom data from neighbouring

laminations. (i.e. from the same year). B) Seasonal offset between CRS δ18Odiatom (spring) and T. antarctica

RS (summer) from neighbouring laminations. Positive (negative) values indicate higher (lower) levels of

summer glacial discharge relative to spring.

Tables

Table 1: Summary of size fractions and terminology used in manuscript

Laminae Size fraction Taxa present Term used in text

Spring <10 μm CRS CRS

Spring >10 μm Various Spring >10 μm fraction

Summer >15 μm T. antarctica RS T. antarctica RS

Summer <15 μm Dominated by CRS Summer <15 μm fraction
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